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Abstract

In this paper a two-person red-and-black game is investigated. We suppose that, at every
stage of the game, player I’s win probability, f , is a function of the ratio of his bet to the
sum of both players’ bets. Two results are given: (i) if f is convex then a bold strategy is
optimal for player I when player II plays timidly; and (ii) if f satisfies f (s)f (t) ≤ f (st)

then a timid strategy is optimal for player II when player I plays boldly. These two
results extend two formulations of red-and-black games proposed by Pontiggia (2005),
and also provide a sufficient condition to ensure that the profile (bold, timid) is the unique
Nash equilibrium for players I and II. Finally, we give a counterexample to Pontiggia’s
conjecture about a proportional N -person red-and-black game.
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1. Introduction

The red-and-black gambling problem, which has taken its name from the game of roulette,
has interested probabilists for quite some time. The discrete version of this gambling problem
can be described as follows. A player begins with a positive integer fortune and wants to reach
a goal M by betting, at each stage of the game, an integer amount not greater than his current
fortune. If the player’s current fortune is x and he stakes an amount a, then his next fortune
will be x +a with a certain fixed probability w (0 < w < 1), and will be x −a with probability
1 − w. Betting repeats until the goal M is reached or the player goes broke. The problem is to
find a strategy which maximizes the probability of the player reaching the goal.

Dubins and Savage [1, pp. 83–89] showed that, in the subfair case (i.e. w ≤ 1
2 ), an optimal

strategy is bold play, which corresponds to always betting either the entire current fortune or
just enough to reach the goal, whichever is smaller. This seems intuitively reasonable, in that
a shorter game seems to give a better chance to the subfair player since he will surely lose
in the long run. In the superfair case (i.e. w ≥ 1

2 ), Ross [4] proved that it is optimal for the
player to bet timidly, that is, always to stake one unit of his current fortune at every opportunity.
Intuitively, if the player is superfair, for him it is better to prolong the game.
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A two-person red-and-black game was introduced by Secchi [5]. In this game, one player
wants to maximize the probability of reaching a goal while the second player chooses his actions
to keep the first player from reaching the goal. Secchi provided an appropriate extension of
bold play as an ε-optimal strategy for the player in the subfair case, and an extension of timid
play as an ε-optimal strategy for the player in the superfair case.

Pontiggia [3] proposed two different formulations of two-person red-and-black stochastic
games in which the players’win probabilities are not fixed, but change at each stage of the game.
One formulation is called a weighted two-person red-and-black game, in which a player’s win
probability is the product of a weight and the ratio of his bet to the sum of the two bets. The
other formulation is called a proportional two-person red-and-black game, in which the players’
win probabilities are proportional to their bets. For both games Pontiggia showed that bold
play is optimal for the player in the subfair case and timid play is optimal for the player in the
superfair case.

Pontiggia also proposed an N -person red-and-black game with bet-dependent win proba-
bilities, called a proportional N -person red-and-black game. She showed that if this game is
fair to every player, then any profile of strategies is optimal. For games which are not fair
to all players she made the following conjecture: at each stage of the proportional N -person
red-and-black game, it is Nash for each player to play boldly if he is subfair and to play timidly
otherwise. We will propose a counterexample to this conjecture in Section 3.

The organization of this paper is as follows. In Section 2 we consider a two-person red-and-
black game in which at each stage the win probability of player I is a function of the ratio of
his bet to the sum of the two bets. We first show that if the win probability function is convex,
then an optimal strategy for player I is bold play when player II plays timidly. Next we show
that if the win probability function f satisfies f (s)f (t) ≤ f (st), then it is optimal for player
II to bet timidly when player I plays boldly. Several examples are discussed as applications of
these two results. In particular, Pontiggia’s two formulations of the two-person red-and-black
game are verified to satisfy the conditions of our results, so our theory can be applied to both
games. In Section 3 we first recall the proportional N -person red-and-black game and then
give a counterexample to Pontiggia’s conjecture.

2. Subfair two-person red-and-black game

Imagine that two players engage in a game and play in stages, each player having an initial
fortune of positive integer size. Assume that at each stage each player wants to win the entire
fortune of his opponent by betting an amount not greater than his own current fortune. That is
to say, both players want to amass the total amount in the system.

Let M ≥ 2 be the total amount of money in the system and let S = {0, 1, . . . , M} be
the state space of each player in the game. Once one of the players reaches M , the state of
neither player can change. We also assume that at each stage each player chooses his action
without any knowledge of the action chosen by the other. In fact, all the games we consider are
noncooperative in this sense.

If a player always stakes one unit of his current fortune at each stage of the game, we call
his strategy a timid strategy. If he always stakes his entire fortune at each stage of the game,
we call his strategy a bold strategy.

Denote the two players by I and II. If player I’s fortune is x ∈ S, then the action sets are

AI(x) =
{

{1, . . . , x} if x ∈ {1, . . . , M − 1},
{0} if x ∈ {0, M},
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for player I, and

AII(x) =
{

{1, . . . , M − x} if x ∈ {1, . . . , M − 1},
{0} if x ∈ {0, M},

for player II.
Suppose that, at stage m, player I has xm, 1 ≤ xm ≤ M − 1, units of money and bids an

amount am ∈ AI(x
m), while player II bids bm ∈ AII(x

m). The law of motion for player I at
stage m is defined by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

xm + bm with probability f

(
am

am + bm

)
,

xm − am with probability 1 − f

(
am

am + bm

)
,

where f : [0, 1] → [0, 1] is an increasing, continuous nonzero (i.e. not everywhere zero)
function with f (0) = 0 and f (s) ≤ s, called the win probability function of the game. Note
that if xm = 0 or xm = M , then the law of motion for player I is defined by xm+1 = xm with
probability 1.

Since f (s) ≤ s, we see that

E[xm+1 | xm] = (xm + bm)f

(
am

am + bm

)
+ (xm − am)

[
1 − f

(
am

am + bm

)]

= xm + (am + bm)

[
f

(
am

am + bm

)
− am

am + bm

]
≤ xm for 1 ≤ xm ≤ M − 1,

and that E[xm+1 | xm] = xm for xm = 0 or xm = M . Therefore, the process, {xm}, of the
fortunes of player I is a supermartingale. This means that the game is subfair to player I and
superfair to player II. For convenience, this game is called a subfair two-person red-and-black
game. As mentioned in the introduction, Pontiggia [3] proposed two types of win probability
for player I: (i) aw/(a + b) with 0 < w < 1 and (ii) aw/(aw + bw̄) with 0 < w < 1

2 and
w̄ = 1 − w, where a and b are the bets of players I and II, respectively. It is easy to verify that
these two win probabilities respectively correspond simply to the two probability functions

f1(s) = ws, 0 < w < 1,

and

f2(s) = sw

sw + (1 − s)w̄
, 0 < w <

1

2
.

A continuous function g defined on a closed interval [a, b] is said to be convex if, for any
s, t ∈ [a, b] and α ∈ [0, 1], we have g(αs + (1 − α)t) ≤ αg(s) + (1 − α)g(t). It is known
from calculus that if g′′(s) ≥ 0 for all s ∈ (a, b), then g is convex on [a, b]. The following is a
result about a subfair two-person red-and-black game with a convex win probability function.

Theorem 2.1. In a subfair two-person red-and-black game, assume that the win probability
function f is a convex function and that player II plays a timid strategy. A bold strategy is then
optimal for player I.
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Proof. Assume that player II plays a timid strategy. If player I uses a bold strategy, set

Q(x) = P(player I reaches M with an initial fortune x).

The corresponding law of motion at stage m for player I having fortune xm and playing boldly
is given by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

xm + 1 with probability f

(
xm

xm + 1

)
,

0 with probability 1 − f

(
xm

xm + 1

)
,

for 1 ≤ xm ≤ M − 1,

and by xm+1 = xm with probability 1 for xm = 0 or xm = M . From this it is not difficult to
derive the recursion relation

Q(x) = f (rx)Q(x + 1), (2.1)

where rx = x/(x + 1) and 1 ≤ x ≤ M − 1. Note that Q(0) = 0 and Q(M) = 1.
In order to prove that a bold strategy is optimal for player I when player II plays timidly,

it suffices to show that Q(·) is excessive (see Theorem 3.3.10 of [2]) or, equivalently, that the
following inequality holds for every x ∈ {1, . . . , M − 1} and every a ∈ {1, . . . , x}:

f

(
a

a + 1

)
Q(x + 1) +

(
1 − f

(
a

a + 1

))
Q(x − a) ≤ Q(x). (2.2)

Repeatedly using (2.1) yields

Q(x − a) = f (rx−a)Q(x − a + 1) = · · · =
a∏

i=0

f (rx−i )Q(x + 1).

Therefore, (2.2) becomes

f (ra)Q(x + 1) + (1 − f (ra))

a∏
i=0

f (rx−i )Q(x + 1) ≤ f (rx)Q(x + 1),

which is equivalent to

f (ra) + (1 − f (ra))

a∏
i=0

f (rx−i ) ≤ f (rx)

since Q(x + 1) > 0. It is clear that 0 < rt ≤ rx < 1 if 1 ≤ t ≤ x. Now, since f is convex on
[0, 1], f (0) = 0, and rt = (rt /rx)rx + (1 − rt /rx) × 0, we see that

f (rt ) ≤ rt

rx
f (rx) +

(
1 − rt

rx

)
f (0) = rt

rx
f (rx)
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for all t , 1 ≤ t ≤ x. Thus, we have

f (ra) + (1 − f (ra))

a∏
i=0

f (rx−i )

≤ f (ra) + (1 − f (ra))

a∏
i=0

(
rx−i

rx
f (rx)

)

= f (ra)

[
1 −

a∏
i=0

(
rx−i

rx
f (rx)

)]
+

a∏
i=0

(
rx−i

rx
f (rx)

)

= f (ra)

[
1 − f (rx)

(
f (rx)

rx

)a
x − a

x

]
+ f (rx)

(
f (rx)

rx

)a
x − a

x

≤ ra

rx
f (rx)

[
1 − f (rx)

(
f (rx)

rx

)a
x − a

x

]
+ f (rx)

(
f (rx)

rx

)a
x − a

x

= f (rx)

[
ra

rx
− ra

rx
f (rx)

(
f (rx)

rx

)a
x − a

x
+

(
f (rx)

rx

)a
x − a

x

]

= f (rx)

[
ra

rx
+

[
1 − ra

rx
f (rx)

](
f (rx)

rx

)a
x − a

x

]
.

Let

g(s) = ra

rx
+

(
1 − ra

rx
s

)(
s

rx

)a
x − a

x
.

Then

g′(s) = a(rx − s)sa−1

ra+1
x

x − a

x
.

This implies that g′(s) ≥ 0 if 0 ≤ s ≤ rx . Therefore, g(s) is increasing on [0, rx]. Since
f (s) ≤ s for all s ∈ [0, 1], we have f (rx) ≤ rx . Thus, g(f (rx)) ≤ g(rx) = 1, that is,

ra

rx
+

[
1 − ra

rx
f (rx)

](
f (rx)

rx

)a
x − a

x
≤ 1.

Hence,

f (ra) + (1 − f (ra))

a∏
i=0

f (rx−i ) ≤ f (rx)

and, so, (2.2) holds.

Remark 2.1. Suppose that the win probability function f satisfies f (s) < s for all s ∈ (0, 1)

and that player II plays timidly. Then it can be proved that (2.2) is actually an equality if and
only if a = x. This means that, in this case, the bold strategy is the unique optimal strategy for
player I when player II plays timidly.

In the following example we verify the convexity of the win probability functions in the
cases proposed by Pontiggia [3].

Example 2.1. (a) In the weighted two-person red-and-black game, the probability of player
I winning at stage m is amw/(am + bm), where 0 < w < 1. Therefore, the win probability
function is f (s) = sw with 0 < w < 1. It is clear that f (s) < s for all s ∈ (0, 1). Since
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f (s) = sw is a convex function, it follows from Theorem 2.1 and Remark 2.1 that if player II
plays a timid strategy then a bold strategy is the unique optimal strategy for player I.

(b) In the proportional two-person red-and-black game, the win probability for player I at stage
m is

amw

amw + bm(1 − w)
, where 0 < w <

1

2
.

Therefore, the win probability function is f (s) = sw/[sw + (1 − s)w̄] with 0 < w < 1
2 and

w̄ = 1 − w. It can be proved that f (s) < s. Since, for all s ∈ [0, 1],

f ′′(s) = 2ww̄(1 − 2w)

[sw + (1 − s)w̄]3 > 0,

f is a convex function. From Theorem 2.1 and Remark 2.1 it follows that if player II plays a
timid strategy then a bold strategy is the unique optimal strategy for player I.

Example 2.2. In a two-person red-and-black game, assume that the win probability function
is f (s) = sp for some p ≥ 1. It is clear that f is a convex function. By Theorem 2.1, a bold
strategy is thus optimal for player I when player II plays timidly.

Next we place a condition on the win probability function which ensures that a timid strategy
is optimal for player II when player I plays boldly.

Theorem 2.2. In a subfair two-person red-and-black game, assume that player I plays a bold
strategy. If f (s)f (t) ≤ f (st) then a timid strategy is optimal for player II.

Proof. Assume that player I plays a bold strategy. If player II adopts a timid strategy then
let

T (x) = P(player II reaches M with an initial fortune M − x).

Recall the function Q(x) defined in the proof of Theorem 2.1: we have T (x) = 1 − Q(x). If
at stage m player II bids an amount b, then the corresponding law of motion for player I with
xm units is given by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

xm + b with probability f

(
xm

xm + b

)
,

0 with probability 1 − f

(
xm

xm + b

)
,

for 1 ≤ xm ≤ M − 1,

and by xm+1 = xm with probability 1 for xm = 0 or xm = M . As in the proof of Theorem 2.1,
it suffices to prove that T (·) is excessive or, equivalently, that the following inequality holds:

f

(
x

x + b

)
T (x + b) +

(
1 − f

(
x

x + b

))
T (0) ≤ T (x). (2.3)

Since T (x) = 1 − Q(x) and T (0) = 1, (2.3) becomes

Q(x) ≤ f

(
x

x + b

)
Q(x + b). (2.4)
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Recall that rx = x/(x + 1), so x/(x + b) = ∏b−1
i=0 rx+i and Q(x) = Q(x + b)

∏b−1
i=0 f (rx+i ).

Since f (s)f (t) ≤ f (st), we have
∏b−1

i=0 f (rx+i ) ≤ f (
∏b−1

i=0 rx+i ). Therefore,

Q(x) = Q(x + b)

b−1∏
i=0

f (rx+i ) ≤ Q(x + b)f

(b−1∏
i=0

rx+i

)
= Q(x + b)f

(
x

x + b

)
.

Inequality (2.4) and, hence, inequality (2.3) thus hold, and the proof is complete.

Remark 2.2. Suppose that the win probability function f satisfies f (s)f (t) < f (st) for all
s, t ∈ (0, 1) and that player I plays boldly. Then we can prove that (2.3) is actually an equality
if and only if b = 1. This means that, in this case, the timid strategy is the unique optimal
strategy for player II when player I plays boldly.

In the following example we verify that both win probability functions proposed by Pontiggia
[3] satisfy f (s)f (t) ≤ f (st).

Example 2.3. (a) In the weighted two-person red-and-black game, the win probability function
is f (s) = sw, where 0 < w < 1. Since f (s)f (t) = stw2 < stw = f (st) for all s, t ∈ (0, 1),
it follows from Theorem 2.2 and Remark 2.2 that if player I plays a bold strategy then a timid
strategy is the unique optimal strategy for player II.

(b) In the proportional two-person red-and-black game, the win probability function is f (s) =
sw/[sw + (1 − s)w̄], where 0 < w < 1

2 and w̄ = 1 − w. Since, for all s, t ∈ (0, 1),

f (s)f (t) − f (st) = sw

sw + (1 − s)w̄

tw

tw + (1 − t)w̄
− stw

stw + (1 − st)w̄

= −stww̄(t − 1)(s − 1)(1 − 2w)

[sw + (1 − s)w̄][tw + (1 − t)w̄][stw + (1 − st)w̄]
< 0,

we have f (s)f (t) < f (st) for all s, t ∈ (0, 1). From Theorem 2.2 and Remark 2.2 it follows
that if player I plays a bold strategy then a timid strategy is the unique optimal strategy for
player II.

Example 2.4. In a two-person red-and-black game, assume that the win probability function
is f (s) = sp, where p ≥ 1. Since f (s)f (t) = sptp = f (st), by Theorem 2.2 a timid strategy
is optimal for player II when player I plays boldly.

In a subfair two-person red-and-black game, suppose that the win probability function f is
convex and satisfies f (s)f (t) ≤ f (st). From Theorem 2.1 it follows that a bold strategy is
optimal for player I if player II plays timidly; moreover, by Theorem 2.2, a timid strategy is
optimal for player II if player I plays boldly. Therefore, it is Nash for player I to play a bold
strategy and for player II to play a timid strategy; it is usual to say that the profile (bold, timid)
is a Nash equilibrium for this game. Hence, we have the following theorem.

Theorem 2.3. In a subfair two-person red-and-black game, assume that the win probability
function f is convex and satisfies f (s)f (t) ≤ f (st). Then the profile (bold, timid) is a Nash
equilibrium for this game. If, in addition, f (s) < s and f (s)f (t) < f (st) hold for all
s, t ∈ (0, 1), then the profile (bold, timid) is the unique Nash equilibrium for this game.
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Proof. Because the first part of this theorem has been proved above, we need only prove
the second part. If f (s) < s and f (s)f (t) < f (st) hold for all s, t ∈ (0, 1), then, from
Remarks 2.1 and 2.2, we can see that the bold strategy is the unique optimal strategy for player
I if player II plays timidly, and that the timid strategy is the unique optimal strategy for player
II if player I plays boldly. From Lemma A.1 of [3], it follows that the profile (bold, timid) is
the unique Nash equilibrium for this game.

Let f and g be win probability functions. Then f�g is also a win probability function, since
f �g(0) = f (0) = 0, f �g(x) ≤ g(x) ≤ x, and f �g is still increasing. We have the following
interesting and useful result about this new win probability function f �g.

Proposition 2.1. Let f and g be two win probability functions. Suppose that f and g are
both convex and satisfy f (s)f (t) ≤ f (st) and g(s)g(t) ≤ g(st). In a subfair two-person
red-and-black game, take f �g as the win probability function. The profile (bold, timid) is then
a Nash equilibrium for this game.

Proof. Since g is convex, we have g(αs + ᾱt) ≤ αg(s) + ᾱg(t) for any s, t, α ∈ [0, 1],
where ᾱ = 1 − α. Moreover, since f is increasing and convex, we have

f (g(αs + ᾱt)) ≤ f (αg(s) + ᾱg(t)) ≤ αf (g(s)) + ᾱf (g(t)),

which implies that f�g is also convex. On the other hand, for any s, t ∈ [0, 1], since g(s)g(t) ≤
g(st) and f is increasing, we have f (g(s)g(t)) ≤ f (g(st)). Since f (u)f (v) ≤ f (uv) for any
u, v ∈ [0, 1], we have f (g(s))f (g(t)) ≤ f (g(s)g(t)). Therefore,

f (g(s))f (g(t)) ≤ f (g(s)g(t)) ≤ f (g(st)),

which means that f �g(s) f �g(t) ≤ f �g(st) for all s, t ∈ [0, 1]. The result now follows from
Theorem 2.3.

Let f (s) = sw/[sw + (1 − s)(1 − w)] and g(s) = sp, where 0 < w < 1
2 and p ≥ 1.

From Proposition 2.1 and Examples 2.1–2.4, we can conclude that, in a subfair two-person
red-and-black game, if f�g(s) = spw/[spw+ (1− sp)(1−w)] is the win probability function
then the profile (bold, timid) is a Nash equilibrium for this game. In fact, we can prove that
f �g(s) < s and f �g(s) f �g(t) < f �g(st) hold for all s, t ∈ (0, 1). Hence, by Theorem 2.3,
the profile (bold, timid) is the unique Nash equilibrium for this game.

3. A counterexample

Consider the proportional N -person red-and-black game proposed by Pontiggia [3]. Denote
the N players by 1, . . . , N . Let M ≥ 2 be the fixed, total amount of money in the system. The
state space of this game is given by the set of all possible N -tuples of the fortunes of the N

players. Each player wants to reach the goal M .
Suppose that at stage m player j has an amount of money xm

j , for all j = 1, . . . , N , with∑N
j=1 xm

j = M . He wants to reach the goal M by betting an amount am
j ∈ Aj(x

m), where
Aj(·) is the action set for player j , defined by

Aj(x
m
j ) =

{
{1, . . . , xm

j } if xm
j ∈ {1, . . . , M − 1},

{0} if xm
j ∈ {0, M}.

For each player j , define the corresponding weight at stage one by w1
j ∈ (0, 1), with∑N

j=1 w1
j = 1. During the game, one or more players can go broke, which means that they are
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out of the game. Hence, for each player j , recursively define the corresponding weight at stage
m ≥ 2 by

wm
j =

⎧⎪⎪⎨
⎪⎪⎩

0 if xm
j = 0,

wm−1
j∑

{i : xm
i >0} wm−1

i

if xm
j > 0,

such that 0 ≤ wm
j < 1 and

∑N
j=1 wm

j = 1. The law of motion for player j with xm
j units at

stage m is defined by

xm+1
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xm
j − am

j +
N∑

i=1

am
i with probability

am
j wm

j∑N
i=1 am

i wm
i

,

xm
j − am

j with probability 1 − am
j wm

j∑N
i=1 am

i wm
i

,

for 1 ≤ xm
j ≤ M − 1,

and by xm+1
j = xm

j with probability 1 for xm
j = 0 or xm

j = M .
For the above proportional N -person red-and-black game, Pontiggia proposed the following

conjecture (slightly modified from the original).

Conjecture 3.1. ([3].) Let σ be the following strategy. Suppose that there are km, 2 ≤ km ≤
N , players remaining in the game at stage m. For an active player (say player j ), if the
corresponding weight, wm

j , is less than or equal to 1/km, then he bids his entire fortune;
otherwise, he bids one unit of it.

It is optimal for each player to use strategy σ when the other players all use strategy σ .

The following is a counterexample to this conjecture.

Counterexample 3.1. In a proportional three-person red-and-black game, let M = 7 be the
total amount of money in the system. Suppose that at stage m player j has xm

j units of money
and bids an amount am

j ∈ {1, . . . , xm
j } if xm

j > 0 and an amount am
j = 0 otherwise, for all

j = 1, 2, 3. Let (w1
1, w

1
2, w

1
3) = (w, w̄/2, w̄/2), where 0 < w ≤ 1

6 and w̄ = 1 − w. If no
one goes broke at stage m, then (wm

1 , wm
2 , wm

3 ) = (w, w̄/2, w̄/2) and wm
1 < 1

3 < wm
2 = wm

3 ;
in this case player 1 is subfair and players 2 and 3 are superfair. If either player 2 or player 3
goes broke at stage m, then wm

1 = 2w/(1 + w) < 1
2 and either wm

2 = (1 − w)/(1 + w) > 1
2 or

wm
3 = (1 − w)/(1 + w) > 1

2 ; in this case player 1 is subfair and the other remaining player is
superfair. So, under strategy σ , player 1 always plays boldly and players 2 and 3 always play
timidly.

Let x, y, and z be any nonnegative integers with x + y + z = 7. If players 1, 2, and 3 have
x, y, and z as their respective initial fortunes and all adopt strategy σ , let Q(x, y, z) denote
the probability that player 1 reaches the amount 7. If at stage m no one goes broke, then under
strategy σ the corresponding law of motion for player 1 is

xm+1
1 =

⎧⎪⎪⎨
⎪⎪⎩

xm
1 + 2 with probability

xm
1 w

xm
1 w + w̄

,

0 with probability
w̄

xm
1 w + w̄

,

for 1 ≤ xm
1 ≤ M − 1,
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and is xm+1
1 = xm

1 with probability 1 for xm
1 = 0 or xm

1 = M . If at stage m either player 2 or
player 3 goes broke, then under strategy σ the corresponding law of motion for player 1 is

xm+1
1 =

⎧⎪⎪⎨
⎪⎪⎩

xm
1 + 1 with probability

2xm
1 w

2xm
1 w + w̄

,

0 with probability
w̄

2xm
1 w + w̄

,

for 1 ≤ xm
1 ≤ M − 1,

and is xm+1
1 = xm

1 with probability 1 for xm
1 = 0 or xm

1 = M . Therefore, for xyz �= 0,

Q(x, y, z) = xw

xw + w̄
Q(x + 2, y − 1, z − 1) (3.1)

and

Q(x, y, 0) = 2xw

2xw + w̄
Q(x + 1, y − 1, 0). (3.2)

To show that Pontiggia’s conjecture does not hold, we now show that if the value of w is
small enough, then the bold strategy is not optimal for player 1 when players 2 and 3 play
timidly. Assume that initially player 1 has two units, player 2 has four units, and player 3 has
one unit. Then the probability that player 1 reaches the amount 7 by playing boldly is Q(2, 4, 1)

when players 2 and 3 play timidly.

Let β be the strategy according to which a player bets one unit at the first stage and plays
boldly thereafter. Let Qβ denote the probability that player 1 adopts strategy β to reach the
total amount 7 when players 2 and 3 play timidly. Then

Qβ = w

w + w̄
Q(4, 3, 0) + w̄/2

w + w̄
Q(1, 6, 0) + w̄/2

w + w̄
Q(1, 3, 3).

In the following, we will prove that Qβ > Q(2, 4, 1) for sufficiently small values of w.
Repeatedly applying (3.2) yields

Q(1, 6, 0) = 2w

2w + w̄
Q(2, 5, 0), Q(2, 5, 0) = 4w

4w + w̄
Q(3, 4, 0),

Q(3, 4, 0) = 6w

6w + w̄
Q(4, 3, 0), Q(4, 3, 0) = 8w

8w + w̄
Q(5, 2, 0),

Q(5, 2, 0) = 10w

10w + w̄
Q(6, 1, 0), Q(6, 1, 0) = 12w

12w + w̄
Q(7, 0, 0).

Applying (3.1) yields

Q(2, 4, 1) = 2w

2w + w̄
Q(4, 3, 0), Q(1, 3, 3) = w

w + w̄
Q(3, 2, 2),

Q(3, 2, 2) = 3w

3w + w̄
Q(5, 1, 1), Q(5, 1, 1) = 5w

5w + w̄
Q(7, 0, 0).
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Since Q(7, 0, 0) = 1, we have

Q(4, 3, 0) = 960w3∏6
i=4(2iw + w̄)

= O(w3),

Q(1, 6, 0) = 46080w6∏6
i=1(2iw + w̄)

= O(w6),

Q(1, 3, 3) = 15w3∏2
i=0[(2i + 1)w + w̄] = O(w3)

as w → 0. It follows that Q(2, 4, 1) = [2w/(2w+ w̄)]Q(4, 3, 0) = O(w4) and Qβ = O(w3)

as w → 0. Thus, Qβ − Q(2, 4, 1) > 0 for sufficiently small values of w. Therefore, for
player 1, the strategy β is better than the strategy σ for such values of w. Hence, Pontiggia’s
conjecture does not hold.

Remark 3.1. In this case, a detailed calculation shows that, for sufficiently small values of w,
the strategy β is indeed the optimal strategy for player 1 when players 2 and 3 play timidly.
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