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Abstract

With the widespread application of proton exchange membrane fuel cells (PEMFCs), ensuring
the safe and reliable operation of the PEMFCs is becoming more and more important. Timely
diagnosis of fault types and the implementation of targeted interventions are crucial for
addressing these challenges. In this study, a simulated PEMFC model is firstly introduced by
using Fluent, and the effectiveness is validated through experiments involving membrane dry
faults, water flooding faults, normal states, and unknown states. Then, a data-driven deep
learning convolutional neural network, YOLOv5-CG-AS, is developed, which employs the
EfficientViT network as the backbone, incorporating lightweight improvements through the
proposed CG-AS attention layer. The results demonstrate that YOLOv5-CG-AS can automat-
ically extract fault features from images for offline fault diagnosis and can perform real-time
online diagnosis of multiple parameter curves of PEMFCs. Moreover, the experimental results
have validated the feasibility and effectiveness of proposed method and shown the average
precision mean Average Precision (mAP) of the trained model reaches 99.50%, superior than
other conventional strategies. This has significant implications for advancing fault diagnosis
methods, enhancing the reliability and durability of PEMFC systems, and promoting further
development in the field.

1. Introduction

Proton exchange membrane fuel cells (PEMFCs), as an emerging clean energy technology, offer
advantages such as high efficiency, environmental friendliness, and low noise, making them one
of the most promising clean energy sources in recent years (Zheng et al., 2013; Wang et al., 2021).
However, the occurrence of faults in fuel cells can lead to reduced reliability and durability, which
remains a major challenge hindering the development of fuel cell technology. Therefore, accurate
and timely fault diagnosis is crucial for maintaining the performance of PEMFCs and extending
their lifespan (Jeong et al., 2019; Sinha and Mondal, 2021).

Although there are various types of faults in proton exchange membrane fuel cells, the most
common and typical faults are membrane dry faults and flooding faults (Huang et al., n.d.; Zhang
etal, 2020). During the operation of a PEMFC, proton conductivity is closely related to membrane
water content; thus, optimal output performance corresponds to a sufficiently hydrated proton
exchange membrane. However, excessive internal water content in the cell can lead to flooding
faults, while insufficient water content can result in membrane dry faults. Flooding in the gas
diffusion layer and channels hinders the transport of reactants to reaction sites, reducing the active
surface area of the catalyst due to water coverage. This results in a significant increase in activation
and concentration losses in the PEMFC. Membrane dry faults lead to an increase in resistance,
causing the PEMFC to generate more heat during operation, further reducing energy conversion
efficiency and exacerbating membrane dry faults, potentially leading to membrane tears. This
significantly impacts output performance and remaining lifespan.

Currently, there are three main methods for PEMFC fault diagnosis: experimental testing-
based, model-based, and data-driven approaches (Allam et al., n.d.; Zhou et al., 2015). Experi-
mental testing-based methods generally have high equipment requirements and often require
system shutdown, involving extensive testing and analysis. As a result, they are unsuitable for
online diagnosis, continuous system monitoring, and fault prevention. Model-based approaches
involve utilizing physical models to simulate and model the system, offering better interpret-
ability and reliability. They allow safe modifications to experimental conditions, mitigating
irreversible damage caused by embedded faults in real PEMFC systems (Guo et al., 2014; Huang
and Xiang, 2015; Wang et al., 2021; Cui and Xiang, 2023). However, in application scenarios with
high real-time requirements, model-based methods may not provide a sufficiently rapid response
for fault diagnosis. Data-driven approaches, especially those using deep learning neural networks,
leverage large amounts of experimental data for training, automatically learning features,
reducing dependence on prior knowledge, and are suitable for diagnosing complex systems,
including unknown faults (Zhong et al., 2006; Zhang and Guo, 2021; Darzentas et al., 2022; Lee
etal, 2022). They are applicable when the model is incomplete or inaccurate. Data-driven models
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require a large number of fault samples as training data, which often
face issues such as class imbalance and insufficient labeled fault
samples in practical situations (Zhang et al, 2024). Typically,
constructing fault models to acquire fault characteristics and gen-
erate training samples is a key to addressing this issue (Xiang et al.,
2016). Fault models, combined with generative adversarial networks
(GAN) and GAN-based domain adaptation (DA) networks, can
adjust the original simulated fault samples. Through adversarial
training between the refiner and domain discriminator, the samples
are made to resemble actual fault samples, which can also solve the
problem of insufficient fault samples (Gao et al., 2021; Luo et al.,
2022). This paper draws on this concept, using a PEMFC simulation
model and embedding faults into the model to obtain a sufficient
number of fault samples, thereby addressing the issues of insufficient
training data and class imbalance faced by data-driven models.
YOLOV5 (You Only Look Once version 5), being a data-driven
method, leverages deep learning neural networks to automatically
learn features from large amounts of experimental data. This cap-
ability is beneficial for capturing intricate patterns and complex
relationships within the PEMFC system. Its efficiency and speed
make it suitable for real-time fault diagnosis applications, which is
particularly advantageous in situations where timely responses are
crucial for maintaining the performance and reliability of the
PEMEFC system.

Based on the above discussion, this paper combines the
strengths of model-based and data-driven approaches to diagnose
faults in PEMFCs. Initially, a multiphysics coupled PEMFC simu-
lation model is established in the FLUENT environment, designed
to acquire data under various PEMFC operating conditions,
avoiding irreversible damage to PEMFC during fault data acqui-
sition and issues such as class imbalance and insufficient labeled
fault samples in data-driven models. Then, we first enhance the
EfficientViT model by incorporating Axial Self-Attention (ASA)
to reduce the computational complexity of Cascaded Group
Attention (CGA). This improved EfficientViT is then used as
the backbone of the YOLOv5 model (Liu et al., n.d.; Ho et al,,
2019). It provides a fault diagnosis algorithm suitable for both
offline and online PEMFC systems, contributing significantly to
the development of PEMFC fault diagnosis. The model’s low
computational complexity and small size offer a new portable
algorithm for embedded devices, presenting a promising possi-
bility for the practical application of portable devices in offline and
online PEMFC fault diagnosis.
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2. PEMFC simulation model
2.1. Model assumptions

It is well known that the inner chemical reactions of PEMFCs are
highly complex owning to involving gases and electrolytes. In order
to mitigate computational complexity and enhance computational
efficiency, the following assumptions are firstly given:

o Gases are treated as ideal gases and follow the ideal gas law.

o The operating environment of the fuel cell is in a steady state.

« Both the diffusion layer and the catalyst layer are considered
porous media.

2.2. Physical model

The physical model of a single-cell PEMFC is illustrated in Figure 1,
which is composed of the cathode/anode gas channels, the cathode/
anode diffusion layers, the cathode/anode catalyst layers, the cath-
ode/anode current collectors, and the proton exchange membrane
(Guo et al., 2014). The model parameters are given in Table 1.

2.3. Control equations

In the process of software modeling, the following equations are
primarily utilized: 1) mass conservation equations effective for fluid
flow, diffusion, and electrochemical reactions; 2) continuity equa-
tions governing fluid transport; 3) the Butler-Volmer equation
describing the relationship between current and potential; 4) com-
ponent conservation equations for gas-phase mixtures; and 5) the
Stefan-Maxwell equation describing the gradient of molar fractions
in components (Huang et al., n.d.; Guo et al., 2014; Zhou et al., 2015;
Zhang et al., 2020). The specific formulas are given by equations
(1) to (6).
Mass conservation equation:
dp

5tV ) =0 1)

Continuity equation for fluid transport:

d(ep)
ot

+Ve(epU)=0 2)

The density, denoted by p, characterizes the compactness of the
fluid. While the velocity vector villuminates the dynamic motion of

Figure 1. PEMFC model. 1. Collector plate, 2. gas channel, 3. diffusion layer, 4. catalyst layer, and 5. PEM.
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Table 1. PEMFC simulation model parameters

Parameter Value
PEM thickness/m 5x107°
Catalyst layer thickness/m 1.68 x10°°
Gas diffusion layer thickness/m 2x107*
Length of gas flow field/m 25x1072
Width of gas flow field/m 1x10°
Height of gas flow field/m 7x10*
Height of flow plates/m 14x103
Width of flow plates/m 28x10°3
Porosity 0.6

Inlet gas pressure/kPa 101.527
Inlet gas temperature/K 353

Inlet humidity of cathode gas 1.0

the fluid, the operator V finds representation in % + diy + dilz.

Described by the symbol e, the porosity of the porous medium
reflects the openness of the material, with U signifying the vector of
velocity for the inner fluid circulating. Within the porous medium,
fluid motion is captured by the velocity vector U, while &quantifies
the porosity of the medium.

Butler-volmer equation:

(Anode)
. . _aRd,aF(Ea - Er,a) an,aF(Ea - Er,a)
g =104 €Xp T — exp T
3)
(Cathode)
- cF Ec_Erc ch Ec_Erc
1, = io,c{ exp [—aRd’ I({T - )} — exp [7% - (RT : )} } (4)

Anode current density, denoted as i,, characterizes the flow of
current at the anode, while iy, represents the anode exchange current
density. The transfer coefficient of the anodic reducible substance is
given by orgq, and agy,, describes the transfer coefficient of the anodic
oxidizable substance. E, denotes the anode potential, and E, , signifies
the anode equilibrium potential. Additionally, R, T,and F correspond
to the gas constant, reaction temperature, and Faraday constant,
respectively. Cathode current density, i., characterizes the flow of
current at the cathode, with ip,. representing the cathode exchange
current density. The transfer coefficient of the cathodic reducible
substance is denoted as or4,, and o, describes the transfer coefficient
of the cathodic oxidizable substance. E, denotes the cathode potential,
and E, signifies the cathode equilibrium potential.

Species conservation equation:

d(epxi)
ot

+V(vepx;)) =V <prffoi> +S; (5)

The mass fraction of gas component x; characterizes the portion
of component i in the gas mixture. Component i experiences

effective diffusion with a diffusion coefficient Dfﬁ within the gas
mixture. The rate of mass generation (S;) reflects the outcome of
electrochemical reactions involving component i.
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Stefan-Maxwell equation:

yilNj = y;Ni
Vy,=RT» ——— (6)
Vi ; PDZﬁ

The molar fraction of component i in the gas phase, denoted as
y; expresses the relative abundance of component i. Within a
differential volume element, N;represents the average apparent gas
phase flux of component i. The partial pressure of components i
and j is represented by p. The binary diffusion coefficient for
off

components i and j is denoted as D;

ii » capturing the effective

diffusion between the two species.

2.4. Model validation

To verify the accuracy of the established PEMFC simulation model,
we compared its generated polarization curves with actual experi-
mental data from an EC-type PEMFC. The results show that the
voltage values of the simulation model and the experimental data
are highly consistent at multiple current density points, with
matching trends and errors within a reasonable range (less
than 5%). This consistency and low error indicate that the model
has high precision and credibility, effectively simulating the per-
formance of actual fuel cells, as described in Figure 2.

In cases of low porosity, water generated by electrochemical
reactions cannot be promptly expelled. The gas diffusion layer may
become partially or entirely filled with liquid water, impeding the
subsequent transport of oxygen and causing a decline in the effi-
ciency of fuel cell operation, leading to flooding faults. Further-
more, a decrease in membrane humidity can result in reduced
conductivity, causing membrane dry faults. Therefore, in the simu-
lation, adjusting the porosity from 0.6 to 0.2 represents the flooding
faults, while reducing cathode humidity from 1 to 0.4 indicates the
membrane dry faults (Zhou et al., 2015; Sun et al., 2022; Calasan
et al.,, 2024; Ma et al., 2024)

3. YOLOvV5 network model

With the benefit of efficiency, accuracy, and user-friendly features,
the YOLOvV5 model has been widely applied in object detection
tasks within the field of computer vision, including object recogni-
tion, pedestrian detection, and traffic scene analysis. The model is
composed of four components: input, backbone, neck, and predic-
tion (Kim et al., 2022; Liu et al., 2023).

3.1. Input

The input component includes three parts: Mosaic data augmen-
tation method, adaptive anchor calculation, and adaptive image
scaling. The Mosaic data augmentation method provides more
background information and object context. The adaptive anchor
calculation allows the model to adapt to different sizes of targets and
image variations. The adaptive image scaling ensures that input
images have a consistent size. These techniques collectively con-
tribute to the input component of YOLOV5, enhancing the model’s
detection performance and robustness.

3.2. Backbone

The backbone network, CSPDarknet53, employs a special CSP
connection to fuse low-level and high-level features, enhancing
the accuracy of object detection. CSPDarknet53 divides the input
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Figure 2. Comparison of experimental and simulated V-I curve.

feature map into two branches: the main branch and the cross-stage
connection branch. The main branch is responsible for extracting
high-level semantic features, while the cross-stage connection
branch focuses on extracting low-level features. The fusion of
low-level features with high-level features enhances the overall
feature representation capability.

3.3. Neck

The neck section consists of an FPN + PAN structure, primarily
used to extract multiscale feature information by aggregating high
and low-level features of the image, thereby enhancing the effect-
iveness of object detection.

3.4. Prediction

The prediction layer mainly consists of a loss function and Non-
maximum Suppression (NMS). GIOU_Loss is employed as the loss
function to address cases where bounding boxes in previous YOLO
versions do not overlap. NMS is utilized to select the box with the
highest confidence as the final detection result, thereby enhancing
the accuracy and reliability of object detection.

4. Improved YOLOVS5 algorithm
4.1. EfficientViT

EfficientViT is a lightweight neural network model proposed (Liu
et al,, n.d.), comprising an efficient memory sandwich layout and
cascaded group attention modules. It addresses issues such as
excessive memory access time caused by Multihead Self-Attention
(MHSA), computational redundancy between attention heads, and
inefficient model parameter allocation.

4.2. Improvements to EfficientViT

We construct a new attention layer, CG-AS Attention, by combin-
ing Cascaded Group Attention (CGA) and Axial Self-Attention
(ASA). By using the EfficientViT block as the base module, the
input features of each EfficientViT Block undergo N FEN layers,
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followed by the new attention layer CG- AS Attention, and finally,
N additional FFN layers to transform the output features. Simul-
taneously, GSConv is employed before each FFN layer to replace
the original DWConv in the model, facilitating interaction between
local tokens and introducing inductive bias. Between FEN layers
®f, CG-AS Attention @ is utilized for spatial fusion, with its
calculation formula as follows:

N N
ot o

X represents the complete input features of the i-th block. The
entire structure transforms into X;,; with N FFN layers, with
N FEN layers positioned before and after the cascaded group
attention layer CGA. This foundational module reduces the use
of attention, alleviating the memory access time consumption
issue associated with attention calculations. CG-AS Attention

Figure 3. EC-type proton exchange membrane fuel cell.
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Figure 4. YOLOV5 network model.

employs a method of splitting input features, providing only a
portion of the input features to each attention head to reduce
computational redundancy. Additionally, attention calculations
follow a cascaded approach, with the output of each head added
to the subsequent heads, gradually refining feature representations
and enhancing the depth and expressive capacity of lightweight
networks without introducing additional parameters. Within each
subregion, ASA is applied to model the internal confidence and
spatial relationships. ASA decomposes the spatial dimensions of
the input features into two directions, performs self-attention
calculations on each direction separately, and finally adds the
outputs of the two directions. This reduces computational com-
plexity while retaining spatial information. In a formal represen-
tation, this self-attention can be expressed as:

Xrow; = Attn (Xij WX, WK ,X,jw,.‘j’) )
Xeoly = Attn (XWX, WS X W) ) ©)
X, = Xrol; + Xrow;; (10)

)A(Hl = Concat |:§ziji|j:1:hwf (11)
X=X+ Xy (12)

The output features of self-attention calculations in the row
direction are denoted as Xrow;;, while Xcol;; represents the output
features in the column direction. The final output feature of axial
self-attention is expressed as X, where Xj signifies the j-th
segment of input features X;. The total number of heads is
represented by h, and Wg, Wf.f , and W:]/ are projection layers
that map input features to distinct subspaces. The linear layer W’
projects the concatenated output features back to a dimension
consistent with the input, ensuring dimensional alignment. The
new input feature for the j-th head, denoted as X, replaces Xj;,
facilitating self-attention to collectively capture local and global
relationships, thereby enhancing feature representation. The net-
work is illustrated in Figure 5.

The design choice to split the input features in the CG-AS
Attention layer and make only a subset available to each attention
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head is motivated by the desire to reduce computational redun-
dancy. Despite the division of features, the cascading nature of the
group attention layers ensures that the outputs of previous layers,
which contain processed contextual information, are available to
subsequent layers. This cumulative processing guarantees that even
with the division of input features, the model has access to a
comprehensive representation of the context as it progresses
through the layers. By partitioning features, each attention head
concentrates on different subsets of the input data, enabling the
model to process information more efficiently. This method
reduces the overlap of computations performed by each head, thus
decreasing redundancy. Axial Self-Attention reduces computa-
tional load by decomposing the calculations of the traditional self-
attention mechanism into two separate axes.

4.3. Adapting YOLOv5

This paper utilizes the improved version of EfficientViT as the
backbone network in the YOLOv5 architecture, responsible for
extracting feature representations from input images. The network
structure is depicted in Figure 6, with the other components of
YOLOV5 remaining unchanged.

5. Experimental validation and result analysis
5.1. Dataset and experimental setup

Our experiments focus on fault diagnosis for four states: mem-
brane dry faults, flooding faults, normal states, and unknown
states. The dataset consists of 4400 feature curves diagrams, such
as Figure 7, representing membrane dry faults, flooding faults,
normal states, and unknown states. These curves include the
pressure drop at the anode/cathode outlet and inlet, proton
exchange membrane (PEM) water content, Membrane Electrode
Assembly (MEA) current, and fuel cell current (Redmon and
Farhadi, n.d.).

5.2. Experimental equipment

The experimental environment in this paper includes the
Windows 10 operating system, NVIDIA GeForce GTX 1050
GPU, i5-7300HQ CPU, and the programming environment con-
sists of Python 3.10, PyTorch 1.12.1, and CUDA 12.2.
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Figure 6. Improved YOLOV5 network model: Utilizing CG-AS Attention improved EfficientVit Network as the Backbone of YOLOVS.

The model training parameters are set as follows: a total of
300 iterations for training, the weight file is efficientViT_m0.pth,
the initial learning rate is 0.01, and 4 samples are selected for each
training batch.

5.3. Performance metrics

To objectively evaluate the performance of the network model, this
study employs Precision, Recall, and mean Average Precision
(mAP) as evaluation metrics. Precision refers to the proportion of
correctly predicted targets among all targets predicted by the model;
recall refers to the proportion of correctly predicted targets among
all actual targets; mAP is the average value of prediction accuracy
across all categories. (Benjumea et al,, n.d.; Li et al,, 2023). The PR
curves of the YOLOv5s model and YOLOvV5-CG-AS are shown in
Figure 8 and Figure 9. The PR curve demonstrates the trade-off
between precision and recall. By comparing the PR curves of
various models, it is possible to intuitively evaluate which model

https://doi.org/10.1017/50890060424000295 Published online by Cambridge University Press

achieves a better balance between precision and recall. The greater
the area under the curve (AUC-PR), the superior the model’s
performance.

Precisi i (13)
recision — ———
TP+ FP
TP
Recall 14
O = TP EN (14)
ap_ Ly~ TP (15)
AP —
NZ2~TP+FpP

TP represents the number of true positive samples correctly
predicted by the model, FP represents the number of false positive
samples incorrectly predicted by the model, and FN represents the
number of false negative samples incorrectly predicted by the
model.
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The YOLOvV5-CG-AS model has sacrificed a portion of preci-  detect a greater number of positive class samples but also to

sion to attain a more optimal balance between precision and recall, =~ minimize the misclassification of negative class samples as positive.
especially in the context of addressing classification issues within  This is critically important for applications requiring precise iden-
imbalanced datasets. This equilibrium allows the model to not only  tification, such as medical diagnostics, fraud detection, etc.
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5.4. Experimental results and analysis

5.4.1. Comparison of lightweight models

Because the YOLOv5s model achieved a diagnostic accuracy of
99.6% in the experiment, showing excellent performance with little
room for improvement in accuracy, this paper considers light-
weight processing for it, as lightweight models are more suitable
for embedding in hardware devices.

EfficientViT is used to replace the backbone network of the
YOLOvV5s model, denoted as YOLOv5- EfficientViT. The Efficient-
ViT model improved with CG-AS Attention is used to replace the
backbone network of the YOLOv5s model, denoted as YOLOV5-
CG-AS. The popular lightweight network EMO is used to replace the
backbone network of the YOLOv5s model, denoted as YOLOV5-
EMO, for comparison with the YOLOv5s model (Xu et al., 2020; Xu
and Li, 2021). The results are shown in Table 2.

5.4.2. Offline fault diagnosis

Traditional machine learning algorithms such as SVM, KNN, and
deep learning algorithms like CNN are widely used in fault diag-
nosis for bearings, motors, fuel cells, etc., and have shown good
diagnostic performance (Xiang et al., 2012; Dang et al., 2020;
Kattenborn et al., 2021; Du et al., 2023). Through the comparison
of YOLOvV5-CG-AS with traditional algorithms, further validation

0.8 1.0

Table 3. Comparison results of traditional machine learning algorithms

Diagnostic accuracy/%

Health status SVM CNN  KNN  YOLOvV5-CG-AS
Membrane dry failure 86.6 99.8 100 99.5
Flooding failure 88.1 96.7 96.8 99.5
normal state 93.2 100 99.7 99.5
Unknown fault 90.4 98.1 97.8 99.5
Average accuracy 89.6 98.7 98.6 99.5

of the feasibility of this method for fault diagnosis is conducted. The
experimental results are shown in Table 3. The results indicate that
YOLOV5-CG-AS can be used for offline fault diagnosis, similar to
traditional algorithms, and its diagnostic performance is superior to
traditional methods.

5.4.3. Online fault diagnosis

In real-life online fault diagnosis, taking the example of an EC-type
proton exchange membrane fuel cell stack, multiple sensors are
placed at various positions in the battery pack. These sensors

Table 2. Comparison results of lightweight models: compared to the YOLOv5s model, YOLOV5-CG-AS has a slight decrease in mAP by 0.001, but the optimization
levels of Parameters, GFLOPs, and model size all exceed 50%. When compared to other lightweight networks, YOLOV5-CG-AS achieves a more balanced optimization

across various parameters

Model Parameters GFLOPs FPS Size/MB mAP
YOLOv5s 7030417 16.0 41 13.7 0.996
YOLOv5-EfficientViT 3028849(—56.9%) 5.9(—63.1%) 54(+31.7%) 6.51(—52.5%) 0.966(—0.030)

YOLOV5-CG-ASA 2804315(—60.1%) 7.2(—55%)

44(+7.3%) 5.9(—56.9%) 0.995(—0.001)

YOLOV5-EMO 319282 |(—54.6%) 25.6(+60%)

37(—9.8%) 6.37(—53.5%) 0.987(—0.009)
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transmit real-time data from the battery pack to the Supervisory
computer. The YOLOvV5-CG-AS algorithm is then employed for
fault diagnosis, as shown in Figure 10. In this study, a FLUENT
simulation of the PEMFC model is used to obtain real-time curves
for various parameters. This simulates the process of sensors
obtaining real-time data and transmitting it to the Supervisory
computer. The YOLOv5-CG-AS algorithm performs fault diagno-
sis by capturing real-time images from the Supervisory computer,
as shown in Figure 11.

5.4.4. Analysis of experimental results

The YOLOV5-CG-AS algorithm proposed in this paper is com-
pared with the original YOLOv5 model and some popular light-
weight algorithms, using criteria such as parameter count, model
size, GFLOPs, FPS, and mAP. The YOLOv5-CG-AS algorithm
emerges as the optimal algorithm in these comparisons. Compared
to machine learning algorithms used in real-life offline fault

(a) N Fuel cell stacks (b)
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AT WP Anode

) —~
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diagnosis, the algorithm proposed in this paper achieves a higher
diagnostic accuracy. Moreover, this algorithm can be applied to
online fault diagnosis, demonstrating fast diagnosis speed and high
accuracy. This highlights the superiority of using the YOLOv5-
CG-AS algorithm for fuel cell fault diagnosis.

6. Conclusion

In this study, a multiphysics field-coupled PEMFC simulation
model in the FLUENT environment is developed to avoid irrevers-
ible damage caused by faults in fuel cells. The feasibility of the
model is validated through experiments. The YOLOv5-CG-AS
algorithm is obtained by replacing the backbone network of the
YOLOvV5s model with the improved EfficientViT algorithm. This
algorithm can be used for both offline and online fault diagnosis of
proton exchange membrane fuel cells. In offline fault diagnosis, the
algorithm achieves a higher correct diagnosis rate compared to

YOLOVS-CG-ASA
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Figure 10. Online fault diagnosis: (a) schematic diagram of the actual PEMFC system and sensor placement configuration and (b) flowchart of online diagnosis.
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Figure 11. Online fault diagnosis diagram: through online monitoring of 200 faults, it is found that when the average FLUENT simulation is iterated six times, the YOLOv5-CG-ASA

algorithm can diagnose the correct fault type with a diagnostic accuracy of 99.5%.
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machine learning algorithms already in use. In online fault diag-
nosis, the algorithm demonstrates fast diagnosis speed and high
accuracy.

The YOLOV5-CG-AS algorithm has the advantages of low
parameter count, small size, fast response, high accuracy, and can
perform fault diagnosis both offline and online. It holds the poten-
tial to be embedded in hardware devices and used as a mobile fault
diagnosis tool. This has significant implications for advancing fault
diagnosis methods for PEMFC and promoting further develop-
ment in the field. However, the current YOLO algorithm has a
significant drawback in the information fusion method at the neck,
hindering effective cross-layer integration. Future work will focus
on optimizing the model structure and improving the information
fusion method at the neck, potentially using Gold-YOLO to
enhance performance.
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