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Abstract
In spite of the superior performance deep neural networks have proven in thousands of applications in
the past few years, addressing the over-sensitivity of these models to noise and/or intentional slight per-
turbations is still an active area of research. In the computer vision domain, perturbations can be directly
applied to the input images. The task in the natural language processing domain is quite harder due to the
discrete nature of natural languages. There has been a considerable amount of effort put to address this
problem in high-resource languages like English. However, there is still an apparent lack of such studies
in the Arabic language, and we aim to be the first to conduct such a study in this work. In this study, we
start by training seven different models on a sentiment analysis task. Then, we propose a method to attack
our models by means of the worst synonym replacement where the synonyms are automatically selected
via the gradients of the input representations. After proving the effectiveness of the proposed adversarial
attack, we aim to design a framework that enables the development of models robust to attacks. Three
different frameworks are proposed in this work and a thorough comparison between the performance of
these frameworks is presented. The three scenarios revolve around training the proposed models either on
adversarial samples only or also including clean samples beside the adversarial ones, and whether or not
to include weight perturbation during training.
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1. Introduction
Deep neural networks (DNNs) have been extensively adopted in thousands of applications in the
past few years (Zhang et al. 2020c); however, several studies have shown the high sensitivity of
DNNs to intentional, yet imperceptible perturbations (Szegedy et al. 2013; Goodfellow, Shlens,
and Szegedy 2014). In the computer vision (CV) domain, generating adversarial examples usually
revolves around slightly perturbing the input images so that the perturbations are unperceivable
for human eyes. For the natural language processing (NLP) domain, on the other hand, the task is
trickier due to the discrete nature of natural languages (Zhang et al. 2020c). This forms a barrier
in the face of adversarial attack (AA) advancements in NLP as the methods applied in CV cannot
be seamlessly transferred to textual tasks. For example, if term frequency and inverse document
frequency are used to represent tokens, whether they are words, sub-words, or characters, using
the backpropagated gradients to perturb these representations would potentially lead to invalid
letter or word sequences (Zhao, Dua, and Singh 2017), which, in turn, would make it almost
impossible even for humans to predict the correct output. The same problem emerges when using
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word embeddings as inputs as the perturbed vectors cannot be matched with any vector in the
embedding space.

There are several taxonomies for the AA strategies, where the most popular one is based on
model knowledge, i.e. having access to the architecture, weights, training data, loss function, etc.
The attacks can be classified based on model knowledge to white-box such as Liang et al. (2017);
Samanta and Mehta (2018); Rosenberg et al. (2018); Al-Dujaili et al. (2018); Cheng et al. (2019);
Papernot et al. (2016); Sun et al. (2018); Ebrahimi et al. (2017); Blohm et al. (2018) and black-
box such as Jia and Liang (2017); Wang and Bansal (2018); Belinkov and Bisk (2017); Iyyer et al.
(2018).White-box attack algorithms dependmainly on gradients backpropagated by amodel with
respect to its inputs, where perturbations are made to generate the worst possible examples within
a feasible range by moving in the same direction of the gradients (Goodfellow et al. 2014), mean-
while black-box attacks depend on heuristics such as concatenating to, editing, substituting, or
paraphrasing the inputs, and are useful when no access to the model’s parameters is within reach.

Adversarial training (AT), on the other hand, first introduced by Szegedy et al. (2013), aims
at establishing neural networks robust to AAs. This technique has been proven to be the most
effective at developing networks resistant to attacks (Pang et al. 2020 ; Maini, Wong, and Kolter
2020; Schott et al. 2018). The first work in this domain (Szegedy et al. 2013) focused on simply
training the neural network on a mixture of benign (clean) and malignant (adversarial) examples
to achieve this goal. This work opened the doors for a revolution in this field, where several pro-
posed frameworks were designed to enhance the robustness of models against attacks. Goodfellow
et al. (2014) were the first to propose exploiting the gradients generated by differentiating the loss
function with respect to the inputs to generate perturbed examples on the fly via a method called
fast gradient sign method (FGSM). However, one of the weaknesses of FGSM is the linear approx-
imation of the loss function that does not improve the model’s vulnerability to iterative attacks
(Tramèr et al. 2017). This approximation leads to a sharp curvature known as gradient masking
(Papernot et al. 2017) in the vicinity of data points on the decision surface of the trained models.
This issue encouraged further improvements on AAs that targeted designing AA frameworks that
simulate the worst possible realistic adversaries as will be discussed later in the Related Works
section.

With regard to employing AT in Arabic NLP, there is an apparent shortage in research aiming at
building robust deep learning (DL) frameworks.Most of the studies in the literature were targeting
developing multi-lingual and cross-lingual DL models that utilize the concept of deep domain
adaptation (DDA) proposed by Ganin and Lempitsky (2015) to enable knowledge transfer from
models trained on high-resource languages to Arabic (Joty et al. 2017; Zalmout and Habash 2019;
Gupta 2021; Goyal, Singh, and Kumar 2021).

One of the NLP tasks that have not been covered with AT studies in the Arabic language is
sentiment analysis (SA). SA is the task of determining the affective states in a given text (Darwish
et al. 2021). SA has received great attention among the NLP community as one of the most impor-
tant applications of the field and has been incorporated in several areas including business analysis
(Han et al. 2019; 2021), review analysis (Bose et al. 2020), healthcare (Clark et al. 2018), and stock
market analysis (Xing, Cambria, and Welsch 2018). The significance of SA is mainly attributed to
the nature of this area of study that aims to automatically analyze the physiological state, satis-
faction, or impression of the user based on their responses (Wankhade, Rao, and Kulkarni 2022).
This, in turn, would enable organizations and entities to apply improvements in regions that mat-
ter to the customers rather than spreading out the expenses on a wide range of potential, yet
uncertain areas of improvement.

In this work, we aim to investigate the robustness of models trained on a standard basis against
the worst synonym replacement attack. After proving the effectiveness of this attack, we design
three scenarios to train robust models. The three scenarios are as follows: applying perturbations
to the inputs and training the models on adversarial samples only, applying perturbations on
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both the inputs and the models’ trainable weights and training based on these perturbations, and
training on clean and perturbed inputs in conjunction with the weight perturbation.

The remaining of this work is divided as follows. Section 2 is a literature review of the previous
works where we cover four main areas, namely adversarial attack in NLP, adversarial train-
ing, using adversarial training in Arabic NLP, and Arabic sentiment analysis. Section 3 contains
the materials and methods including a description of the dataset, the data preprocessing steps,
sequence tokenization and word embeddings, deep learning models and training settings, eval-
uation metrics, adversarial attack and evaluation, and adversarial training. Section 4 contains
the results and the discussion. In this section, we present the results of both the standard and
adversarial training settings. Finally, Section 5 contains the conclusion and future directions.

2. Related works
2.1 Adversarial attack in NLP
In the DL field, AA is the strategy of systematically adding slight perturbations to the inputs of a
pre-trained neural network so that the network is driven to generate incorrect predictions for the
perturbed inputs. This area of research has been established due to the difficulty in interpreting the
outputs of neural networks and defining the kind of knowledge each neuron has learned which, in
return, makes the process of evaluating the robustness of a network harder (Zhang et al. 2020c).

The first work that aimed at investigating the robustness of the state-of-the-art image clas-
sification DL model was the one proposed by Szegedy et al. (2013). The study concluded the
over-sensitivity of this model to pixel values as the perturbations added to the images were unde-
tectable for humans; meanwhile, the network was confidently predicting the wrong label for the
perturbed images. In order to reduce the cost of generating adversarial examples, Goodfellow et al.
(2014) have proposed the FGSM which depends on fast generation of adversarial images based on
the backpropagated gradients with respect to the inputs.

With regard to the NLP domain, Jia and Liang (2017) were the first to evaluate DL models
on adversarial examples. Their method depended on concatenating distracting, yet meaningless,
collection of words to the end of a given text that is used to train a model to solve a question-
answering task. One main restriction that has been used to filter out the appended sentences is
that the new fooling collection of words must not change the semantics of the main text or alter
the answers to the questions. The concatenated sentence can be either a carefully crafted sentence
or an arbitrary sequence of tokens randomly selected from a pool of 20 random frequently used
tokens. Wang and Bansal (2018) proposed expanding the number of fake answers and changing
positions where distracting sentences are added in order to build more robust DL models.

Another black-box word-level attack that is based on sentence concatenation is the one pro-
posed by Blohm et al. (2018). In this work, the generated sentence was formed by randomly
selecting words from all the words in the incorrect answers in conjunction with a pool of 10
random common words and all the words in the question.

Editing the input sequences is another black-box technique used for generating AA. In their
work, Belinkov and Bisk (2017) targeted neural machine translation models. The inputs to these
models were perturbed in one of three ways: leveraging typos that already exist in textual datasets,
altering the order of all the characters of a word except for the first and last characters, or
fully replacing the characters of words with random ones. Niu and Bansal (2018) approached
the dialogue generation task and used multiple perturbation methods including the following:
random swapping by randomly replacing neighboring words, paraphrasing, randomly dropping
stop-words, intentionally using the wrong tense form of randomly selected verbs, and using the
negations and the antonyms. Gao et al. (2018) used four strategies in generating adversarial exam-
ples, namely addition, deletion, replacement, and swapping. The altered words or characters were
selected based on their importance which was measured by means of a scoring function that
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leverages the classifier’s output. A probabilistic method for generating adversarial examples has
been proposed by Ren et al. (2019). They first started by creating a dictionary that contains the
synonyms of all the words in an existing corpus. Then, a set of proposed words are substituted with
the synonyms that most fool the network such that the replacements make the most impact on
the classification probability. The replacement order is defined by means of word saliency. Zhang
et al. (2020a) proposed the Metropolis-Hastings (M-H) Attack. They targeted language models in
their work and employed M-H sampling to generate the replacing words and the random words
for both the replacement and insertion operations, respectively.

Other works in AA were based on white-box techniques which require the availability of infor-
mation on the model’s architecture, loss function, inputs, and outputs in order to extract the
gradients that can be later used to generate the perturbations. TextFool (Liang et al. 2017) is one
of the leading techniques in the context of textual AA and is inspired by FGSM (Goodfellow et al.
2014). However, in this work the authors propose the use of the gradient magnitudes rather than
their signs to create the adversaries and propose three methods for the AA generation: modifica-
tion, deletion, and insertion. Based on the absolute backpropagated gradients, the authors define
the hot characters, which represent the characters with highest magnitudes and hence highest
probability to impact the model. Then, they defined the hot training phrases (HTPs) as phrases
that contain enough hot characters with a sufficient frequency of occurrence. During the inser-
tion process, the AA is created by inserting a small proportion of HTPs of the wrong class that
is targeted (C′) by the AA in the vicinity of the hot characters that contribute the most to the
ground-truth class C. For the modification version, the authors replaced the characters of HTPs
with randomly selected characters or characters that are visually similar.

Samanta and Mehta (2018) have shown better results compared to TextFool (Liang et al. 2017)
by performing some modifications to the algorithm. They first start by removing the adverb (wi)
that contributes the most to the predicted label. If the generated text contains grammatical mis-
takes due to the removal operation, a word (pi) is inserted before (wi) where (pi) is selected from
a predefined pool that contains synonyms, genre keywords retrieved by means of term frequency,
and typos. Finally, if the inserted (pi) fails to increase the value of the loss function, (wi) is replaced
with (pi).

In their work, Al-Dujaili et al. (2018) have proposed the generation of binary-encoded AAs.
Four bounding methods were used in this work to generate the perturbations, two of which
depended on FGSMk (Kurakin, Goodfellow, and Bengio 2016) with the deterministic rounding
(dFGSMk) and the randomized rounding (rFGSMk) versions. These two methods are identical to
the L∞-ball method (Goodfellow et al. 2014) used to constrain the perturbations for CV tasks.
The third and fourth methods employ the multi-step bit gradient ascent and the multi-step bit
coordinate ascent, respectively.

2.2 Adversarial training
The goal of using AT is to produce neural networks robust to attacks. Several techniques have been
proposed in this area of study and most of these techniques focus on training the neural network
on adversarial examples. As mentioned in Subsection “Adversarial Attack in NLP,” Szegedy et al.
(2013) were the first to employ training on both clean and adversarial samples. This work was
followed by the emergence of FGSM (Goodfellow et al. 2014) that proposed an efficient and fast
way to generate adversaries and train the model on these crafted examples. The linear approxima-
tion of the loss function was one of the disadvantages of this method that becomes more apparent
when testing the model on iterative attacks (Tramèr et al. 2017).

Apart from the previous works where models were trained on a mixture of clean and perturbed
data, a stream of research has taken the path of training on adversarial examples only, such as
Huang et al. (2015) and Shaham et al. (2018). However, training on adversarial examples only
renders the model vulnerable to overfitting the adversarial examples (Zhang and Xu 2019),
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especially with relatively strong adversaries that generate samples that cross the decision bound-
aries and are more like natural samples, yet belonging to different classes.

Several frameworks were proposed to address the problem of overfitting to adversarial exam-
ples, including the Curriculum AT (Cai et al. 2018) that gradually increases the steps of the
projected gradient descent (PGD) (Madry et al. 2017) to generate stronger attacks during the
course of training until the model learns the sufficient weights to overcome the attacks. Zhang
et al. (2020b) proposed Friendly AT that employs early stopping when searching for adversar-
ial examples using PGD to generate friendly adversarial data to minimize the adversarial loss
rather thanmaximizing it. They concluded that adversarial robustness does not contradict natural
generalization.

Other AT methods rely on adding a regularization term in the loss function that minimize
the distance between the clean and perturbed examples. Zhang et al. (2019) proposed TRadeoff-
inspired Adversarial DEfense via Surrogate-loss minimization, a regularized loss function that
penalizes adversarial examples that have a distribution with a large Kullback-Leibler divergence
(Kullback and Leibler, 1951) from the distribution of the clean examples. This regularized loss
does not take into consideration whether or not the benign samples have been classified correctly
by the model. Wang et al. (2019) proposed Misclassification Aware adveRsarial Training which
incorporates the probability of the ground-truth label generated by the model to emphasize on
samples that have been already correctly classified in the clean mode.

One of the most commonly used AT technique in the natural language processing domain is
DDA proposed by Ganin and Lempitsky (2015) which aims at learning domain-invariant, yet dis-
criminative representations. In this algorithm, the model is trained on two datasets, one labeled
and one unlabeled, and is equipped with two heads: a predictor for the main task and a discrim-
inator to distinguish between the samples between the sources of the samples. One of the critical
factors for the success of this algorithm is the gradient reversal layer, which simply multiplies the
gradients derived from the domain classification head by a negative scalar to encourage the feature
extractor part to learn domain-invariant features.

Finally, in this work, we aim at using one of the most successful AT techniques that have proved
its effectiveness on several benchmark datasets, namely Adversarial Weight Perturbation-based
AT (AT-AWP) proposed by Wu et al. (2020). The algorithm aims at producing a double-
perturbation effect on the network by iteratively perturbing both the input samples and model
weights through PGD.

2.3 Using adversarial training in Arabic NLP
There is a severe shortage in the literature regarding works employing AT in Arabic NLP. Most
of these works use DDA to approach multi-lingual or cross-lingual tasks by enabling knowledge
transfer from a high-resource language with plenty of labeled datasets to another low-resource
language, mostly unlabeled datasets (Joty et al. 2017; Zalmout and Habash 2019; Gupta 2021;
Goyal et al. 2021).

Among those works, Chen et al. (2018) exploited the availability of abundant annotated
resources for sentiment classification in the English language by employing the AT algorithm
proposed by Miyato et al. (2016) to learn discriminative, language-invariant features that can
transfer to other low-resource languages. The model performance was evaluated using two unla-
beled Arabic and Chinese datasets, where the language discriminator was trained to distinguish
between the labeled and unlabeled samples; meanwhile, the sentiment classification head was
trained to predict the polarity of the input samples.

Qin et al. (2021) propose the employment of a regularized decoder and AT to approach the
Arabic diacritization problem. Previous works treated the auto-generated diacritics as gold labels;
meanwhile, a high fraction of these labels is inaccurate and would potentially lead to a model
producing deficient representations. In this work, the authors developed a model that employed
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AT inspired by Ganin and Lempitsky (2015) to balance the information learned from both the
main tagger and the regularized decoder.

Joty et al. (2017) designed an adversarial training-based framework inspired by Ganin and
Lempitsky (2015) to learn discriminative, language-invariant representations to approach the task
of question-question similarity re-ranking. The proposed model is trained to receive a batch of
labeled and unlabeled inputs from two different languages and is encouraged to discriminate
between the labeled samples from the unlabeled ones through the label classifier network. At the
same time, a gradient reversal layer is adopted to encourage the model to learn language-invariant
features that can fool the language discriminator.

Zalmout and Habash (2019) employed both adversarial training and multitask learning in
addressing the data sparsity problem in the Arabic language that stems from both morphological
richness and dialectical variations. This paper was the first to use adversarial domain adaptation
(Ganin and Lempitsky 2015; Ganin et al. 2016) in the field of dialectical morphological adapta-
tion. The proposed framework was evaluated on two datasets including Modern Standard Arabic
(MSA) and the Egyptian dialect.

Gupta (2021) investigated the possibility of leveraging unlabeled data from different languages
to improve the performance on themulti-label emotion recognition task. They formulated a semi-
supervised Virtual Adversarial Training (VAT (Miyato et al. 2018) problem and investigated the
improvement in the performance of a target language classification task driven by leveraging
unlabeled datasets of other low-resource languages.

Goyal et al. (2021) approached the task of word in context disambiguation proposed by
SemEval-2021 Task 2 (Martelli et al. 2021) in both multi-lingual and cross-lingual settings via
a single XLM RoBERTa (Conneau et al. 2019) model. The authors reported a significant boost
in performance of the model when employing the adversarial training stage proposed by Miyato
et al. (2016), which simply perturbs the word embeddings during training using the calculated
gradients with respect to the embedding vectors. The authors added a simple modification to
the adversarial training algorithm by skipping the embedding normalization process which they
believed would affect the semantic meaning of the pre-trained word embeddings.

Based on this literature review, we note the lack of use of AT techniques in the Arabic NLP
domain to build robust frameworks and the need to thoroughly investigate the applicability of
such techniques in this domain.

2.4 Arabic sentiment analysis
Sentiment analysis (SA) is the task of determining the affective states in a given text (Darwish et al.
2021). Due to its important applications, SA has been studied extensively in the literature. These
applications include the following: business analysis (Han et al. 2019; Bose et al. 2020), review
analysis (Mackey, Miner, and Cuomo 2015), healthcare (Clark et al. 2018), and stock market anal-
ysis (Xing et al. 2018). The significance of SA is mainly attributed to the nature of this area of study
that aims at automatically analyzing the physiological state, satisfaction, or impression of the user
based on their responses (Wankhade et al. 2022).

Several works have approached the task of SA in the Arabic language domain, however, these
studies still report the challenges faced due to the nature of this language. These challenges, includ-
ing morphological richness, orthographic ambiguity, orthographic inconsistency, and resource
poverty, hinder the research progress in Arabic NLP (Darwish et al. 2021). For example, Khalifa
et al. (2016) have reported the drop in the performance of the state-of-the-art tool for the task
of part-of-speech tagging and lemmatization from 96% on MSA on both tasks (Pasha et al.
2014) to around 72% and 64% on the Arabic Gulf dialect. Orthographic inconsistency, on the
other hand, plays a major role in impeding the progress in Arabic NLP. The great variation in
spelling the samewordsmakes the task of indexing and tokenizationmuch harder, and researchers
need to spend tremendous amounts of time on spell checking before applying the typical text
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processing stages. According to Zaghouani et al. (2014), one-third of all MSA words available
online are misspelled.

Early efforts in Arabic SA revolved around the collection and creation of the resources required
to approach this task including the labeled datasets, sentiment treebanks, and sentiment lexi-
cons (Abdul-Mageed and Diab 2012; Mourad and Darwish 2013; Badaro et al. 2014; Refaee and
Rieser 2014; ElSahar and El-Beltagy 2015; Eskander and Rambow 2015; Khalil et al. 2015; Salameh,
Mohammad, and Kiritchenko 2015; Shoukry and Rafea 2015; El-Beltagy 2016; Baly et al. 2017).
Moreover, some efforts have been put to create benchmarks against which different approaches
can be fairly compared (Mohammad et al. 2018; Rosenthal, Farra, and Nakov 2019).

Arabic SA has been approached using three main methods including hand-crafted rules
and lexicons (El-Beltagy and Ali 2013; Abdul-Mageed and Diab 2014; Badaro et al. 2014),
machine learning algorithms (Baly et al. 2017; Badaro et al. 2018; Farha and Magdy 2019), and
hybrid frameworks that combine the first two approaches (Al-Smadi et al. 2019a). More recent
approaches (Abdul-Mageed et al. 2020; Antoun, Baly, and Hajj 2020) include the fine-tuning of
large pre-trained models such as AraBERT (Antoun et al. 2020) have reported state-of-the-art
results in Arabic SA.

DL has been extensively used to solve SA tasks in the English language. One of the main advan-
tages of the use of DL models is the possibility to build an end-to-end fully automated framework
that can infer the important features to achieve a task like SA which is, in its core, a conven-
tional classification task. This advantage relieves the restriction of the need for domain experts
to handcraft the rules based on which the SA task can be accomplished (Badaro et al. 2019). As
a result, different DL architectures have been used in the English NLP domain spanning a wide
range of sophisticated trainable layers including recursive neural networks (RNNs) (Socher et al.
2013), convolutional neural networks (CNNs) (Kalchbrenner, Grefenstette, and Blunsom 2014),
gated recurrent neural networks (GRNNs) (Tang, Qin, and Liu 2015), dynamic memory networks
(DMNs) (Kumar et al. 2016), and the human reading for sentiment framework (Baly et al. 2016).

Inspired by this literature in English SA, several Arabic SA studies have emerged starting from
Al Sallab et al. (2015) who evaluated different DL models including DNNs, deep belief networks
(DBNs), and deep autoencoders (DAEs) which were trained based on word n-grams. Their work
outperformed the previous Arabic state-of-the-art benchmark SVM models; however, the model
severely suffered from the data sparsity problem, i.e. the scarcity of mentioning the vast majority
of the corpus tokens which does not allow a thorough understanding of the language by themodel.
This arouses the need for using Arabic word embeddings.

Al-Sallab et al. (2017) proposed a recursive deep learning model for opinion mining in Arabic
AROMA which was introduced as a solution for the problems that the author believed were the
causes of the gap between the performance of the models on Arabic and English SA tasks. The
authors remarked a number of potential limitations in the Arabic language as compared to English
including lexical sparsity and non-standardized dialects which causes different spellings for the
same word sense.

CNNs have been exploited for the purpose of Arabic SA in many works (Dahou et al. 2016;
Gridach, Haddad, and Mulki 2017; Alayba et al. 2018b) utilizing the concept of learnable word
embeddings. Alayba et al. (2017, 2018a) compared the performance of CNN and long-short-term
memory (LSTM) layers by feeding them the features extracted from the trainable word, character,
and character n-gram embeddings. The accuracy of CNNs was reported to be significantly better
than LSTMs; 90% compared to 85%, respectively.

Al-Azani and El-Alfy (2018) compared the performance of both LSTMs and GRNNs in both
the unidirectional and bidirectional settings. It was reported the outperformance of the bidi-
rectional LSTMs compared to traditional classification methods when emojis are inserted into
the inputs. Al-Azani and El-Alfy (2017) also studied and evaluated the performance of LSTMs,
GRNNs, CNNs, and the combination of them on the Arabic SA task. The hybrid system of both
LSTMs and CNNs outperformed the other architectures on two datasets.
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Others prefer to process the whole sequence as a single unit by generating paragraph-based
embeddings rather than token-based embeddings (Barhoumi et al. 2017; Abdullah and Shaikh
2018). Barhoumi et al. (2017) employed the sentiment annotated corpus large-scale Arabic book
reviews (LABR) Aly and Atiya (2013) and Doc2Vec (Le and Mikolov 2014) to generate paragraph
embeddings for Arabic contents and then built a classifier (MLP or Logistic regression) on top of
these feature vectors.

LSTMs (unidirectional and bidirectional), GRNNs, and CNNs have been pretty much popular
at the task of Arabic SA before the advent of the transformers. González et al. (2017); Al-Smadi
et al. (2019b); Barhoumi et al. (2017); El-Beltagy et al. (2017, 2016) have used CNNs or LSTMs or
a hybrid of both to generate the features used by the end classifier for Arabic SA.

Several techniques have been proposed to improve the models’ performance on SA tasks such
as the one suggested by Duwairi and Abushaqra (2021). In this paper, the authors designed a
novel framework to augment the dataset used in Arabic SA taking advantage of the morphological
richness of the language. The authors predefined 23 transformation rules based on which the
dataset was augmented. The algorithm has been reported to increase the size of the initial seed
dataset by 10 folds with a significant increase in the model’s accuracy.

Based on this literature review, and to the best of our knowledge, there have been very few
works that employed AT in the Arabic language domain. These works were designed to develop
domain-invariant models capable of transferring knowledge from one domain to another rather
than employing AT in developing models robust to adversarial attacks. In this paper, we aim, in
the first stage, at building several DL models, train them under standard conditions to solve an
Arabic SA task, and then evaluate their performance on previously unseen data both clean and
perturbed. The kind of perturbation intended to be used in this work is the fast gradient pro-
jected method proposed by Wang et al. (2021) with some modifications to cope with the scarcity
of Arabic sources. In the second stage, we will train the same models; however, this time adversar-
ially and evaluate their performance on both clean and adversarial examples that have not been
passed to the model during training. The method selected for AT is adversarial weight perturba-
tion proposed by Wu et al. (2020) which has recently proved its effectiveness on several Kaggle
NLP competitionsa.b

3. Materials andmethods
3.1 Dataset
The dataset used in this work is the LABR dataset collected by Aly and Atiya (2013). The dataset
consists of over 63,000 Arabic book reviews, where each textual review is associated with a rating
between 1 and 5. The dataset has been shuffled and split into training and test sets by the authors
to form a benchmark against which different approaches can be fairly evaluated. Moreover, the
authors established other criteria to split the dataset based on including the balance of the target
labels and the number of classes to consider.

In this work, we select the balanced partitioning that contains 16,448 samples. The authors
use the technique of downsampling to balance the dataset which limits the number of samples in
each class to the class with the minimum number of samples. For the number of classes, we select
to approach this task as a binary classification task, where each sequence is classified as either
positive or negative. In this case, classes 4 and 5 are merged into class 1 (positive), classes 1 and 2
are merged into class 0 (negative), and class 3, which indicates the neutral class, is omitted.

After preprocessing the data as explained in theData Preprocessing subsection, the clean dataset
that can be used for training the DL models was reduced to 14,309 samples. Besides the original
splitting of the dataset into training and test splits, we extract a validation split from the training
data to secure fair hyperparameter tuning on this split and unbiased evaluation on the test split.

ahttps://www.kaggle.com/competitions/nbme-score-clinical-patient-notes/discussion/323095
bhttps://www.kaggle.com/competitions/feedback-prize-2021/discussion/313177
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Figure 1. Long and short sequence percentages in the training (left) and test (right) datasets.

Eventually, we ended up with training, validation, and test splits of 9,981, 1,462, and 2,902 sam-
ples, respectively. The validation set was randomly selected after shuffling the training data and
securing the balance of labels in the validation split via the stratified K-fold cross-validation.

3.2 Data preprocessing
First of all, we remove the long sequences that contain over 128 tokens after tokenization which
is achieved using the natural language toolkit (NLTK) (Bird, Klein, and Loper 2009). This step of
removing long sequences reduces the computational load and eventually allows for faster iterating.
Figure 1 shows the percentages of the long and short sequences in both the training and test splits.
As explained in theDataset subsection, we end up with 11,443 examples in the training set (before
splitting it into train and validation splits) and 2,902 examples in the test set.

After that, we remove the Arabic diacritics from the reviews as these tokens are not represented
in AraVec (Soliman, Eissa, and El-Beltagy 2017) which contains the pre-trained word embeddings
as will be explained later. Then, all the unique characters in both the training and test splits were
retrieved, and we ended up with 93 and 92 unique characters in both datasets, respectively. A
list containing all the Arabic 45 characters was created and all the non-Arabic characters were
detected in both datasets based on this list and replaced with a space that represents the separator
token. There are actually 28 characters in the Arabic language, however, some characters exist in
different forms like “ ”–“A” which can be found as “ ”–“ ” and “ ”–“ ”.

Any character that appears more than twice consecutively in the same word was replaced with a
single character as this cannot take place in the Arabic language. This process included the spaces.
Furthermore, some of the characters in the dataset were written in a way different from the ones
available in the pre-collected characters. For example, “ ”–“t” can be found as “ ” and “ ”–
“E” can be found as “ ” which will eventually lead to an out-of-vocabulary (OOV) token when
tokenizing and embedding. Moreover, for the sake of normalization, AraVec replaces a set of
characters with similar ones such as “ ”–“p” is always replaced with “ ”–“h”, “ ”–“ ”, “ ”–“ ”
are always replaced with “ ”–“A”, and “ ”–“&” and “ ”–“}” are always replaced with “ ”–“’’.
Hence, we perform all these normalizations in order to minimize OOV tokens when embedding
our sequences.

3.3 Sequence tokenization and word embeddings
First, all the input sequences were tokenized using the NLTK tokenizer (Bird et al. 2009). After
that, we added two special tokens to the dictionary, namely the padding token “ ” and
the unknown token “ .” After that, each token was given an index starting from 0 and
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10 A. Radman and R. Duwairi

ending with the number of tokens in AraVec (Soliman et al. 2017) in addition to the two special
tokens. AraVec contains Arabic word embeddings pre-trained on Arabic corpus based on the
word2vec algorithm (Mikolov et al. 2013). There are several versions of AraVec, and in this work,
we employ the Twitter-CBOW version where each token is represented with a 300-d vector.

3.4 Deep learningmodels and training settings
Seven different DL models are used in this study: LSTM-based (Hochreiter and Schmidhuber
1997), gated recurrent unit (GRU)-based (Chung et al. 2014), CNN-based (LeCun et al. 1998),
multi-headed self-attention (Vaswani et al. 2017) (MHA)-based, LSTM-CNN-based, GRU-CNN-
based, and MHA-CNN-based models. Figure 2 illustrates the model architectures used in this
work. The architectures, in general, begin with the embedding layer, and AraVec’s pre-trained
weights are used to initialize the weights of this layer.

For the first architecture, shown in Figure 2—left, we pass these embeddings to one of three lay-
ers: LSTM, GRU, or CNN. For the LSTM and the GRU layers, we use the bidirectional setting with
the two sequential layers where we use 128 and 64 units, respectively, in the two layers. Following
the latter are both the global average pooling and global max pooling layers which reduce the
dimensionality of the previous output and generate a 1D representation for each input sequence.
The pooled representations are then concatenated. Using both pooling layers and concatenating
their outputs rather than depending on one of them gives the model a better chance to learn from
the features of each layer whichmight not be easy to extract by the other one. The outputs are then
passed to a fully connected layer with 64 units and ReLU activation. Finally, a head classifier with
two units and softmax activation is used to predict the probability of each class given the input
sample.

For the CNN-based model, the same previous architecture is used with the replacement of the
LSTM/GRU layers with two sequential 1DCNN layers. The two layers have 128 kernels with a 3×3
kernel size and ReLU activation. The remaining part of the architecture is the same as the LSTM
and GRU ones. For the MHA-based model, we replace the LSTM layers with two MHA layers
where the first of which receives its inputs from the summation of the embedded vectors and the
sinusoidal positional encodings generate the same way as in Vaswani et al. (2017). The first and
secondMHA layers have eight heads both and key dimensions of 128 and 64, respectively. Finally,
three additional architectures are used that employ the LSTM-based, GRU-based, andMHA-based
with an additional 1D CNN layer in between the embedding layer and these layers. The 1D CNN
layer has 128 3× 3 kernels and is ReLU-activated.

For the training process, we first freeze the weights of the embedding layer in order to preserve
the semantics embedded in the vectors. This process of freezing the weights of the embedding
layer is essential for the AA process where the attack depends mainly on synonym replacement
that requires this preservation of vector semantics as will be explained later in the Adversarial
Attack and Evaluation Subsection. Each model is trained on the training set for 10 epochs with an
initial learning rate of 1e-3 that is linearly decaying over the batches until reaching the minimum
value of 3e-4 with the last batch of the final epoch. The training data is continuously shuffled with
a buffer size of 256. The batch size used is also set to 256. Adam optimizer with weight decay
(Loshchilov and Hutter 2017) is used to optimize the weights of the models. The weight decay is
set to 1e-4 which helps remedy the overfitting problem.

3.5 Evaluationmetrics
The loss function alongside both the weighted F1-score and the accuracy score is used to monitor
the training progress. The loss function used is the binary cross-entropy (BCE) loss function, the
mathematical formulation of this loss function is presented in equation (1). We also preferred
to maintain both the weighted F1, formulated in equation (2), and the accuracy, formulated in
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Figure 2. Model Architectures. Left is the architecture of the LSTM-based, GRU-based, and CNN-based models, and right is
the architecture of theMHA-basedmodel. For the LSTM-CNN-based, GRU-CNN-based, andMHA-CNN-based architectures, an
additional 1d CNN layer is added in between the AraVec embeddings and the next layer.

equation (3), scores as measuring metrics to produce comparable results to the LABR benchmarks
which used both of these metrics.

BCE=−1
n

n∑
i=1

[yi log (yi)+ (1− yi) log (1− yi)] (1)

Weighted F1 score= 1
n

C−1∑
c=0

nc
TP

TP+ 1
2 (FP+ FN)

(2)

Accuracy= 1
n
(TP+ TN) (3)
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where n is the number of samples, y are the actual values, ŷi are the predicted values, C is the
number of classes, nc is the number of samples in class c, TP are the true positives, FP are the false
positives, and FN are the false negatives.

3.6 Adversarial attack and evaluation
In this work, we employ an automatic synonym replacement technique for AA. Before start-
ing the AA, we start with pre-defining the 10 nearest neighbors to each token in the dictionary
based on the cosine similarity between the representations of these tokens in AraVec embeddings.
Constructing this dictionary takes place as follows. First, we create an empty dictionary and pop-
ulate its keys with the unique tokens of AraVec. After that, we iterate over each token embedding
and compute the cosine similarity between the current token embeddings and all other embed-
dings. For each token, we end up with a vector of the length of the number of unique tokens
in AraVec excluding the current token. This vector represents the cosine similarity between the
token embeddings. Based on that, we select the ten tokens with the highest cosine similarity with
the current token. These ten tokens are added to the dictionary as values corresponding to the
input token key.

During AA, we perform the synonym replacement which is based on PGD (Madry et al. 2017)
with an additional nearest neighbor’s post-searching step. First, the model makes a forward prop-
agation on the input sequences. Then, the loss is computed and the gradients are derived.We then
use the gradients of the model with respect to the input embeddings to create the perturbations.
As the representation of the inputs has the dimensions of [batch size, 128, 300], where 128 is the
sequence length and 300 is the length of the representation of each token, also their gradients have
the same dimensions. We first project the gradients to make them have the same L2-norm as the
corresponding inputs. This projection takes place according to equation (4).

Projected Perturbations= ∇x(θ , x, y)
‖∇x(θ , x, y)‖2 ‖x‖2 (4)

where ∇x(θ , x, y) are the gradients with respect to input(s) x given network fθ , where θ are the
network’s weights, and label(s) y. ‖.‖ is the L2-norm.

We then add these projected perturbations to the input embeddings, going in the same direc-
tion of maximizing the loss. The newly generated adversarial examples do not represent any word
in the embedding space, and hence we need to approximate the adversarial example by search-
ing for the nearest neighbors to them. The searching step here depends on the predefined nearest
neighbors dictionary that has been collected prior to the AA stage and the process takes place
based on the cosine similarity metric. After generating these adversarial examples, they are for-
ward propagated through the network, and all the metrics are computed to evaluate the model’s
performance adversarially. Algorithm 1 shows the steps of the proposed AA technique in detail.
Table 1 exhibits some of the adversarial examples and their translations generated from clean ones
based on the LSTMmodel after applying standard training.

3.7 Adversarial training
This stage is inspired by the AT-AWP proposed by Wu et al. (2020). This adversarial training
algorithm generates perturbations based on the input examples as well as the network’s trainable
weights, causing a double-perturbation effect. It tries to flatten the loss landscapes of both the
inputs and the weights resulting in networks much more robust to attacks.

As this stage of AT contains two steps, namely input perturbation and weight perturbation,
we perform the input perturbation first in the same way as explained in the Adversarial Attack
and Evaluation subsection. Then, we perform the weight perturbation by means of the adversarial
examples, generated in the first step, as follows. The perturbed inputs are forward propagated
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Table 1. Examples of clean and adversarial samples for the LSTM-based model after applying standard
training

Clean Adversarial

“ ” “ ”

“Wonderful creations of Tawfiq Al-Hakim” “Enjoyable, it is the creativity of Tawfiq Al-Hakim”
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“ ” “ ”

“Beautiful book” “Interesting book”
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“ ” “ ”

“Conventional” “Outdated”
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“ ” “ ”

“Wonderful, a copy must be kept in every home” “Interesting, a copy of it must be in each house.”
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“ ” “ ”

“Disgusting details” “Your details are unpleasant”

Algorithm 1. Adversarial attack.

Input: Network fw, training data {(xi, yi)}ni=1where xi are the AraVec embeddings of
the input tokens of each sequence, yi are the labels, nearest neighbors
dictionary NN, learning rate η, batch size m, loss function L, number of
epochs T.

Output: Adversarial examples xadv.

1: for i← 0 to n− 1 bym (in parallel) do
2: ŷi = fw(xi) � Forward propagation.
3: l= L(yi, ŷi) � Loss computation.
4: ∇xi(θ , xi, yi)= ∂ l

∂xi � Gradients computation with respect to inputs.

5: ∇xi(projected)(θ , xi, yi)= ∇xi (θ , xi, yi)‖∇xi (θ , xi, yi)‖2 ‖xi‖2 � Gradients projection.

6: xi(perturbed)= xi +∇xi(projected)(θ , xi, yi) � Adversarial example generation.
7: xi(adv)= arg max

x∈NNxi

SC(xi(perturbed), x) � Nearest neighbor Search, SC is cosine
similarity.

8: Evaluate network fw on xi(adv).
9: end for

through the network and the loss is computed. After generating the gradients with respect to
the trainable weights, the weights get perturbed by these gradients after they are projected based
on the weights of the corresponding layers. The projection process takes place the same way as
formulated in equation (4), however, this time the projection is for the gradients of the weights
rather than the network’s inputs. After perturbing the weights, we calculate the difference between
the original and the perturbed weights in a layer-wise manner. Then, we train the network either
using the perturbed examples alone (in one setting) or both the clean and perturbed examples (in
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Algorithm 2. Perturb inputs only (scenario 1).

input: Network fw, training data {(xi, yi)}ni=1where xi are the AraVec embeddings of
the input tokens of each sequence, yi are the labels, nearest neighbors
dictionary NN, learning rate η, batch size m, loss function L, number of
epochs T.

Output: Robust network fw.

1: for t← 0 to T − 1 do
2: for i← 0 to n− 1 bym (in parallel) do
3: ŷi = fw(xi) � Forward propagation.
4: l= L(yi, ŷi) � Loss computation.
5: ∇xi(θ , xi, yi)= ∂ l

∂xi � Gradients computation with respect to inputs.

6: ∇xi(projected)(θ , xi, yi)= ∇xi (θ , xi, yi)‖∇xi (θ , xi, yi)‖2 ‖xi‖2 � Gradients projection.

7: xi(perturbed)= xi +∇xi(projected)(θ , xi, yi) � Adversarial example generation.
8: xi(adv)= arg max

x∈NNxi

SC(xi(perturbed), x) � Nearest neighbor Search, SC is cosine
similarity.

9: Train fw on (xi(adv), yi)
10: end for
11: end for

another setting). Finally, we add the differences that have been calculated between the original
and perturbed weights in order to reset the perturbation and allow the new batch to have almost
the same contribution to the perturbations. The advantage of perturbing the weights beside the
input samples is that these attacks are generated based on all the samples in the input batch rather
than individual samples which ultimately approximates the worst AAmuch better than if only the
inputs are perturbed. This, in turn, forces the network to learn weights that make it more robust
to attacks.

When performing AT, we experiment with three different scenarios. The first scenario is train-
ing the network on perturbed samples only, without perturbing the weights, refer to Algorithm 2.
The second scenario is training the network on both perturbed samples and perturbed weights,
refer to Algorithm 3. The third scenario is using both clean and perturbed samples to train the
network on the perturbed weights, refer to Algorithm 4. In the third case, we choose to apply
training using clean and adversarial samples employing the second scenario rather than the first
one because of its higher performance.

4. Results and discussions
4.1 Background
In this section, we display and discuss the results of the LSTM-based model which has proved
the best performance among the other architectures after being adversarially trained. For the
other models, the patterns are similar, and hence, there is no need to repeat similar discussions.
However, we supply the figures of the other models in Appendix One on page 46 for the readers’
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Algorithm 3. Perturb both inputs and weights (scenario 2).

Input: Network fw, training data {(xi, yi)}ni=1where xi are the AraVec embeddings of
the input tokens of each sequence, yi are the labels, w model’s original
weights, nearest neighbors dictionary NN, learning rate η, batch size m,
loss function L, number of epochs T.

Output: Robust network fw.

1: for t← 0 to T − 1 do
2: for i← 0 to n− 1 bym (in parallel) do
3: woriginal =w.copy() � Copy original weights.
4: ŷi = fw(xi) � Start input perturbation (forward propagation).
5: l= L(yi, ŷi) � Loss computation.
6: ∇xi(θ , xi, yi)= ∂ l

∂xi � Gradients computation with respect to inputs.

7: ∇xi(projected)(θ , xi, yi)= ∇xi (θ , xi, yi)‖∇xi (θ , xi, yi)‖2 ‖xi‖2 � Gradients projection.

8: xi(perturbed)= xi +∇xi(projected)(θ , xi, yi) � Adversarial example generation.
9: xi(adv)= arg max

x∈NNxi

SC(xi(perturbed), x) � Nearest neighbor Search, SC is cosine
similarity.

10: ŷi = fw(xi(adv)) � Start weight perturbation (forward propagation).
11: l= L(yi, ŷi) � Loss computation.
12: ∇w(θ , xi, yi)= ∂ l

∂w � Layer-wise gradients computation.

13: ∇w(projected)(θ , xi, yi)= ∇w(θ , xi, yi)
‖∇w(θ , xi, yi)‖2 ‖w‖2 � Gradients projection.

14: wdiff =woriginal −wperturbed � Computation of difference between original
and perturbed weights.

15: Train fwperturbed on xi(adv) to get wnew

16: w=wnew +wdiff � Remove weight perturbations of current batch after training on it.
17: end for
18: end for

reference. Figure 3 illustrates the results of LSTM standard training, and Figures 4, 5, and 6 show
the results of the three adversarial training scenarios. Both the weighted F1-score and the accu-
racy score alongside the binary cross-entropy loss value are displayed. During standard training,
we monitor the weighted F1 score on the validation set and save the model’s weights based on
the best performance on this metric. For the AT case, we monitor an engineered metric that helps
balance the model’s performance on both types of data (clean and adversarial). This metric will be
explained in more detail later on in this section.

4.2 Standard training & adversarial attack
Starting with the standard training process displayed in the three plots of Figure 3, we can see
the consistent decrease in the loss value accompanied by an increase in the values of the weighted
F1 and the accuracy scores on the training set. The model reaches its best performance on the
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Algorithm 4. Perturb both inputs and weights and train on both clean and adversarial examples
(scenario 3).

Input: Network fw, training data {(xi, yi)}ni=1where xi are the AraVec embeddings of
the input tokens of each sequence, yi are the labels, w model’s original
weights, nearest neighbors dictionary NN, learning rate η, batch size m,
loss function L, number of epochs T.

Output: Robust network fw.
1: for t← 0 to T − 1 do
2: for i← 0 to n− 1 bym (in parallel) do
3: woriginal =w.copy() � Copy original weights.
4: ŷi = fw(xi) � Start input perturbation (forward propagation).
5: l= L(yi, ŷi) � Loss computation.
6: ∇xi(θ , xi, yi)= ∂ l

∂xi � Gradients computation with respect to inputs.

7: ∇xi(projected)(θ , xi, yi)= ∇xi (θ , xi, yi)‖∇xi (θ , xi, yi)‖2 ‖xi‖2 � Gradients projection.

8: xi(perturbed)= xi +∇xi(projected)(θ , xi, yi) � Adversarial example generation.
9: xi(adv)= arg max

x∈NNxi

SC(xi(perturbed), x) � Nearest neighbor Search, SC is cosine
similarity.

10: ŷi = fw(xi(adv)) � Start weight perturbation (forward propagation).
11: l= L(yi, ŷi) � Loss computation.
12: ∇w(θ , xi, yi)= ∂ l

∂w � Layer-wise gradients computation.
13: ∇w(projected)(θ , xi, yi)= ∇w(θ , xi, yi)

‖∇w(θ , xi, yi)‖2 ‖w‖2 � Gradients projection.

14: wdiff =woriginal −wperturbed � Computation of difference between original
and perturbed weights.

15: Train fwperturbed on xi(adv) to get wnew

16: w=wnew +wdiff � Remove weight perturbations of current batch after training on it.
17: Train fw on xi to update w
18:
19: end for
20: end for

validation set at the eighth epoch where the loss value, the weighted F1-score, and the accuracy
score on the validation and test splits are respectively: (0.414, 0.402), (0.812, 0.824), and (0.812,
0.824). After attacking this model, we see the huge drop in performance where the loss value
of both the validation and test sets almost doubles to 0.874 and 0.830, respectively. Both the
weighted F1-score and the accuracy score are also negatively affected as they drop on the vali-
dation and test sets, respectively, to (0.561, 0.576) and (0.561, 0.576). Hence, this indicates the
success of establishing a proper AA method that can fool a model trained to solve an Arabic SA
task.
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Figure 3. LSTM-basedmodel standard training results. Top is the loss function value, middle is the weighted F1-score value,
and bottom is the accuracy value.

https://doi.org/10.1017/nlp.2024.35 Published online by Cambridge University Press

https://doi.org/10.1017/nlp.2024.35


18 A. Radman and R. Duwairi

Figure 4. LSTM-based model scenario 1 results. Top is the loss function value, middle is the weighted F1-score value, and
bottom is the accuracy value.
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Figure 5. LSTM-based model scenario 2 results. Top is the loss function value, middle is the weighted F1-score value, and
bottom is the accuracy value.
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Figure 6. LSTM-based model scenario 3 results. Top is the loss function value, middle is the weighted F1-score value, and
bottom is the accuracy value.
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4.3 Adversarial training
Next comes the AT step where the task is to build a robust model to AA. As explained in Section
3.7, we experiment with three different scenarios of AT. During the AT stage, we create a new
metric which is the weighted mean of the weighted F1-score (WMWF1-score) on both the clean
and adversarial examples of the validation set. The mathematical formulation of this metric is
presented in equation (5). The weights are heuristically given to the two contributors based on
experimentation. For the first and second scenarios, we give a clean-to-adversarial weight ratio
of 1:2. This is because the model in these two modes is trained on the adversarial examples only
and as the model progresses in training, it starts to overfit the adversarial examples at the expense
of the clean ones. In this case, if we give full credit to the adversarial examples, the model will
be significantly biased towards these examples, which would eventually lead to a significant drop
in the model’s performance on the clean data. We have experimented with other values for this
ratio such as 2:1 for these two scenarios, however, we found the latter hinders the model from a
significant boost in the performance on the adversarial data at the expense of a slight improvement
on the clean one. For the third scenario, on the other hand, we reverse the values and give a clean-
to-adversarial ratio of 2:1 as we note that the model starts early to have better performance on the
adversarial data; meanwhile, it suffers on the clean data. Hence, our goal was to find a model that
performs almost equally on both types of data, and the 2:1 ratio has proven to be working best for
this purpose among other ratios.

WMWF1− score=
2∑

t=1
wt

1
n

C−1∑
c=0

nc
TP

TP+ 1
2 (FP+ FN)

(5)

where 2 is the number of input types (clean and adversarial), wt is the chosen weight for input
type t, C is the number of classes, nc is the number of samples in class C, TP are the true positives,
FP are the false positives, and FN are the false negatives.

4.3.1 Scenario 1
Regarding the first scenario, where the perturbations are applied to the inputs only and the model
is trained on adversarial examples only, we see that the model fails to improve after the first epoch,
based on the WMWF1-score; refer to Figure 4. Although there is some improvement in the per-
formance on the adversarial data of the validation set, this improvement is accompanied by an
overfitting to this data and a steep drop on the clean one. This behavior is not common among the
other architectures as shown in the figures in Appendix One on page 46. Those models continue
their improvement on the WMWF1-score until after the third epoch in the worst case, i.e. the
case of the GRU-based model, Figure A1. However, five out of the seven models fail to improve
on the clean validation data after the fifth epoch which, in turn, indicates the tendency of these
models to overfit the adversarial data as well. This tendency to overfit the adversarial data has
been mentioned in several research papers including Rice et al. (2020); Cai et al. (2018); Zhang
et al. (2020b). In order to remedy the problem of overfitting the adversarial examples, we adopt
saving the weights of the best-performing model on the WMWF1-score. This method, at its core,
is similar to early stopping which has been proposed as a solution for this problem by Zhang et al.
(2020b). However, in our work, we continue the training process until the tenth epoch, and during
this period, the weights of the best-performing model on the custom metric are saved and then
used for evaluation and comparison. For this AT mode, the best-performing model is the GRU-
based model with a WMWF1-score of 0.780 where the weighted F1-scores on both the clean and
the adversarial examples of the validation set are 0.732 and 0.875, respectively. The performance
on the test set is comparable with weighted F1-scores of 0.745 and 0.867 on both the clean and the
adversarial data, respectively.
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4.3.2 Scenario 2
For the second scenario, there is a noticeable improvement in the training process as the models
get the chance to train longer before starting to overfit the adversarial samples. This behavior can
be noticed through the fact that all the models need at least five epochs to converge, meanwhile,
some models show their tendency to improve even after the tenth epoch such as in the case of the
MHA-based model illustrated in Figure A2. Overall, all the models need one to eight additional
epochs over scenario 1 to obtain the convergence weights. This, in turn, indicates the effectiveness
of employing weight perturbations beside the input perturbations. Moreover, not only the training
process was allowed to run for more epochs before overfitting, instead, the overall performance
of the models also improved. For the case of the LSTM-based model, the weighted F1-scores on
the clean and adversarial examples of the test set are 0.732 and 0.886, respectively, as compared to
0.706 and 0.836, respectively, in scenario 1; refer to Figure 5.

4.3.3 Scenario 3
Finally, for the third scenario where the perturbations are applied to both the inputs and the
weights and the model is trained on both clean and adversarial data, we can see that the overall
performance of the models has improved, especially on the clean data. Besides the improvement
in performance, it is remarkable the faster convergence of the models to the optimal weights in
most of the cases (5 out of 7 models) as compared to scenario 2. The LSTM-based model in this
scenario has shown a high and comparable performance on both the clean and adversarial data
with weighted F1-scores of 0.815 and 0.843, respectively, on the validation set, and 0.816 and
0.847, respectively, on the test set; refer to Figure 6.

4.4 General results
Tables 2 and 3 present the results of the standard and adversarial training modes, respectively.
Based on the results of the standard training setting, we can see that the best-performing model
on the clean test set is the LSTM-based model. However, the score on the adversarial data is much
lower than the one on the clean data; 0.576 compared to 0.824, respectively, on both metrics.
Moreover, we notice that the addition of a 1D CNN layer to the GRU and theMHAmodels helped
the models perform better on the clean data, but had a negative impact on the adversarial one. The
LSTMmodel, on the other hand, was negatively affected by the addition of the CNN layer on both
data types. With regard to AT, and in general, it is noticeable the positive impact of the additional
CNN layer to the LSTM and GRU models on the performance of these models on the clean data
in the first two scenarios. On the contrary, the pure models outperformed the CNN-equipped
models on the adversarial task which indicates their attendance to overfit the training data type
and indicates the impact of the additional 1D CNN layer on the clean/adversarial generalization.
Finally, for scenario 3, the best-performing model on the clean validation set is the LSTM-based
model, meanwhile, the LSTM-CNN-based model outperformed it on the clean test set.

4.5 Remarks
Based on these results, there are several points that need to be discussed and clarified. The first
point is that we notice some models perform better according to the value of the loss function;
however, these models are outperformed by other models in terms of both the weighted F1-score
and the accuracy metric. For instance, the best-performing model under standard training con-
ditions with respect to the loss function is the LSTM model with a loss value of 0.414 on the
clean validation set, refer to Table 2. Nevertheless, this model is left behind regarding the two met-
rics with weighted F1 and accuracy scores of 0.812 as compared to the GRU-based model which
scores 0.815 and 0.816 on both metrics, respectively, in spite of its higher loss value of 0.589. This
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Table 2. Results of the sevenmodels on the validation and test splits after standard training. Loss is the binary cross-entropy
loss, F1 is the weighted F1-score, and Acc is the accuracy score. Both clean and adversarial versions for each split are used for
evaluation

Split Valid\Clean Test\Clean Valid\Adversarial Test\Adversarial
Metric Loss F1 Acc Loss F1 Acc Loss F1 Acc Loss F1 Acc

Model

LSTM 0.414 0.812 0.812 0.402 0.824 0.824 0.874 0.561 0.561 0.830 0.576 0.576


GRU 0.589 0.815 0.816 0.570 0.819 0.819 1.340 0.596 0.597 1.236 0.606 0.606


CNN 0.566 0.786 0.787 0.546 0.788 0.789 0.919 0.607 0.609 0.934 0.596 0.599


MHA 0.547 0.783 0.783 0.565 0.777 0.777 0.800 0.676 0.676 0.814 0.662 0.662


LSTM-CNN 0.447 0.802 0.802 0.435 0.819 0.819 1.194 0.470 0.471 1.160 0.474 0.475


GRU-CNN 0.420 0.817 0.818 0.420 0.809 0.809 0.918 0.532 0.533 0.906 0.546 0.546


MHA-CNN 0.446 0.799 0.799 0.461 0.790 0.790 0.780 0.588 0.591 0.791 0.574 0.577

phenomenon can be attributed to the slight miscorrelation between the loss function and the eval-
uation metrics as these metrics depend on the principle of thresholding in their work. Standard
thresholding in binary or multi-class classification tasks means mapping the output probability
of the corresponding class to 1 if the probability is higher than 0.5; otherwise, it is mapped to 0.
Some applications require different threshold values based on the point of interest in those appli-
cations; however, our study follows the standard case. The cross-entropy loss, on the other hand,
rewards or punishes models based on their confidence in the predicted class label. For example,
if a model predicts class 1 with probabilities of 1.0 and 0.51 for two different samples where the
ground-truth label is 1, this will produce loss values of 0 and 0.673, respectively. However, the F1
and the accuracy scores in both cases will be 1 due to thresholding. Thus, the cross-entropy loss
function is sensitive to the probability values; meanwhile, the evaluation metrics used in this study
only care about the mapped predictions.

The second point that we need to pay attention to is that after applying adversarial training on
the models, we notice that the models better predict the adversarial samples either on the valida-
tion or the test splits than it does on the clean ones. There are actually three potential hypotheses
that can explain this phenomenon. First, applying perturbations to the input representations only
is not guaranteed to generate the worst-case attack, that is because these gradients work best if
and only if they are used to generate perturbations for the inputs in conjunction with perturb-
ing the trainable weights of the model as these gradients are derived based on the chain rule.
This chain of derivatives (gradients) must be taken as a whole in order to guarantee applying the
worst-case attack. Hence, applying perturbations to the inputs only is just an optimistic approxi-
mation for the best attack. Second is the nearest neighbors search process which replaces the newly
perturbed sample with its nearest neighbor from a predefined dictionary. This process forms a
second approximation for the already approximated adversarial attack. Finally, the adversarial
examples during training are continuously varying based on the updated trainable weights and
the gradients backpropagated to the input representations. Thus, it is possible that the model gets
trained on adversarial samples that are similar to the ones generated in the validation and test sets
after applying the attack which ultimately means overfitting to the adversarial samples. Due to the
dynamic nature of generating these adversarial samples during training, tracking these samples
and comparing them to the ones generated in the validation and test sets is so complex that it
needs to be studied in separate research, and hence we leave it for future work.

Third, we notice the outperformance of the LSTM/GRU-based models compared to MHA-
based models in most scenarios. This can be attributed to the relatively small amount of
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Table 3. Results of the seven models on the validation and test splits after adversarial training. Loss is the binary cross-
entropy loss, F1 is the weighted F1-score, and Acc is the accuracy score. Both clean and adversarial versions for each split are
used for evaluation

Split Valid\Clean Test\Clean Valid\Adversarial Test\Adversarial
Metric Loss F1 Acc Loss F1 Acc Loss F1 Acc Loss F1 Acc

Training
Scenario Model


Scenario 1 LSTM 0.596 0.704 0.704 0.604 0.706 0.706 0.346 0.848 0.848 0.362 0.836 0.836
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU 0.538 0.732 0.732 0.539 0.745 0.745 0.294 0.875 0.875 0.303 0.867 0.867
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CNN 0.544 0.736 0.736 0.539 0.737 0.738 0.493 0.766 0.766 0.493 0.774 0.774
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MHA 0.563 0.724 0.724 0.550 0.725 0.725 0.519 0.747 0.747 0.507 0.755 0.755
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSTM-CNN 0.611 0.739 0.740 0.582 0.749 0.750 0.505 0.783 0.783 0.492 0.796 0.796
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU-CNN 0.495 0.759 0.759 0.497 0.759 0.759 0.425 0.799 0.799 0.439 0.793 0.794
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MHA-CNN 0.586 0.721 0.721 0.563 0.737 0.737 0.491 0.775 0.775 0.500 0.771 0.771
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scenario 2 LSTM 0.704 0.753 0.753 0.730 0.732 0.732 0.323 0.877 0.877 0.299 0.886 0.886
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU 0.688 0.696 0.698 0.671 0.701 0.704 0.349 0.857 0.857 0.299 0.868 0.868
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CNN 0.531 0.730 0.731 0.531 0.749 0.749 0.481 0.755 0.755 0.468 0.770 0.771
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MHA 0.550 0.729 0.730 0.548 0.717 0.718 0.517 0.737 0.738 0.515 0.738 0.739
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSTM-CNN 0.576 0.773 0.773 0.579 0.760 0.761 0.442 0.815 0.815 0.499 0.801 0.802
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU-CNN 0.528 0.754 0.755 0.507 0.757 0.757 0.446 0.795 0.796 0.442 0.797 0.798
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MHA-CNN 0.525 0.736 0.737 0.525 0.732 0.734 0.487 0.759 0.759 0.498 0.752 0.752


Scenario 3 LSTM 0.472 0.815 0.815 0.451 0.816 0.816 0.365 0.843 0.843 0.349 0.847 0.847
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU 0.440 0.811 0.811 0.414 0.817 0.817 0.361 0.842 0.842 0.334 0.849 0.849
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CNN 0.520 0.775 0.775 0.483 0.794 0.794 0.503 0.775 0.775 0.484 0.786 0.786
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MHA 0.501 0.778 0.778 0.497 0.776 0.776 0.502 0.776 0.776 0.503 0.770 0.770
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSTM-CNN 0.423 0.813 0.813 0.420 0.820 0.820 0.409 0.814 0.814 0.418 0.805 0.805
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU-CNN 0.444 0.806 0.806 0.449 0.808 0.808 0.403 0.818 0.818 0.431 0.808 0.808
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MHA-CNN 0.459 0.781 0.783 0.465 0.771 0.773 0.406 0.813 0.814 0.415 0.797 0.798

data used for training the models. It has been mentioned in previous works the tendency of
transformer-based models to overfit when less data is used for training which hinders these mod-
els’ generalization (Zeyer et al. 2019). We believe that using a larger amount of data for training
has the potential to yield better results for the transformer-basedmodels which can be investigated
in future works.

Fourth, we notice the drop in performance of the LSTM and GRU models when adding the
1D CNN layer. The working mechanism of the 1D CNN layer relies on mapping multiple inputs
in a specific frame (kernel) into a single value by applying the convolution operation. This type
of mapping enables the models to pay attention to multiple positions (token features) using one
kernel, however, this kind of pooling might have been the reason for losing the signal of polarity
in some sequences that negatively affected the performance. Further study is needed to be done in
future work to further investigate this phenomenon.

Finally, to the best of our knowledge, this is the first work to employ AT to improve the robust-
ness of Arabic NLP models. Works on other languages have shown worse results compared to
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ours. Xu et al. (2022) for example, have employed PGD-AWP for AT. However, the accuracy of
the model under attack did not exceed 57.60%.

5. Conclusion
In this work, we have designed a framework to attack trained models by means of synonym
replacement. These synonyms are automatically selected from a predefined dictionary contain-
ing the 10 nearest neighbors to each token based on the AraVec pre-trained embeddings and the
cosine similarity metric. After proving the effectiveness of this framework in attacking the trained
models, we experimented with three different scenarios to reinforce these models and make them
robust to such attacks. These scenarios revolved around training the models on perturbed samples
and perturbed weights to enable the model to learn the weights necessary for making it robust. It
was proven that the best scenario was the one that employed both clean and adversarial exam-
ples in training in conjunction with employing weight perturbation. To our knowledge, this is
the first work in the Arabic NLP domain that aims to build a robust deep learning framework via
employing AT.

For future work, we propose investigating the point mentioned in the Remarks Subsection
where after adversarially training the models, these models become apparently better at predicting
the adversarial examples as compared to the clean ones. We presented three hypotheses including
the suspicion that the distribution of the adversarial examples in both the validation and test sets
becomes closer to the adversarial examples in the training set. However, due to the continuously
changing nature of these generated samples during training, which is attributed to the continuous
updating of the models’ weights that ultimately affects the gradients, tracking these samples in the
training set requires separate research to study this phenomenon. On the other hand, this research
was based on the LABR dataset which was collected from book readers’ reviews. This sampling of
reviews is actually a sampling of reviews generated by a more educated class of people who tend
to use MSA in their writings. Hence, the effectiveness of the proposed framework can be more
deeply evaluated if it is tested against dialectical contents.
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Appendices
A. Remaining models’ progress plots

Figure A1. GRU-basedmodel results. The first row shows the results of the standard training process. The second row shows
the results of training on adversarial examples only (scenario 1). The third row shows the results of training on perturbed
examples and weights (scenario 2). The fourth row shows the results of training on both clean and perturbed examples
where theweights are also perturbed (scenario 3)). The left column shows the loss function value. The second column shows
the weighted F1-score value. The third column shows the accuracy value.
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Figure A2. MHA-basedmodel results. The first row shows the results of the standard training process. The second row shows
the results of training on adversarial examples only (scenario 1). The third row shows the results of training on perturbed
examples and weights (scenario 2). The fourth row shows the results of training on both clean and perturbed examples
where theweights are also perturbed (scenario 3)). The left column shows the loss function value. The second column shows
the weighted F1-score value. The third column shows the accuracy value.
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Figure A3. CNN-basedmodel results. The first row shows the results of the standard training process. The second row shows
the results of training on adversarial examples only (scenario 1). The third row shows the results of training on perturbed
examples and weights (scenario 2). The fourth row shows the results of training on both clean and perturbed examples
where theweights are also perturbed (scenario 3)). The left column shows the loss function value. The second column shows
the weighted F1-score value. The third column shows the accuracy value.
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Figure A4. LSTM-CNN-based model results. The first row shows the results of the standard training process. The second
row shows the results of training on adversarial examples only (scenario 1). The third row shows the results of training on
perturbed examples and weights (scenario 2). The fourth row shows the results of training on both clean and perturbed
examples where the weights are also perturbed (scenario 3)). The left column shows the loss function value. The second
column shows the weighted F1-score value. The third column shows the accuracy value.
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Figure A5. GRU-CNN-based model results. The first row shows the results of the standard training process. The second
row shows the results of training on adversarial examples only (scenario 1). The third row shows the results of training on
perturbed examples and weights (scenario 2). The fourth row shows the results of training on both clean and perturbed
examples where the weights are also perturbed (scenario 3)). The left column shows the loss function value. The second
column shows the weighted F1-score value. The third column shows the accuracy value.
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Figure A6. MHA-CNN-based model results. The first row shows the results of the standard training process. The second
row shows the results of training on adversarial examples only (scenario 1). The third row shows the results of training on
perturbed examples and weights (scenario 2). The fourth row shows the results of training on both clean and perturbed
examples where the weights are also perturbed (scenario 3)). The left column shows the loss function value. The second
column shows the weighted F1-score value. The third column shows the accuracy value.
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