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Yamabe Solitons and Ricci Solitons on
Almost co-Kähler Manifolds

Young Jin Suh and Uday Chand De

Abstract. he object of this paper is to study Yamabe solitons on almost co-Kähler manifolds as well
as on (k, µ)-almost co-Kähler manifolds. We also study Ricci solitons on (k, µ)-almost co-Kähler
manifolds.

1 Introduction

It is well known that a Riemannian metric g of an n-dimensional complete Riemann-
ian manifold (Mn , g) is said to be a Yamabe soliton [19] if it satisûes

(1.1) £V g = (λ − r)g

for a constant λ ∈ R and a smooth vector ûeld V on Mn , where r is the scalar cur-
vature of g and £ denotes the Lie-derivative operator. A Yamabe soliton is said to be
shrinking, steady, or expanding according to λ > 0, λ = 0, or λ < 0, respectively, and
λ is said to be the soliton constant.

Given a smooth Riemannian manifold (Mn , g0), the evolution of the metric g0 in
time t to g = g(t) through the equation

∂
∂t

gt = −rg , g(0) = g0

is known as the Yamabe �ow (which was introduced by Hamilton [19]).
he signiûcance of Yamabe �ow lies in the fact that it is a natural geometric

deformation to metrics of constant scalar curvature. One notes that Yamabe �ow
corresponds to the fast diòusion case of the porous medium equation (the plasma
equation) in mathematical physics. Just as a Ricci soliton is a special solution of the
Ricci �ow, a Yamabe soliton is a special solution of the Yamabe �ow that moves by a
one parameter family of diòeomorphisms ϕt generated by a ûxed vector ûeld V onM,
and homotheties, i.e., g( ⋅ , t)) = σ(t)ϕ∗(t)g0 (for more details, see [13, 29]).

Given a Yamabe soliton, ifV = D f holds for a smooth function f on Mn , equation
(1.1) becomes

Hess f = 1
2
(λ − r)g ,
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where Hess f denotes the Hessian of f and D denotes the gradient operator of g on
Mn . In this case f is called the potential function of the Yamabe soliton and g is said
to be a gradient Yamabe soliton. A Yamabe soliton (resp. gradient Yamabe soliton) is
said to be trivial when V is Killing (resp. f is constant).

Yamabe solitons on a three-dimensional Sasakian manifold were studied by
R. Sharma [29]. Wang [30] also studied Yamabe solitons on a three-dimensional
Kenmotsu manifold. In this paper, our aim is to study Yamabe solitons on almost
co-Kähler manifolds and obtain some local classiûcation theorems.

Now, we introduce some basic facts regarding Ricci solitons: A Ricci soliton is a
generalization of an Einstein metric. We recall the notion of Ricci solitons according
to [19]. On the manifold M, a Ricci soliton is a triple (g ,V , λ) with g , a Riemannian
metric, V a vector ûeld, called potential vector ûeld and λ a real scalar such that

(1.2) £V g + 2S + 2λg = 0,

where £ is the Lie derivative, and S is the Ricci tensor of type (0, 2). Metrics satisfying
(1.2) are interesting and useful in physics and are o�en referred to as quasi-Einstein
[8, 9, 17]. Compact Ricci solitons are the ûxed points of the Ricci �ow ∂

∂t g = −2S
projected from the space of metrics onto its quotient modulo diòeomorphisms and
scalings, and o�en arise as blow-up limits for the Ricci �ow on compact manifolds.
heoretical physicists have also been looking into the equations of Ricci solitons in
connection with string theory.

heRicci soliton is said to be shrinking, steady, or expanding according to whether
λ is negative, zero, or positive. If the vector ûeld V is the gradient of a potential func-
tion − f , then g is called a gradient Ricci soliton, and equation (1.2) takes the form

∇∇ f = S + λg ,

where ∇ denotes the Riemannian connection.
We also recall the following signiûcant result of Perelman [28]: A Ricci soliton on

a compact manifold is a gradient Ricci soliton.
A Ricci soliton on a compact manifold has constant curvature in dimension 2

(Hamilton [19]), as well as in dimension 3 (Ivey [21]). For details, we refer the reader to
Chow and Knopf [12] and Derdzinski [16]. Recently, C. Calin and M. Crasmareanu
[4] studied Ricci solitons in f -Kenmotsu manifolds. Also, Bejan et al. [1] ‘studied
Ricci solitons in manifolds with quasi-constant curvature. In a recent paper, Wang
[30] studied Ricci solitons with the potential vector ûelds pointwise collinear with
the Reeb vector ûelds on K-almost co-Kähler manifolds.
From another point of view, we can state that the co-Kähler manifolds are really

an odd-dimensional version of the Kähler manifolds (for more details, see Li [23]).
Co-Kähler manifolds have been studied by Wang [31], Cappelletti-Montano and

Pastore [6], and many others.
In addition, a suõcient condition for a compactK-almost co-Kählermanifoldwith

certain η-Einstein condition to be co-Kähler was presented in [6]. Yamabe solitons
have been studied by several authors such as [15, 20, 29] and many others. Motivated
by the above studies, one of our main aims in this paper is to study Yamabe soli-
tons on almost co-Kähler manifolds as well as on (k, µ)-almost co-Kähler manifolds.
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his paper is organized as follows. In Section 2, a�er a brief introduction, we discuss
some preliminaries that will be used in the later sections. In Section 3, we consider
Yamabe solitons on almost co-Kählermanifolds and prove that if an almost co-Kähler
manifold admits Yamabe soliton (g , ξ), then the manifold is K-almost co-Kähler.
Section 4 is devoted to studying Yamabe solitons on (k, µ)-almost co-Kähler man-
ifolds. Finally, we study Ricci solitons on (k, µ)-almost co-Kähler manifolds.

2 Preliminaries

An odd dimensional smooth manifold M2n+1 (n ≥ 1) is said to admit an almost con-
tact structure, sometimes called a (ϕ, ξ, η)-structure, if it admits a tensor ûeld ϕ of
type (1, 1), a vector ûeld ξ, and a 1-form η satisfying ([2, 3])
(2.1) ϕ2

= −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ○ ϕ = 0.
he ûrst and one of the remaining three relations in (2.1) imply the other two rela-
tions in (2.1). An almost contact structure is said to be normal if the induced almost
complex structure J on Mn ×R deûned by

J(X , f d
dt

) = (ϕX − f ξ, η(X)
d
dt

)

is integrable, where X is tangent to M, t is the coordinate ofR, and f is a smooth func-
tion on Mn ×R. Let g be a compatible Riemannian metric with (ϕ, ξ, η)- structure,
that is,
(2.2) g(ϕX , ϕY) = g(X ,Y) − η(X)η(Y),
or equivalently,

g(X , ϕY) = −g(ϕX ,Y) and g(X , ξ) = η(X),
for all vector ûelds X, Y tangent to M. hen M becomes an almost contact metric
manifold equipped with an almost contact metric structure (ϕ, ξ, η, g).
An almost contact metric structure becomes a contact metric structure if

g(X , ϕY) = dη(X ,Y) = Φ(X ,Y),
for all X,Y tangent toM. he 1-form η is then a contact form, and ξ is its characteristic
vector ûeld. Also, Φ is known as the fundamental 2-form.

If ξ is a Killing vector ûeld, then M2n+1 is said to be a K-contact manifold ([2, 3]).
A contact metric manifold is Sasakian if and only if

R(X ,Y)ξ = η(Y)X − η(X)Y .
Every Sasakian manifold is K-contact, but the converse need not be true, except in
dimension three [22].
According to Blair [3], the normality of an almost contact structure is expressed

by [ϕ, ϕ] = −2dη ⊗ ξ, where [ϕ, ϕ] denotes the Neijenhuis tensor of ϕ deûned by
[ϕ, ϕ] = ϕ2

[X ,Y] + [ϕX , ϕY] − ϕ[ϕX ,Y] − ϕ[X , ϕY]

for any vector ûelds X, Y on M.
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In this paper, by an almost co-Kähler manifold, we mean an almost contact metric
manifold such that both the 1-form η and the 2-form Φ are closed (see [3, 5]). In
particular, an almost co-Kähler manifold is said to be a co-Kähler manifold if the
associated almost contact structure is normal, which is also equivalent to ∇ϕ = 0, or
equivalently,∇Φ = 0 (see [3]). It is well known that the Riemannian product of a real
line and a (almost) Kähler manifold admits a (almost) co-Kähler structure. However,
there exist some examples of (almost) co-Kähler manifolds that are not globally the
product of a (almost) Kähler manifold and a real line (see, for example, Chinea et al.
[10], Marrero and Padron [24], and Olszak [25, 26]).

On an almost co-Kähler manifold (M2n+1 , ϕ, ξ, η, g), we shall set h = 1
2£ξϕ and

h′ = h ○ ϕ (notice that both h and h′ are symmetric operators with respect to the
metric g). hen the following formulas can be found in Dacko [14], Endo [18], and
Olszak [25, 26]:

hξ = 0, hϕ + ϕh = 0, tr h = tr h′(2.3)
∇ξϕ = 0, ∇ξ = h′ , div ξ = 0(2.4)

S(ξ, ξ) + ∥h∥2
= 0.

Here tr and div denote the trace and divergence operators with respect to the metric
g, respectively. he Ricci tensor S is deûned by S(X ,Y) = tr{ ⋅ → R( ⋅ , X)Y}, and Q
the Ricci operator deûned by g(QX ,Y) = S(X ,Y).

If, in addition, we put l = R( ⋅ , ξ)ξ, then we also show

(2.5) ϕlϕ − l = 2h2 ,

where the Riemannian curvature tensor R is deûned by

R(X ,Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X ,Y]Z .

On an almost co-Kähler manifold (M2n+1 , ϕ, ξ, η, g), using the second term of
(2.3), we obtain (£ξ g)(X ,Y) = 2g(h′X ,Y). his means that the Reeb vector ûeld ξ
is Killing if and only if the (1, 1)-type tensor ûeld h vanishes.

Deûnition 2.1 An almost co-Kähler manifold is said to be a K-almost co-Kähler
manifold if the Reeb vector ûeld ξ is Killing.

We denote by D the distribution deûned by D = ker η on an almost co-Kähler
manifolds. hen using relations (2.1), (2.2), and dΦ = 0, one can deûne an almost
K-Kähler structure (gD , ϕD) on D. According to Olszak [26], the associated almost
Kähler structure is integrable if and only if

(∇Xϕ)Y = g(hX ,Y)ξ − η(Y)hX

for any vector ûelds X ,Y ∈ χ(M). his implies that an almost co-Kähler manifold
is co-Kähler if and only if it is K-almost co-Kähler and the associated almost Kähler
structure is integrable. Obviously, any three-dimensional almost co-Kähler manifold
is co-Kähler if and only if it is K-almost co-Kähler.
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3 Yamabe Solitons on Almost Co-Kähler Manifolds

Let us consider a Yamabe soliton that is of the type (M2n+1 , g , ξ) on an almost co-
Kähler manifold, that is, V = ξ. From (1.1), we have

(3.1) £V g = (λ − r)g .

Substituting V = ξ in (3.1), we obtain

(3.2) £ξ g = (λ − r)g .

If on a Riemannian m-manifold, £X g = ρg, then div(ξ) = ρ m
2 , and so div ξ = 0

forces to ρ = 0. herefore, in our case £ξ g = 0. hus, ξ is a Killing vector ûeld. hus,
an almost co-Kähler manifold becomes a K-almost co-Kähler manifold. In view of
the above, we can state the following theorem.

heorem 3.1 If an almost co-Kähler manifold admits Yamabe soliton (g , ξ), then the
manifold is K-almost co-Kähler manifold.

It is known that any three-dimensional almost co-Kähler manifold is co-Kähler if
and only if it is K-almost co-Kähler [25]. hus, we obtain the following corollary.

Corollary 3.2 If an almost co-Kähler manifold (M3 , ϕ, ξ, η, g) admits a Yamabe
soliton (g , ξ), then it is a co-Kähler manifold.

Let us assume thatV is pointwise collinearwith the Reeb vector ûeld, that is,V=bξ,
where b is non-zero smooth function. Using (2.4) we have∇XV = X(b)ξ + bh′X for
any X ∈ χ(M). hus, it follows from (3.2) that

g(∇Ybξ, Z) + g(∇Zbξ,Y) = (λ − r)g(Y , Z).

his implies that

(3.3) X(b)η(Y) + Y(b)η(X) + 2g(h′X ,Y) = (λ − r)g(X ,Y).

Next we shall consider a local ϕ-basis {e i ∶ 1 ≤ i ≤ 2n + 1} on M2n+1 on the tangent
space TpM for each point p in M2n+1. Substituting X = Y = e i in (3.3) and summing
over i, 1 ≤ i ≤ 2n + 1, we obtain

(3.4) ξ(b) = (n +
1
2
)(λ − r).

Putting Y = ξ in (3.3) we have

X(b) = (
1
2
− n)(λ − r)η(X).

hus,

(3.5) ξ(b) = (
1
2
− n)(λ − r).

In view of (3.4) and (3.5) , we have

r = λ.
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herefore the scalar curvature r is constant, since λ is constant. hus, for Yamabe
solitons of the type (M2n+1 , g , bξ) on almost co-Kähler manifolds, the scalar curva-
ture r is constant. Again putting λ = r in (3.1), we have £bξ g = 0. hus, V = bξ is a
Killing vector ûeld. herefore the soliton is trivial. In view of the above we can state
the following theorem.

heorem 3.3 Let (M2n+1 , ϕ, ξ, η, g) be an almost co-Kähler manifold. If the metric
g is a Yamabe soliton and the vector ûeld V is a non zero pointwise collinear with the
Reeb vector ûeld ξ, then the soliton is trivial.

4 (k, µ)-almost Co-Kähler Manifolds and Yamabe Solitons

By a (k, µ)-almost co-Kähler manifold we mean an almost co-Kähler manifold such
that the Reeb vector ûled ξ belongs to the generalized (k, µ)-nullity distribution, that
is,

(4.1) R(X ,Y)ξ = k[η(Y)X − η(X)Y)] + µ[η(Y)hX − η(X)hY]

for any vector ûelds X, Y in χ(M) and some smooth functions k and µ. In this paper,
a (k, µ)-almost co-Kähler manifold with k < 0 will be called a proper (k, µ)-almost
coKähler manifold or a non-coKähler (k, µ)-almost co-Kähler manifold. Such man-
ifolds with both k and µ being constants were ûrst introduced by Endo [18] and were
generalized to (k, µ, ν)-spaces by Dacko and Olszak in [14] (see also Carriazo and
Martin-Molina [7] and [27]). Using (4.1), we have l = −kϕ2 + µh, and putting this
into (2.5) gives that h2 = kϕ2 .
Clearly, M2n+1 is K-almost co-Kähler if and only if k = 0. According to [14], un-

der certainD-homothetic deformation, any (k, µ, ν)-almost co-Kählermanifoldwith
k < 0 turns out to be a (−1, µ√−k

)-space.
Now we state the following lemmas, which will be used in the next theorem.

Lemma 4.1 ([31]) Let M2n+1 be a (k, µ)-almost co-Kähler manifold of dimension
greater than 3 with k < 0. hen the Ricci operator is given by

(4.2) Q = µh + 2nkη ⊗ ξ,

where k is a non-zero constant and µ is a smooth function satisfying dµ ∧ η.

Lemma 4.2 (Yano [32]) On an n-dimensional Riemannian manifold (Mn , g) en-
dowed with a conformal vector ûeld V, we have

(£V S)(X ,Y) = −(n − 2)g(∇XDρ,Y) + (∆ρ)g(X ,Y),
£V r = −2ρr + 2(n − 1)∆ρ

for any vector ûelds X and Y, where D denotes the gradient operator and ∆ ∶= −divD
denotes the Laplacian operator of g.

For a Yamabe soliton the vector ûeld V is a conformal vector ûeld, that is,

£V g = 2ρg ,
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where ρ is called the conformal coeõcient (in this case by relation (1.1) we have
ρ = λ−r

2 ). In particular, a conformal vector ûeld with a vanishing conformal coef-
ûcient reduces to a Killing vector ûeld.

Notice that the Reeb vector ûeld ξ is a unit vector ûeld, that is, g(ξ, ξ) = 1. Taking
the Lie-derivative of this relation along the vector ûeldV and using η(ξ) = 1 and (1.1),
we obtain

η(£V ξ) = −(£Vη)(ξ) =
r − λ

2
.

As the Riemannian metric g in (k, µ)-almost co-Kähler manifolds is a Yamabe soli-
ton, applying ρ = λ−r

2 and Lemma 4.1, we have

(£V S)(X ,Y) = −(2n − 1)g(∇XDr,Y) −
1
2
(∆r)g(X ,Y).

£V r = r(r − λ) − 2n∆r(4.3)
for any vector ûelds X, Y . On the other hand, from (4.2), we have
(4.4) S(X ,Y) = µg(hX ,Y) + 2nkη(X)η(Y).
Consider a local ϕ-basis {e i ∶ 1 ≤ i ≤ 2n + 1} on M2n+1 on the tangent space TpM

for each point p in M2n+1. Substituting X = Y = e i in (4.4) and summing over i,
1 ≤ i ≤ 2n + 1 we obtain r = 2nk. Hence the scalar curvature r is constant. hus, from
(4.3), we get either r = 0 or r = λ. Since k < 0, r = λ = 2nk < 0. herefore, r = λ, and
hence from (1.1), £V g = 0. hus, the V is Killing. his implies the soliton is trivial. In
view of the above result, we can state the following theorem.

heorem 4.3 Let (M2n+1 , ϕ, ξ, η, g) be a (k, µ)-almost co-Kähler manifold. If the
metric g is a Yamabe soliton, then the soliton is trivial and expanding.

5 (k, µ)-almost Co-Kähler Manifolds and Ricci Soliton

his section is devoted to studying Ricci solitons on (k, µ)-almost co-Kähler mani-
fold. herefore,

(£V g)(X ,Y) + +2S(X ,Y) + 2λg(X ,Y) = 0,
for all smooth vector ûelds X and Y . his implies

g(∇XV ,Y) + g(∇YV , X) + 2S(X ,Y) + 2λg(X ,Y) = 0.
Substituting V = ξ in the above equation we have

g(∇X ξ,Y) + g(∇Y ξ, X) + 2S(X ,Y) + 2λg(X ,Y) = 0.
In virtue of (2.4), (4.2), we obtain from the above equation
(5.1) 2g(h′X ,Y) + 2µg(hX ,Y) + 4nkη(X)η(Y) + 2λg(X ,Y) = 0.
Putting Y = ξ in (5.1) we have

λ = −2nk.
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Since k < 0, λ = −2nk > 0. hus, in view of the above result, we can state the following
theorem.

heorem 5.1 Let (M2n+1 , ϕ, ξ, η, g) be a (k, µ)-almost co-Kähler manifold. If the
metric g is a Ricci soliton, then the soliton is expanding.

Remark In a recent paper, Cho [11] proved that an almost cosymplectic manifold
M admits Ricci soliton (g , ξ) if and only if ξ is Killing and M is Ricci �at. Since an
almost cosymplectic manifold and an almost co-Kähler manifold are the same, an
almost co-Kähler manifold becomes K-almost co-Kähler manifold if the Reeb vector
ûeld ξ is Killing. Hence, if an almost co-Kähler manifold (M2n+1 , ϕ, ξ, η, g) admits
Ricci soliton (g , ξ), then it is a K-almost co-Kähler manifold.
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