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Abstract

We propose a novel and unified sampling scheme, called the accelerated group sequen-
tial sampling scheme, which incorporates four different types of sampling scheme:
(i) the classic Anscombe–Chow–Robbins purely sequential sampling scheme; (ii) the
accelerated sequential sampling scheme; (iii) the relatively new k-at-a-time group
sequential sampling scheme; and (iv) the new k-at-a-time accelerated group sequential
sampling scheme. The first-order and second-order properties of this unified sequential
sampling scheme are fully investigated with two illustrations on minimum risk point
estimation for the mean of a normal distribution and on bounded variance point estima-
tion for the location parameter of a negative exponential distribution. We also provide
extensive Monte Carlo simulation studies and real data analyses for each illustration.
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1. Introduction

In statistical inference problems no fixed-sample-size procedure exists, sequential sampling
schemes have been developed and widely used with efficiency properties proved in terms of
the sample size required. The fundamental theories of sequential estimation are largely based
on the ground-breaking papers [2, 3], in which purely sequential sampling methodologies were
developed for the problem of constructing fixed-width confidence intervals (FWCIs).

In a parallel path, [27] originally formulated the minimum risk point estimation (MRPE)
problem. Under the absolute error loss plus linear cost of sampling, a purely sequential stop-
ping rule was proposed to estimate an unknown normal mean μ when the variance σ 2 was
assumed unknown. Then, [31, 32] considered a more general loss function and proved a num-
ber of interesting asymptotic first- and second-order properties of the purely sequential MRPE
methodology. Using nonlinear renewal theoretical tools developed in [13, 14], [34] further
developed explicit second-order approximations associated with efficiency, risk efficiency, and
regret. Moreover, [5] provided a different method to evaluate the expression for regret, which
could generalize the corresponding result in [34].
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2 J. HU AND Y. ZHUANG

Let us begin with a sequence of independent and identically distributed (i.i.d.) positive
and continuous random variables {Wn, n ≥ 1}. For simplicity, we assume that these random
variables have all positive moments finite, with mean E[W1] = θ and variance V[W1] = τ 2

specified in particular. In addition, the distribution function of W1 satisfies the condition
P(W1 ≤ x) ≤ Bxα for all x > 0 and for some B > 0 and α > 0, both free from x. In the light
of [34, (2.5)], we further assume this condition. One may wonder why this condition is seem-
ingly irrelevant or unused anywhere, but it is a necessary condition for the results in Theorem 1.
For more details, see [34]. Similar to [34, (1.1)], all the stopping times arising from the
aforementioned inference problems can be written in a general form given by

t0 = inf

{
n ≥ m : n−1

n∑
i=1

Wi ≤ θ (n/n∗)δl1(n)

}
, (1)

where δ > 0 is a positive constant, l1(n) = 1 + l0n−1 + o(n−1) as n → ∞ with −∞ < l0 < ∞
a convergent sequence of numbers, m ≥ 1 indicates a pilot sample size, and n∗ is called an
optimal fixed sample size whose expression is to be determined in specific problems. See [18,
Section A.4] for more details.

The stopping rule (1) is implemented as follows. After an initial sample of size m is
gathered, one observation is taken at a time as needed successively. Each time when a new
observation is recorded, the sample data is evaluated to check with the stopping rule and sam-
pling terminates at the first time that the stopping rule is satisfied. Therefore, this is a purely
sequential sampling scheme; we denote it by M0.

To introduce the properties of the stopping time t0 and relate its expected value to the opti-
mal fixed sample size, let us define a general function of η(k) as follows. For each integer k ≥ 1,

η(k) = k

2
− 1

2
δ−1θ2τ 2 − δ−1l0 − (δθ )−1

∞∑
n=1

n−1
E

[{
kn∑

i=1

Wi − kn(δ + 1)θ

}+]
, (2)

where {u}+ = max{0, u}. Under certain conditions, [34] fully studied the properties of t0, which
are summarized in the following theorem.

Theorem 1. For the purely sequential sampling scheme M0 and the stopping time t0 given in
(1), as n∗ → ∞, if m > (αδ)−1, Eθ,τ [t0 − n∗] = η(1) + o(1).

In the spirit of [7], we define the term ‘sampling operation’ as the procedure of collecting
new observations and evaluating the sample data to make a decision. Let ϕ denote the number
of sampling operations. For the purely sequential sampling scheme M0 associated with the
stopping time t0 given in (1), we have ϕM0 = t0 − m + 1 and

Eθ,τ [ϕM0 ] = n∗ + η(1) − m + 1 + o(1). (3)

Not surprisingly, the purely sequential sampling scheme M0 requires a lot of sampling
operations. In view of this, [7] proposed an accelerated sequential estimation methodology
saving sampling operations. Furthermore, [22] and [16] developed alternative formulations
of the accelerated sequential sampling technique. The purely sequential sampling scheme of
Anscombe–Chow–Robbins was improved in [15], which proposed a new sequential method-
ology requiring substantially fewer sampling operations. Accelerated sequential sampling
methodologies first draw samples sequentially part of the way and then augment with sam-
pling in one single batch. As per the discussions from [18, p. 228]: ‘An accelerated sequential
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Accelerated group sequential sampling 3

strategy would always be operationally much more convenient in practical implementation
than its sequential counterpart!’

On the other hand, [8] considered sampling in bulk or groups, rather than one at a time, and
proposed group sequential sampling with variable group sizes. A concept of sequential plan-
ning was presented in [29] as an extension and generalization of group sequential procedures.
Implementation of these sampling schemes has been proved to require only a few groups to
cross the stopping boundary, leading to only a moderate increase in sample size.

Most recently, [24] first brought up a new type of sequential sampling scheme which con-
siders recording k observations at a time, given the thoughts that in real life packaged items
purchased in bulk often cost less per unit than the cost of an individual item. This new sampling
strategy was discussed in both FWCI and MRPE problems for the mean of a normal population.
These problems were revisited in [25] which incorporated the newly constructed estimators
under permutations within each group for the stopping boundaries, leading to tighter estimation
of required sample sizes. A double-sequential sampling scheme was developed in [9] defined as
k-at-a-time part of the way, and then one-at-a-time sequentially, which requires similar sample
sizes to the purely sequential strategies but saves sampling operations. Sequential estimation
strategies for big data science with minimal computational complexities were further proposed
in [21], with the idea of k-tuples instead of one single observation.

In this paper, we incorporate these path-breaking ideas with modification to accelerate the
purely sequential sampling scheme without sacrificing the first- and second-order efficiency:
(i) using the purely sequential methodology to determine only a proportion ρ(0 < ρ < 1) of the
desired final sample, and then augmenting with sampling in one single batch; and (ii) drawing
a fixed number k(k ≥ 2) observations at a time successively until termination in the sequential
sampling portion. In this way, we expect to save roughly 100(1 − k−1ρ)% of sampling opera-
tions for any given combination of k and ρ values compared with a purely sequential strategy
where k = 1 and ρ = 1. Taking all possible combinations of k ≥ 1 and 0 < ρ ≤ 1 values into
consideration, we propose a novel and unified accelerated group sequential sampling scheme,
denoted by M(ρ, k), in Section 2 along with a number of desirable properties. The sampling
scheme M(ρ, k) encompasses a wide range of sampling procedures with different selections
of k and ρ values:

(i) k = 1, ρ = 1, the purely sequential sampling scheme, which was originally established
in [2, 3];

(ii) k = 1, 0 < ρ < 1, the accelerated sequential sampling scheme first established in [7],
with a unified version proposed in [22, 16];

(iii) k > 1, ρ = 1, the k-at-a-time group sequential sampling scheme first brought up in [24,
25];

(iv) k ≥ 2, 0 < ρ < 1, the k-at-a-time accelerated group sequential sampling scheme pro-
posed as a new sampling scheme in this paper.

Remark 1. This work provides a sampling scheme that is both unified and novel because it
incorporates the traditional sampling strategies (purely sequential and accelerated sequential
schemes), the relatively new k-at-a-time group sequential sampling scheme, and the new k-at-
a-time accelerated sequential sampling scheme, all under one big umbrella. We also provide
first- and second-order properties for this unified sampling scheme in general.
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4 J. HU AND Y. ZHUANG

The rest of this paper is organized as follows. Section 2 proposes the accelerated group
sequential sampling scheme M(ρ, k) and explores its appealing first- and second-order prop-
erties, with a special focus on the k-at-a-time accelerated group sequential sampling scheme.
In Section 3, we construct MRPE for an unknown normal mean μ with the variance σ 2 also
assumed unknown as a possible illustration of the newly proposed sequential sampling scheme
M(ρ, k). In Section 4, we construct bounded variance point estimation for an unknown loca-
tion parameter μ from a negative exponential distribution. Simulated performances and real
data analyses are included to support and supplement our theory for both methodologies in
Sections 3 and 4. Section 5 shares some brief concluding thoughts.

2. The accelerated group sequential sampling scheme M(ρ, k)

In this section, we provide a general framework of accelerated group sequential sampling
in detail. We start with the stopping rules of sampling, and we also include the appealing
properties under this sampling scheme.

Under the assumptions given in Section 1, we propose a novel and unified sequential sam-
pling scheme M(ρ, k) associated with the following stopping times modified in view of (1):

t1 ≡ t1(ρ, k) = inf

{
n ≥ m : (kn)−1

n∑
i=1

Ui ≤ θ [kn/(ρn∗)]δlk(n)

}
,

t2 ≡ t2(ρ, k) = �ρ−1kt1(ρ, k)	 + 1.

(4)

In addition to the notation in the stopping rule (1), k ≥ 1 is a prefixed integer, 0 < ρ ≤ 1
is a prefixed proportion, lk(n) = 1 + l0(kn)−1 + o(n−1) as n → ∞ with −∞ < l0 < ∞ is
a convergent sequence of numbers, Ui ≡ ∑ik

j=(i−1)k+1 Wj, i = 1, 2, . . ., are i.i.d. random
variables, and �u	 denotes the largest integer that is strictly smaller than u (< u).

The implementation of the stopping rule (4) can be interpreted as follows. Starting with
km pilot observations, we sample k observations at a time as needed successively and deter-
mine a preliminary sample size of kt1(ρ, k). Then, we continue to sample t2(ρ, k) − kt1(ρ, k)
additional observations if needed, all in one batch. Obviously, Pθ,τ (t2(ρ, k) < ∞) = 1 and
t2(ρ, k) ↑ ∞ with probability 1 as n∗ ↑ ∞. If both ρ and k are chosen to be 1, then our newly
developed sampling scheme M(1, 1) will be the purely sequential sampling scheme M0 asso-
ciated with the stopping rule (1). If ρ = 1 and k ≥ 2, the new sampling scheme M(1, k) is
group sequential, but taking multiple (k) observations at a time. If 0 < ρ < 1 and k = 1, the
new sampling scheme M(ρ, 1) is an accelerated sequential sampling scheme, similar to the
one proposed in [16].

Compared with the purely sequential sampling scheme M0, our newly developed sequen-
tial sampling scheme M(ρ, k) can reduce approximately 100(1 − k−1ρ)% of the operational
time, which makes it flexible in real practice. One is allowed to choose the values of k and
ρ to optimize the sampling process, time limitations, and cost considerations under different
situations. We incorporate a brief discussion here to illustrate the flexibility of our sampling
scheme.

If the cost of taking more observations is high, we can determine a smaller k value and/or
choose ρ to be closer to 1; and if the process is more time sensitive, we can use the method-
ology with a larger k and/or choose ρ to be closer to 0. As a direct result of the operational
convenience, the new sequential sampling scheme M(0 < ρ < 1, k ≥ 2) tends to oversample,
but the increase in the expected sample size is bounded by an amount depending on ρ and
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k. Moreover, we have a thorough investigation of the efficiency properties for the sampling
scheme M(ρ, k) in what follows.

We now establish an appealing property around this unified sampling scheme. We suppose
that the following limit operation holds in the spirit of [6]:

m → ∞, n∗ = O(mr), and lim sup
m

n∗ < ρ, (5)

where r ≥ 1 is a fixed constant. In the light of (1) and Theorem 1, we are now in a position to
state the major results of this paper as Theorem 2. See [34, Theorem 2.4] for more details.

Theorem 2. For the accelerated group sequential sampling scheme M(ρ, k) and the stopping
times t1(ρ, k) and t2(ρ, k) given in (4), for fixed 0 < ρ < 1 and k, with η(k) defined in (2), under
the limit operation (5):

Eθ,τ [kt1(ρ, k) − ρn∗] = η(k) + o(1),

ρ−1η(k) + o(1) ≤Eθ,τ [t2(ρ, k) − n∗] ≤ ρ−1η(k) + 1 + o(1). (6)

And if ρ = 1, then Eθ,τ [t2(1, k) − n∗] =Eθ,τ [kt1(1, k) − n∗] = η(k) + o(1).

It is clear that when 0 < ρ < 1 and k ≥ 2, our new sampling scheme M(ρ, k) is expected
to oversample up to ρ−1η(k) + 1 + o(1) observations. In terms of the number of sampling
operations, it is not hard to obtain that ϕM(ρ,k) = t1 − m + 1 + 1(ρ < 1), where 1(D) stands
for the indicator function of an event D. We also have

Eθ,τ [ϕM(ρ,k)] = k−1[ρn∗ + η(k) − km] + 1 + 1(ρ < 1) + o(1). (7)

Comparing (3) and (7), the accelerated group sequential sampling scheme M(ρ, k) requires
roughly 100(1 − k−1ρ)% fewer sampling operations than those of the purely sequential sam-
pling scheme M0, based on the actual choices of k and ρ. Therefore, it enjoys great operational
convenience with the cost of only a slight increase in the projected final sample size.

Remark 2. According to Theorem 2, as the optimal sample size n∗ tends to infinity, the extra
sample size is expected to be a finite number around ρ−1η(k), while the saving in the number
of sampling operations is expected to be (1 − k−1ρ)n∗ + O(1). Given that the cost per sampled
unit and the cost per sampled group are both positive constants, this indicates that the extra cost
due to oversampling tends to be a finite number, while the saving due to acceleration tends to
infinity. In this sense, accelerated group sequential sampling is still advantageous despite the
possible overshoot. Moreover, as seen from the Monte Carlo simulation studies in Tables 2
and 6, the oversampling under discussion is within 5 for all the scenarios we simulated.

Hereafter, we mainly focus on the sampling scheme M(ρ, k) with 0 < ρ < 1 and k ≥ 2,
which makes it specifically the k-at-a-time accelerated group sequential sampling scheme.
Nevertheless, note that all the theories and methodologies we discuss generally work for the
sequential sampling scheme with 0 < ρ ≤ 1 and/or k ≥ 1.

3. Minimum risk point estimation for a normal mean

In this section, we discuss minimum risk point estimation (MRPE) for a normal mean as an
illustration of our accelerated group sequential sampling scheme M(ρ, k). Having recorded a
sequence of independent observations X1, . . . , Xn, n ≥ 2, from an N(μ, σ 2) population where
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6 J. HU AND Y. ZHUANG

both μ ∈R and σ ∈R
+ are unknown, we denote the sample mean, the sample variance, and

the sample standard deviation as follows:

Sample mean: X̄n = n−1 ∑n
i=1 Xi,

Sample variance: S2
n = (n − 1)−1 ∑n

i=1 (Xi − X̄n)2,

Sample standard deviation: Sn = √
S2

n.

According to [27], the MRPE for μ under the squared-error loss plus linear cost of sampling
can be formulated as follows. Define the loss function by

Ln ≡ Ln(μ, X̄n) = A(X̄n − μ)2 + cn, (8)

where A ( > 0) is a known weight function and c ( > 0) is the known unit cost of each
observation. Associated with the loss function in (8), we have the following risk function:

Rn ≡Eμ,σ [Ln(μ, X̄n)] = Aσ 2n−1 + cn,

which is minimized at
n∗ ≡ n∗(c) = σ

√
A/c, (9)

with the resulting minimum risk
Rn∗ = 2cn∗. (10)

Note no fixed-sample-size procedure exists that achieves the exact minimum risk due to
the fact that σ is unknown. A fundamental solution is due to the purely sequential MRPE
methodology in the light of [27, 31, 32], briefly introduced below.

Since the population standard deviation σ remains unknown, it is essential for us to estimate
it customarily using the sample standard deviation Sn, and update its value at every stage.
We can start with m pilot observations, X1, . . . , Xm, m ≥ 2, and then sample one additional
observation at a time as needed until the following stopping rule is satisfied:

Methodology P0 : NP0 ≡ NP0 (c) = inf{n ≥ m : n ≥ Sn

√
A/c}. (11)

It is clear that Pμ,σ {NP0 < ∞} = 1 and NP0 ↑ ∞ with probability 1 as c ↓ 0. Upon termination
with the accrued data {NP0 , X1, . . . , Xm, . . . , XNP0

}, we estimate the unknown normal mean

μ with X̄NP0
≡ N−1

P0

∑NP0
i=1 Xi. The achieved risk is then given by

RNP0
(c) ≡Eμ,σ

[
LNP0

(
μ, X̄NP0

)] = AEμ,σ

[(
X̄NP0

− μ
)2] + cEμ,σ [NP0 ]. (12)

To measure the closeness between the achieved risk in (12) and the minimum risk in (10),
[27] and [31] respectively constructed the following two crucial notions, namely, the risk
efficiency and regret:

Risk efficiency: ξP0 (c) ≡ RNP0
(c)/Rn∗ (c) = 1

2Eμ,σ [NP0/n∗] + 1
2Eμ,σ [n∗/NP0 ];

Regret: ωP0 (c) ≡ RNP0
(c) − Rn∗ (c) = cEμ,σ

[
N−1
P0

(NP0 − n∗)2
]
.

Alternatively, the stopping rule (11) can be rewritten in the way we presented (1). By using
the Helmert transformation, we express NP0 = N′

P0
+ 1 with probability 1, where the new

stopping time N′
P0

is defined as follows:

N′
P0

= inf

{
n ≥ m − 1: n−1

n∑
i=1

Wi ≤ (n/n∗)2(1 + 2n−1 + n−2)

}
, (13)
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with δ = 2, l0 = 2, and W1, W2, . . . being i.i.d. χ2
1 random variables such that θ = 1, τ 2 =

1, and α = 1
2 . From [27], [31], and [34], we conclude the following theorem to address the

asymptotic first- and second-order properties that the purely sequential MRPE methodology
P0 enjoys. See [18] for more details.

Theorem 3. For the purely sequential MRPE methodology P0 given in (11), for all fixed μ, σ ,
m, and A, as c → 0:

(i) Asymptotic first-order efficiency: Eμ,σ [NP0/n∗] → 1 if m ≥ 2;

(ii) Asymptotic second-order efficiency: Eμ,σ [NP0 − n∗] = η1(1) + o(1) if m ≥ 3, where

η1(1) = − 1
2

∑∞
n=1 n−1

E
[{

χ2
n − 3n

}+]
;

(iii) Asymptotic first-order risk efficiency: ξP0 (c) → 1 if m ≥ 3;

(iv) Asymptotic second-order risk efficiency: ωP0 (c) = 1
2 c + o(c) if m ≥ 4.

3.1. The accelerated group sequential MRPE methodology

Following (6), we propose an accelerated group sequential MRPE methodology P(ρ, k):

TP(ρ,k) ≡ TP(ρ,k)(c) = inf{n ≥ 0: m + kn ≥ ρSm+kn

√
A/c},

NP(ρ,k) ≡ NP(ρ,k)(c) = �ρ−1(m + kTP(ρ,k))	 + 1.
(14)

Here, 0 < ρ ≤ 1 is a prefixed proportion, k ≥ 1 is a prefixed positive integer, m ≥ 2 again indi-
cates a pilot sample size but picked such that m − 1 ≡ 0 (mod k), and �u	 continues to denote
the largest integer that is strictly smaller than u. Writing m − 1 = m0k for some integer m0 ≥ 1,
we further assume that the following limit operation holds:

m0 → ∞, m = m0k + 1 → ∞, c ≡ c(m) = O(m−2r), n∗ = O(mr), and lim sup
m

n∗ < ρ,

(15)
where r ≥ 1 is a fixed constant. The new methodology P(ρ, k) is implemented as follows.

Starting with m( = m0k + 1) pilot observations, X1, . . . , Xm, we sample k observations
at a time as needed and determine TP(ρ,k), which indicates the number of sequential sam-
pling operations according to the stopping rule (14). Next, we continue to sample (NP(ρ,k) −
m − kTP(ρ,k)) additional observations all in one batch. Upon termination, based on the fully
gathered data

{TP(ρ,k), NP(ρ,k), X1, . . . , Xm, . . . , Xm+kTP(ρ,k) , . . . , XNP(ρ,k)},

we construct the minimum risk point estimator X̄NP(ρ,k) = N−1
P(ρ,k)

∑NP(ρ,k)
i=1 Xi for μ, and derive

Risk efficiency: ξP(ρ,k)(c) ≡ RNP(ρ,k) (c)/Rn∗ (c) = 1
2Eμ,σ [NP(ρ,k)/n∗] + 1

2Eμ,σ [n∗/NP(ρ,k)];

Regret: ωP(ρ,k)(c) ≡ RNP(ρ,k) (c) − Rn∗(c) = cEμ,σ

[
N−1
P(ρ,k)(NP(ρ,k) − n∗)2

]
.

Obviously, Pμ,σ (NP(ρ,k) < ∞) = 1 and NP(ρ,k) ↑ ∞ with probability 1 as c ↓ 0. If both ρ

and k are chosen to be 1, then the sequential MRPE methodology P(1, 1) will be the purely
sequential MRPE methodology P0 as per (11). That is, P(1, 1) ≡P0.
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Along the lines of (13), we can similarly express the stopping time TP(ρ,k) from (14) in the
general form provided in (4). Define TP(ρ,k) = T ′

P(ρ,k) − m0 with probability 1. Then T ′
P(ρ,k)

is a new stopping time that can be rewritten as

T ′
P(ρ,k) = inf{n ≥ m0 : kn + 1 ≥ ρSkn+1

√
A/c}

= inf

{
n ≥ m0 : kn(kn + 1)2 ≥ (ρσ

√
A/c)2 knS2

kn+1

σ 2

}
= inf{n ≥ m0 : kn(kn + 1)2 ≥ (ρn∗)2χ2

kn}

= inf

{
n ≥ m0 : (kn)−1

n∑
i=1

Ui ≤ [kn/(ρn∗]2(1 + 2(kn)−1)(kn)−2

}
,

where Ui = ∑ik
j=(i−1)k+1 Wj, i = 1, 2, . . ., with W1, W2, . . . being i.i.d. χ2

1 random variables.
We list the simplified version of the equation for T ′

P(ρ,k) in (16) for easy reference:

T ′
P(ρ,k) = inf

{
n ≥ m0 : (kn)−1

n∑
i=1

Ui ≤ [kn/(ρn∗)]2(1 + 2(kn)−1 + (kn)−2)

}
, (16)

where δ = 2, l0 = 2, and Ui = ∑ik
j=(i−1)k+1 Wj, i = 1, 2, . . ., with W1, W2, . . . being i.i.d. χ2

1

random variables such that θ = 1, τ 2 = 2, and α = 1
2 . Therefore, U1, U2, . . . are i.i.d. χ2

k
random variables.

Now we state a number of asymptotic first- and second-order properties of the accelerated
group sequential MRPE methodology P(ρ, k), summarized in the following theorem.

Theorem 4. For the accelerated group sequential MRPE methodology P(ρ, k) given in (14),
for all fixed μ, σ, A, k and 0 < ρ < 1, under the limit operation (15):

(i) Asymptotic first-order efficiency: Eμ,σ [NP(ρ,k)/n∗] → 1;

(ii) Asymptotic second-order efficiency: ρ−1η1(k) + o(1) ≤Eμ,σ [NP(ρ,k) − n∗] ≤
ρ−1η1(k) + 1 + o(1), where η1(k) = (k − 1)/2 − 1

2

∑∞
n=1 n−1

E
[{

χ2
kn − 3kn

}+]
;

(iii) Asymptotic first-order risk efficiency: ξP(ρ,k)(c) → 1;

(iv) Asymptotic second-order risk efficiency: ωP(ρ,k)(c) = 1
2ρ−1c + o(c).

Again, when ρ = 1, we have the exact expression Eμ,σ [NP(1,k) − n∗] = η1(k) + o(1) instead
of the inequality in Theorem 4(ii). The number of sampling operations for the accelerated
group sequential MRPE methodology P(ρ, k) is

ϕP(ρ,k) = TP(ρ,k) + 1 + 1(ρ < 1), (17)

and
Eμ,σ [ϕP(ρ,k)] = k−1[ρn∗ − m + η1(k)] + 1 + 1(ρ < 1) + o(1). (18)

For any integer k ≥ 1, η1(k) = (k − 1)/2 − 1
2∞

n=1n−1
E

[{
χ2

kn − 3kn
}+]

is computable. In
order to obtain numerical approximations, we wrote our own R code and provide the val-
ues in Table 1. In the spirit of [23, Table 3.8.1], any term smaller than 10−15 in magnitude was
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TABLE 1. η1(k) approximations in Theorem 4(ii).

k η1(k) k−1η1(k) k η1(k) k−1η1(k)

1 −0.1165 −0.1165 11 4.9993 0.4545
2 0.4367 0.2183 12 5.4996 0.4583
3 0.9636 0.3212 13 5.9997 0.4615
4 1.4785 0.3696 14 6.4998 0.4643
5 1.9872 0.3974 15 6.9999 0.4667
6 2.4922 0.4154 16 7.4999 0.4687
7 2.9952 0.4279 17 8.0000 0.4706
8 3.4971 0.4371 18 8.5000 0.4722
9 3.9982 0.4442 19 9.0000 0.4737
10 4.4989 0.4499 20 9.5000 0.4750

excluded in the infinite sum with regard to η1(k). Intuitively, the infinite sum and k−1η1(k) con-
verge to zero and 1

2 respectively as k → ∞. However, by looking at the columns for η1(k) and
k−1η1(k), we can see that the infinite sum converges very quickly, while k−1η1(k) converges at
a rather slow rate.

Remark 3. The sign of η(k) may imply whether a sequential sampling procedure leads to
fewer (negative) or more (positive) observations than the optimal sample size on average upon
termination. However, the sign depends on the specific inference problem and population dis-
tribution, and can be either positive or negative even when k = 1. This is because the magnitude
of η(k) involves problem-specific parameters δ, θ , τ 2, and l0.

Remark 4. Readers may have found that our loss function (8), while classical in sequential
analysis, only combined estimation error and the cost per sampled unit. The cost per sampled
group, however, is not included. In fact, it can be of significance to account for both the cost per
sampled group and the cost per sample unit in the loss function. For example, [29] considered
a loss function given by LN ≡ LN(λ, λ̂N) + ∑T

j=1 (cNj + a), where c is the cost per sampled

unit, a is the cost per sampled group, λ is the parameter under estimation, and LN(λ, λ̂N)
represents the incurred loss due to the estimator λ̂N and the total sample size N = ∑T

j=1 Nj,
where T indicates the total number of sampled groups and Nj is the sample size of the jth group,
j = 1, . . . , T . Under this loss function, both the optimal group sizes Nj and the optimal number
of groups T will need to be determined sequentially, which means they are both stopping
variables. In our proposed accelerated group sequential sampling scheme, however, the group
size k is a prefixed constant. This difference will complicate the sampling scheme, so we have
neglected the cost per sampled group in the loss function (8). However, this would be a very
interesting future project to work on.

3.2. Simulated performance

To investigate the appealing properties of the accelerated group sequential MRPE method-
ology P(ρ, k), and illustrate how it saves sampling operations with 0 < ρ < 1 and/or k ≥ 2,
we conducted extensive sets of Monte Carlo simulations under the normal case in the spirit of
[19]. To be specific, we generated pseudorandom samples from an N(5, 22) population. While
fixing the weight function A = 100, the pilot sample size m = 21, we selected a wide range
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of values of c, the unit cost of sampling, including 0.04, 0.01, and 0.0025, so that the opti-
mal fixed sample size n∗ turned out to be 100, 200, and 400 accordingly. We also considered
various combinations of ρ = (1, 0.8, 0.5) and k = (1, 2, 5) to compare the number of sampling
operations under different possible scenarios. The findings are summarized in Table 2. For
each methodology P(ρ, k), we computed the average total final sample size n̄ with the associ-
ated standard error s(n̄), the difference between n̄ and n∗ to be compared with the second-order
efficiency term in Theorem 4(ii), the estimated risk efficiency ξ̂ to be compared with 1, the
estimated regret in terms of unit cost ω̂/c to be compared with 1

2ρ−1 from Theorem 4(iv), and
the average number of sampling operations ϕ̄ to be compared with the expected number of
sampling operations E(ϕ) from (18).

It is clear that across the board, n̄ − n∗ is close to the second-order approximation ρ−1η1(k),
ξ̂ is close to 1, and ω̂/c is close to the coefficient 1

2ρ−1. These empirically verify Theorem
4. Focusing on the last two columns, we can also easily find that the average number of
sampling operations needed, ϕ̄, is almost the same as the theoretical value E(ϕ), and the accel-
erated group sequential MRPE procedure P(ρ, k) reduces by approximately 100(1 − k−1ρ)%
sampling operations in comparison to the Anscombe–Chow–Robbins purely sequential proce-
dure P(1, 1). For example, when n∗ = 400, P(1, 1) requires around 380 sampling operations
on average, while P(0.8, 5) requires 62. So about 100(1 − 62/380)% = 83.7% sampling
operations are saved, which is close to 100(1 − 0.8/5)% = 84%.

3.3. Real data analysis

Next, to illustrate the applicability of our newly developed accelerated group sequential
MRPE methodology P(ρ, k), we proceeded to analyze a real-life dataset on hospital infection
data from [12]. This data is from 113 hospitals in the United States for the 1975–76 study
period. Each line of the data set has an identification number and provides information on 11
other variables for a single hospital. One of these variables is the infection risk, which records
the average estimated probability of acquiring an infection in hospital (in percent). With the
cost of observations taken into consideration, it is of great interest to propose an MRPE for the
infection risk.

We treated the real dataset on the infection risk, which seemed to follow a normal distri-
bution, confirmed via the Shapiro–Wilk normality test with the associated p-value of 0.1339.
The simple descriptive statistics from the whole dataset of infection risk are summarized in
Table 3.

For illustrative purposes, we treated this dataset of infection risk with size 113 from [12]
as our population, with both mean and variance assumed unknown. Then, we performed our
accelerated group sequential MRPE methodologies to obtain minimum risk point estimators
for the infection risk. To start, we first randomly picked m = 11 observations as a pilot sam-
ple, based upon which we proceeded with sampling according to the methodologies P(ρ, k)
with A = 100, c = 0.04, ρ = (1, 0.8, 0.5), k = (1, 2, 5). We summarize the terminated sample
sizes as well as the associated numbers of sampling operations under each setting in Table 4,
where P(ρ, k) denotes a certain sampling procedure with fixed values of ρ and k, and nP(ρ,k)
and ϕP(ρ,k) indicate the respective terminated sample size and number of sampling operations
performing P(ρ, k) accordingly.

From Table 4, we can see that our terminated sample size ranges from 54 to 77. Apparently,
many fewer sampling operations are needed when we fix k = 2, 5, without increasing to a
significant number of observations. Also, we need the fewest observations with the fewest
sampling operations when we use the methodology P(ρ, k) with ρ = 0.5, compared with larger
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TABLE 2. Simulations from N(5, 22) with A = 100 and m = 21 from 10 000 runs implementing P(ρ, k)
from (14).

P(ρ, k) n̄ s(n̄) n̄ − n∗ ρ−1η1(k) ξ̂ 1
2ρ−1 ω̂/c ϕ̄ E(ϕ)

n∗ = 100, c = 0.04
P(1, 1) 99.8528 0.071 82 −0.1472 −0.1165 0.992 24 0.5 0.533 04 79.853 79.883
P(1, 2) 100.4296 0.072 31 0.4296 0.4367 0.992 39 0.5 0.533 90 40.715 40.718
P(1, 5) 102.0110 0.073 40 2.0110 1.9872 0.993 14 0.5 0.562 11 17.202 17.197
P(0.8, 1) 100.1738 0.081 24 0.1738 −0.1456 0.992 91 0.625 0.682 28 60.836 60.883
P(0.8, 2) 101.0466 0.080 49 1.0466 0.5459 0.993 39 0.625 0.663 20 31.718 31.718
P(0.8, 5) 102.8798 0.083 68 2.8798 2.4840 0.994 09 0.625 0.748 73 14.195 14.197
P(0.5, 1) 99.8002 0.103 24 −0.1998 −0.2330 0.995 13 1 1.142 53 30.900 30.884
P(0.5, 2) 100.8176 0.104 05 0.8176 0.8734 0.995 24 1 1.124 74 16.704 16.718
P(0.5, 5) 103.8990 0.106 64 3.8990 3.9744 0.996 97 1 1.215 88 8.190 8.197

n∗ = 200, c = 0.01
P(1, 1) 199.9278 0.100 18 −0.0722 −0.1165 0.9965 2 0.5 0.508 80 179.928 179.884
P(1, 2) 200.4926 0.100 56 0.4926 0.4367 0.996 46 0.5 0.509 28 90.746 90.718
P(1, 5) 202.0495 0.101 08 2.0495 1.9872 0.996 64 0.5 0.523 08 37.210 37.197
P(0.8, 1) 200.3638 0.112 58 0.3638 −0.1456 0.996 80 0.625 0.641 17 140.991 140.884
P(0.8, 2) 201.0546 0.112 08 1.0546 0.5459 0.996 86 0.625 0.633 42 71.721 71.718
P(0.8, 5) 202.8111 0.113 21 2.8111 2.4840 0.997 09 0.625 0.663 53 30.189 30.197
P(0.5, 1) 199.7988 0.143 67 −0.2012 −0.2330 0.997 76 1 1.061 74 80.899 80.884
P(0.5, 2) 200.9172 0.143 57 0.9172 0.8734 0.997 78 1 1.048 09 41.729 41.718
P(0.5, 5) 203.9490 0.145 31 3.9490 3.9744 0.998 12 1 1.097 37 18.195 18.197
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TABLE 2. Continued.

P(ρ, k) n̄ s(n̄) n̄ − n∗ ρ−1η1(k) ξ̂ 1
2ρ−1 ω̂/c ϕ̄ E(ϕ)

n∗ = 400, c = 0.0025
P(1, 1) 399.8625 0.140 74 −0.1375 −0.1165 0.998 05 0.5 0.497 88 379.863 379.883
P(1, 2) 400.4010 0.141 55 0.4010 0.4367 0.998 03 0.5 0.502 78 190.701 190.718
P(1, 5) 401.9310 0.141 69 1.9310 1.9872 0.998 06 0.5 0.506 81 77.186 77.197
P(0.8, 1) 400.1549 0.159 43 0.1549 −0.1456 0.998 15 0.625 0.639 31 300.824 300.883
P(0.8, 2) 401.0467 0.157 57 1.0467 0.5459 0.998 21 0.625 0.622 97 151.718 151.718
P(0.8, 5) 402.8376 0.159 05 2.8376 2.4840 0.998 24 0.625 0.644 02 62.194 62.197
P(0.5, 1) 399.5954 0.203 07 −0.4046 −0.2330 0.998 65 1 1.045 84 180.798 180.883
P(0.5, 2) 400.9764 0.202 88 0.9764 0.8734 0.998 70 1 1.035 36 91.744 97.718
P(0.5, 5) 403.9610 0.201 71 3.9610 3.9744 0.998 75 1 1.036 29 38.196 38.197
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TABLE 3. Descriptive statistics for the infection risk.

n x̄ s Min Q1 Med Q3 Max

113 4.355 1.341 1.300 3.700 4.400 5.200 7.800

TABLE 4. Terminated sample size associated with number of sampling operations using P(ρ, k) as
per (14).

P(ρ, k) nP(ρ,k) ϕP(ρ,k) μ̂

P(1, 1) 70 60 4.4471
P(1, 2) 73 32 4.4342
P(1, 5) 76 14 4.4526
P(0.8, 1) 72 48 4.4306
P(0.8, 2) 72 25 4.4306
P(0.8, 5) 77 12 4.4532
P(0.5, 1) 54 18 4.4519
P(0.5, 2) 54 10 4.4519
P(0.5, 5) 62 6 4.4565

ρ = 0.8 or 1, for a fixed k value. The point estimates constructed from each sampling procedure
are listed in the last column, and they were close to each other. Finally, we should reiterate that
each row in Table 4 was obtained from one single run, but shows the practical applicability
of our accelerated group sequential MRPE methodology P(ρ, k). We have indeed repeated
similar implementations, but no obvious difference appeared. Consequently, we have left out
many details for brevity.

4. Bounded variance point estimation for negative exponential location

For a fixed sample size, however large it is, the variance of an estimator can be larger
than a prescribed level to an arbitrary extent. This problem was addressed in [10], where the
authors focused on estimating the pure premium in actuarial science. Here, our newly proposed
accelerated group sequential sampling scheme M(ρ, k) can be implemented to guarantee that
the variance of our estimator is close to all small predetermined levels. In this section, therefore,
we include another illustration: the bounded variance point estimation (BVPE) for the location
parameter μ of a negative exponential distribution NExp(μ, σ ) with the probability density
function

f (y;μ, σ ) = 1

σ
exp

{
−y − μ

σ

}
1(y > μ),

where both μ ∈R and σ ∈R
+ remain unknown. Having recorded a random sample

Y1, . . . , Yn, n ≥ 2, we write Yn:1 = min{Y1, . . . , Yn}, which is the maximum likelihood esti-
mator (MLE) of μ, and Vn = (n − 1)−1 ∑n

i=1 (Yi − Yn:1), which is the uniformly minimum
variance unbiased estimator (UMVUE) of σ . As a standard approach, we estimate μ using its
MLE Yn:1, which is a consistent estimator.
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It is well known that (i) n(Yn:1 − μ)/σ ∼ NExp(0, 1); (ii) 2(n − 1)Vn/σ ∼ χ2
2n−2; and

(iii) Yn:1 and (V2, . . . , Vn), n ≥ 2, are independent. Hence, the variance of the proposed point
estimator Yn:1 is Vμ,σ [Yn:1] = σ 2/n2. Now, our goal is to make Vμ,σ [Yn:1] fall below (or be
close to) a predetermined level b2, b > 0, for all 0 < σ < ∞. Then, it is clear that we have
n ≥ σ/b. The optimal fixed sample size is therefore given by

n∗ = σ

b
. (19)

See [18, p. 183] for more information.
Since σ is unknown to us, we estimate it by updating its UMVUE Vn at every stage

as needed, and implement the following accelerated group sequential BVPE methodology
Q(ρ, k):

TQ(ρ,k) ≡ TQ(ρ,k)(c) = inf{n ≥ 0: m + kn ≥ ρVm+kn/b},
NQ(ρ,k) ≡ NQ(ρ,k)(c) = �ρ−1(m + kTQ(ρ,k))	 + 1.

(20)

Here, 0 < ρ ≤ 1 is a prefixed proportion, k ≥ 1 is a prefixed positive integer, and the pilot
sample size m = m0k + 1 for some m0. We further assume that the following limit operation
holds:

m0 → ∞, m = m0k + 1 → ∞, b ≡ b(m) = O(m−r), n∗ = O(mr), and lim sup
m

n∗ < ρ,

(21)
where r ≥ 1 is a fixed constant. The methodology Q(ρ, k) is conducted analogously to the
methodology P(ρ, k) introduced in Section 3.

Again, it is clear that Pμ,σ (NQ(ρ,k) < ∞) = 1 and NQ(ρ,k) ↑ ∞ with probability 1 as b ↓ 0.
Upon termination with the fully gathered data

{TQ(ρ,k), NQ(ρ,k), Y1, . . . , Ym, . . . , Ym+kTQ(ρ,k) , . . . , YNQ(ρ,k)},

we construct the bounded variance point estimator YNQ(ρ,k):1 = min{Y1, . . . , YNQ(ρ,k)} for μ.
Along the lines of (16), we define TQ(ρ,k) = T ′

Q(ρ,k) − m0 with probability 1. Then T ′
Q(ρ,k)

is a new stopping time that can be rewritten as

T ′
Q(ρ,k) = inf

{
n ≥ m0 : (kn)−1

n∑
i=1

Ui ≤ 2[kn/(ρn∗)](1 + (kn)−1)}, (22)

where δ = 1, l0 = 1, and Ui = ∑ik
j=(i−1)k+1 Wj, i = 1, 2, . . ., with W1, W2, . . . being i.i.d. χ2

2

random variables such that θ = 2, τ 2 = 4, and α = 1. Therefore, U1, U2, . . . are i.i.d. χ2
2k ran-

dom variables. Now we state a number of asymptotic first- and second-order properties of
the accelerated group sequential BVPE methodology Q(ρ, k), summarized in the following
theorem.

Theorem 5. For the accelerated group sequential BVPE methodology Q(ρ, k) given in (20),
for all fixed μ, σ, k and 0 < ρ < 1, under the limit operations (21):
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TABLE 5. η2(k) approximations in Theorem 5(ii).

k η2(k) k−1η2(k) k η2(k) k−1η2(k)

1 −0.2552 −0.2552 11 4.9940 0.4540
2 0.3433 0.1717 12 5.4957 0.4580
3 0.8976 0.2992 13 5.9970 0.4613
4 1.4308 0.3577 14 6.4978 0.4641
5 1.9523 0.3905 15 6.9984 0.4666
6 2.4667 0.4111 16 7.4988 0.4687
7 2.9765 0.4252 17 7.9992 0.4705
8 3.4834 0.4354 18 8.4994 0.4722
9 3.9883 0.4431 19 8.9996 0.4737
10 4.4916 0.4492 20 9.4997 0.4750

(i) Asymptotic first-order efficiency: Eμ,σ [NQ(ρ,k)/n∗] → 1;

(ii) Asymptotic second-order efficiency: ρ−1η2(k) + o(1) ≤Eμ,σ [NQ(ρ,k) − n∗] ≤ ρ−1η2

(k) + 1 + o(1), where η2(k) = (k − 1)/2 − 1
2

∑∞
n=1 n−1

E
[{

χ2
2kn − 4kn

}+]
;

(iii) Asymptotic variance: Vμ,σ [YNQ(ρ,k):1] = b2 + o(b2).

When ρ = 1, we have the exact expression Eμ,σ [NQ(1,k) − n∗] = η2(k) + o(1) instead of
the inequality in Theorem 4(ii). The number of sampling operations for the accelerated group
sequential BVPE methodology Q(ρ, k) is

ϕQ(ρ,k) = TQ(ρ,k) + 1 + 1(ρ < 1), (23)

and
Eμ,σ [ϕQ(ρ,k)] = k−1[ρn∗ − m + η2(k)] + 1 + 1(ρ < 1) + o(1). (24)

For any integer k ≥ 1, η2(k) = (k − 1)/2 − 1
2

∑∞
n=1 n−1

E
[{

χ2
2kn − 4kn

}+]
is also com-

putable. Table 5 provides some numerical approximations in the same fashion as Table 1.

4.1. Simulated performance

In this section, we summarize selective Monte Carlo simulation results to demonstrate the
appealing properties, including both first and second order, of the accelerated group sequential
BVPE methodologies that we provided in (20). We investigated a wide range of scenarios in
terms of the location and scale parameters of the negative exponential population (NExp), as
well as the prespecified parameters: the parameter b2 for the bounded variance, and the two
parameters, ρ and k, of Q(ρ, k) for using different sampling schemes. For brevity, we sum-
marize the results from pseudorandom samples of an NExp(5,2) population in Table 6. We
specified b2 = 0.0004, 0.0001, and 0.000 025, and the optimal fixed sample size n∗ turned
out to be 100, 200, and 400 accordingly. To compare the number of sampling operations
under different possible scenarios, we considered the combinations of ρ = (1.0, 0.8, 0.5) and
k = (1, 2, 5). For each sampling scheme of Q(ρ, k), we included the average total final sample
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TABLE 6. Simulations from NExp(5,2) from 10 000 runs implementing Q(ρ, k) from (20).

Q(ρ, k) n̄ s(n̄) n̄ − n∗ ρ−1η2(k) ϕ̄ E(ϕ) V(YN:1)

n∗ = 100, b = 0.0004
Q(1, 1) 99.7232 0.102 14 −0.2768 −0.2552 95.723 97.952 0.000 426
Q(1, 2) 100.3324 0.102 52 0.3324 0.3433 46.666 47.476 0.000 421
Q(1, 5) 101.9885 0.103 33 1.9885 1.9523 17.198 17.190 0.000 393
Q(0.8, 1) 100.0483 0.116 79 0.0483 −0.3190 76.737 78.952 0.000 441
Q(0.8, 2) 100.8849 0.115 55 0.8849 0.4291 37.654 38.476 0.000 412
Q(0.8, 5) 102.8252 0.116 37 2.8252 2.4404 14.191 14.190 0.000 387
Q(0.5, 1) 99.4418 0.149 38 −0.5582 −0.5104 46.721 48.952 0.000 478
Q(0.5, 2) 100.7288 0.147 63 0.7288 0.6866 22.682 23.476 0.000 428
Q(0.5, 5) 103.7720 0.149 44 3.7720 3.9046 8.177 8.190 0.000 399

n∗ = 200, b = 0.0001
Q(1, 1) 199.8580 0.144 26 −0.1420 −0.2552 195.858 197.952 0.000 105
Q(1, 2) 200.4932 0.142 29 0.4932 0.3433 96.747 97.476 0.000 101
Q(1, 5) 202.1355 0.143 24 2.1355 1.9523 37.227 37.190 0.000 096
Q(0.8, 1) 200.1291 0.159 78 0.1291 −0.3190 156.805 158.952 0.000 100
Q(0.8, 2) 201.0824 0.158 91 1.0824 0.4291 77.733 78.476 0.000 097
Q(0.8, 5) 202.9941 0.159 44 2.9941 2.4404 30.219 30.190 0.000 095
Q(0.5, 1) 199.2108 0.205 46 −0.7892 −0.5104 96.605 98.952 0.000 103
Q(0.5, 2) 200.7224 0.206 82 0.7224 0.6866 47.681 48.476 0.000 100
Q(0.5, 5) 204.0600 0.204 89 4.0600 3.9046 18.206 18.190 0.000 098

n∗ = 400, b = 0.000 025
Q(1, 1) 399.8497 0.200 26 −0.1503 −0.2552 395.850 397.952 0.000 025
Q(1, 2) 400.4404 0.199 41 0.4404 0.3433 196.720 197.476 0.000 025
Q(1, 5) 402.0665 0.200 82 2.0665 1.9523 77.213 77.190 0.000 025
Q(0.8, 1) 400.2258 0.225 04 0.2258 −0.3190 316.882 318.952 0.000 025
Q(0.8, 2) 401.0488 0.224 46 1.0488 0.4291 157.718 158.476 0.000 024
Q(0.8, 5) 403.0076 0.225 92 3.0076 2.4404 62.221 62.190 0.000 025
Q(0.5, 1) 399.5034 0.284 95 −0.4966 −0.5104 196.752 198.952 0.000 026
Q(0.5, 2) 400.9348 0.286 33 0.9348 0.6866 97.734 98.476 0.000 026
Q(0.5, 5) 403.9800 0.290 34 3.9800 3.9046 38.198 38.190 0.000 025

size n̄ with the associated standard error s(n̄), the difference between n̄ and n∗ to be compared
with the second-order efficiency term, ρ−1η2(k), in Theorem 4(ii), V(YN:1), which should be
close to the asymptotic variance as listed in Theorem 4(iii), and the average number of sam-
pling operations ϕ̄ to be compared with the expected number of sampling operations E(ϕ)
from (24).

From Table 6, it is obvious that n̄ − n∗ hangs tightly around each of the second-order
approximations ρ−1η2(k). From the sixth and seventh columns, we can also easily see that
the average number of sampling operations needed, ϕ̄, is very close to its theoretical value
E(ϕ). Moreover, the sampling operations for Q(ρ, k) are significantly reduced when 0 < ρ < 1
and/or k > 1, compared to the Anscombe–Chow–Robbins purely sequential procedure Q(1, 1)
under the same b. And the reductions are approximately 100(1 − k−1ρ)%. The last column of
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TABLE 7. Terminated sample size associated with the number of sampling operations using Q(ρ, k) as
per (20).

Q(ρ, k) nQ(ρ,k) ϕQ(ρ,k) μ̂

Q(1, 1) 28 18 6.53
Q(1, 2) 29 10 6.53
Q(1, 5) 31 5 6.53
Q(0.8, 1) 30 15 6.53
Q(0.8, 2) 32 9 6.53
Q(0.8, 5) 33 5 6.53
Q(0.5, 1) 34 8 6.53
Q(0.5, 2) 34 5 6.53
Q(0.5, 5) 42 4 6.53

Table 6 shows that the variance of the smallest observations is approximately b2 across the
board.

4.2. Real data analysis

In this section, we implement the accelerated group sequential BVPE methodology Q(ρ, k)
as per (20) on a real dataset about survival times of a group of patients suffering from head
and neck cancer who were treated using a combination of radiotherapy and chemotherapy; the
dataset has been presented in multiple research articles [4, 30, 35].

It is fair to assume that the survival time data follows a negative exponential distribution as
claimed in [35]; a Kolmogorov–Smirnov test yielded a test statistic value of 0.156 86 with a p-
value of 0.5572. Assuming that researchers in this study want to use the smallest observation of
sample data to estimate the location parameter μ, and they also want to restrict the variance of
the estimator to be b2 = 100, we implement the sampling scheme Q(ρ, k) in this investigation
with a combination of ρ = (1, 0.8, 0.5) and k = (1, 2, 5).

For each sampling scheme Qρ,k, the sampling procedure is the following: we randomize all
of the observations but pretend these observations are not known to us. We start with m = 11
observations, and proceed with the sampling following the procedures as per (20). We also
assume the data comes in the order after randomization. We summarize the terminated sample
size and the corresponding number of sampling operations in Table 7. The columns are defined
similarly to Table 4.

We can see from Table 7 that the terminated sample size ranges from 28 to 42, with the least
number of observations when using the sampling scheme Q(ρ = 1, k = 1) and the most number
of observations when using Q(ρ = 0.5, k = 5). Moreover, the sampling operations are reduced
the most when using Q(ρ = 0.5, k = 5). Also, with the same ρ, larger k means fewer sampling
operations; with the same k, smaller ρ means fewer sampling operations. The last column
records the point estimates, which were the minimum survival times observed in each sampling
procedure. We should emphasize that all of these results were obtained from one single run, but
we have indeed repeated similar implementations and there was little to no difference. We also
want to emphasize that the real data example is only for illustration purposes. The example
shows how our developed methodology can be used in real research problems.
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5. Proofs

Note that Theorems 1 and 2 follow immediately from [34, Theorem 2.4], (3) follows
from Theorem 1 and the definition of ϕM0 , (7) follows from Theorem 2, and Theorem 3 is
paraphrased from [18, (6.4.14)]. In this section, therefore, we only prove Theorems 4 and 5.

5.1. Proof of Theorem 4 and (15)

By the stopping rule defined in (14), we have the following inequality:

NP(ρ,k) ≤ ρ−1(m + kTP(ρ,k)) + 1, (25)

where m + kTP(ρ,k) < m + k + ρSm+k(TP(ρ,k)−1)
√

A/c. Therefore,

NP(ρ,k)

n∗ ≤ Sm+k(TP(ρ,k)−1)

σ
+ ρ−1(m + k) + 1

n∗
Pμ,σ−→ 1 as c → 0. (26)

On the other hand, we also have the inequality that

NP(ρ,k) ≥ ρ−1(m + kTP(ρ,k)) ≥ Sm+kTP(ρ,k)

√
A/c, (27)

from which we conclude that

NP(ρ,k)

n∗ ≥ Sm+kTP(ρ,k)

σ

Pμ,σ−→ 1 as c → 0.

Combining this with (26), it is clear that

NP(ρ,k)/n∗ Pμ,σ−→ 1 as c → 0. (28)

Note that, for sufficiently small c, with the limit operation given in (15), we have (with
probability 1)

NP(ρ,k)

n∗ ≤ σ−1 supn≥2 Sn + 2.

Since (Eμ,σ [ supn≥2 Sn])2 ≤Eμ,σ [( supn≥2 Sn)2] ≤Eμ,σ [ supn≥2 S2
n], and Wiener’s ergodic

theorem [33, Theorem IV] leads to Eμ,σ [ supn≥2 S2
n] < ∞, combined with (28) it follows by

the dominated convergence theorem that Eμ,σ [NP(ρ,k)/n∗] → 1 as c → 0. Since c = Aσ 2/n∗2

from (9), Theorem 4(i) holds under the limit operations (15).
Recall that T ′

P(ρ,k) defined in (16) is of the same form as t0 from (1). Then, referring to [34,
(1.1)] or [18, Section A.4], we have, as c → 0, for m0 ≥ 2,

Eμ,σ

[
T ′
P(ρ,k)

] = k−1ρn∗ + 1

2
− 3

2k
− 1

2k

∞∑
n=1

n−1
E

[{
χ2

kn − 3kn
}+] + o(1).

Therefore, with T ′
P(ρ,k) = TP(ρ,k) + m with probability 1 and m = m0k + 1, we have

Eμ,σ [m + kTP(ρ,k)] =Eμ,σ

[
1 + kT ′

P(ρ,k)

] = ρn∗ + η1(k) + o(1). (29)

Putting together (17) and (29), we obtain (18). And under the limit operations (15), Theorem
4(ii) follows immediately from (29) and inequalities given in (25) and (27).
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Next, we state the following lemmas to derive the desirable results in Theorem 4(iii) and
(iv).

Lemma 1. For the accelerated group sequential MRPE methodology P(ρ, k) given in (14),
under the limit operations (15), for any arbitrary 0 < ε < 1, with some γ ≥ 2,

Pμ,σ (NP(ρ,k) ≤ εn∗) = O
(
n∗−γ /2r)

.

Proof. Recall that �u	 denotes the largest integer that is smaller than u, and define

tu = �k−1ρεn∗	 + 1.

It should be obvious that 0 ≤ TP(ρ,k) ≤ tu. Then, the rate at which Pμ,σ {NP(ρ,k) ≤ εn∗} may
converge to zero under the limit operations (15) is given by

Pμ,σ {NP(ρ,k) ≤ εn∗} ≤ Pμ,σ {ρ−1(m + kTP(ρ,k)) ≤ εn∗}
≤ Pμ,σ {Sm+kt ≤ εσ for some t such that 0 ≤ t ≤ tu}
≤ Pμ,σ

{
max0≤t≤tu |Sm+kt − σ | ≥ (1 − ε)σ

}
≤ {(1 − ε)σ }−γ

Eμ,σ |Sm − σ |γ = O(m−γ /2) = O
(
n∗−γ /2r)

,

where the last inequality comes from Kolmogorov’s inequality for reversed martingales. See
[11, Section 5.1] for more details.

Lemma 2. For the accelerated group sequential MRPE methodology P(ρ, k) given in (14),
under the limit operations (15),

(i)
NP(ρ,k) − n∗

n∗1/2

d→ N
(
0, 1

2ρ−1); (ii)
NP(ρ,k) − n∗

N1/2
P(ρ,k)

d→ N
(
0, 1

2ρ−1).

Proof. First, we prove that

m + kTP(ρ,k) − ρn∗
√

ρn∗
d→ N

(
0, 1

2

)
as c → 0 (30)

based on the inequalities

ρSm+kTP(ρ,k)

√
A/c − ρn∗

√
ρn∗ ≤ m + kTP(ρ,k) − ρn∗

√
ρn∗ ≤ ρSm+k(TP(ρ,k)−1)

√
A/c − ρn∗ + m + k√
ρn∗ .

It is not hard to see that (�ρn∗	 + 1)1/2
(
S�ρn∗	+1/σ − 1

) d→ N
(
0, 1

2

)
as c → 0, and the

sequence {S�ρn∗	+1} is uniformly continuous in probability [1, 2]. From previous results, we
can easily show that

m + kTP(ρ,k)

�ρn∗	 + 1

Pμ,σ−→ 1 as c → 0.

Now, Anscombe’s random central limit theorem [1] leads to

ρSm+kTP(ρ,k)

√
A/c − ρn∗

√
ρn∗

d→ N
(
0, 1

2

)
and

ρSm+k(TP(ρ,k)−1)
√

A/c − ρn∗ + m + k√
ρn∗

d→ N
(
0, 1

2

)
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as c → 0. Hence, (30) holds. Next, with the inequalities that

ρ−1/2 m + kTP(ρ,k) − ρn∗
√

ρn∗ ≤ NP(ρ,k) − n∗
√

n∗ ≤ ρ−1/2 m + kTP(ρ,k) − ρn∗
√

ρn∗ + 1√
n∗ , (31)

Lemma 2(i) follows immediately, and Slutsky’s theorem provides Lemma 2(ii) under the limit
operations (15).

Lemma 3. For the accelerated group sequential MRPE methodology P(ρ, k) given in (14),

under the limit operations (15),
(
NP(ρ,k) − n∗)2

/n∗ is uniformly integrable.

Proof. In the light of [11, Theorem 3.4], we can prove that, for sufficiently small c ≤ c0 by
choosing some c0 ( > 0) appropriately, (ρn∗)−1

(
m + kTP(ρ,k) − ρn∗)2 is uniformly integrable.

Therefore, under the limit operations (15), we have Lemma 3 by applying the inequalities given
in (31).

Now, Theorem 4(iii) and (iv) follow from Lemmas 1–3. Alternatively, appealing to nonlin-
ear renewal theory, we can also prove the same results in the spirit of [34]. Many details are
left out for brevity.

5.2. Proof of Theorem 5 and (23)

In the same fashion as we proved Theorem 4(i), we have

Vm+kT

σ
≤ NQ(ρ,k)

n∗ ≤ Vm+k(TQ(ρ,k)−1)

σ
+ ρ−1(m + k) + 1

n∗ .

As b → 0, the two bounds of these inequalities both tend to 1 in probability, so

NQ(ρ,k)

n∗
Pμ,σ−→ 1.

For sufficiently small b, with the limit operation (21), we have (with probability 1)

NQ(ρ,k)

n∗ ≤ σ−1 supn≥2 Vn + 2,

where 2(n − 1)Vn/σ ∼ χ2
2n−2. Similarly, Eμ,σ [ supn≥2 Vn] < ∞ follows from Wiener’s

ergodic theorem [33, Theorem IV] so that Eμ,σ [NQ(ρ,k)/n∗] → 1 as b → 0. The proof of
Theorem 4(i) is complete.

Then, recall that T ′
Q(ρ,k) defined in (22) is of the same form as t0 from (1). So, referring to

[34, (1.1)] or [18, Section A.4], we have, as b → 0, for m0 ≥ 2,

Eμ,σ

[
T ′
Q(ρ,k)

] = k−1ρn∗ + 1

2
− 3

2k
− 1

2k

∞∑
n=1

n−1
E

[{
χ2

2kn − 4kn
}+] + o(1).

Therefore, with T ′
Q(ρ,k) = TQ(ρ,k) + m with probability 1 and m = m0k + 1, we have

Eμ,σ [m + kTQ(ρ,k)] =Eμ,σ

[
1 + kT ′

Q(ρ,k)

] = ρn∗ + η2(k) + o(1). (32)

Putting together (23) and (32), we obtain (24). And under the limit operations (21), Theorem
4(ii) follows immediately from (32).
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To evaluate the asymptotic variance in Theorem 4(iii), we utilize the law of total variance
and obtain

Vμ,σ

[
YNQ(ρ,k):1

] =Eμ,σ

[
V

(
YNQ(ρ,k):1 | NQ(ρ,k)

)] +Vμ,σ

[
E

(
YNQ(ρ,k):1 | NQ(ρ,k)

)]
=

∞∑
n=m

V
(
YNQ(ρ,k):1 | NQ(ρ,k) = n

)
Pμ,σ (NQ(ρ,k) = n) +Vμ,σ

[
σ 2

NQ(ρ,k)
+ μ

]

=
∞∑

n=m

σ 2

n2
Pμ,σ (NQ(ρ,k) = n) +Eμ,σ

[
σ 2

N2
Q(ρ,k)

]
−E

2
μ,σ

[
σ

NQ(ρ,k)

]

= 2Eμ,σ

[
σ 2

N2
Q(ρ,k)

]
−E

2
μ,σ

[
σ

NQ(ρ,k)

]
, (33)

since the event {NQ(ρ,k) = n} depends on Vn alone and is therefore independent of Yn:1.

Applying Taylor’s theorem to expand N−j
Q(ρ,k), j ≥ 1, around n∗, we have

N−j
Q(ρ,k) = n∗−j − jλ−j−1(NQ(ρ,k) − n∗), (34)

where λ is a random variable lying between NQ(ρ,k) and n∗. Combining (32), (34), (19), and
Theorem 4(ii) yields Vμ,σ [YNQ(ρ,k):1] = b2 + O(b3) = b2 + o(b2), which completes the proof.

6. Concluding remarks

We have proposed a novel accelerated group sequential sampling scheme with the motiva-
tion of saving sampling operations while retaining efficiency. Following the idea of drawing
multiple observations at a time sequentially to determine a preliminary sample, and then gath-
ering the rest of the observations all in one batch, we demonstrated the MRPE and BVPE
problems under the new sampling scheme as possible illustrations. Furthermore, the new
sequential sampling scheme can be applied to deal with other statistical inference problems,
including, but not limited to, sequential analogues of Behrens–Fisher problems (see, e.g.,
[28]), fixed-width confidence intervals (see, e.g., [7]), ranking and selection (see, e.g., [23]),
bounded-risk point estimation (see, e.g., [17]), treatment means comparison (see, e.g., [20]),
etc.

Due to the appealing properties of our newly developed methodology and the reality of sub-
stantial sampling operation savings, it will be of great interest for further investigations into
the problems that researchers have recently been working on. A full list would keep going
for a while, so we just list a couple here to demonstrate the possible directions: (i) [29] pro-
posed a sequentially planned probability ratio test as a sequentially planned extension of the
famous Wald sequential probability ratio test, and (ii) [26] worked on two sample mean com-
parisons of normal distributions with unknown and unequal variances, where they developed
both purely sequential and two-stage methodologies. Our sequential sampling design intro-
duced here can be directly applied to their problem settings, and is expected to save sampling
operations significantly.

On another note, recall from Section 3.1 that our loss function for estimating a normal
mean has only included the cost per sampled unit. In certain situations, we may have to con-
sider both the cost per sampled group and the cost per sampled unit. Then, a different type of
(accelerated) group sequential sampling scheme will be desired. We think it would be a very
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interesting future research problem to explore, perhaps developing two stopping variables for
statistical inference with a minimal cost: one for determining the size of a group, and the other
for determining the number of groups needed.
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