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PRIMES AND PRIME IDEALS IN SHORT INTERVALS

LOÏC GRENIÉ, GIUSEPPE MOLTENI AND ALBERTO PERELLI

Abstract. We prove the analog of Cramér’s short intervals theorem for primes
in arithmetic progressions and prime ideals, under the relevant Riemann hypothesis.
Both results are uniform in the data of the underlying structure. Our approach is
based mainly on the inertia property of the counting functions of primes and prime
ideals.

§1. Introduction. A famous theorem of Cramér [2] states that, assuming the
Riemann hypothesis, there is always a prime between x and x + h provided
x > x0 and c1

√
x log x 6 h 6 x , with suitable constants x0, c1 > 0. Actually,

under the same assumptions, we have that

π(x + h)− π(x) > c2
h

log x
,

with a suitable c2 > 0, and also that

π(x + h)− π(x) ∼
h

log x

provided x > h = ∞(
√

x log x). Here f (x) = ∞(g(x)) means that f (x)/
g(x)→∞ as x →∞. Apart from the explicit values of the involved constants,
this is still the best known result about primes in short intervals, under the
Riemann hypothesis. Sharper results can be obtained assuming various forms
of the pair-correlation conjecture for the zeta zeros; see, e.g., Heath-Brown [7],
Languasco et al [13] and the literature quoted there. A simple proof of Cramér’s
theorem can be obtained from a suitable smoothed explicit formula for ψ(x); see
the footnote of Ingham [9, p. 256].

In this paper we show that rather general theorems of Cramér’s type follow,
under the appropriate Riemann hypothesis, from two results often already
available in the literature, namely a short intervals mean-square estimate and a
Brun–Titchmarsh-type theorem. Indeed, the latter result implies that the relevant
counting function satisfies a suitable inertia property, which is then played
against the short intervals mean-square bound to get a contradiction if the interval
is not too short. We illustrate our approach in the case of primes in arithmetic
progressions and of prime ideals, since apparently these results do not appear
in the literature. In the first case all the ingredients are already known, so we
proceed directly to the proof of Cramér’s theorem for arithmetic progressions.
In the case of algebraic number fields we first deal with the required ingredients;
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see in particular Proposition 1 below, which is of some independent interest.
In both cases our results are uniform in the data of the underlying structure.
However, in the second case the inertia method gives Proposition 3, which in
the uniformity aspect is weaker than Theorem 2, proved here by the classical
smoothed explicit formula approach. This is due to the lack, in the current
literature, of sharp uniform bounds of Brun–Titchmarsh type for number fields.
We shall discuss this issue later on in the paper.

As usual, for (a, q) = 1 we write

π(x; q, a) =
∑
p6x

p≡a (mod q)

1

and let ϕ(q) denote Euler’s function. Moreover, given an algebraic number field
K of degree nK , we denote by dK the absolute value of its discriminant, by P
the prime ideals of the ring OK of the integers of K , by N (P) their norm and
write

πK (x) =
∑

N (P)6x

1.

Finally, given an integer q > 1 and a number field K , we denote by GRH and
DRH the Riemann hypothesis for the Dirichlet L-functions associated with the
characters χ (mod q) and for the Dedekind zeta function ζK (s), respectively.
With this notation, our main results are as follows.

THEOREM 1. Let (a, q) = 1 and assume GRH. Then there exist absolute
constants x0, c1, c2 > 0 such that for x > x0 and c1ϕ(q)

√
x log x 6 h 6 x we

have
π(x + h; q, a)− π(x; q, a) > c2

h
ϕ(q) log x

.

Clearly, under the same assumptions the same argument also gives

π(x + h; q, a)− π(x; q, a) ∼
h

ϕ(q) log x

provided x > h = ∞(ϕ(q)
√

x log x).

THEOREM 2. Assume DRH for the number field K . Then there exist absolute
constants x0, c1, c2 > 0 such that for x > x0 and c1(nK log x + log dK )

√
x 6

h 6 x we have

πK (x + h)− πK (x) > c2
h

log x
.

As before, the same proof shows also that

πK (x + h)− πK (x) ∼
h

log x
(1)

provided x > h = ∞((nK log x + log dK )
√

x). Note that Theorem 2 represents
an instance of Lang’s [12] “recipe” asserting that, broadly speaking, when

https://doi.org/10.1112/S0025579316000310 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579316000310


366 L. GRENIÉ et al

extending to a number field K the classical results known for Q one should
replace log x by nK log x + log dK . Note also that if K is a cyclotomic field then
the quality of the K -uniformity in Theorem 2 is comparable to the q-uniformity
in Theorem 1.

We conclude by remarking that the technique in the proof of the above
theorems works for rather general counting functions, giving individual short
intervals results as soon as suitably sharp short intervals mean-value and inertia-
type results are available.

§2. Proofs. As customary, we prove Theorem 1 for the ψ-function and then
the required result is recovered by elementary arguments, since h/ϕ(q) is large
enough. Let X be sufficiently large, q, h 6 X , (a, q) = 1 and write

1(x, h) = ψ(x + h; q, a)− ψ(x; q, a)−
h
ϕ(q)

.

The required mean-square bound follows from a result of Prachar [15] under
GRH (see also Goldston and Yıldırım [5]), namely∫ 2X

X
|1(x, h)|2 dx � h X log2(q X), (2)

where the constant in the�-symbol is absolute. Let now h/ϕ(q) > X1/10. From
the well-known Brun–Titchmarsh theorem, see Montgomery and Vaughan [14],
we deduce that if there exists x ∈ (X, 2X) such that

|1(x, h)| >
1
4

h
ϕ(q)

, (3)

then

|1(x, h)| > c
h
ϕ(q)

(4)

for all x ∈ (x−c′h, x+c′h), with certain absolute constants c, c′ > 0. Inequalities
(3) and (4) express the inertia property of the ψ-function (see also Bazzanella
and Perelli [1, Theorem 1]).

Let now

E(X, h) =
{

x ∈ [X, 2X ] : |1(x, h)| >
1
4

h
ϕ(q)

}
and suppose that E(X, h) 6= ∅. Then from (2)–(4) we get

h
(

h
ϕ(q)

)2

�

∫ 2X

X
|1(x, h)|2 dx � h X log2(q X);

thus, h �
√

Xϕ(q) log(q X). Hence, with suitable absolute constants in the
�-symbols and provided x is sufficiently large,

ψ(x + h; q, a)− ψ(x; q, a)�
h
ϕ(q)

if x > h � ϕ(q)
√

x log(qx). Theorem 1, and the statement after it, therefore
follow. �
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As anticipated in the Introduction, in the number fields case we first present
the proof of a weaker form of Theorem 2 in the uniformity aspect, obtained by
the inertia approach. Write

ψK (x) =
∑

N (Pm)6x

log N (P) =
∑
n6x

3K (n),

say, and

1K (x, h) = ψK (x + h)− ψK (x)− h

and let L = log X . The analog of (2) is given by the following result.

PROPOSITION 1. Assume DRH for the number field K . Then there exist
absolute constants c, X0 > 0 such that for X > X0 and 2 6 h 6 X we have∫ 2X

X
|1K (x, h)|2 dx 6 cX (h + L2)(nK L + log dK )

2.

Proof. Let 2 6 T 6 x ; the constants in the O- and �-symbols below are
absolute. Denoting by NK (T ) the number of zeros ρ = β + iγ of ζK (s) with
0 6 β 6 1 and |γ | 6 T , using the notation in the Introduction, we
unconditionally have

NK (T ) =
nK

π
T log T +

T
π

log
(

dK

(2πe)nK

)
+ O(log(dK T nK )); (5)

see Kadiri and Ng [10]. Moreover, using (5) in the explicit formula in
Lagarias and Odlyzko [11] (specialized to the case of ζK (s)) we have, again
unconditionally, that

ψK (x) = x −
∑
|γ |6T

xρ

ρ
+ RK (x, T ), (6)

with

RK (x, T ) = O
(

x
T
(nK log x + log dK ) log x

)
.

Proposition 1 follows now from (4) and (6) by the classical arguments in Saffari
and Vaughan [16, Lemmas 5 and 6] (notice a misprint in (6.20) there, where h2

on the right-hand side should be replaced by h); here is a brief sketch. Arguing
as in [16, Lemma 6], we have (see (6.21) there)∫ 2X

X
|1K (x, h)|2 dx

�
X
h

∫ 3h/X

h/3X

(∫ 3X

X
|ψK (x + θx)− ψK (x)− θx |2 dx

)
dθ. (7)

Choosing T = X in (6), the contribution of RK (x, T ) to the right-hand side of
(7) is

� X L2(nK L + log dK )
2, (8)
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while the contribution of the remaining part of the explicit formula is, thanks
to (5),

� X2
(

h
X

)2

NK

(
X
h

)
max

26t6X/h
(NK (t + 1)− NK (t))

� h X (nK L + log dK )
2. (9)

Proposition 1 follows from (7)–(9). �

Proposition 1 represents another instance of Lang’s “recipe” reported in the
Introduction. As far as we know, such a phenomenon has not been established in
the case of Brun–Titchmarsh-type bounds, and actually it is not clear to us how
the right extension should look like in this case; we briefly discuss this issue at
the end of the section. Hence, we use the following simple but uniform bound,
which however is unlikely to be sharp in the range needed here.

PROPOSITION 2. Let K be a number field and 2 6 h 6 x. Then

πK (x + h)− πK (x) 6 4nK
h

log h
. (10)

Proof. Again we use the notation in the Introduction. Let {k j } j∈J , k j > 1, be
the exponents of the prime powers in the interval (x, x+h]; clearly, |J | 6 h+1.
Since it is well known that for 1 6 k 6 nK there are at most nK /k prime ideals
of OK with norm pk , we have

πK (x + h)− πK (x) 6 nK
∑
j∈J

1
k j

(
π
(
(x + h)1/k j

)
− π

(
x1/k j

))
.

But (x+h)1/k
−x1/k 6 x1/kh/(kx); hence, applying to π((x+h)1/k j )−π(x1/k j )

the Brun–Titchmarsh theorem when k j = 1 (Montgomery and Vaughan [14]
with modulus q = 1) and the trivial bound6h/(k j

√
x)+ 1 when k j > 2, we get

πK (x + h)− πK (x) 6 2nK
h

log h
+ nK

∑
j∈J,k j>2

1
k j

(
h
√

x
1
k j
+ 1

)
.

Since clearly
∑

j∈J,k j>2 1/k j 6 log(|J |+1) 6 log(h+2), Proposition 2 follows
by a simple computation. �

PROPOSITION 3. Theorem 2 holds with c1n1/2
K (nK log x + log dK )

√
x 6

h 6 x in place of c1(nK log x + log dK )
√

x 6 h 6 x.

Proof. We argue along the lines of Theorem 1. Indeed, for X sufficiently
large and, e.g., h/nK > X1/10, from Proposition 2 we have that if there exists
x ∈ (X, 2X) with

|1K (x, h)| > 1
4 h then |1K (x, h)| > ch
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for all x ∈ (x − c′h/nK , x + c′h/nK ), with certain absolute constants c, c′ > 0.
Playing this against Proposition 1, we therefore obtain that

h3

nK
� (nK L + log dK )

2h X.

Hence, h � n1/2
K (nK L + log dK )

√
X , and Proposition 3 follows. �

The sharper result stated in Theorem 2 is obtained using the direct approach
by the smoothed explicit formula. We follow the general lines of the proofs in
Dudek [3] and Dudek et al [4], where explicit versions of Ingham’s approach
to Cramér’s theorem are developed. Integrating the infinite explicit formula for
ψK (x) from 2 to x , see Grenié and Molteni [6, (1.3a) and Lemmas 3.2 and 3.3],
we obtain∫ x

2
ψK (t) dt =

x2

2
−

∑
ρ

xρ+1

ρ(ρ + 1)
− cK x + c′K + O(nK x log x),

where ρ runs over the non-trivial zeros of ζK (s) and cK , c′K are certain constants
depending on K ; we are not concerned with their values, since cK and c′K
simply disappear after the manipulations leading to the next displayed equation.
Introducing the weight w(n) = max(1 − |x − n|/h, 0) as in the last row
of [3, p. 773] and arguing as on p. 774 there, we get

W (x, h) :=
∑

x−h<n<x+h

3K (n)w(n)

= h −
1
h

∑
ρ

(x + h)ρ+1
− 2xρ+1

+ (x − h)ρ+1

ρ(ρ + 1)
+ O

(
nK

x
h

log x
)
.

Now we split the sum over the ζK -zeros into the subsums 61 and 62 cutting
at T = x/h, and use DRH and (5) as in the proof of [3, Theorem 1.2], thus
obtaining

W (x, h) = h + O((nK log x + log dK )
√

x)+ O
(

nK
x
h

log x
)
. (11)

From (11), we obtain the behavior of the unweighted sum, observing that for
every 0 < ε < 1,

−
1
ε

(
(1− ε)W (x, (1− ε)h)−W (x, h)

)
6 ψK (x + h)− ψK (x − h)

6
1
ε

(
(1+ ε)W (x, (1+ ε)h)−W (x, h)

)
,

since 3K (n) > 0. Theorem 2 and the assertion after it follow at once. �
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We conclude with a brief discussion on the Brun–Titchmarsh theorem for
number fields and its relevance to this paper. Note that the dependence on the
data of K in Proposition 2, where bounded h are allowed, is essentially best
possible. Indeed, if a prime p ∈ (x, x + 2], say, splits in OK into the product
of nK prime ideals of norm p, then clearly πK (x + 2) − πK (x) > nK , while
Proposition 2 gives πK (x + 2)−πK (x) 6 cnK , with some absolute c > 0. Note
that, although the constant in the classical Brun–Titchmarsh theorem is of great
interest, the absolute constant in front of nK in (10) plays essentially no role in
this paper. For larger h the dependence on K in (10) is unsatisfactory, as indeed
the prime ideal theorem, or (1), shows.

The bounds of Brun–Titchmarsh type are usually obtained by the Selberg
sieve. Apparently, an application of the Selberg sieve to πK (x+h)−πK (x), see,
e.g., Hinz and Loedemann [8], brings into play the residue νK of the Dedekind
zeta function ζK (s). It is well known that νK depends on several invariants of K ,
and even under DRH its dependence on such invariants is not completely under
control. This adds some difficulties to the problem of obtaining sharp versions
of Proposition 2. Perhaps one can prove that

πK (x + h)− πK (x) 6 ch/log(h/dK ),

but this is weaker than what is obtainable for an abelian extension K/Q, namely

πK (x + h)− πK (x) 6 ch/log(h/qK ), (12)

where qK is the conductor of K . Bound (12) can be obtained by coupling
the classical Brun–Titchmarsh theorem for arithmetic progressions with the
Kronecker–Weber theorem for abelian extensions of Q. Actually, when (12) is
coupled with Proposition 1, we get back, in the abelian case, a result of the same
quality as Theorem 1.
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