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Counting points by height in
semigroup orbits
Jason P. Bell , Wade Hindes , and Xiao Zhong
Abstract. We improve known estimates for the number of points of bounded height in semigroup
orbits of polarized dynamical systems. In particular, we give exact asymptotics for generic semi-
groups acting on the projective line. The main new ingredient is the Wiener-Ikehara Tauberian
theorem, which we use to count functions in semigroups of bounded degree.

1 Introduction

A general principle in arithmetic dynamics is that the arithmetic behavior of orbits of
rational points of algebraic varieties under self-maps can often be understood in terms
of dynamical properties of the associated dynamical systems. In particular, dynamical
properties of algebraic dynamical systems often put strong constraints on the shapes
of orbits of rational points. It is then natural to study the extent to which measures
of complexity of orbits of rational points are reflected by the corresponding measures
for complexity of dynamical systems. Typically, one uses some notion of asymptotic
behavior of heights in orbits as a measure of the complexity of an orbit and uses some
notion of degree for iterates to measure the complexity of a dynamical system. The
Kawaguchi-Silverman conjecture [9], which asserts that the dynamical degree should
determine the height growth for Zariski dense orbits of Q-points, is perhaps the most
striking prediction concerning the connection between these seemingly unrelated
notions of complexity. Their conjecture has since been verified in a number of cases
[11, 12, 13, 14, 15] but remains open.

In this paper, we build on earlier work of the second-named author [6] and
investigate the growth of heights under semigroup orbits. More precisely, we consider
the setting when one has a projective variety V and a finite set S = {ϕ1 , . . . , ϕr} of
regular self-maps defined over a number field K that are polarizable with respect
to a common ample invertible sheaf; that is, there is an ample invertible sheaf L
and integers d1 , . . . , dr ≥ 2 such that ϕ∗i (L) ≅ L⊗d i for i = 1, . . . , r. We note that this
polarizable condition holds for every set of regular maps that are not automorphisms
when V = PN with L = O(1). Now let MS denote the semigroup of endomorphisms
of V generated by S under composition. In particular, when S is polarized, one has
a natural notion of degree for each f ∈ MS by declaring that the degree of f, denoted
by degL( f ), is the unique integer d such that f ∗L ≅ L⊗d . Likewise, we may choose
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a height function hL ∶ V → R associated to L, and to any point P ∈ V(Q) study the
orbit growth of P, which is the function

#{ f ∈ MS ∶ hL( f (P)) ≤ X}.

Then the general principle stated above suggests that the asymptotics of the orbit
growth should be heavily constrained by the asymptotic behavior of the corresponding
degree growth function

#{ f ∈ MS ∶degL( f ) ≤ X}.

It is relatively straightforward to give upper bounds for the orbit growth in terms of
the degree growth. Indeed, Kawaguchi and Silverman [9] showed that the analogous
phenomenon holds for dominant rational self-maps. However, it is very difficult in
general to give strong lower bounds for the orbit growth in terms of the degree growth.
The reason for this is that distinct maps in MS can send a point P to a common point Q,
and this sort of “collapse” can, in some cases, be extreme. For example, if P is a common
fixed point of all elements of S, then the orbit growth function is O(1), while the degree
growth function can be exponential in X.

In an earlier work, the second-named author [6] considered orbit growth and
degree growth for semigroups of polarizable morphisms. In this paper, we extend
those results by getting optimal asymptotics for degree growth and getting optimal
asymptotics for orbit growth for certain classes of semigroups of morphisms of the
projective line. However, similar to the case of iterating a single function, we must
avoid preperiodic points, defined below.

Definition 1.1 Let S = {ϕ1 , . . . , ϕr} be a set of endomorphisms on a variety V. We say
that a point P ∈ V is preperiodic for MS if there exist f , g ∈ MS , with g not the identity,
such that g ○ f (P) = f (P).

Our first main result is the following. In what follows, given real functions F and G,
we write F ≪ G if there is a constant C such that F(x) ≤ C ⋅ G(x) holds for all x
sufficiently large. Likewise, we write F ≍ G to mean both F ≪ G and G ≪ F. Finally,
we write F ∼ G to mean lim

x→∞
F(x)/G(x) = 1.

Theorem 1.2 Let V be a projective variety, let S ∶= {ϕ1 , . . . , ϕr} be a polarized set of
endomorphisms on V, and say ϕ∗i L ≅ L⊗d i for some d i > 1. Moreover, assume that r ≥ 2,
and let ρ be the unique real number satisfying

1
dρ

1
+ ⋅ ⋅ ⋅ + 1

dρ
r
= 1.

Then, the following statements hold for all non-preperiodic P ∈ V:
(1) In all cases, #{ f ∈ MS ∶ hL( f (P)) ≤ X} ≪ Xρ .
(2) If MS contains a free, finitely generated sub-semigroup, then there is a positive

constant ρ′ ≤ ρ such that

Xρ′ ≪ #{ f ∈ MS ∶ hL( f (P)) ≤ X} ≪ Xρ .

(3) If MS is free, then #{ f ∈ MS ∶ hL( f (P)) ≤ X} ≍ Xρ .
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(4) If MS is free and the d1 , . . . , dr are not all pairwise multiplicatively dependent, then
there is a positive constant c such that

#{ f ∈ MS ∶ hL( f (P)) ≤ X} ∼ cXρ .

Here in all cases, the implicit constants depend on P and S.

Remark 1.3 In particular, if the individual sets of preperiodic points Prep(ϕ) of each
ϕ ∈ S are not all identical, then we obtain bounds of the form

Xρ′ ≪ #{ f ∈ MS ∶ hL( f (P)) ≤ X} ≪ Xρ

for all non-preperiodic P ∈ V by [1, Theorem 1.3].

Remark 1.4 In fact, an exact asymptotic as in statement (4) of Theorem 1.2 is not
possible when the degrees of the maps in S are all powers of a single integer. For a
concrete example, consider the set of polynomials S = {2x8 , 3x8} and the point P = 1.
Note that ρ = 1/3 in this case. Now for X > 0, define the function

Θ(X) = #{ f ∈ MS ∶ h( f (P)) ≤ X}/X1/3 ,

where h(⋅) is the usual Weil height on P1. Then, one can show that

0 < lim inf Θ(X) < lim sup Θ(X) < ∞
in this case.

However, since every point in the total semigroup orbit of P,

OrbS(P) ∶= { f (P) ∶ f ∈ MS},

of height at most X is determined by at least one function f ∈ MS satisfying
hL( f (P)) ≤ X, we easily obtain a general upper bound for the number of points of
bounded height in non-preperiodic orbits. However, with some additional work, we
can prove that such an upper bound holds for all orbits.

Theorem 1.5 Let V be a projective variety, and let S ∶= {ϕ1 , . . . , ϕr} be a polarized
set of endomorphisms on V. Moreover, assume that r ≥ 2 and that ρ and L are as in
Theorem 1.2. Then,

#{Q ∈ OrbS(P) ∶ hL(Q) ≤ X} ≪ Xρ

holds for all points P ∈ V.

However, we prove an even stronger result for generic sets of maps on V = P1 and
establish an asymptotic for the number of points in an orbit of bounded height, instead
of just an asymptotic for the number of functions yielding a bounded height relation.
In what follows, given a positive integer d, we let Ratd be the space of rational functions
in one variable of degree d; see [21, §4.3] for details.

Theorem 1.6 Let d1 , . . . , dr be integers all at least four. Moreover, assume that r ≥ 2,
and let ρ be the unique positive real number satisfying ∑ d−ρ

i = 1. Then, there is a proper
Zariski open subset U ⊆ Ratd1 × ⋅ ⋅ ⋅ × Ratdr such that

#{Q ∈ OrbS(P) ∶ h(Q) ≤ X} ≍ Xρ
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for all S ∈ U and all P such that OrbS(P) is infinite. Moreover, if in addition the
d1 , . . . , dr are not all pairwise multiplicatively dependent, then

#{Q ∈ OrbS(P) ∶ h(Q) ≤ X} ∼ cXρ

for some positive constant c, which depends on P and S.

Remark 1.7 The constants in Theorem 1.6 are not explicit since they incorporate
height bounds for rational points on curves. However, the subset U is explicit and
consists of all critically separate and critically simple sets of maps (cf. [6, Theorem 1.5]);
see section 3 for details.

Remark 1.8 Similar hypotheses were recently used in [7] to give strong lower bounds
for the number of points in semigroup orbits modulo primes. Moreover, these results
are analogous to known results for abelian varieties [17]. With this analogy in mind,
the number of points of height at most X on an abelian variety A over a number field
K is asymptotic to Xρ/2, where ρ is the rank of the Mordell-Weil group A(K); see
[19, p. 54]. Thus, the present paper, as well as the papers [6, 7], suggest that the analogy

(arithmetic of points
of an abelian variety) ⇐⇒ (arithmetic of points in orbits

of a dynamical system )

described in [2] and [22, §6.5] may be more accurate when the dynamical system on
the right-hand side is generated by at least two noncommuting maps, rather than using
orbits coming from iteration of a single map.

1.1 Notation

Throughout this paper, we use the following notation. If S is a set of self-maps, we
let MS denote the semigroup generated by S under composition. If MS is free on the
set S, we let Sn (respectively, S≤n) denote the set of n-fold compositions of elements
of S (respectively, elements that are compositions of at most n elements of S), and
for f ∈ MS , we let ∣ f ∣ denote the unique natural number n such that f is an n-fold
composition of elements of S.

2 Counting functions in polarized systems

2.1 Functions of bounded degree

Let V be a projective variety, and let S = {ϕ1 , . . . , ϕr} be a set of endomorphisms on
V. Moreover, we assume that S is polarized with respect to some ample line bundle
L on V, meaning that there are d1 , . . . , dr > 1 satisfying ϕ∗i L ≅ L⊗d i . In particular, we
may define the L-degree (or simply degree when L is understood) of a function f in
the semigroup generated by S as follows:

degL( f ) ∶=
n
∏
j=1

d i j for f = ϕ i1 ○ ⋅ ⋅ ⋅ ○ ϕ in ∈ MS .

In particular, f ∗L ≅ L⊗ degL( f ) follows from standard results in algebraic geometry.
However, if we fix a height function associated to L on V and a point P ∈ V , then the
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height of f (P) tends to grow according to degL( f ) (a fact used by Call and Silverman
to define canonical heights). Therefore, as a first step in counting points of bounded
height in orbits, we count functions of bounded degree. In fact, we will prove in this
section that if MS is free, then there are positive constants ρ, c1, and c2 (depending
only on the initial degrees d1 , . . . dr) such that

c1 Xρ ≤ #{ f ∈ MS ∶ degL( f ) ≤ X} ≤ c2 Xρ(2.0.1)

for all X sufficiently large. Here, the constant ρ is the unique positive real number
satisfying

1
dρ

1
+ ⋅ ⋅ ⋅ + 1

dρ
r
= 1.

In fact, we can give more exact asymptotics. However, the form of these asymptotics
turns out to depend on whether or not the degrees of the maps in S are all powers of
a single integer, and so we put off stating these more precise results until later.

To begin, we collect some basic facts about counting words in free semigroups of
bounded, multiplicative weight. This problem is very similar to a classical arithmetic
problem of counting bounded multiplicative compositions of integers [3, 10], though
not exactly the same, since we want to allow factors of equal size (precisely to allow
maps of equal degree in our main dynamical theorems). In particular, due to the
lack of an exact reference, we include the relevant statements and proofs here. Let
us fix some notation. Let M be a multiplicative semigroup generated by a finite set
S = {α1 , . . . , αr}. We say that M is a weighted semigroup with respect to a vector
ddd = (d1 , . . . , dr) of positive real weights if there is a well-defined multiplicative weight
function ∣ ⋅ ∣ddd ∶ M → R given by

∣ω∣ddd ∶=
m
∏
j=1

d i j , ω = α i1 ⋅ ⋅ ⋅ α im ∈ M .(2.0.2)

In the case when M is the free semigroup on S, then every set of positive weights
endows M with the structure of a weighted semigroup. In general, however, to be
weighted, one requires that all representations of an element of M as a composition of
elements of S have the same weight.

Then, given a real number X, we would like to obtain an asymptotic formula for
the number of words of weight at most X,

#{ω ∈ M ∶ ∣ω∣ddd ≤ X}.(2.0.3)

In particular, we have the following general estimate, which assumes only that r ≥ 2
and that min{d i} > 1.

Remark 2.1 Strictly speaking, the result below is not necessary for proving our main
theorems in this paper; it is superseded by the asymptotics given in Theorem 2.6.
Nevertheless, we include this result since it may be useful for future work. For one, the
more precise asymptotics to come assume integral weights, and non-integral weights
do appear elsewhere in dynamics [8, 20]. Hence, the result below may still be useful
in a more general setting.
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Proposition 2.2 Let M be a semigroup generated by a set S = {α1 , . . . , αr}, and suppose
that M is weighted with respect to the vector ddd = (d1 , . . . , dr) of positive real numbers.
Assume that r ≥ 2 and that min{d1 , . . . , dr} > 1, and let ρ be the unique real number
satisfying d−ρ

1 + ⋅ ⋅ ⋅ + d−ρ
r = 1. Then, there is a positive constant c2 such that

#{ω ∈ M ∶ ∣ω∣ddd ≤ X} ≤ c2 Xρ

holds for all X sufficiently large. Moreover, if M is free on the set S, then there is a positive
constant c1 such that

c1 Xρ ≤ #{ω ∈ M ∶ ∣ω∣ddd ≤ X}.

Proof We first consider the case when M is free, and we adjoin an identity to make
M a monoid with identity element of weight 1. Let w(x) be the number of elements of
M of weight at most x. Then,

w(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if 0 ≤ x < 1,

1 +
r
∑
i=1

w( x
d i

) if 1 ≤ x < ∞.

Indeed, there are no words of weight less than 1, and any nonempty word ω of weight
at most x is uniquely of the form ω = α i1 ω′ for some word ω′ of weight at most x/d i1

(and there are exactly w(x/d i1) such ω′). Now let W(x) ∶= w(x) + 1
r−1 , and note that

it suffices to show that W(x) ≍ xρ , to conclude the same for w(x); the reason we
consider W instead of w is that it satisfies a slightly simpler recursion:

W(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/(r − 1) if 0 ≤ x < 1,
r
∑
i=1

W( x
d i

) if 1 ≤ x < ∞,(2.2.1)

which follows easily from w’s functional equation. Now assume that the d’s are
arranged in nondecreasing order, d1 ≤ ⋅ ⋅ ⋅ ≤ dr , and let c1 = W(1)/dρ

r and c2 = W(dr).
We will show that

c1xρ ≤ W(x) ≤ c2xρ for all 1 ≤ x ≤ dr ⋅ dn
1(2.2.2)

and all n ≥ 0 by induction on n. In particular, since d1 > 1, it follows that c1xρ ≤
W(x) ≤ c2xρ for all x ≥ 1. Note first that if 1 ≤ x ≤ dr , then

c1xρ = W(1)
dρ

r
xρ ≤ W(1)

dρ
r

dρ
r = W(1) ≤ W(x)

≤ W(dr) ≤ W(dr) ⋅ xρ = c2xρ

since W(x) and xρ are an increasing function. Hence, (2.2.2) is true for n = 0. Now to
the induction step: suppose that (2.2.2) holds and that 1 ≤ x ≤ dr ⋅ dn+1

1 . In particular,
since we have established (2.2.2) for all 1 ≤ x ≤ dr , we may assume without loss that
dr ≤ x ≤ dr ⋅ dn+1

1 . But then,

1 ≤ dr

d i
≤ x

d i
≤ dr ⋅

d1

d i
⋅ dn

1 ≤ dr ⋅ dn
1
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for all 1 ≤ i ≤ r. In particular, 1 ≤ x/d i ≤ dr ⋅ dn
1 , and so we have that c1(x/d i)ρ ≤

W(x/d i) ≤ c2(x/d i)ρ by the induction hypothesis. Hence,

c1xρ = c1xρ(
r
∑
i=1

1
dρ

i
) =

r
∑
i=1

c1(
x
d i

)
ρ
≤

r
∑
i=1

W( x
d i

)

≤
r
∑
i=1

c2(
x
d i

)
ρ
= c2xρ(

r
∑
i=1

1
dρ

i
) = c2xρ .

However, (2.2.1) implies that W(x) = ∑r
i=1 W(x/d i), and we deduce that c1xρ ≤

W(x) ≤ c2xρ for all x ≥ 1, as claimed.
We note that when M is not free, the estimates giving the upper bound still hold

since for general semigroups, we still have the inequality

W(x) ≤
r
∑
i=1

W(x/d i),

and so we can use the same proof verbatim to obtain the upper bound in the non-free
case. ∎

In particular, we immediately deduce the bounds in (2.0.1) for polarized sets of
endomorphisms from Proposition 2.2 and the fact that the degrees of endomorphisms
are multiplicative with respect to composition. However, it is possible to obtain more
exact asymptotics for the quantity in (2.0.3) in the case of integer weights by analyzing
the analytic properties of an associated generating function. With this in mind, we
assume for the remainder of this section that the vector ddd consists of positive integer
weights. Then for any n ∈ Z, we let

addd ,n ∶= #{ω ∈ FS ∶ ∣ω∣ddd = n}(2.2.3)

be the number of words of weight equal to n and let

Dddd(s) ∶= ∑
n≥0

addd ,n n−s(2.2.4)

be the associated Dirichlet series generating function. In particular, we will improve
upon Proposition 2.2 in this case by applying known Tauberian theorems to (2.2.4).
However, there is a catch: we must make two separate cases depending on whether
the generating weights are all powers of a single integer or not. With this in mind, we
make the following definition.

Definition 2.3 A vector ddd = (d1 , . . . , dr) of positive integers is called cyclic if there
exists a single positive integer d and a collection of positive integers n1 , . . . , nr such
that d j = dn j for all j ≥ 1. Moreover, if this is not the case, then we call ddd acyclic. If
(d1 , . . . , dr) is cyclic, then there is a unique positive integer d such that d i = da i for
some positive integers a1 , . . . , ar with gcd(a1 , . . . , ar) = 1, and we call this integer d
the base of ddd.

We use the following elementary fact from arithmetic.

Lemma 2.4 Let d1 , . . . , dr be positive integers all at least 2. If the ratio
log(d i)/ log(d j) ∈ Q for all i, j, then the vector ddd = (d1 , . . . , dr) is cyclic.
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Remark 2.5 When d , e are positive integers with log(d)/ log(e) ∈ Q, we say that d
and e are multiplicatively dependent, and when this does not hold, we say that d and e
are multiplicatively independent. Then, Lemma 2.4 gives that ddd = (d1 , . . . , dr) is cyclic
if and only if the d’s are all pairwise multiplicatively dependent.

With these notions in place, we now establish an exact asymptotic for the number
of words of bounded multiplicative weight in free semigroups.

Theorem 2.6 Let S = {α1 , . . . , αr} be an alphabet, let FS be the free semigroup gener-
ated by S, and let ddd = (d1 , . . . , dr) be a vector of positive integers all at least 2. Moreover,
assume that r ≥ 2, and let ρddd > 0 be the unique real number satisfying Gddd(ρddd) = 1,
where

Gddd(s) = d−s
1 + d−s

2 + ⋅ ⋅ ⋅ + d−s
r .

Then, the following statements hold:

(1) If ddd is acyclic, then

Dddd(s) = 1
1 − Gddd(s)

converges for all R(s) ≥ ρddd except for a simple pole at s = ρddd . Hence, the Wiener-
Ikehara Tauberian theorem [16, §8.3] implies that

#{ω ∈ FS ∶ ∣ω∣ddd ≤ X} = ∑
n≤X

addd ,n = −1
ρddd G′(ρddd)

Xρddd + o(Xρddd )

as X tends to infinity.
(2) If ddd is cyclic of base d, then there is a positive constant C such that

#{ω ∈ FS ∶ ∣ω∣ddd ≤ X} = C ⋅ d⌊logd(X)⌋⋅ρddd + o(d⌊logd(X)⌋⋅ρddd )

as X tends to infinity.

Before we can establish Theorem 2.6, we need an elementary fact, which is a simple
consequence of the strong triangle inequality.

Lemma 2.7 Let z1 , . . . , zr ∈ C not all zero be such that

z1 + ⋅ ⋅ ⋅ + zn = ∣z1∣ + ⋅ ⋅ ⋅ + ∣zn ∣.

Then, z i = ∣z i ∣ for all i (i.e., arg(z i) = 2k i π for some k i ∈ Z).

Proof of Theorem 2.6 For all m ≥ 0, let FS(m) be the set of sequences of length m
in FS . Then, it follows from the definition of weight in (2.0.2) that

Gddd(s)m = ∑
ω∈FS(m)

∣ω∣−s
ddd = ∑

n≥1
∑
∣ω∣ddd=n

ω∈FS(m)

n−s = ∑
n≥1

addd ,n ,m n−s ,
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where addd ,n ,m = #{ω ∈ FS(m) ∶ ∣ω∣ddd = n}. In particular, we see that

1
1 − Gddd(s) = ∑

m≥0
Gddd(s)m = ∑

m≥0
∑
n≥1

(addd ,n ,m) n−s

= ∑
n≥1

∑
m≥0

(addd ,n ,m) n−s = ∑
n≥1

addd ,n n−s = Dddd(s)

holds formally. As for the convergence of this expression, note first that since d i ≥ 2
for all i, Gddd(s) is a strictly decreasing continuous function on the real line. Moreover,
Gddd(0) = r ≥ 2 and lim

x→∞
Gddd(x) = 0, and so there is a unique, simple, real solution

x = ρddd > 0 to the equation Gddd(x) = 1. However, for all R(s) > ρddd , we have that

∣Gddd(s)∣ = ∣d−s
1 + d−s

2 + ⋅ ⋅ ⋅ + d−s
r ∣

≤ ∣d−s
1 ∣ + ∣d−s

2 ∣ + ⋅ ⋅ ⋅ + ∣d−s
r ∣

= d−R(s)1 + d−R(s)2 + ⋅ ⋅ ⋅ + d−R(s)r

< d−ρddd
1 + d−ρddd

2 + ⋅ ⋅ ⋅ + d−ρddd
r

= 1.

In particular, the meromorphic function Dddd(s) = (1 − Gddd(s))−1 converges in
R(s) > ρddd and has a simple pole at s = ρddd . However, this is, in fact, the only pole on
the line R(s) = ρddd . To see this, suppose that Gddd(s) = 1 for some R(s) = ρddd , and write
s = ρddd + ci for some c ∈ R. Then setting z i = d−s

i , we deduce from Lemma 2.7 that

log(d i)c = 2πk i

for some k i ∈ Z. In particular, if c ≠ 0, then log(d i)/ log(d j) ∈ Q for all i , j, and
Lemma 2.4 implies that ddd is cyclic. Therefore, if ddd is acyclic, then Dddd(s) =
(1 − Gddd(s))−1 converges whenever R(s) is at least ρddd , except for the simple pole at
s = ρddd . This completes the proof of statement (1).

However, the cyclic case (say with base d) can be handled with somewhat simpler
analysis. Write d i = da i for some positive integers a i with gcd(a1 , . . . , ar) = 1. Since
FS is free on S = {α1 , . . . , αr}, there are exactly (n1+ ⋅ ⋅ ⋅ +nr

n1 , . . . ,nr
) words with n i occurrences

of α i for all i = 1, . . . , r. Moreover, the weight of each such element is exactly d∑ a i n i . In
particular, the number of elements in FS of weight ≤ dL is the sum of the coefficients
of x i for i = 0, . . . , L in the polynomial

∑
n≥0

(xa1 + ⋅ ⋅ ⋅ + xar)n .

In particular, we see that for a positive integer L, the number of elements in FS of
weight ≤ dL is the coefficient of xL in the formal power series

F(x) ∶= (1 − x)−1 ⋅ (1 − xa1 − ⋅ ⋅ ⋅ − xar)−1 .

Observe that G(x) ∶= 1 − xa1 − ⋅ ⋅ ⋅ − xar is strictly decreasing on (0,∞), and since the
function is 0 when x = 0 and is negative when x = 1, it has a unique zero θ in (0, 1).
Since the derivative of G is negative on (0,∞), this is a simple zero. Observe further
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that x = θ is the unique pole of F(x) in the closed disc of radius θ. To see this, observe
that if β is another pole in this disc, then we must have G(β) = 0. Then,

∣G(β)∣ ≥ 1 − ∣β∣a1 − ⋅ ⋅ ⋅ − ∣β∣ar ≥ 1 − θa1 − ⋅ ⋅ ⋅ − θar = 0,

with equality only if ∣β∣ = θ. Thus, it suffices to consider β of the form θe2πi μ . Then,
G(β) = 1 − θa1 exp(2πia1 μ) − ⋅ ⋅ ⋅ − θar exp(2πiar μ), and since ∑ θa j = 1, this can
only be zero if exp(2πia1 μ) = ⋅ ⋅ ⋅ = exp(2πiar μ) = 1. Since the a j have gcd 1, we then
see this forces μ to be an integer, and so β = θ as required. Using partial fractions and
the fact that F(x) has a simple pole at x = θ and no other poles in the closed disc of
radius θ, we see that

F(x) = C/(1 − x/θ) + F0(x)

for some positive constant C and some rational function F0(x) whose radius of
convergence is strictly larger than θ. In particular, the coefficient of xL in F(x) is
asymptotic to CθL , and so we have that

#{ω ∈ FS ∶ ∣ω∣ddd ≤ dL} ∼ CθL .

Since θ is the unique positive solution to ∑ θa i = 1, we see that if ρ is such that dρ = θ,
then ρ is the unique positive solution to ∑ 1/dρ

i = 1, and so ρ = ρddd , and we have

#{ω ∈ FS ∶ ∣ω∣ddd ≤ dL} ∼ C(dL)ρddd .

Now for X large, there is a unique L such that dL ≤ X < dL+1. Hence, in general, we
have that

#{ω ∈ FS ∶ ∣ω∣ddd ≤ X} ∼ Cd⌊logd(X)⌋⋅ρddd ,

a fact equivalent to statement (2). ∎

In particular, we obtain an improved asymptotic for the number of functions of
bounded degree in free semigroups generated by polarized sets.

Corollary 2.8 Let V be a projective variety, let S ∶= {ϕ1 , . . . , ϕr} be a polarized set of
endomorphisms on V, and say ϕ∗i L ≅ L⊗d i for some integers d i ≥ 2. Moreover, assume
that r ≥ 2, that MS is free, and that ρ is the real number satisfying d−ρ

1 + ⋅ ⋅ ⋅ + d−ρ
r = 1.

Then the following statements hold.

(1) If ddd = (d1 , . . . , dr) is acyclic, there is a positive constant c such that

#{ f ∈ MS ∶ degL( f ) ≤ X} ∼ cXρ .

(2) If ddd = (d1 , . . . , dr) is cyclic of base d, there is a positive constant C such that

#{ f ∈ MS ∶ degL( f ) ≤ X} ∼ C ⋅ d⌊logd(X)⌋⋅ρ .

Remark 2.9 We note that our results on degrees in this section work over an arbitrary
ground field. However, for the remainder of this paper (when we instead count by
heights), we will restrict ourselves to number fields.
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2.2 From degrees to heights

Now that we have a handle on the growth of degrees in polarized semigroups, we use
this to study the growth of heights in orbits. To do this, we fix some notation. As before,
let S = {ϕ1 , . . . , ϕr} be a polarized set of endomorphisms on a projective variety V
with ϕ∗i L ≅ L⊗d i for some d i > 1 and some ample line bundle L. Moreover, we may
choose a height function hL ∶ V → R≥0 associated toL, well-defined up to O(1). Then
the basic tool that makes the conversion between degrees and heights possible is the
following fact: for each ϕ i there is a constant C i such that

∣hL(ϕ i(P)) − d i hL(P)∣ ≤ C i(2.9.1)

holds for all P ∈ V ; see, for instance, [21, Theorem 7.29]. In particular, one may iterate
the bound above and use a telescoping argument (due to Tate) to obtain a similar
statement for semigroups; see [5, Lemma 2.1].

Lemma 2.10 Let dS = min{d i}, and let CS = max{C i} be as in (2.9.1). Then,

∣hL( f (P))
degL( f ) − hL(P)∣ ≤ CS

dS − 1

holds for all f ∈ MS and all P ∈ V.

In particular, we may deduce the following result, which says first, that the set of
preperiodic points of MS is a set of bounded height, and second, that if P is not a
preperiodic point, then given a positive constant B, there are at most finitely many
elements f ∈ MS for which hL( f (P)) < B. We note that this does not require freeness
of the semigroup MS but heavily uses the fact that the endomorphisms in S are
polarizable.

Lemma 2.11 There is a positive constant C such that
(1) if P is a preperiodic point for the semigroup MS , then hL(P) ≤ C;
(2) if hL(P) > C, then hL( f (P)) > hL(P) for all f ∈ MS .
In particular, if P is not preperiodic for MS and if B is a positive constant, then there is an
N ∶= N(V , S , P, B) such that hL( f (P)) > B whenever there is some m > N such that
f ∈ MS can be expressed as a length-m composition of elements of S.

Proof Notice that if P is a preperiodic point for MS and Q ∶= f (P) = g ○ f (P), then

∣hL(g(Q))
degL(g) − hL(Q)∣ ≤ CS

dS − 1
,

and since g(Q) = Q and degL(g) ≥ 2, we then see that

hL(Q) ≤ 2CS ⋅ (dS − 1)−1 .

Similarly, we have

∣hL( f (P))
degL( f ) − hL(P)∣ ≤ CS

dS − 1
,
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and since f (P) = Q, we use the inequality on the height of Q to get that hL(P) ≤
2 CS

dS−1 . Also, observe that if hL(P) ≥ 2CS , then if f ∈ MS , then Lemma 2.10 gives
that hL( f (P))/degL( f ) > hL(P)/2, and so hL( f (P)) > hL(P) for all f ∈ MS .
In particular, setting C = 2CS , we deduce both claims (1) and (2).

For the final claim, assume that P is not preperiodic for MS and that B > 0. Note
that without loss of generality, we may assume that B ≥ C. Now let K be a number field
over which P and every map in S is defined. Then, f (P) ∈ V(K) for all f ∈ MS , and

N ∶= #{Q ∈ V(K) ∶ hL(P) ≤ B}
is finite by Northcott’s theorem. We claim that we can take N(V , S , P, B) equal to
this N. To see this, suppose that f = θm ○ θm−1 ○ ⋅ ⋅ ⋅ ○ θ1 for some θ i ∈ S with m > N
and that hL( f (P)) ≤ B. For 1 ≤ i ≤ m, we let f i ∶= θ i ○ θ i−1 ○ ⋅ ⋅ ⋅ ○ θ1. Note first that if
hL( f i(P)) > B ≥ C for some i, then hL( f (P)) > B also by property (2). Therefore, we
may assume that hL( f i(P)) ≤ B for all i ≤ m. However, m > N , so that f i(P) = f j(P)
for some i > j by the pigeon-hole principle and the definition of N. But then,

g i j ○ f j(P) = f i(P) = f j(P)
for g i j = θ i ○ ⋅ ⋅ ⋅ ○ θ j+1. Since θ1 , . . . , θm are polarizable, we see that g i j is not the
identity map, and this now contradicts our assumption that P is not preperiodic.
Therefore, hL( f (P)) > B, as claimed. ∎

Lastly, before proving Theorem 1.2, we need the following result, which provides a
key new ingredient for improving the estimates in [6].
Lemma 2.12 Suppose that MS is free and that P is a not a preperiodic point of V. Then,
there is a positive constant β = β(S ,L, P) such that

lim
n→∞

∑
g∈Sn

hL(g(P)))−ρ = β.

Proof For n, let βn = βn(P) = ∑g∈Sn
hL(g(P))−ρ . Since MS is free, Sn+1 is the

disjoint union of ϕ1 ○ Sn , . . . , ϕr ○ Sn . Then,

∣hL(ϕ i( f (P))) − d i hL( f (P))∣ ≤ CS ,

and so

d i hL( f (P)) − CS ≤ hL(ϕ i( f (P))) ≤ d i hL( f (P)) + CS .

In particular, the mean value theorem gives the inequality

∣hL(ϕ i( f (P)))−ρ − (d i hL( f (P))−ρ ∣ ≤ CS ρ ∣d i ⋅ hL( f (P)) − CS ∣
−ρ−1 .

Assume first that hL(P) > C ∶= 2CS . (We note that this C is the constant used in the
proof of Lemma 2.11.) Then, since ∑r

i=1 1/dρ
i = 1, we have

∣βn+1 − βn ∣ =
%%%%%%%%%%%%

r
∑
i=1

∑
f ∈Sn

hL(ϕ i ○ f (P))−ρ − (d i hL( f (P)))−ρ
%%%%%%%%%%%%

≤
r
∑
i=1

∑
f ∈Sn

CS ρ ∣d i ⋅ hL( f (P)) − CS ∣
−ρ−1 .(2.12.1)
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By Lemma 2.10, we have

hL( f (P)) ≥ degL( f )hL(P) − degL( f ) CS

dS − 1
> degL( f ) (2CS − CS

dS − 1
) ,

and so hL( f (P)) > CS degL( f ). It follows that

d i hL(P) − CS > CS(d i degL( f ) − 1),

and so using Equation (2.12.1), we see

∣βn+1 − βn ∣ ≤
r
∑
i=1

∑
f ∈Sn

CS ρ
(CS(d i degL( f ) − 1))ρ+1

≤ C−ρ
S 2ρ+1ρ

r
∑
i=1

∑
f ∈Sn

1/(d i degL( f ))ρ+1

= C−ρ
S 2ρ+1ρ ∑

j1+ ⋅ ⋅ ⋅ + jr=n+1
( n + 1

j1 , . . . , jr
)d− j1(ρ+1)

1 ⋅ ⋅ ⋅ d− jr(ρ+1)
r

= C−ρ
S 2ρ+1ρ ⋅ (1/dρ+1

1 + ⋅ ⋅ ⋅ + 1/dρ+1
r )n+1 .

In particular, since C′ ∶= ∑ 1/dρ+1
i < 1 and since ∑ j(C′) j converges, we see that

{βn(P)} is a Cauchy sequence converging to some β(P), as claimed. This completes
the proof when hL(P) ≥ 2CS . For the general case, assume only that P is not prepe-
riodic for S. Then Lemma 2.11 implies that there exists N such that hL( f (P)) > 2CS
for all ∣ f ∣ ≥ N . However, for n > N , we have that

∑
g∈Sn

hL(g(P))−ρ = ∑
f ∈SN

∑
F∈Sn−N

hL(F( f (P))−ρ = ∑
f ∈SN

βn−N( f (P))

since MS is free. Moreover, for each f ∈ MS , the sequence {βn−N( f (P))} converges
by our argument above. Therefore, {βn(P)}, a finite sum of convergent sequences,
must converge also. ∎

In particular, we may use Lemma 2.10, Lemma 2.12, and the degree growth
estimates in Section 2 to bound the number of functions in a polarized semigroup
yielding a bounded height relation; see Theorem 1.2 from the Introduction.

Proof of Theorem 1.2 Assume that r = #S ≥ 2, let ρ be the unique positive number
satisfying d1

−ρ + ⋅ ⋅ ⋅ + dr
−ρ = 1, and let bS = CS/(dS − 1); here, dS and CS are the

constants in Lemma 2.10. We first prove (1) in the case when P ∈ V satisfies hL(P) > bS
and then show how the general non-preperiodic case follows from this one. In
particular, if hL(P) > bS , then Lemma 2.10 implies

{ f ∈ MS ∶ degL( f ) ≤ X
hL(P) + bS

} ⊆ { f ∈ MS ∶ hL( f (P)) ≤ X}

⊆ { f ∈ MS ∶ degL( f ) ≤ X
hL(P) − bS

}.
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In particular, Proposition 2.2, using our degree function to assign weights to elements
of our semigroup, gives that there is a constant c such that

#{ f ∈ MS ∶ hL( f (P)) ≤ X} ≤ #{ f ∈ MS ∶ degL( f ) ≤ X
hL(P) − bS

}

≤ c( X
hL(P) − bS

)
ρ

holds for all X sufficiently large.
Hence, we obtain statement (1) in the case when hL(P) > bS , as claimed. In general,

if P is not preperiodic, then by Lemma 2.11, there are only finitely many elements f of
our semigroup for which hL( f (P)) ≤ bS . In particular, there is some N such that if
g = ϕ i1 ○ ⋅ ⋅ ⋅ ○ ϕ iN ∈ MS , then either g is equivalent in MS to a composition of
elements of S of length < N or hL(g(P)) > bS . Let g1 , . . . , gr denote the length-N
compositions of elements of S that are not equivalent in MS to a shorter composition
of elements of S.

Then, since all but finitely many elements of MS have a right compositional factor
from {g1 , . . . , gr}, we have

#{ f ∈ MS ∶ hL( f (P)) ≤ X} ≤
r
∑
i=1

#{ f ∈ MS ∶ hL( f (g i(P))) ≤ X} + O(1).

Since hL(g(P)) > bS , we see that each of the summands on the right side is ≪ Xρ ,
and so we deduce (1) in general.

We next prove (3) and (4) in the case when hL(P) > bS , and so we now assume
that MS is free. Then, Proposition 2.2 and Lemma 2.10 imply that there is a positive
constant c′ such that

#{ f ∈ MS ∶ hL( f (P)) ≤ X} ≥ #{ f ∈ MS ∶ degL( f ) ≤ X
hL(P) + bS

}

≥ c′ ( X
hL(P) + bS

)
ρ

holds for all X sufficiently large. Combining this inequality with (1), we see that
#{ f ∈ MS ∶ hL( f (P)) ≤ X} ≍ Xρ for all sufficiently large X, as claimed in
statement (3).

To prove (4) in the case when hL(P) > bS , suppose that MS is free and that the
vector of degrees ddd = (d1 , . . . , dr) is acyclic. Moreover, let ε > 0, and let

β ∶= lim
n→∞

∑
g∈Sn

hL(g(P))−ρ

be the constant from Lemma 2.12. Then, Lemma 2.11 gives that there are only finitely
many elements of MS with hL(g(P)) ≤ bS/ε. Thus, there is a natural number n such
that

%%%%%%%%%%%
∑
g∈Sn

hL(g(P))−ρ − β
%%%%%%%%%%%
< ε
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and

hL(g(P)) − bS > (1 − ε)hL(g(P))

for all g ∈ Sn . Then, statement (1) of Corollary 2.8 implies that for all g ∈ Sn and all
large X, we have that

#{ f ∈ MS ∶ hL( f ○ g(P)) ≤ X}

≤ #{ f ∈ MS ∶ degL( f ) ≤ X
hL(g(P)) − bS

}

≤ c(1 + ε)( X
hL(g(P)) − bS

)
ρ

≤ c(1 + ε)(1 − ε)−ρ Xρ/hL(g(P))ρ .

However, for large X, we have that

#{ f ∈ MS ∶ hL( f (P)) ≤ X} = #S<n + ∑
g∈Sn

#{ f ∈ MS ∶ hL( f ○ g(P)) ≤ X},

and so we get that

#{ f ∈ MS ∶ hL( f (P)) ≤ X} ≤ #S<n + c(1 + ε)(1 − ε)ρ Xρ(β + ε)

for X sufficiently large. Moreover, by a completely analogous argument, we get a lower
bound of

#{ f ∈ MS ∶ hL( f (P)) ≤ X} ≥ #S<n + c(1 − ε)(1 + ε)ρ Xρ(β − ε)

for all large X. Then, since n is fixed and ε is arbitrarily small, we see that

#{ f ∈ MS ∶ hL( f (P)) ≤ X} = cβXρ(1 + o(1)),

as claimed in statement (4).
Next, we assume only that P is a non-preperiodic for MS and prove (3) and (4) in

this case. In particular, we still assume that MS is free. Then, Lemma 2.11 implies that
there exists N such that hL(g(P)) > bS for all ∣g∣ ≥ N . In particular, for all large X, we
have that

#{ f ∈ MS ∶ hL( f (P)) ≤ X} = #S≤N + ∑
g∈SN

#{ f ∈ MS ∶ hL( f (g(P))) ≤ X}.

However, by replacing P with g(P) in our arguments above, we see that each of
the finitely many terms #{ f ∈ MS ∶ hL( f (g(P))) ≤ X} for g ∈ SN exhibit growth
according to statements (3) and (4) of Theorem 1.2, assuming the corresponding
hypotheses. In particular, the total count #{ f ∈ MS ∶ hL( f (P)) ≤ X} exhibits the
desired growth also.

Finally, we observe that (2) quickly follows from (3). To see this, if MS contains
a free semigroup with finite basis S′ ⊂ MS , let ρ′ be the unique positive number
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satisfying∑g∈S′ 1/deg(g)ρ′ = 1. Then, (3) gives that there is a positive constant c′′ such
that

#{ f ∈ MS′ ∶ hL( f (P)) ≤ X} ≥ c′′ ( X
hL(P) + bS

)
ρ′

holds for all X sufficiently large. In particular, we deduce statement (2) as claimed;
moreover, clearly ρ′ ≤ ρ since Xρ′ ≪ Xρ by combining the bounds in statements (1)
and (2) with the fact that MS′ ⊆ MS . ∎

Lastly, we note that our upper bound on the number of functions f ∈ MS such
that hL( f (P)) ≤ X for non-preperiodic basepoints P leads to a general upper bound
for the number of points of bounded height in orbits; see Theorem 1.5 from the
Introduction. The last step is the following decomposition lemma.

Lemma 2.13 Let S = {ϕ1 , . . . , ϕr} be a polarizable set of endomorphisms on a
variety V, let P ∈ V be such that OrbS(P) is infinite, and let B > 0. Then, there is a finite
subset F ⊆ OrbS(P) and distinct points Q1 , . . . , Qn in OrbS(P) such that the following
statements hold:
(1) Each Q i satisfies hL(Q i) > B.
(2) OrbS(P) = F ∪ OrbS(Q1) ∪ ⋅ ⋅ ⋅ ∪ OrbS(Qn).
In particular, we may assume that Q1 , . . . , Qn are not preperiodic for S.

Proof Let C be the constant in Lemma 2.11. As a reminder, C = 2CS , where CS is the
constant from Lemma 2.10. Moreover, let d = max{d i}, where d i is as in (2.9.1). Now
let P ∈ V have infinite orbit and B > 0. Without loss, we may assume B ≥ C. Note that
the desired conclusion follows easily if hL(P) > B by taking n = 1, P = Q1, and F = ∅.
Therefore, we may assume that hL(P) ≤ B. Now define the set

T ∶= {Q ∈ OrbS(P) ∶ B < hL(Q) ≤ 2dB}.

In particular, T = Q1 , . . . , Qn is a finite (possibly empty) set by Northcott’s theorem
(seen by working over a fixed number field K over which P and every map in S
is defined). Likewise, F ∶= {Q ∈ OrbS(P) ∶ hL(Q) ≤ B} is a finite set, and we will
show that F and the points Q i have the desired properties. To see this, suppose that
Q = θm ○ ⋅ ⋅ ⋅ ○ θ1(P) for some θ i ∈ S satisfies hL(Q) > B (such Q must exist since
OrbS(P) is infinite), and define

m0 = min{s ∶ hL(θs ○ ⋅ ⋅ ⋅ ○ θ1(P)) > B}.

Note that m0 exists since m is in the defining set above. Moreover, m0 ≥ 1 since
hL(P) ≤ B by assumption. We claim that Q′ ∶= θm0 ○ ⋅ ⋅ ⋅ ○ θ1(P) ∈ T (in particular,
T is nonempty): if not, then necessarily hL(Q′) > 2dB. However, we then see that

2dB < hL(Q′) = hL(θm0(θm0−1 ○ ⋅ ⋅ ⋅ ○ θ1(P)))
≤ deg(θm0)(hL(θm0−1 ○ ⋅ ⋅ ⋅ ○ θ1(P)) + CS) ≤ 2dB,

a contradiction; here, we use Lemma 2.10 and the minimality of m0. In particular,
we have shown that for any Q ∈ OrbS(P) of height bigger than B, there is a point
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Q i ∈ T such that Q ∈ OrbS(Q i). Hence, we deduce that OrbS(P) = F ∪ OrbS(Q1) ∪
⋅ ⋅ ⋅ ∪ OrbS(Qn), as claimed. Finally, we note that since each hL(Q i)) > B and we have
taken B ≥ 2CS , which is the constant C in the proof of Lemma 2.11, we have that the
Q i are not preperiodic by Lemma 2.11. ∎

In particular, since every point in OrbS(P) of height at most X is determined by
at least one function f ∈ MS satisfying hL( f (P)) ≤ X and (outside of a finite set) all
orbits are covered by non-preperiodic orbits, we see that

#{Q ∈ OrbS(P) ∶ hL(Q) ≤ X} ≪ Xρ

holds for all P ∈ V by combining Theorem 1.2 part (1) with Lemma 2.13. Hence, we
have Theorem 1.5 from the Introduction.

3 Orbit counts in P1

3.1 Generic bounds

Now that we have some handle on the growth of functions with various boundedness
properties in a semigroup, we turn to the asymptotic growth of points in orbits of
bounded height. To make this transition, we need some control on the functions
that agree at a particular value. This is possible when V = P1 precisely because we
have some control on the set of rational (or integral) points on curves. To state this
refinement in dimension 1, it will be useful to have the following general definition.

Definition 3.1 Let S be a set of endomorphisms of a variety V that are polarizable
with respect to a common ample invertible sheaf L. Then, we say that MS has the
cancellation property if for each P ∈ V , there is a positive constant B = B(P) such that
if f (Q1) = g(Q2) for some f , g ∈ MS and some Q1 , Q2 ∈ OrbS(P) with hL(Q i) > B,
then we have compositional factorizations f = ϕ ○ f0 and g = ϕ ○ g0 for some ϕ ∈ S
and f0 , g0 ∈ MS ∪ {id} with f0(Q1) = g0(Q2).

In particular, if MS has the cancellation property above, then an asymptotic on the
number of functions yielding a bounded height relation leads to an asymptotic for the
number of points of bounded height in orbits.

Proposition 3.2 Let S = {ϕ1 , . . . , ϕr} be a polarizable set of endomorphisms of a
variety V generating a free semigroup with the cancellation property, and suppose that
P ∈ V is such that OrbS(P) is infinite. Then, there exists a B > 0 and points Q1 , . . . , Qt ∈
OrbS(P) such that hL(Q i) > B and

#{Q ∈ OrbS(P)∶ hL(Q) ≤ X} ∼
t
∑
i=1

#{ f ∈ MS ∶ hL( f (Q i)) ≤ X}.(3.2.1)

In particular, we may choose non-preperiodic points Q1 , . . . , Qt ∈ OrbS(P) such that
(3.2.1) holds.
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Proof Let B0 be the constant from Lemma 2.11, let B1 be the constant from
Definition 3.1, and let B = max(B1 , B0). Then, Lemma 2.13 implies that there exists
a finite set F and points Q1 , . . . , Qn satisfying hL(Q i) > B such that

OrbS(P) = F ∪
n
⋃
i=1

OrbS(Q i).(3.2.2)

We will show that the union over the OrbS(Q i) may be written as a disjoint union.
To see this, suppose that f (Q i) = g(Q j) for some f , g ∈ MS . If ∣ f ∣ = ∣g∣, then repeated
application of the cancellation property implies that Q i = Q j . However, if ∣ f ∣ ≠ ∣g∣, say
without loss ∣ f ∣ > ∣g∣, then repeated application of the cancellation property implies
that f0(Q i) = Q j for some f0 ∈ MS . Hence, OrbS(Q j) ⊆ OrbS(Q i) in this case. Thus,
after reordering if necessary, we may choose t ≤ n such that

OrbS(P) = F ∪
t
⊔
i=1

OrbS(Q i).(3.2.3)

However, for each Q i , a similar argument implies that the evaluation map f → f (Q i)
is injective: if f (Q i) = g(Q i) for some ∣ f ∣ = ∣g∣, then repeated application of the
cancellation property implies that f = g. Likewise, if ∣ f ∣ > ∣g∣, then repeated appli-
cation of the cancellation property implies that f0(Q i) = Q i for some non-identity
map f0 ∈ MS . But then Q i is preperiodic, contradicting Lemma 2.11 and the fact that
hL(Q i) > B. Therefore, for each Q i , the evaluation map f → f (Q i) is injective, and
thus,

#{Q ∈ OrbS(Q i) ∶ hL(Q) ≤ X} = #{ f ∈ MS ∶ hL( f (Q i)) ≤ X}.(3.2.4)

Hence, combining (3.2.3) and (3.2.4), we obtain (3.2.1) as claimed. ∎
We next note that many sets of rational maps on V = P1 generate semigroups with

the cancellation property above. To make this precise, recall that w ∈ P1(Q) is called
a critical value of ϕ ∈ Q(x) if ϕ−1(w) contains fewer than deg(ϕ) elements. Likewise,
we call a critical value w of ϕ simple if ϕ−1(w) contains exactly deg(ϕ) − 1 points. In
particular, we have the corresponding notions for sets:
Definition 3.3 Let S = {ϕ1 , . . . , ϕr} be a set of rational maps onP1, and letCϕ i denote
the set of critical values of ϕ i . Then, S is called critically separate if Cϕ i ∩ Cϕ j = ∅ for
all i ≠ j. Moreover, S is called critically simple if every critical value of every ϕ ∈ S is
simple.

In particular, critically separate and critically simple sets of maps have the cancel-
lation property; see also Proposition 4.1 and Lemma 4.8 in [6].
Proposition 3.4 Let S = {ϕ1 , . . . , ϕr} be a critically separate and critically simple set
of rational maps on P1 all of degree at least four. The following statements hold:
(1) MS is a free semigroup.
(2) For all non-preperiodic P, there is a constant tS ,P such that

#{ f ∈ MS ∶ f (P) = Q} ≤ tS ,P

holds for all Q ∈ OrbS(P).
(3) The semigroup MS has the cancellation property.

https://doi.org/10.4153/S0008414X24000579 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000579


Counting points by height in semigroup orbits 19

Proof The first two statements are proved in [6, §4]. Therefore, it only remains
to prove (3). Let K be a number field over which P and all maps in S are defined.
By the main results in [18] (see also [6, Proposition 4.6]), we have that the curves
Ck ∶= {(x , y)∶ ϕk(x)−ϕk(y)

x−y = 0} for k = 1, . . . , r and C i , j ∶= {(x , y)∶ϕ i(x) = ϕ j(y)} for
i ≠ j have only finitely many K-points, and we let Σ denote the finite set of K-points
of the union of these curves.

Let

B0 = max
(P1 ,P2)∈Σ

{max{hL(P1), hL(P2)}},

let B1 be the constant from Lemma 2.11, and let B = max{B0 , B1}. Now suppose that
f , g ∈ MS and Q1 , Q2 ∈ P1 satisfy

min(hL(Q1), hL(Q2)) > B

and f (Q1) = g(Q2). We will show that B satisfies the conditions needed in
Definition 3.1. To see this, write f = ϕ i ○ f0 and g = ϕ j ○ g0 for f0 , g0 ∈ MS ∪ {id} and
1 ≤ i , j ≤ r. There are now two cases to consider. The first is when i ≠ j. In this case,
( f0(Q1), g0(Q2)) ∈ C i , j and hence must be in Σ, and so

max(hL( f0(Q1)), hL(g0(Q2))) ≤ B0 ≤ B.

However, since min(hL(Q1), hL(Q2)) > B ≥ B1, it follows from Lemma 2.11 that

min(hL( f0(Q1)), hL(g0(Q2))) > B,

a contradiction.
The remaining case is when i = j and f0(Q1) ≠ g0(Q2). In this case, we have

that ( f0(Q1), g0(Q2)) ∈ C i and hence is in Σ, and the result again follows as in the
preceding case. ∎

We can now improve the main result in [6].

Theorem 3.5 Let S = {ϕ1 , . . . , ϕr} be a critically separate and critically simple set of
rational maps on P1 all of degree at least four. Moreover, assume that r ≥ 2, and let ρ be
the positive real number satisfying ∑deg(ϕ i)−ρ = 1. Then,

#{Q ∈ OrbS(P) ∶ h(Q) ≤ X} ≍ Xρ

for all P ∈ P1(Q) such that OrbS(P) is infinite. Moreover, if the degrees of the maps in
S are acyclic, then

#{Q ∈ OrbS(P) ∶ h(Q) ≤ X} ∼ cXρ

for some positive constant c, depending on P and S.

Proof Assume that P is a point in P1 that satisfies that OrbS(P) is infinite. Then,
Proposition 3.4 implies that MS is free and has the cancellation property. Hence,
Proposition 3.2 implies that there exists non-preperiodic points Q1 , . . . , Qt ∈ OrbS(P)
such that

#{Q ∈ OrbS(P)∶ h(Q) ≤ X} ∼
t
∑
i=1

#{ f ∈ MS ∶ h( f (Q i)) ≤ X}.(3.5.1)
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From here, the result now follows directly from Theorem 1.2. For instance, if the
degrees of the maps in S are acyclic, then statement (4) of Theorem 1.2 implies that
for each Q i there are positive constants cS ,Q i such that

#{ f ∈ MS ∶ h( f (Q i)) ≤ X} ∼ cS ,Q i Xρ .(3.5.2)

Here, we use that the Q i are not preperiodic. In particular, combining (3.5.1) and
(3.5.2) yields the desired conclusion. Likewise, the general case follows from (3.5.1)
and statement (3) of Theorem 1.2. ∎

In particular, if we fix integers d1 , . . . dr all at least four, then the bound for orbits
in Theorem 3.5 holds on a Zariski open subset of Ratd1 × ⋅ ⋅ ⋅ × Ratdr .

Proof of Theorem 1.6 For each d i ≥ 4, the proof of [18, Theorem 1.4] on page 211
implies that there is a proper open subset U i ⊂ Ratd i such that each ϕ ∈ U i is critically
simple. Likewise, the proof of [18, Theorem 1.2] on pages 208–209 implies that for
each pair (d i , d j), there are proper open subsets Vi j ⊂ Ratd i and Wi j ⊂ Ratd j such that
{ϕ, ψ} is a critically separate set of maps for all ϕ ∈ Vi j and ψ ∈ Wi j . Now define the
open set

U ∶= O1 × ⋅ ⋅ ⋅ × Or ⊂ Ratd1 × ⋅ ⋅ ⋅ × Ratdr , where O i =
r
⋂
j=1
(U i ∩ Vi j ∩ Wji).

In particular, if (ϕ1 , . . . , ϕr) ∈ U , then it follows that S = {ϕ1 , . . . , ϕr} is a critically
simple and critically separate set of maps whose orbits satisfy the desired height
bounds by Theorem 3.5. ∎

Although Theorems 3.5 and 1.6 do not apply directly to polynomials, similar
statements can be made in this case assuming the disjointness and simplicity of affine
critical values and that the degrees of the polynomials in S are at least 5; see, for
instance, [4, §3]. However, such conditions are stronger than those in the following
result; compare to [6, Theorem 1.6].

Theorem 3.6 Let S = {ϕ1 , . . . , ϕr} be a set of polynomials defined over a number field
K with distinct and acyclic degrees all at least 2. Moreover, let ρ be the real number
satisfying ∑ϕ∈S deg(ϕ)−ρ = 1, and assume that the following conditions hold:

(1) Each ϕ i ∈ S is not of the form R ○ E ○ L for some polynomial R ∈ Q[x], some cyclic
or Chebyshev polynomial E with deg(E) ≥ 2, and some linear polynomial L ∈ Q[x];

(2) For all i ≠ j, we have that ϕ j ≠ ϕ i ○ F for any F ∈ Q[x].
Then, MS is a free semigroup, and for all points P ∈ P1(K) such that OrbS(P) is infinite,
we have that

#{Q ∈ OrbS(P) ∶ h(P) ≤ X} ∼ cXρ

for some positive constant c depending on S and P.

Proof The semigroup MS is free by [6, Theorem 1.6]. For the rest, take O ⊂ K to
be a ring of S-integers in K containing P and all the coefficients of polynomials in
S. Then, the curves Cϕ ∶= {(x , y)∶ ϕ(x)−ϕ(y)

(x−y) = 0} and Cϕ ,ψ ∶= {(x , y)∶ϕ(x) = ψ(y)}
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have finitely many O-points by [6, Proposition 4.5] for all distinct ϕ, ψ ∈ S; that is,
the set

Σ ∶= {(x , y) ∈ O ×O ∶ (x , y) ∈ Cϕ or (x , y) ∈ Cϕ ,ψ for some ϕ, ψ ∈ S}
is finite. From here, an identical proof to that of statement (3) of Proposition 3.4 implies
that MS has the cancellation property; specifically, if

B0 = max
(x , y)∈Σ

{max{h(x), h(y)}},

if B1 is the constant from Lemma 2.11, and if B = max{B0 , B1}, then B = B(P) satisfies
the conditions of Definition 3.1. In particular, the desired asymptotics now follow
directly from Proposition 3.2 and Theorem 1.2. ∎
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