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Our ability to navigate materials and classify both atomic structure and defects is key to developing new 

materials with improved properties, such as piezoelectrics [1], thermoelectrics [2] and 2D materials [3]. 

So far this process has been mostly human based, relying on our finding the critical defects and deciding 

which are important ourselves. However, machine learning is beginning to enable automatic 

classification of defects and structures without human supervision or the need for training datasets. Such 

capability could lead to improved analysis of structural evolution during in-situ experiments, or even to 

a self-driving microscope in the future. 
 

We have developed a promising unsupervised approach to defect classification based on Zernike 

polynomial analysis of image patches, which is able to automatically find and classify atomic defects in 

a variety of materials. It is highly robust to noise, and separates different features more successfully than 

other image analysis methods such as t-SNE or UMAP. 

 

Fig. 1a shows the first 15 terms of the Zernike polynomial basis set, into which image patches are 

decomposed. The Zernike polynomials are especially sensitive to the distribution of neighboring atoms, 

which provides their effectiveness in classifying atomic-scale defects. Fig. 1b,c shows how the image is 

first split into patches entered on symmetry points, such as atom columns, and then decomposed into 

Zernike components, Fig. 1d. This can be done either with or without sensitivity to orientation 

(rotational invariance on or off). The 16,384 pixels of the each original image patch have been replaced 

by 66 Zernike elements. Further dimension reduction is by principal component analysis, Fig. 2a,b, 

followed by a second force relaxed clustering approach using k-nearest neighbors, Fig 2b,c. This stage 

greatly improves cluster separation. 

 

Fig. 3 shows this process applied to an image of monolayer WS2 which identifies several different point 

defect types, Fe substituting for W, Te substituting for S, S next to Fe and Te next to W, denoted #, and 

single S vacancies [4]. The patches identified as the same defect can then be averaged to remove noise, 

Fig. 3c, and compared to simulations to confirm the identity of the point defect, Fig. 3d. 
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Figure 1. (a) The first 15 Zernike polynomials, (b) Z-contrast image of monolayer MoSe2, (c) patch 

extraction and (d) expansion into Zernike coefficients. 

Figure 2. (a) Principle component analysis of the Zernike components followed by (b) a force relaxed 

clustering approach. 

Figure 3. (a) Classification into different point defect types. (b) Averaged images of different point 

defects compared to simulations. 
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