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Personalized medicine (PM) aims to establish a new approach in clinical decision-making, based upon a patient’s indi-
vidual profile in order to tailor treatment to each patient’s characteristics. Although this has become a focus of the dis-
cussion also in the psychiatric field, with evidence of its high potential coming from several proof-of-concept studies,
nearly no tools have been developed by now that are ready to be applied in clinical practice. In this paper, we discuss
recent technological advances that can make a shift toward a clinical application of the PM paradigm. We focus specifi-
cally on those technologies that allow both the collection of massive as much as real-time data, i.e., electronic medical
records and smart wearable devices, and to achieve relevant predictions using these data, i.e. the application of machine
learning techniques.
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Introduction

The term personalized medicine (PM), sometimes also
referred to as precision or individualized medicine,
indicates a new paradigm in clinical practice. It pro-
poses to establish clinical decisions based upona patient’s
individual profile, tailoring the treatment to his/her char-
acteristics, needs, and preferences during all phases of
care including prevention, diagnosis, treatment, and
follow-up (U.S. Food And Drug Administration, 2013).
Although a personalized approach is characteristic of
several ancient and modern non-evidence-based med-
ical systems (Salvador-Carulla & Mezzich, 2012), PM
aims to provide scientifically sound and evidence-
based individual indications and predictions, funda-
mentally changing current clinical decision-making
paradigms.

At present, evidence-based psychiatry mainly refers
to practice guidelines (e.g., those from the UK National
Institute for Health and Care Excellence, NICE, and
theAmerican Psychiatric Association, APA) that recom-
mend the interventions indicated by scientific evidence
as the most effective for the ‘average’ patients suffering
from a specific DSM/ICD diagnostic class. However,

high variability of treatment responses among patients
with the same categorical psychiatric diagnosis is
observed and clinical practice requires to tailor guide-
lines recommendation with each patient, exploiting
recent scientific evidence and each clinician’s past
experience. The purpose of PM is precisely to provide
reliable assistance in such customized clinical decisions.

If in other fields of medicine, particularly oncology,
PM tools have already been developed and are now
part of current clinical practice with considerable
improvements in treatment outcomes, the development
of a personalized psychiatry is particularly challenging
because eachpsychiatric diagnosis includes veryhetero-
geneous entities characterized by extremely complex
and variable changes in the brain, which are caused by
a large number of genetic and environmental factors.

A research approach guided by PM might be now
feasible because of the latest improvements in technol-
ogy and data analysis methods. They have made the
investigation and analyses of large quantities of vari-
ous types of data rapid and economically sustainable.
This would have been unthinkable just a couple of dec-
ades ago (McIntosh et al. 2016). DNA-sequencing tech-
niques are an example, with the cost of the human
genome of single subjects reducing from $300 million
in 2001 to $1000 in 2014 (Personalized Medicine
Coalition, 2014); and nowadays, new techniques allow-
ing extensive analyses of much more than genotyping
opened the age of the ‘ome,’ i.e., genome, transcriptome,
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and proteome (Myers, 2012). Moreover, the exponen-
tial increase of the computational power and size
reduction of biosensors now permit continuous and
real-time analyses of physiological parameters.

Several reviews summarizing the current state-of-art
of PM have already been published and all of them
claim that, although it is still at an early stage, PM in
psychiatry has a very promising future in improving
the accuracy and relevance of predictions of both dis-
ease vulnerability and treatment outcomes (i.e. Costa
e Silva, 2013; Ozomaro et al. 2013; McMahon, 2014).
However, apart from early enthusiasm and the prom-
ising preliminary results of many theoretical papers
and proof-of-concept studies, very few tools have
been developed and are ready to be applied in clinical
practice. They are mainly pharmacogenetic test kits (e.
g. the FDA approved AmpliChip CYP450 Test from
Roche, Switzerland, and GeneSight from AssureRx
Health, OH, USA), but their cost-effectiveness is still
debated (Howland, 2014; Chau & Thomas, 2015;
Peterson et al. 2017).

To make the PM paradigm applicable, actionable
tools are required. In this paper we will introduce
some of the technological advances that can contribute
to the development of such tools in psychiatry. Two
fundamental steps are necessary to make a prediction:
(1) to have the pertinent requisite information available
regarding the phenomenon to predict and (2) to
develop a model capable of making a prediction
from such information. Therefore, in this commentary,
we will briefly introduce two new recent tools which
provide opportunity to collect relevant data, i.e. elec-
tronic medical records (EMR) and smart wearable
devices, as well as analytic techniques on how to
make predictions from them, i.e., machine learning.
Instead, we will not cover in the current paper other
advances that are rapidly contributing to the founda-
tion of a personalized approach in psychiatry, i.e. gen-
omics, epigenetics, transcriptomics, and proteomics, as
several comprehensive papers have already been pub-
lished on this topic (Myers, 2012; Geschwind & Flint,
2015; Sokolowska et al. 2015).

Big clinical data: EMR

The financial cost and time commitment of research
has always forced researchers to make difficult deci-
sions regarding selection of which information to
study and collect, compelling them to test a limited
number of hypotheses. Instead, the recent affordability
and widespread availability and use of IT have made
huge amounts of data easy to collect and inexpensive
to store and analyze. The introduction of EMR sud-
denly makes all clinical information electronically stor-
able and ready for use for potential investigations. The

rate of adoption of EMR is proving to be impressive, e.
g., from 18% in 2001 up to 78% in 2013 in US office-
based physicians (Hsiao & Hing, 2014).

EMRs permit fast and easy acquisition of much
patient data. However, EMRs usually include messy
and unstandardized clinical information. The insertion
of clinical data typically does not follow a standardized
convention as research data does. In addition, non-
homogeneous sets of data may be collected for each
patient, with several missing-values broadly dis-
tributed along the different fields, particularly if
records from different clinical centers are merged.
Furthermore, only part of the information is coded in
formats already suitable to be analyzed, while the
remainder is inputted in formats such as natural lan-
guage that need to be processed before any kind of
analysis can be applied.

Although these and more limitations may challenge
the use of such data in research, EMR also present sev-
eral opportunities (Gummadi et al. 2014; Castaneda
et al. 2015). Evidence indicates that the availability of
huge amounts of ‘noisy’ data may counterbalance the
absence of optimal quality, a subject of considerable
debate. Promising proof exists that processing techni-
ques can be effectively used to extract and code rele-
vant information from unstructured data, e.g.,
applying natural language analytic tools to clinical
notes (Perlis et al. 2012; Castro et al. 2015; McCoy
et al. 2015; Patel et al. 2015b). For example, in a study
by Perlis et al., the application of natural language pro-
cessing technique to information provided by EMR
clinical notes allowed to classify current mood state
of inpatients with a billing diagnosis of major depres-
sive disorder and define their longitudinal outcomes
(Perlis et al. 2012). Castro et al. used similar techniques
to design a diagnostic algorithm for Bipolar Disorder
using information included in the EMR of patients of
the Partners Healthcare Research Patient Data
Registry (Castro et al. 2015). Both studies used large
samples and proved high accuracy (area under the
receiving operating curve higher than 0.8) in perform-
ing diagnostic classification.

A progressive alignment of the information collected
in the EMRs from all clinical centers will incrementally
improve the use of EMR data in research. However
diagnostic, assessment, and therapeutic procedures
are far from being fully standardized in medicine in
general and this is even more so in psychiatry, with
substantial variation among clinicians and clinical cen-
ters. This expected heterogeneity of data coming from
different EMRs might be reduced with the adoption of
national and international good practice guidelines for
EMR, e.g., those from the Department of Health et al.
(2011). This would also result in the greater clinical
utility of EMRs, making it easier for clinicians to
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share each other’s information on their mutual patients
and to retrace the whole clinical history of each patient.
For such widespread data collection to be possible,
EMR platforms must be fungible or at least mergeable
in solitary databases, a goal unrealized in the USA
with its multiple and competing platforms, e.g.
Cerner, Epic, Meditech, etc.

It is important to remember that data from EMR are
naturalistically collected in clinical settings. These are
suitable for investigating multiple associations among
different domains, a process that becomes fast and
inexpensive even with large sample sizes. Also, these
data may be used to develop predictive models,
which may take advantage of the largeness of EMR
datasets even when these are unstructured and sparse.

However, if a causal direction needs to be studied,
this ‘data mining’ attitude to naturalistic data can
only be useful in generating hypotheses, but it is
unlikely that conclusive evidence can be achieved
from these data. Association is a necessary but not
sufficient condition to establish causation (Hume,
1739), and although advances in the field of causal
inference are providing methodologies to infer caus-
ation, under specific circumstances, even from obser-
vational data (Pearl, 2010; Mooij et al. 2016),
causation still generally requires testing in experimen-
tally designed studies.

Real-time data collection through smart wearable
devices

Another recent opportunity for the creation of a perso-
nalized psychiatry comes from the continuous mini-
aturization of physiological sensors, permitting them
to be integrated in wearable devices. Ambulatory mon-
itoring machines have been available for a long time,
e.g. Holter monitors for electrocardiography, arterial
pressure, and electroencephalography have been used
since the early 1960s. However, they are suitable only
for time-limited use because of their considerable
inconvenience for patients. Although portable, these
devices are visible, subjects perceive their weight,
and they can substantially interfere with movement.

Only recently have the sensors reached a size that is
suitable for investigation in smart wearable accessor-
ies, such as watches, wristbands, jewelry, clothes,
smartphones, and patches (Xu et al. 2014). Even
when the subjects are unfamiliar with them, these
devices are perceived as minimally intrusive and can
be worn continuously without affecting daily activities
and being noticed by the wearer, with costs that are
becoming increasingly affordable (Fung et al. 2015).

Several vital signs can now be measured with such
miniaturized sensors, e.g. motion heart rate, body
and skin temperature, arterial blood pressure, blood

oxygen saturation, electrocardiograms, electroencepha-
lograms (EEGs), and respiration rate (Chan et al. 2012).
Furthermore, the capillary connection of devices to the
internet and to each other, the so called ‘Internet of
Things’ (Ashton, 2009), also allows a real-time stream-
ing of data as much as their real-time analyses.

Smart wearable devices are one of the main current
trends in non-medical consumer technology (Gilmore,
2015), but this revolution also opens up interesting
possibilities in the entire medical field and particularly
in psychiatry. Measurements are not only recorded
continuously and in real-time, but objective physio-
logical signals are becoming easily available to comple-
ment the assessment of symptoms, mental states, and
behavior provided by patients or clinicians.

Smartphones play a fundamental role in this oppor-
tunity. Not only they provide a bridge to make wear-
able devices always connected to the Internet, but
they also directly permit the collection of relevant
data (Van Ameringen et al. 2017), through apps that
allow users to insert information, as well as auto-
matically collecting data via sensors that smartphones
embed. For example, the motion sensors available in
all smartphones, which are commonly used to track
subject activities, have also been used to capture
heart and respiration rates, providing preliminary
promising results, at least in positions and activities
without too much motion (Hernandez et al. 2015).

With the use of these devices, data and significant
warnings can be continuously sent to clinicians, allow-
ing them to monitor their patients’ conditions and
promptly intervene in case of necessity. Moreover,
real-time information can also be sent directly to
patients providing them with a better awareness of
their condition and promoting a first-person participa-
tion in their treatment and prevention process.

This strategy has been very effective in monitoring
pain, and recent proof-of-concept studies investigated
the promise of such continuous monitoring in subjects
with psychiatric disorder (Glenn & Monteith, 2014).
For example, O’Brein et al. investigated the opportun-
ity of using wrist-worn activity measurement as a real-
world diagnostic biomarker for late-life depression.
Results corroborated their hypotheses and specific
activity parameters characterizing patients with
depression compared with healthy controls were iden-
tified, such as reduction in activity in specific times of
the day and slower and more repetitive fine motor
movements (O’Brien et al. 2017). Furthermore, the
European project MONARCA funded through the 7
Framework Program, developed and pilot tested a
mobile technology for bipolar disorder patients with
long term monitoring of physiological and behavioral
information. The MONARCA system consists of four
integrated elements with a sensor enabled mobile
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phone, wrist worn activity monitor, stationary EEG
system for periodic measurements, and novel ‘sock
integrated’ electrodermal activity sensor. These
measures are collected with the aim of providing man-
agement, treatment, and self-treatment of the disease
and to assess early warning signs and predict occur-
rence of episodes in an objective and timely manner
(Kappeler-Setz et al. 2013; Faurholt-Jepsen et al. 2015;
Haring et al. 2015; Osmani, 2015).

These studies led to encouraging results and were
also able to identify challenges related to the applica-
tion of these technologies. However, they are just
early prototypes. Only further replications of these
investigations on larger clinical samples will provide
clear evidence of their clinical utility and cost-
effectiveness, which is lacking at the moment.
Moreover, a transition from proof-of-concept to fully-
implemented and operating instruments is necessary
before their utility will be clear.

For example, Empatica inc. (CA, USA; Italy) com-
mercializes non-invasive wristbands that are able to
continuously monitor skin temperature, skin conduct-
ance, movement, and heart rate parameters with preci-
sion. A recently released wristband and app may
become an everyday application for epileptic patients,
sending caregivers an alert when an epileptic seizure is
occurring. Although a stress monitoring app will also
be available, no specific application for patients with
psychiatric disorders has been developed.

An ‘era of pervasive healthcare’ (Glenn & Monteith,
2014) can be envisioned as soon as the application of
such systems becomes widespread. However, as for
any innovative product and service, it is important
that these tools are designed in a user-centric manner
with a careful understanding of the patients’ needs, a
focus on usability and user experience, and direct
involvement of patients during the development
phase (Norman, 2013). This is a crucial factor to ensure
that these instruments are accepted and easily adopted
(Chan et al. 2012).

Nowadays the possession of personal digital data by
private as well as governmental institutions has been
generating a lot of discussion and regulations in the
attempt to safeguard individuals’ right to privacy.
The same issue concerns medical data. A ‘pervasive
healthcare’ necessary implies a pervasive involvement
of several parties, much more than the two traditional
holders of such information, that are the patients and
their attending care providers. Beyond the mere risk
of privacy violation, the use of EMRs and devices
that continuously stream sensible data through the
Internet places several issues about data protection
and ethical concerns regarding the massive participa-
tion of further stakeholders other than the two previ-
ously mentioned. Data can be a source of enormous

revenues for private companies and regulations should
be made considering all parties’ interests but without
compromises in regards to patients’ safety and rights.

From information to prediction: machine learning

EMR and miniaturized sensors embedded in wearable
devices, as well as genomics, epigenetics, transcrip-
tomics, and proteomics assessments, allow for the col-
lection of a huge amount of data for every single
patient. However, even when relevant information is
available, making a prediction requires a model that
connects this information with the outcome. Machine
learning is a field at the crossroads of computer sci-
ence, engineering, and statistics ‘that gives computers
the ability to learn without being explicitly pro-
grammed’ (Samuel, 1959).

In medicine, statistical inferential analyses are com-
monly applied to test hypotheses and provide evi-
dence regarding a certain population (e.g., all people
suffering from a certain disorder) with data coming
from limited samples. The tested hypotheses are usu-
ally about association and causation, with the final
goal of achieving a better understanding of the rela-
tionships among a multitude of factors. Differently,
machine learning is a data-driven approach. Such pro-
cedures use the available data as training examples to
detect patterns and build algorithms that will be able
to perform specific tasks.

In particular, a family of machine learning proce-
dures referred to as ‘supervised’ can be used to
develop predictive algorithms able to provide the
best possible prediction when applied to new cases,
i.e. making single-patient prediction of its expected
response before a therapy is administered. Several
supervised methods have been developed, e.g., artifi-
cial neural network (Bishop, 1995), support vector
machine (Cristianini & Shawe-Taylor, 2012), random
forest (Breiman, 2001), boosting (Breiman, 1998), but
also traditional statistical methods (i.e., from linear
regression to the generalized linear model) can be
applied to create predictive models. The most
advanced machine learning techniques can achieve
excellent predictive performance considering their abil-
ity to build a complex model of the non-linear relation-
ships and interactions that connect the set of predictors
and the response variable. However, the trade-off for
such a predictive performance is often a limited possi-
bility to understand the model itself. While simpler
models, such as linear models and decision trees,
may allow to be easily interpreted, in the most complex
ones, which are often the most performing, a clear
understanding of the relationship between predictors
and the predicted output is often ‘blacked-boxed’.
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Instead, the so-called ‘unsupervised’ machine learn-
ing procedures can be used to automatically detect
intrinsic structures in the data. This is different than
what accomplished with the supervised ones, where
the outcome to be predicted is a priori defined
(Calebi & Aydin, 2016). With unsupervised techniques,
one common aim is the identification of relevant sub-
groups (i.e. clusters) in a population of interest.

Beyond the abovementioned models, recent machine
learning developments promise to help solve new and
more complex problems that can be relevant in medi-
cine. For instance, these techniques allow to update
the single-subject predictions on the basis of the new
measurements and information that accumulate dur-
ing time (time-series techniques and especially novel
methods based on Bayesian hierarchical models (Xu
et al. 2016), to optimize a recurrent decision-making
process based on rewards obtained from previous
choices (reinforcement learning models (Escandell-
Montero et al. 2014), and to identify novel drug targets
exploiting the previously established drug-target asso-
ciations (matrix factorization techniques, as usually
applied in recommender systems (Cobanoglu et al.
2013)).

The rush towards the application of machine learn-
ing techniques has recently spread out into several
fields, such as financial markets, marketing, artificial
intelligence, fraud detection, industry control systems,
and also medicine, initially principally in genetics and
oncology (Yoo et al. 2014; Kourou et al. 2015). In psych-
iatry, the more widespread use of machine learning by
now regards the application of various supervised
machine learning algorithms to solve prediction pro-
blems, with an exponential increase in publications
on this topic in recent years. For example, fMRI data
measured during a differential fear-conditioning task
were used to predict the response to a cognitive behav-
ioral therapy in patients with panic disorder with
agoraphobia, applying Gaussian process classifiers
that achieved a correct classification as high as 82%
(Hahn et al. 2015). Similarly, pre-treatment EEGs
were applied to a mixture of factor analysis technique,
achieving an 87.9% of correct classification in predict-
ing the treatment response of a selective serotonin
reuptake inhibitor in major depressive disorder
(Khodayari-Rostamabad et al. 2013).

A convex hull classification algorithm achieved a
100% correct classification of later (2.5 years) psychosis
in 34 high-risk youths considering semantic and
syntactic features extracted from transcripts of inter-
views (Bedi et al. 2015), and suicide attempts among
patients with mood disorders were predicted with a
72% accuracy with clinical and demographic informa-
tion applied to a relevance vector machine algorithm

(Passos et al. 2016). Several more examples are avail-
able in the recent literature, with the aim or early pre-
dicting response to both pharmacological and non-
pharmacological treatment (Salomoni et al. 2009;
Amminger et al. 2015; Mansson et al. 2015; Patel et al.
2015a; Chekroud et al. 2016), remission (Askland et al.
2015), relapse (Liu et al. 2015), severity levels of depres-
sion and suicidal ideation (Setoyama et al. 2016), risk
for later developing a certain psychiatric disorder
(Carpenter et al. 2016; Chuang & Kuo, 2017; Emerson
et al. 2017), as well as to automatically perform diagno-
sis (Wall et al. 2012; Khodayari-Rostamabad et al. 2013;
Johnston et al. 2014; Amminger et al. 2015; Askland
et al. 2015; Liu et al. 2015; Mansson et al. 2015; Qin
et al. 2015; Ravan et al. 2015; Patel et al. 2015a;
Chekroud et al. 2016) and this field will surely expand
exponentially in the years to come. Theoretically, pre-
dictive tools may be developed for nearly all clinically
relevant questions, assisting clinicians when making
decisions with patients.

Unsupervised machine learning techniques are
becoming more popular in the psychiatric field with
the aim to identify distinct subgroups within diagnos-
tic entity. Given the aforementioned heterogeneity in
psychiatry, this is advised by some Authors as a neces-
sary initial step to develop a PM approach in psych-
iatry (Fraguas et al. 2017). To mention only a couple
of interesting examples regarding Bipolar Disorder,
several studies used Gaussian mixture models and
found three subgroups of patients according to their
age at onset, which are characterized by different
phenotypical features (Azorin et al. 2013), while
Russo et al. used hierarchical cluster techniques to iden-
tify three neurocognitive subtypes (Russo et al. 2017).

Such results are relevant because it is possible to fur-
ther investigate if these homogeneous subgroups may
show different responses to different treatments, thus
giving the opportunity to make treatment prescrip-
tions that have a higher expectation of efficacy in
each of these groups of individuals. This is usually
referred to as ‘stratified medicine’, a sort of half-way
between the current one-diagnosis-fits-all prescription
system and the final goal of developing an individual-
level personalized one, an approach that has more
chances to become quickly applied in psychiatry
(Perlis, 2014).

However, this remarkable increase of interest of
researches and publications has not been associated
with an increase in the application of these models.
Even when promising results are achieved and
published, these models have largely been abandoned
at an early-stage level of development without
attempting to progress up to a clinical readiness
level. This ultimately requires an investigation of
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their performance ‘in the wild’, i.e. when applied to
different independent clinical samples.

Moreover, it is important to remember that even the
best machine learning techniques cannot provide any
prediction if the information that is inputted is not
related to the response variable and/or other relevant
predictors are missed. The identification of relevant
predictors remains the most important and challenging
step in prediction and precedes the application of any
algorithmic tool. When predictors are unknown, the
best opportunity to unearth them relies either on
exploration of datasets already available or deriving
them from the current scientific evidence, as much as
experts’ own experience.

Challenges and opportunities to make personalized
psychiatry happen

The aforementioned innovations in technology
might help a PM approach in psychiatry to become
feasible. Considering the potential upside expected
by shifting towards this approach in psychiatry and
the substantial numbers of proof-of-concept studies
that highlight this opportunity, what are the reasons
for such a lack of commercially available tools
ready for application in clinical practice? Any para-
digm shift, both in science and in medical practice,
always implies an initial ‘critical mass’ of pre-
liminary evidence and early-adopters before the
change actually gains some momentum and becomes
widespread.

Personalized psychiatry has recently also become a
focus of both conferences and literature, with many
reviews, editorials, and thematic symposia dedicated
to this topic. This is ultimately leading to a broader
awareness of such an envisioned future for psychi-
atric clinical practice. It is time to increase these
efforts to translate preliminary evidence and knowl-
edge into clinical instruments ready to be used by
clinicians.

However, several challenges need to be faced to
achieve this aim. Both research and clinical practice
will have to undergo several structural and procedural
changes in order to allow first a development and then
a widespread diffusion of such tools.

An even stronger cooperation between academic
research and industry is fundamental in the years to
come. Companies should work closely with academic
institutions to provide sound evidence of the efficacy
and cost-effectiveness of developed products, which
should be available at the time of, and not after, their
commercialization. Simultaneously, scientific research
should also consider the translatability of the knowl-
edge it produces. A stronger focus should be provided
on increasing scientific knowledge not per se but with

the possibility of being translated into technology,
achieving a not-too-distant impact on clinical practice.
An example may be the identification of a strong pre-
dictor of treatment response which, however, requires
expensive techniques that not all clinical facilities may
be able to adopt. Such a discovery, which is undoubt-
edly of important theoretical value, may not bring
about any rapid improvement in clinical practice. To
be of any clinical utility, any tool should just not
prove to be efficacious but also efficient and cost-
effective. In contrast, when a promising proof of con-
cept has been outlined, it is necessary to pursue its
final development and validation.

Governments and policy makers will play a major
role in securing the progression of personalized psych-
iatry by their power to influence public health policies
and funding. Moreover, academic institutions should
identify companies as a complementary and speedier
funding source than governmental institutions, with
both sides partnering in the development of both com-
mercially ready and scientifically sound personalized
psychiatric tools.

A widespread adoption of the personalized
approach in psychiatry will not have high chances of
occurring if both its end-users, i.e., clinicians and
patients, do not participate first-hand in this paradigm
change and embrace this model entirely understanding
its advantages. Clinicians should have an active role in
the development of such tools, especially in collecting
data in their everyday clinical practice. Although we
mentioned above that several technological innova-
tions can make data collection easier, at the beginning
the introduction of such technologies can be experi-
enced by clinicians as a burden in their work. They
may be forced to change their routine, to follow new
standardized procedures, and to collect new informa-
tion that they do not usually rely on in their everyday
practice. All these necessary efforts can lead to an
advantage that may be experienced only in the long-
term, while perceived as just time-consuming in the
short-term.

Finally, data coming from multiple clinical centers
have to be jointly used to reach a solid validation of
these tools. As we discussed above, the opportunity
to merge data from independent centers place the chal-
lenge of a higher standardization of clinical and data
collection procedures among different clinical institu-
tions, which is particularly complicated in psychiatry.
Moreover, fulfilling all the requirements to safely
share clinical data in compliance with the regulations
that safeguard patients’ rights to privacy may require
substantial costs.

Only a circle that involves all the stakeholders will
successfully lead to a personalized psychiatry that is
no longer just a ‘pie in the sky’. This implies efforts
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and investments by all of them today aiming at a
return that will be experienced in a not immediate
future.

Considering this, the Personalized Psychiatry section
of the World Psychiatric Association has recently been
founded with the mission to secure, spread, and adopt
the PM approach in psychiatry, promoting collabora-
tive research among institutions and to disseminate
the personalized psychiatry paradigm to both clini-
cians and patients. Tailoring diagnosis and treatments
seem to be an ideal paradigm. A common effort to
move beyond our usual practice in clinical and
research endeavors, incorporating new technologies
in our daily thinking, will enable to open a new era
in psychiatry and behavioral sciences.
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