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Abstract

We prove a priori estimates for the gradient and curvature of spacelike hypersurfaces moving by
mean curvature in a Lorentzian manifold. These estimates are obtained under much weaker con-
ditions than have been previously assumed. We also use mean curvature flow in the construction
of maximal slices in asymptotically flat spacetimes. An essential tool is a maximum principle
for sub-solutions of a parabolic operator on complete Riemannian manifolds with time-dependent
metric.
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Introduction

Spacelike hypersurfaces of prescribed mean curvature have been an important
tool in the study of the structure of Lorentzian manifolds; see, for example, [15]
or [1] for a list of references. General existence and regularity results for such
surfaces in cosmological spacetimes were first obtained by Gerhardt [9]. In [1],
Bartnik proved the existence of entire spacelike maximal hypersurfaces, that
is, hypersurfaces with zero mean curvature, in asymptotically flat spacetimes.
These papers deal directly with the nonlinear elliptic differential equations de-
scribing the respective hypersurfaces. The existence proofs are non-constructive
in that they use topological fixed point theorems.
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42 Klaus Ecker [2]

In [8], an approach via a parabolic equation was taken. An initial hypersur-
face Mo, given by a spacelike embedding x0 : M" ->• Y of an n -dimensional
manifold M" into the spacetime Y, is deformed by the evolution equation

(1) ^-x(p,s) = [(H-je)v](p,s) peM", se(0,s0)as

subject to the initial condition jc(-, 0) = x0, where xs — x(-, s) : M" -*• Y
denotes a one-parameter family of smooth spacelike embeddings, with images
xs(M

n) = Ms, mean curvature H(-,s) and future directed unit normal field
v(-,j) and where Jf? e C°°(Y) is a given function. Note that stationary
solutions of (1) are spacelike hypersurfaces with mean curvature equal to Jff
everywhere. Mean curvature flow problems have previously been studied in
Riemannian manifolds; see [11] and [12].

In [8], existence and asymptotic convergence results for solutions of (1) in
cosmological spacetimes Y were proved. Although the parabolic approach has
the advantage of providing a method of constructing hypersurfaces of prescribed
mean curvature, a major technical difficulty arises due to the fact that the mean
curvature of Ms is not a priori controlled by any structure conditions on Jf
as in the stationary case. Obtaining such control, however, is an essential
step in showing that the equation is uniformly parabolic. In [8], this problem
was handled by imposing a monotonicity condition on the forcing term Jff.
Moreover the timelike convergence condition

Ric(X, X) > 0

for all timelike vector fields X was assumed to hold in Y.
In this paper we overcome some of these technical difficulties by estimating

the gradient function and the mean curvature of the hypersurfaces Ms simultan-
eously, given that the height function on Ms is controlled; see Proposition 2.2.
As in [8], a height bound follows by means of the strong maximum principle if
we assume the existence of future and past barrier surfaces for Mo. This implies
the existence of a solution of (1) for all s € (0, oo) and asymptotic convergence
of a subsequence of (Ms) to a stationary solution without monotonicity condi-
tions on Jf?; see Theorem 2.1. The assumption on the Ricci curvature on y has
been weakened to the condition

(2) Rti(X,X)>Kg(X,X), K > 0 ,

for all timelike vector fields X, where ~g denotes the metric tensor on y. Note,
in particular, that in case Y satisfies Einstein's equations, the weak energy
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[3] On mean curvature flow 43

condition (see [10, 4.3]) implies (2) with K depending on the cosmological
constant and a bound for the scalar curvature of V.

An interesting feature of the a priori estimate implied by Proposition 2.2 is
that it is interior in time, that is, it does not depend on the initial values of the
estimated quantities. This suggests an approximation argument in order to solve
(1) for initial data which are spacelike in a weaker sense. For the corresponding
elliptic equation we refer to the interior gradient estimate in [2, Theorem 3.7]
and its consequences.

In [1], the existence of spacelike hypersurfaces with prescribed mean
curvature M" was proven under very general structure conditions on Jtif (for ex-
ample dependence of JdP on the normal field to the hypersurface) and by merely
assuming global bounds on the geometry of V. So far we have not succeeded in
adapting the parabolic problem to this more general setting. This may be related
to a possible lack of global stability of the stationary solution with respect to the
corresponding variational functional (area in the case J f = 0; see [2, Section
6] for a general definition) in the absence of some of the restrictions we have
imposed.

In Section 3, we establish convergence of a solution of (1) to an entire maximal
hypersurface in an asymptotically flat spacetime, using a maximum principle for
subsolutions of parabolic equations on a complete non-compact manifold with a
parameter-dependent metric, proved in [8] (see also [14] for an earlier version in
the case of a fixed metric), as well as a barrier argument based on the existence
of maximal surfaces proved by Bartnik in [1]. For results on non-compact mean
curvature flow in Euclidean space we refer to [6] and [7]. In [16], some of the
interior estimation techniques of [7] have been adapted to mean curvature flow
in Minkowski space.

I would like to thank Robert Bartnik and Piotr Chrusciel for helpful comments
and Gerhard Huisken for many useful discussions concerning the last section of
this paper.

1. Evolution equations and maximum priciples

As in [8], we consider (n + 1)-dimensional smooth spacetimes "V with a
Lorentzian metric ~g = (ga/J) of signature ( — , + , + , . . . , + ) • The metric pairing
will be denoted by (•, •), the canonical connection by V and the curvature tensor
by Rm = (RapYs). Greek indices run from 0 to n. As in [1] we shall assume
the existence of a global time function t e C°°(jP) with nonzero, past-directed
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timelike vector field Vt. The reference slices y = [x e "V : t(x) = t} have a
future-directed unit normal vector

T = -

where the lapse function \(r € CooP^) is defined by

We denote an adapted orthonormal frame for y by e0, ex,..., en where e0 — T.
For a smooth spacelike hypersurface Mn embedded into V by a map

we let v denote the future-directed timelike unit normal and choose locally an
adapted orthonormal frame r0, xx,..., xn'va.f such that when restricted to
M = x{Mn) we have r0 = v. We denote the induced metric and the curvature
tensor on M by g = (g,7) and Rm = (RJJU) respectively, where Latin indices
range from 1 to n. The second fundamental form A = (/i,7) on M is defined by

Summing over repeated indices we define

H = htl, \A\2 = hiJhu,

the first quantity being the mean curvature of M.

Furthermore, we consider the height function of M given by

u = tw

and the gradient function
v = -(v,T)

which measures the angle between M and the reference slicing y,. Note, in
particular, that (TO, ep) < v for all 0 < a, 0 < n. Therefore, the restriction of
any ^-tensor B € Tk(y)toM can be estimated by

(3) II BITM || < vk || B ||

where || • || denotes the tensor norm in T*(T) . The norm in the space of m-times
continuously differentiable tensorfields in a subset Kef will be denoted by
|| • IL.if-. Let us recall the following evolution equations derived in [8] from
equation (1).
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PROPOSITION 1.1. The metric, the normal and the volume element satisfy

(i) ^-giJ

as

(ii) lj-v
ds

(in) ^fis = H(H-
ds

The height, gradient and mean curvature satisfy

(iv) ( A J u = -Jff~xv - divVr,

(v) (^- - A\ v = -v(\A\2 + Rk(v, v)) - T(HT) + (VJT, T)

-{H-Jtr)(VvT,v),

(vi) (•£- - A J (H - Jt?) = - ( / / - Jf){\A\2 + Ri^(v, v) + (VJf, v»,

where T(HT) denotes the variation of H with respect to a deformation off
generated by T;see [1]. The second fundamental form satisfies the estimates

(vii)

with C = C(n, v, || VRm ||, || Jt \\, || Vjt? ||) and

(viii) f A | |VmA|2 < -2 |Vm + 1A|2

\ds )
+c(m,n) ^

i+j+k=m

for any m > 1, where

(
n, m, v,

j=o j=a
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PROOF. The last inequality is derived similarly as in [12, Lemma 7.2] taking
(3) into account. Note that the different signs arising in the Lorentzian setting
are irrelevant for the estimate.

THEOREM 1.2. [7] Let (Ms)se[o,s0] be a family ofgeodesically complete non-
compact spacelike hypersurfaces solving (1). Suppose the uniform volume
growth condition

voV(Bs
p(p0)) < exp(*0(l + p2))

holds for some point p0 e M" and a uniform constant k0 > 0 for all s € [0, so]
where Bs

p(p0) denotes a geodesic ball of radius p with respect to the induced
metric g{s) — (gij{s)). Let f be a function on M" x [0, s0] which is smooth for
s G (0, so) and continuous for s e [0, s0]. Assume that f satisfies

for a function b and a vector field a with supM,x[0 Jo] \b\ < oo and
l l < 00,

(ii) f(p, 0) < 0 for all p e M"

(iii) f*° j M , exp(-als(p, po)2)\V f\2(p, s)dfisds < oo

for some a > 0 and geodesic distance Is from p0 € M", as well as

(iv) sup
M"x[O,jo]

Then we have f < 0 on M" x [0, SQ

j 8ij

ds
< oo.

REMARK 1.3. The proof in [7] shows that we merely need to assume that / is
a Lipschitz continuous function which satisfies inequality (i) in the weak sense.

COROLLARY 1.4. Suppose the conditions on (Ms)s<B[OiSo] in Theorem 1.2 hold
and let f be a function on M" x [0, s0] satisfying condition (iii) and the inequality

• < a • V / - S2f2 + C2

for some positive numbers S and C and vector field a with supM,,x[0 So] |a| < oo.
Then f satisfies the estimates

(0 f <C/S + l/(82s) on Mn x (0, s0]
(ii) f <C/S + supMo / onMnx [0, s0].
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REMARK 1.5. For a compact manifold M", this was proved in [8, Lemma
4.5]. In the non-compact case, however, we cannot use the maximum point
argument employed there.

PROOF OF COROLLARY 1.4. For g = s ( / - C/S) we verify the inequality

i ll ~ A ) 8 ~ * ' Vg ~
Let gs = max(g - l/S2, 0). Using the relations S7gs = Vg a.e., (g - l/82)gs =
gj as well as Young's inequality to control the term a • Vg we obtain that gs

satisfies the inequality

M"x[0,s0]

in the distributional sense. Since |Vga| also satisfies condition (iii) of the
theorem, inequality (i) follows in view of Remark 1.3. To prove (ii), we argue
similarly that fl where fk = max(/ — k, 0) for k = C/S + supMo / satisfies the
same inequality as gs.

2. Mean curvature flow in cosmological spacetimes

In this section we assume that V is a cosmological spacetime, that is, it is
connected, globally hyperbolic and admits a compact Cauchy surface which, in
particular, implies the existence of a global time function as defined in Section 1.

Following [1] and [8], we call two compact spacelike C2-hypersurfaces M+

and M~ barrier surfaces for Mo with respect to Jif if

M± C /±(M0)

and

HM+ (JC) < Jt(x) for all x e M+

HM (x) > Jf{x) for all x e M~

where /±(M0) denotes the future and past of Mo, respectively.

THEOREM 2.1. Let y be a cosmological spacetime satisfying condition (2).
Assume furthermore that for a spacelike hypersurface Mo two barrier surfaces
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M+ and M~ with respect to 3t? € C°°(70 exist. Then (1) admits a smooth
solution (Ms)fors € (0, oo) with initial surface Mo. Moreover, every sequence
(sic) —> oo has a subsequence (sk') —>• oofor which (MSt,) converges uniformly
to a smooth spacelike hypersurface M^ satisfying

REMARK 2.2. (i) For conditions which ensure asymptotic convergence to a
unique limiting hypersurface and for a discussion of the rate of convergence we
refer to [8].

(ii) The estimates on the quantities v and |V"/4|2, m > 0 on Ms for 5 > 0
depend only on n, infw+ t, supM_ t, K, \\ Jt? \\oo,y, || t W^y and bounds on the
geometry of f.

(iii) Note that in contrast to [8], we do not impose any monotonicity condition
on^T.

(iv) Condition (2) is only used in order to estimate

- ( / / - 3tff (Rlc(v, v) + (VJT, v)) < cv(H - J^f

in the evolution equation for (// — Jtf')2. Note that the method in Propsition 2.3
could also handle an expression of the form cv2~e(H — J^7)2 for any e > 0.
The weaker conditions in [1, Theorem 3.1], however, lead to a term of order
v2(H - 2

The main step in the proof of the theorem is the following a priori estimate.

PROPOSITION 2.3. Let (Ms) be a smooth solution of (I) which is contained in
the region K — {x € f, \t(x)\ < to}. Suppose condition (2) is satisfied. Then
the function

f = ekuv2 + /jL(H -Jf?)2

satisfies the inequality

with smooth vector field

a = - ( 1 + - i - ) ( v - V x " V / - 2 / i iTV*"V( / / - Jf?)2) + — V M
\ 4 / J / v ' 2n

where X, /x, 8 and C depend on n, t0, K, || f \\UK, || Jf? \\UK and \\ Rm Ho,*:.
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PROOF. From Proposition 1.1 (iv) and (3) we infer as in [1] and [8] that

(JL - A) U < cov\

where c0 depends on || \fr ||1A- and \\ Jl? Ho,*- This gives

(4) (^ - A ) eku < c0Xekuv2 - A V " | V H | 2 .

Proposition 1.1 (v) implies as in [1] and [8] that

4- - A J v < -v\A\2 + c(v3 + v2\A\),
ds /

where c depends on n, || ^ Hi,* ar>d || 3P Hi,*- and || Rm ||0,A:.

Estimating

| 4 | V > (1 + — j |Vu|2 - H2v2 - c(n)v4

as in [1] and using Young's inequality for the term v2\A\ yields

(± -A\V2< -4 (l + ^-\ \Vv\2 + cv4 + 2//V.

From H2 < 2(H - Jff)2 + 2Jf?2 and the fact that v > 1 we thus obtain

(5) (^- - A J v2 < - 4 ( l + ^ - j |Vv|2 + c,u4 + 4(// - 3£fv2

where ci depends on n, || ^ III.JC and || J(f \\\iK and || Ric Ho,*-
Proposition 1.1 (vi), assumption (2), the inequalities \A\2 > H2/n and H2 >

\{H - Jif)2 - JV2 as well as (3) applied to the term (VJf?, v) imply

( — - A ) {H-J?)2 < --(H-jr)4+cv(H-Jf?)2+-Jf?2-2\V(H-Jf?)\2

\ds / n n

with c depending on K and || VJt? \\0,K where we again used v > 1.
Using the inequality v(H - Jf?)2 < j-n(H - Jt?)4 + c(n)v2 and v > 1 yields

(6) (4- - A W - ^ ) 2 < - ^ - ( / / - ^ ) 4 - 2|V(// - Jif)\2 + c2v
2

\ds ) 2n
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where c2 depends on n, || Jff \\itK and K.
Define

f = ekuv2 + n(H -Jiff

where X and \i will be chosen later. We then compute from (4), (5) and (6)

— - A ) / < c0XeXuv4 - A . V | V K | V - 4(1 + -L)e
Xu^.a

ds I An

+4eku(H - Jf?)2v2 + Cle
Xuv4 - 2VeXu.Vv2

~(H - JT)4 + c2tiv
2 - 2n\V{H - Jf")\2.

In

Observe the identities

-2VeXu.Vv2 = -2XV«.V/ + 2 * V | V H | V + 2XfiVu.W(H - Jiff

and

-AeXu\Vv\2 = b.V/ - A.V|Vi«|V - n2v-2e-X 22

where
b = t r V A " V / - 2fiv-2e-kuV(H - Jf)2 - 2AVM.

This implies

< a.V/ + (c0A + Ci)eXuv4 + c2^v2 + AeXu(H - Jiffv2

/•*• 4 2 "

2n An

An 2n

where

a = - (1 + -?-) (v-2e-XuVf - 2nv-2e-XuV(H - Jiff) + —Vu.
An v ' 2n

In view of

I - — A / X V M . V ( / / - J ^ ) 2 | < ( 1 + — V2"~2^"X" |V(/ / - 3*n2'21 2« ' \ 4n/

1 AV"u2|V«|2
An{\ +An)
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and by discarding the term —2/x| V(// — Jf?)\2 we obtain

V/ 1 A.V"|VM|V - £ ( / / -
1 + An In

cx)e
kuv4 + c2/xu2 + Aeku(H -

We observe that

Aeku{H - Jf)2v2 < eku{H - 3V)4 + I6nkekuv4

4nX
and

W Xv4eku l \ 2 l k

+
we use the identity |VM|2 = \/r~2(v2 - 1) (see [1]), the fact that v > 1 and we
assume k > 1 to arrive at

£. - A) f < a.V/ - — 1 — k(Xir~2 - c3)e
k»v4

ds ) 1 + An

In

where c3 and c4 depend on c0, c\, c2 and n. Upon estimating

—-—k2xlf~2ekuv2 < kekuv4 + ceku

withe = c(rt, A, || ^ ||o,jf)wechooseA > 1 suchthatACX^"2-^) >2( l+4/ i ) .
We furthermore set /A = X"1 sup^ ex". Thus

— - A] f < a.V/ - ekuv4 - —(H - Jf)4 + C2,
ds / An

where C depends on k, /x and all the previous constants.
From the inequality f2 < 2max{ex", Anix}(ekuv4 + (ix/An)(H - Jif)4), we

finally conclude that

where S and C depend on all the above quantities.
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PROOF OF THEOREM 2.1. We essentially follow the proof in [8, Theorem
4.1]. The only difference arises due to the stronger assumptions on Ric and
Jitf in [8] which were imposed in order to first obtain bounds on j / / | and then
estimate v in terms of |H| and \u\. Here we obtain a priori bounds on v and |H\
simultaneously by combining Proposition 2.2 with Corollary 1.4 for compact
M", see Remark 1.5. The height estimate

sup \t| < t0 = maxfinf /, sup/}
Ms M+ M~

follows from the strong maximum principle as in the proof [8, Theorem 4.2].
Note, in particular, that by Corollary 1.4(i) the estimates on v and \H\ do not
depend on the initial values of these quantities.

Estimates on \A\2 and | VM|2 are now derived from Proposition 1.1 (vii) and
(viii) and Corollary 1.4 in exactly the same manner as in [8, Proposition 4.7].

To obtain a bound on |VM|2,AW > 1 which is independent of the initial
values, we use Proposition 1. l(vii) and (viii) to verify inductively as in [7, Proof
of Theorem 4.1] that the function

with cp(s) = s/(s + 1) which vanishes for s = 0, satisfies an inequality of the
form

Note that similarly as in the maximum point argument given in [8, Lemma 4.5],
the right hand side of the inequality becomes negative where the maximum of
/ reaches a value greater than C/S for the first positive time.

3. Mean curvature flow in asymptotically flat spacetimes

In this section we adopt the definitions and assumptions of [ 1, Section 5]: let
f be a 4-dimensional spacetime with non-negative radius function r 6 C°°(?0
and time function t e C°°{f) satisfying the conditions of Section 1.

Following [1], we call f asymptotically flat if there is a constant Ro > 1
such that the exterior region % = {x eV : r(x) > #0} has coordinates (v', t)
such that
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ds2 = —(ijf2 — o2)dt2 + loidy'dt + 'gijdyldyi = HapdyadyP,

where a is the shift vector and there are constants C3 and C4 such that

< C3 and r3\Hy\ < C4

with C3/?^' < 10~2, where r)ap is the Minkowski metric and Hy denotes the
mean curvature of the slices yt.

The interiorregion of"V is defined by % = {x e Y, r(x) < Ro}. Y satisfies
the uniform interior condition if there is a constant C5 such that for all z e Y
with r(z) = Ro,

sup (t(x)-t(z))<C5 i

sup (t(x) - t(z)) < C5 if t(z) < 0.

In the following we will additionally assume that there are coordinates (y, t)
covering a region of Y large enough to admit entire maximal hypersurfaces
asymptotic to the slices yt for t e (-2C8 - 1, 2C8 + 1) where C8 is the height
bound obtained in [1, Theorem 5.3]. For a statement of the conditions required
to ensure this we refer to [1, Section 5].

THEOREM 3.1. Suppose V satisfies the above assumptions and condition (2).
Then the initial value problem (1) with Mo = So and JF = 0 has a smooth
solution for all s € [0, oo). In case the timelike convergence condition

Ric(X, X) > 0

for all timelike vector fields X is satisfied, every sequence (sk) -*• oo has a
subsequence (sk>) —>• oo for which (MSk,) converges uniformly on compact
subsets to a smooth entire maximal hypersurface in the region {x € "¥ : \t{x)\ <
2 Q + 1}.

REMARK 3.2. (i) Note that Theorem 3.1 relies on the existence of maximal
hypersurfaces which are used as barriers for the mean curvature evolution.
For weaker asymptotic flatness conditions which still ensure the existence of
maximal slices we refer to [3].

(ii) The long-time asymptotic behaviour of the hypersurfaces Ms at spatial
infinity has not yet been studied.
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LEMMA 3.3. Let (Ms)s€[Oso], s0 < oo be a solution of (I) in an asymptotically
flat spacetime Y with Mo = So and suppose

sup v < a0 < oo and sup \A\ < a\ < oo.
] W3x[O,so]

Then (Ms)se[o,so] satisfies the conditions of Theorem 1.2. In particular,

e\p(-ls(p, po))d/xsds < oo
J0 JMi

for fixed po € M3 which implies that any function fwith supM3x[050] |V/ | < oo
satisfies condition (iii) of Theorem 1.2.

PROOF. We will only consider the case where Jif = 0. From |Vr| < \Vr\v
we see that

sup |Vr| < a.2 < oo
M"x[0,s0]

where ai = «2(ao, II Vr ||0,r). Integrating along a geodesic with respect to g(s)
from po to /? therefore yields

(7) r(xs(p)) < r(xs(p0)) + a2ls(p, p0).

We furthermore note that by (1) we have for any p e M3 and s e [0, s0],

(8) \r(xs(p)) - r(xo(p))\ < a3s0,

where a3 depends on a0, ax and || Vr ||0,r. Combining (8) for p0 with (7), we
see that geodesic balls in Ms are contained in the compact sets Ms n {x e y :

< /?}. This implies geodesic completeness of the Ms for 5 e [0, s0].
From (7), (8) and Proposition 1.1 (iii) we infer

exp(-ls(p, po))dixs <a4 exp(-a2"V)
in* Jy0

where a* depends on a{, a2, a3, s0 and r(xo(po))- Asymptotic flatness therefore
implies

Jo JM
exp(-ls(p, po))dnsds < oo

Jo JMJ

for fixed p0 e M3.
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In view of Proposition 1.1 (i), we also have

sup
A/3x[0,s0] dsglJ oo,

with a5 depending on <x\, which establishes condition (iv) of Theorem 1.2. The
Gauss equations imply

Ric,7 = Ric,7 - Hhij + hikhkj + RiOjO

where Ric denotes the Ricci tensor on Ms. Using (3) and the finiteness assump-
tion on v and \A\ therefore yields

j > a6 > — oo

uniformly in s where a6 depends on ao> «i and || Rm ||0,y. The volume growth
condition now follows from a standard argument (see for example [4]).

PROOF OF THEOREM 3.1. We assume for simplicity that Mo = <5*o satisfies

sup |V" A |2 < oo
Mo

for all m > 0. Note also that v — 1 onJ^o although a uniform bound on v at s = 0
would suffice for the argument. We solve the initial value problem on a small
time interval [0, s0] by working in the class of hypersurfaces with uniformly
bounded quantities v and |VM|2 for all m > 0 (note that uniform C2'"-bounds
would be sufficient to ensure short-time existence). For any solution (Ms) of (1)
in this class, it is shown by direct computation from (1) that the supremum of
all geometric quantities including the height u on Ms depends continuously on
s. Using standard arguments, one may therefore reduce the short-time existence
problem for (1) to a problem for a uniformly parabolic equation with uniformly
bounded coefficients, see for example [13].

Having thus obtained a smooth solution (Ms) on some interval [0, sQ] which
satisfies
(9) sup (|M| + V) < OO

and
(10) sup |VmA|2 < oo forallm>0,

M3x[0*>]
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we are, in view of the previous lemma, in a position to employ the maximum
principle to obtain a priori estimates on these quantities for all s > 0. We begin
with a height bound: from (1) we compute for j e (0, s0),

where fi\ depends on supM3x[0jio] v and || v r ||0,r- Combining this with Propos-
ition l.l(vi) gives in view of the inequality \A^ > H2/n,

2
• r2) < -(-H4 + 2|V//|2 - ft//V)(l + r2)

n

where y32 depends on || Ric ||0,r- We then estimate

|2Vr2.V//2| < 2|V//|2(l + r2) + 8|V/-|2//2

and use the inequality |Vr| < |Vr|u to obtain for / = //2(1 +

where /33 depends on supM3x[Oio] v and || Ric ||o,r. By (9) and (10) we
also have supM3X[Oso] \^f\ < oo. Furthermore, we observe the inequality
sup^oo(l +r2)H2 < fa which follows from asymptotic flatness. By Lemma 3.3,
we may therefore apply Theorem 1.2 to the function e~^s f — y34 to arrive at

(11) sup ( 1 + r 2 ) / / 2

M*x[0,s0]

On the other hand, we compute from (1),

| ^ « ( 1 + A ) | 2 V i ; |

such that in view of (9), (10), (11) and the fact that u = 0 on y0 we obtain

sup w2(l + r ) < oo
M3x[0,i0]

This implies that for fixed s e [0, s0]

(12) u(x,(p),s) - • 0 as r(xs(p)) - • oo.
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The assumptions of the theorem allow us to apply [1, Theorem 5.4] to obtain
two entire maximal hypersurfaces M+ and M~ which are asymptotic to the
reference slices yCt+\ and y_iCs+\) respectively where C8 is the height bound
obtained in [1, Theorem 5.3]. This height estimate when applied to M+ and M~
also yields that

inf t > 1 and sup t < — 1.
M+ M~

Therefore we infer from (12) that, unless

inf t > t\Ms > sup t
M+ M~

for all s e [0, s0], there must be a first parameter S\ e (0, s0] for which MSl

touches either M+ or M". By the strong maximum principle for parabolic
equations, this is impossible in view of the fact that M+ and M~ are stationary
solutions of (1). This establishes the estimate

sup |w| < 10 = max{inf t, supt}.
M'x[0,s0] M+ M~

Condition (2) now enables us to invoke Proposition 2.3. Note, in particular,
that for / = ekuv2 + ixH2, the inequality supM3x[O>Jo](|a + |V/ | ) < oo holds in
view of (9) and (10). Taking Lemma 3.3 into account we may therefore apply
Corollary 1.4 to infer

sup(u + \H\) < c(\ + -p) for 5 e (0, s0]
M, V 5

or
sup(v + \H\)< c(l + sup(u + \H\)) for 5 e [0, s0]

where c depends on to,K, \\ \jf ||i>Jf and|| Rm Ho.jfinA' = [x e V : \t(x)\ < t0}.
To obtain bounds on |VM|2 for m > 0 we proceed as in the proof of

Theorem 2.2, this time, however, using (9), (10), Lemma 3.3 and Corollary 1.4.
In particular, for m > 1, we define as in the proof of Theorem 2.1 the function
/ = <pm+1 |VM|2(A + (pm\Vm-iA\2) which vanishes at s = 0. The inequality

then implies that fs = max(/ — C/8, 0) satisfies
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in the distributional sense so that we can apply Theorem 1.2.
Since our estimates are independent of s0 we conclude the existence of the

solution (Ms) for all s € [0, oo). Note again that the a priori estimates on all
geometric quantities of Ms depend only on the height bound t0, the time function
t and bounds on the geometry of V in K — {x e V : |r (JC) | < t0}.

If we additionally assume the timelike convergence condition, we obtain from
Proposition 1.1 (vi) and the inequality \A\2 > H2/n that

which yields

sup//2<f

for s € (0, oo), in view of Corollary 1.4(i).
This decay estimate and the uniform bounds for all geometric quantities

on Ms imply that for every sequence (sk) -» oo we can select a subsequence
(sk>) ->• oo such that (MSk,) converges uniformly on compact subsets to a smooth
entire maximal hypersurface in the region {x e V : \t(x)\ < t0).
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