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ON EUTACTIC FORMS
AVNER ASH

Let (a;;) = A be a positive definite # X n symmetric matrix with real
entries. To it corresponds a positive definite quadratic form f on R*: f(x) =
Ax = Y axx; for x any column vector in R The set of values f(y) for
yinZ" — {0} has a minimum m(4) > 0 and the number of “‘minimal vectors”’
Vi, « « ., ¥y in Z" for which f(y;) = m(A) is finite. By definition, f and 4 are
called eutactic if and only if there are positive numbers s; ,. .., s, such that

T
A7 = 21 S:Yi'V4
pas
Also if {y;'y;} span the n(n 4+ 1)/2-dimensional vector space of symmetric
matrices, we say 4 and f are perfect.

The notion of eutactic form arose in the study of extreme forms. We call
Ay and fq extreme if and only if the function P(4) = det (4)/m"(A4) has a local
minimum at 4. Extreme forms hold interest for the following reason: A lattice
is a set of points of the form BZ" where B is a nonsingular matrix. The volume
of the unit cell of this lattice is |det B| and the square of the distance from
the origin to a typical lattice point is ‘x'BBx, for x in Z"*. If we write 4 for the
positive —definite symmetric matrix ‘BB, then the volume of the unit cell
is (det 4)'2 and the shortest distance between two lattice points is m (4)!2.
A lattice on which spheres of equal radius can be packed (without overlapping)
with maximum density therefore corresponds to a minimum of P(4). (The
correspondence between 4 and B is many—to—many. Since 4 = ‘BB, =
‘BsBs if and only if By = EB,, where E is an orthogonal matrix, the positive
symmetric matrix corresponds to all the congruent lattices EBZ". On the
other hand, if U is a matrix of integers with det U = 1 then UZ" = Z" and
the lattice BZ" corresponds to all the arithmetically equivalent positive sym-
metric matrices ‘UA U).

Voronoi’s celebrated theorem states that 4 is extreme if and only if it is
perfect and eutactic. This theorem has been reproven many times (for instance,
[10; 11]), and it receives incidentally yet another proof below. For more infor-
mation and bibliography on the ‘‘classical’’ treatment of these forms, see
(1;2; and 3].

In this paper I prove that the function P is a topological morse function.
This leads to a new interpretation of eutactic forms as the non-degenerate
topological critical points of P. These are Theorems 1 and 2 respectively and
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they essentially generalize Voronoi's theorem. Theorem 3 states that the
number of arithmetically inequivalent critical points is finite.

Another purpose of this paper is to generalize all these ideas and theorems
to what I believe is their natural setting, namely replacing the cone of positive-
definite symmetric matrices by an arbitrary self-adjoint homogeneous cone.
Of course, the former is a special case of the latter. The basic definitions and
facts about self-adjoint homogeneous cones may be found in Section 1. In
Section 2 some geometry of numbers of these cones is developed. The general-
ization of the packing function P is investigated in Section 3 and we prove it is
a morse function (Theorem 1), assuming a proposition about the Taylor expan-
sion of a certain function. This proposition is proven in Section 5. In 4 we prove
Theorems 2 and 3 and derive Voronoi's theorem as a corollary.

I came to the above in an effort to compute the cohomology groups of
arithmetic groups of automorphisms of self-adjoint homogeneous cones, and
especially of congruence subgroups of SL(n, Z). This application will appear
elsewhere [12]. After completing my work, I discovered similar ideas concerning
the real quadratic form case in a paper by Stogrin [4]. However, Stogrin does
not mention eutactic forms or morse functions nor provides proofs. I would like
to thank David Mumford for setting me onto this problem, and the referee for
his helpful comments.

1. Self-adjoint homogeneous cones. This section presents a quick sum-
mary of the facts needed in the sequel. For further information and for proofs,
see [5] and [6].

Let V be an N-dimensional vector space, C an open convex cone in 1V which
contains no entire straight line. Let G be the group of linear automorphisms of
V which carry C to itself. We say C is homogeneous if G acts transitively on C.

Let (,) denote an inner product on V. The dual cone C with respect to this
inner product is

C = interior of {x € V: {x,y) = O forall y € C}.

If there exists an inner product such that ¢ = C, we say that C is self-adjoint.

A finite R-algebra J is called a Jordan algebra if xy = yx and x?(yx) =
(x%y)x for all x and y in J. Usually J is not associative. We say J is formally real
if 2 4+ 9* = 0 implies x = y = 0. If J is formally real it always possesses an
identity. For any z in J we write L(z) for the linear map J — J given by
multiplication by z.

These definitions are connected as follows: If J is a formally real Jordan
algebra with identity p, set C(J) = {x?: x € J and for some y € J, xy = p}.
Then C(J) is a self-adjoint homogeneous cone in J, where we consider J as
a R-vector space with inner product {x,y) = Tr L(xy).

Conversely, if C C V is a self-adjoint homogeneous cone and p is a point
in C, then 7 can be given uniquely a structure of Jordan-algebra such that p
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is the identity and (1) = C.Todo this, let f @ p be the cartan decomposition
of the lic algebra of G such that exp f is the stabilizer of p. Since G C Aut (1),
p C End (1) and the map L: 7 — = (p) is a bijection from p to V. We may
define the desired Jordan multiplication x oy forx, yin IV byxoy = L7 (x)(y).
That this makes 1" into a Jordan algebra is not obvious, but the proof
appears in Section 2 of [6].

Let C C 1 be a self-adjoint homogeneous cone, and L a lattice in 1. We
say L is admissible for C if for some p in L M C and corresponding Jordan-
algebra structure on 1, L ® Q is a sub-Jordan algebra of . In this case, the
same will be true for any p in L M C. Admissible lattices exist for any self-
adjoint homogeneous cone.

Lxample 1. Let 1 be the R-vector space of n X n symmetric matrices, C
the cone of positive definite ones. Then G = GL(n, R)/ %1 acting by 4 —
‘gdg for 4 € 1, g € G. Using the inner product (4, B) = tr (AB) one sees
easily that C is self-adjoint. Choosing p to be the identity matrix, the resulting
Jordan algebra structure on 17 is given by 4 o B = (4B + BA)/2 where the
multiplication on the right is ordinary matrix multiplication. An admissible
lattice is the set L of semi-integral symmetric matrices { (¢;;): a:; € Z,a; € 3Z2}.

Example 2. Let C be the light-cone in R%. Sctting the speed of light equal
to 1, C is self-adjoint with respect to the usual inner product on R*. G is the
Lorentz group acting homogeneously on C. An admissible lattice is Z*.

Now we will generalize the packing-density function P of the introduction.
Let R, denote the positive reals. If C C V is a sclf-adjoint homogeneous
cone and p € C, there exists a unique C” function ¢: C — R, such that
(1) ¢(gx) = ¢(x)/det p(g) forx € Cg € G and p is the action of G on V.
(i) ¢(p) = 1.
This ¢ is the characteristic function of the cone C. For instance, in Example 1
above, ¢(4) = (det 4)~"+D/2 In general,

o(x) = f ey
(o

with a suitable haar measure dy.
The hypersurfaces D, = {x € C: ¢(x) = «} are called discriminant surfaces
in C. Further properties of ¢ are as follows.
(1) ¢lax) = a=Ve(x) fora € Ry, x € C, N = dim V",
(1) ¢(px1 + gx2) < pelx1) + gelx2) forxy, x2€ C,p+qg=1,p,¢>0
(strict convexity of ¢).
(iii) ¢(x) — 0 as x — boundary of C.

Now let L be a fixed admissible lattice for C. Let L’ = L — {0} and C =
closure of C'in 7. We also fix p € L M C and the inner product (x, y) = Tr
L(xy) given by the resulting Jordan algebra structure on 1. Pick any z € C.
Because C'isself-adjointand L isdiscrete, the set of numbers { (z,y): v € L' N C}
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has a positive minimum m(z), and the set M(z) of y € L’ M C such that
(z, v) = m(z) is finite. As a function of z, m(z) is continuous.
We define the packing function F: C — R, by

F(z) = m™ (z)¢7 ().
Clearly F(az) = F(z) fora ¢ Ry, 2 ¢ C.
Remark. Consider C, V, L asin Example 1. In [7] it is proven that if 4 isin C,

m(4) = min’ ydy.
yeZn—(0)
This shows that the packing function P in the introduction is just /™',

F induces a piece-wise smooth continuous function on C/R,.

Let z be in C. We say z is

(1) critical if its image in C/R, is a critical point of F;

(i1) eutactic if z=' is in the interior of the convex cone generated by M(z)
(Here 27! denotes the Jordan inverse of z, and the interior is taken relative to
the linear span of M (3).);

(iii) perfect if M (3) spans 17;

(iv) extreme is z is a local minimum for F.

We will show in Section 2 that these last three definitions reduce to the
traditional ones in the case of Example 1. The remark just above shows this
already for (iv).

Finally we must make explicit the group of symmetries of this whole situa-
tion. Let there be given C, V7, G and L as above. Because C is self-adjoint, given
¢ € G there exists & € G such that (hx,y) = (x, gy)forallx,y ¢ 1". We write
h = ‘g. Let p denote the action of G on V, and set I' = {g € G: "¢L = L}.
Then for g € T, det p(g) = det p(‘g) = 1 and so

o(gx) = ¢(x) forallg € T,x € C.

Clearly also m(gx) = m(x) and M (gx) = 'g=' M (x). Therefore IF(gx) = F(x)
and x being critical, eutactic, perfect, or extreme implies that agx is also for
g € T,and « € Ry. (To check this for x eutactic, we must use the fact that
(gx)~! = 'g~lx~!, which follows, for instance, from pp. 76-7 in [6].)

Thus if we are searching for critical points, for instance, we need only look
in a fundamental domain for the group I'. In Section 4 we will show that there
are only a finite number of R, T-orbits of critical, eutactic, perfect, and
extreme points. For extreme forms this implies the well-known result that
there exists an absolutely densest lattice packing of R” by spheres of equal
radius.

2. The perfect core. We will begin to give a geometrical interpretation of
the various kinds of forms defined at the end of Section 1. For this and the
remaining sections we assume fixed a self-adjoint homogeneous cone C C V,
an R-vector space of dimension N. We also fix an admissible lattice L, a

https://doi.org/10.4153/CJM-1977-101-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-101-2

1044 AVNER ASH

point p € C M L and we give V the associated Jordan-algebra structure with
identity p. Then the inner product on Vis {(x, ¥) = Tr L(xy). Set L' = L —
{0}, and C = closure of Ciin V.
We define the sets K and K:
K= {x¢€¢C: (x,y)z1forally ¢ CNL'}.

K = closed convex hull of CM L',

In the terminology of (6], K and K are called the perfect core and perfect co-core
respectively. We check easily, as in proposition 1, p. 128 of [6], that

*) K=1lz¢c1 (z,x) = 1 forall x € K}
K={z€7V:(x)=1forallx € K}.

Both K and K are closed convex sets contained in C. However, it is important
to remark that in fact K (but not K) is contained in the open cone C. This is
because for any «x in the boundary of C the hyperplane orthogonal to x meets
C in a whole “boundary component” and there are points of C M L' lying
arbitrarily closely to that boundary component. To get an idea of what K and
K look like, the reader may draw them for V = R?, ¢ = R;?, L = L/ = Z°.
As usual, a face of a closed convex set Q is the intersection of Q with one of its
supporting hyperplanes. A verfex of Q is a face that consists of a single point.

Note that z € Cis perfect if and only if the ray R,z passes through a vertex
of K.

Let T = {g € G: ‘gL = L} as in Section 1. Then K is a I'-invariant set and
K is a 'T-invariant set. By the results of [6], in particular the corollary on
p. 143, we know that the set of faces of K has only finitely many ‘T-orbits.

Also it follows from Proposition 11, p. 142 of [6], that the faces of K and
K have no accumulation point in C.

ProrositioN 1. The set of faces of K has only finitely many T-orbits.

Proof. We give the proof, which cannot be found in [6]. Any supporting
hyperplanc of K can be written as H = {x € 1: (w, x) = a} for some ¢ € R
and w € 7, where we assume that (w, x) = « for all x € K and (w, x0) = «
for some x¢ € K. Since R, K = (, this implies first that ¢« = 0, then that
(w,y) = 0 forally € C, hence w ¢ C. Now we know « > 0, for {w, x¢) = 0
would imply x4 ¢ C, but K C C. Replacing w by a positive multiple of itself
if necessary, we may assume « = 1.

Now we use (*). Since (w, x) = 1 for all x € K and (w, xy) = 1 for some
xy € K, we conclude that w is in the boundary of K, 0K. Thus we have a sur-
jection f: K — set of faces of K where f(w) = {x € K: (w, x) = 1}.

We will show f is constant on 7'—J (faces of 1), where 7 is any face of K.
Letw,w bein theface 7'butinnofaceof 7. Ifx € f(w), then{y € V: (x,y) = 1}
is a supporting hyperplane of K which contains w, and therefore also 7. Then
it also contains @', implying (x, w') = 1 and x ¢ f(w'). Thus f(w) C f(w'),
and reversing the roles of w and @’ gives f(w) = f(w’).
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Hence f induces a surjection
f': set of faces of K — set of faces of K

which is obviously equivariant with respect to the map ‘g — g of ‘T — TI.
The proposition follows from this and the fact that the domain of f’ is finite
modulo ‘T.

Remark. 1t is not true that f’ is a bijection. The problem is that K has non-
compact faces contained in the boundary of C. However, the proof above may
be adapted easily to show that f is an inclusion-reversing bijection from the set
of compact faces of K to the set of faces of K.

Next we want to show that the definitions of extreme, perfect, and eutactic
points given in Section 1 coincide with the traditional definitions for positive-
definite quadratic forms as given in the introduction. Let C, 1", L be as in
Example 1 of Section 1, and otherwise let the notations remain as in Section 1.
Regard Z" as column vectors. As noted already in Section 1, the two definitions
of extreme form coincide. Notice also that the Jordan inverse of A4 coincides
with the matrix inverse of 4.

ProrosiTioN 2. Let A € C, the cone of positive definite symmetric maltrices,
and vy, ..., y,bethevectors y in Z" with 'yAy = m(A4). Then M(A) s contained
in the convex cone generated by {y;'y;: 1 = 1,...,r}.

COROLLARY. The two definitions of perfect (respectively, eutactic) forms for C
cotncide.

Proof. The corollary follows easily since y'y € M(4) if ‘yAy = m(4).

To prove the proposition, we may obviously assume that m(4) = 1, so
that 4 € K. By the result in [7] already mentioned, m(4) = min ‘y4y taken
overy € Z"'. Therefore, K = {B € C: 'yBy = 1 for all y € Z""}. Using Prop-
osition 1, p. 128 of [6], we see that

(**) K = closed convex hull of {y'y:y € Z"'}.

Now suppose B € M(4). In particular, B € CN L', so that (B, Q) = 1
for all Q € K, and thus B € K by (*) above.

Choose 6 > 0 so that for any y ¢ M(4), 'yAy > 1 4+ 6. This is possible
since C is self-adjoint so that {Q ¢ C M L: (4, Q) < 2} is finite.

Let P denote the convex hull of y,'yy, . . ., y,'y,. By (¥*), there are sequences
Amy by € 10, 17 and Q,,, R,, € Csuch thata, + b, = 1,0, € P, (R, 4) > 1
+ 6 and

B = lim a,Qp + 0nRp.

m-yco

Passing to a subsequence if necessary, let ,, — «, b,, > b and Q, — Q € P.
Then a + b = 1 and «Q + DR, — B. Taking the inner product with 4 gives
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a+ b{R,, A)y—1. This implies b = 0, « = 1 and B = Q € P, completing
the proof of Proposition 2.

3. The packing function /. We keep the notations of Sections 1 and 2.
We fix , 17, L, p as in Section 1. For z ¢ C, we have delined F(s) =
m~N(2)¢~1(z). This induces

F: C/R, —R,.

In this section we will investigate the topological critical points of /.

We recall the following dehnitions from [8]. Let M be an m-dimensional
topological manifold and f a real-valued continuous function on A. Let
X1, ..., X, be the usual coordinates of the point x in R™.

Definition. A point ¢ ¢ M is topologically ordinary for [ if there exist neigh-
borhoods U of g and 17 of 0 in R™ and a homeomorphism g: 1" — U such that
¢(0) = gand f(g(x)) = &1 + f(g), x ¢ 1\

We say ¢ is topologically critical if it is not topologically ordinary.

We say ¢ is topologicully non-degenerate of index r if there exist U, 17, ¢
as above such that ¢(0) = ¢ and [(g(x)) = —x> — a2 — ... — &2 4 5,447
+ ...+ x4 f(g), x € 1. This implies that ¢ is topologically critical.

We will omit the adjective “topological”’. In [8] it is shown that a non-
degenerate point ¢ is critical and has a unique index » which depends only on f
and ¢. These defnitions reduce to the usual ones in case 3 and [ are C”.

THEOREM 1. Let C be a self-udjoint homogeneous cone in the Jordan ulgebra V.
Let p < 1" be the Jordan identily and L C 1V be an admaissible lattice. We define
the itnner product on 1 as above:

(x,y) = trace of multiplication by xy in V.
We set
K={x¢ C{e,v)=1forally ¢ CNL — {0}}.

Let F: C/Ry — R be the packing function for this daia, as defined in Section 1.
For any point z & C/Ry, let z be the point in the boundary of K whose image
in C/R . is g Write == for the Jordan inverse of z and

H,={ve 1:(zv—32) =0}

Let S be the minwmal face of K containing z. Then:
(i) If H, does not support K, then z is ordinary for I'.
(ii) If H, supports K and K M H, = S, then Z is non-degencrale of index r
for F,wherer = dim S.
(iil) If H, supports K but K (M H, is « face of K strictly contatning S, then
z1s ordinary for F.
Thus F1s a topological morse function on C/R,.
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Case (iii) actually occurs, for instance in Example 1 of Section 1 when
n=41[9].
The proof of this theorem depends on the following.

ProposiTioN 3. Let C C V be a self-adjoint homogeneous cone, p the Jordan
identity in V, and ¢ the characterisiic function for C, normalized so that ¢ (p) = 1.
Then the Taylor expansion of ¢~ about p is given by

e Hpto) =14+ (pv)+35(p,v) — (v)) + 0, v)*?)
forv e V.
We will defer the proof of this proposition to Section 5 and devote the rest
of this section to the proof of Theorem 1, assuming the proposition.

LemMma 1. The tangent hyperplane to the discriminant surface D,y at z 1s H,,
forz € AK.

Proof. The surface D, = {x € C: ¢ '(x) = ¢~'(2)}. Let p be the ortho-
gonal complement to the Lie algebra of the stabilizer of  in the Lie algebra
of G. Recall G is the automorphism group of C. Then exp p consists exactly of
the self-adjoint elements of G and it acts simply transitively on C, see [6].
Say z = gp, with g € expp. As pointed out at the end of Section 1, 37! = g~1p.

By Proposition 3 we have

e Nz 4+ h) = ¢ gp + h)
(det g)¢=(p + ¢'h)
(det g) (1 + (p, g7'h) + O((h, h))).

Thus the tangent hyperplane in questionis {x € V: (p,g7'(x — z)) = 0}. Since

p,gty) = (g7'p,y) = (g 'p,y) = (z7%, y) forany y € V, this hyperplane is
just H,.

If

It

COROLLARY. Let gp = zwithg € expyp. Then
e ) = et (1 (i) + 3 B — e, h)
+ O((h, B)*72).
Lemma 2. Gwen z in the boundary of K, there exists a neighborhood U of z in

C and finite set Q C L such that UNK = {x € U: (x,1) = 1 for [ € Q}.

Proof. Let Q = {I € CM L: (I, z) = 1}. As in the proof of ’roposition 2,
Section 2, we see that Q is finite and there exists a neighborhood U of z in C
and & > 0 such that {/, x) > 1 +éforl ¢ Q and x € U. The lemma follows
immediately now from the definition of K.

Proof of Theorem 1. Part (1). As 271 € C, H, is transverse to the ray R,z,
and we may identify H, with C/R, in a neighborhood of z. Thus it is enough
to show that z is ordinary for F restricted to H,.
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Let Q and U be as in Lemma 2. Since we are assuming H, does not support
K, there existsv € H, M\ U and § > 0 such that ([, v) > 1 + é forl € Q. Let
W be the orthogonal complement to the plane spanned by v — z and z7%. Then
H,=W+R{@—2) 4+ =

Let U, be a neighborhood of 0 in W and ¢ > 0 such that

Uy={w+tlv—2)+zwec U, —e<t< ¢

is contained in U. By Lemma 2, forany x € U, m(x) = inf,¢, (x, [). Therefore,
if w € Uy, m restricted to the interval I, = {w + (v — 2) + 21 — e < 1 < ¢}
is piecewise linear. Its derivative on each linear piece is one of the numbers
(v — 2z, 1) for I € Q and is therefore greater than § > 0, for every w € U,.

By the corollary to Lemma 1 and the definition of H,, if 24+ h € H,,
¢~ (2 4 h) is proportional to 1 + O({h, h)). Now IF = m~Y¢~!. Restrict both
sides to [, and let prime denote derivative with respect to ¢. Then if w € U,
and / ¢ (—e¢, ¢€), for almost every , F' is defined and

Pt w+ (o - 2) =
= —emNm'm' — O0((v — 3z, w) + (v — 2,0 — 3)).

Here ¢ is a positive constant.
Now m(z) = 1 and m' > 6 > 0 for every w € U,. Thus shrinking U, and
e if necessary, we have that [ is strictly monotonic on [, for every w € U,.
Define the map ¢: U, — R X W by

gw +tlv—3)+z2) = (Flw+ i@ — z2) + 2), w).

Then ¢ is continuous, and we have shown above that ¢ is one-to-one. By in-
variance of domain, ¢ is a homeomorphism onto an open neighborhood of
(F(z), z) in R X W. If x is the coordinate in R, x 0 ¢ = F. This shows that
z is an ordinary point for Fin C/R,.

The proofs for parts (ii) and (iii) will be presented in general for the cases
when N=dim V=23 If N=1,C=Ryandif N=2, C =R, X R, If
the coordinates are x;, x» then ¢ is ;7! or (x;x2)~1if IV =1 or 2. Here we
present a sketch of the proof for N = 2. The case N = 1 is trivial.

If ¢ =R, X R, C R?with coordinates (x;, x»), the discriminant surfaces
are hyperbolae. Also the boundary of K, dK, is one-dimensional and therefore
consists of a chain of line segments joined successively at their vertices whose
slopes decrease monotonically as one moves along the chain. If the line H,
supports K, three things can happen.

(a) zis a vertex of 4K and one of the two 1-dimensional faces of K lies in H,.
Since H, is tangent to the discriminant curve D at z, this means that D lies
above 9K on one side of z and below 9K on the other. Since m = 1 on 9K,
F = m—"¢& ! is monotonic along H, and z is an ordinary point for I

(L) zis a vertex of K and H, M K = {z}. Then D lies below 9K on both
sides of z, F'is nondegenerate critical of index 0 and F has a local minimum at z.
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(c) zlies in the interior of a 1-dimensional face of K and H, N K is that face.
Then D lies above dK on both sides of 3, I is nondegenerate critical of index 1
and F has a local maximum at z.

Henceforth in this section we assume N = 3.

Part (ii). Similarly to Part (i), we need to show that 2 is critical nondegener-
ate of index » = dim S for F restricted to H,. As in the corollary to Lemma 1,
write z = gp with g € expp. Let Q and U be as in Lemma 2.

Define W = {w € V: (g7'w, g~ (v — 2)) = Oforallv € Sand (w, z71) = 0}.
Thus W is a hyperplane of dimension N — » — 1.

Let Y be the r-dimensional hyperplane spanned by v — z for v € .S. Choose
e > Oso that first, (y,y) < efory € Vimpliesz + y € Sand second such that

U={z4+w+y:we W,ye V,(ww) <eand {y,y) < ¢

is contained in U. So U, is an open neighborhood of z in H,.

Let Vo ={y € YV:{y,y) =¢ and W, = {w € W: (w, w) < ¢}. Consider F
restricted to the half-open interval I(w, y) = {z 4+ w4+ ty: 0=t < ¢},
w € W,. By Lemma 2 and as explained in the proof of Part (i), m restricted to
I is piece-wise linear with a finite number of pieces, and the slope of m with
respect to ¢ is one of the numbers (y,/),/ € Q.Since {z,/) = land (z + y,1) =
1 for I € Q, we have that m is weakly monotonically increasing as ¢ increases.

By the corollary to Lemma 1, we see that

el e+ w+ty) = (det g) (1 — (g (w + 1y), g ' (w + ty)) + O(#*))
= (det g)(1 — 3(g7'w, g'w) — 53¢y, ¢ ly) + O()),

taking into account the definition of W. Shrinking e if necessary, we may con-
clude that ¢! is strictly monotonic decreasing as ¢ increases on [ (w, y).

Since F = m~~Y¢~!, we have that F is strictly monotonic decreasing on
I(w, y) as ¢ increases.

Now we must pay attention to F restricted to W, Let W, =
fwe W: (w, w) = ¢. For w € W, let J(w) be the half-open interval
{z 4+ sw: 0 £ 5 < 1}. In this case, m(z + sw) = inf,., (1 4 s{w, 1)), so that
m is linear on J(w), not merely piece-wise linear. By definition of W,z 4+ sw ¢
S = H, N K for s > 0, so that since H, supports K, m(z + sw) < 1 for s > 0.
Therefore m is strictly monotonically decreasing on J(w). The derivative of
m with respect to s in less than some § < 0 for all w € W, since it is one of
the numbers (w, /), [ € Q, w € W,y and W, X Q is compact.

As in Part (i), we may conclude after shrinking e if necessary, that F is
strictly monotonically increasing on J(w) with respect to s for all w € W,.

Now we will define a map ¢: U;— W X ¥V in two stages. First, define
go: z + W1 — W as follows:

go(z + sw) = (1/e)(F(z + sw) — F(z))"2w forw € Wy, 0 < s < 1.

Here, F(z + sw) — F(z) is always non-negative and we always take the
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positive square-root. Since F is continuous, so is ¢o, and since £ is strictly
monotonic on J(w), ¢ is one-to-one. By invariance of domain if dim W = 2
and by direct inspection if dim W < 2, we conclude that gy is a homeomor-
phism of z 4+ W, onto an open neighborhood of 0 in W.

Next we extend gy to g: U; — W X V as follows:

g+ w+ty) =qiz4+w)+ 1/)[Fiz+w) — F(z+ w + ty)]' "y

forw ¢ Wy, v € Vy,and 0 =t < e. Again the expression in square brackets
is always non-negative and the positive square root is taken. In fact, we've
shown this expression is strictly monotonic on I (w, v) and therefore g is one-
to-one. Clearly, ¢ is continuous. Since dim U; = N — 1 2 2, we conclude by
invariance of domain that ¢ is a homeomorphism of U; onto an open neighbor-
hood of 0 in I X V.

Finally, iet i: W X ¥ — R be given by h(w, v) = (w, w) — (v, ¥). Then
we have forw & Wyand y € 1,0 = 5,1 < ¢

hoq(z + sw+ ty) = (1/e)(F'(z + sw) — I'(2)){w, w)
— (lF(z + sw) — F(z + sw + ty)[{y, »)
= F(z + sw + tyv) — F(z).
Thus 2z is critical non-degenerate of index dim ¥ = r for F restricted to H,.

Puart (ii1). The proof depends on the following geometiical lemma.

Let 1" be a finite dimensional Hilbert space. For anv o € 17,9 # 0, we write

H . for the hyperplane orthogonal to the line through v, and (,) for the inner
product.

LemMA. Let X be a closed convex set in V whose boundary contains 0, and let E
be the smallest face of X containing 0. We assume £ 5% X. Then there exists
t € X such that H, supports X and H, N\ X = E.

Proof. Let

V={yecTl:(ua)yzo0forallx ¢ X and H,N X = Ej
={yc 1 @a)y=0forallx € X, and (y,x) =0
for x € X implies x ¢ I},

Then it is easy to see that 1 is an open convex cone in V', it is non-empty,
and 0 ¢ V.

Now set Vi = 1{y: {3y, x) =0 forall x ¢ X}. H y, € Vyand vy ¢ Vit is
easy to see that vy + v ¢ V. Thus, YV, is the closure of YVin 1.

If X MY = 0, then by the separating hyperplane theorem, there is ¢ € 17,
g # 0, and b € R such that (¢, x) 2 bforx € X and (¢, v) = b for y ¢ V..
Now 0 € X implies b = 0 and 0 ¢ ¥V, implies b =2 0, so b = 0. This mecans
g ¢ Y. But (g, ¢} > 0, yielding a contradiction.

Thus X M V # ) and the lemma is proved.
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To apply this to (iii), write "= K M H,. Consider H, as a vector space
with origin at z, and with inner product B(x, v) = (g '(x — 2), g™ (y — 2))
where gp = zwith g € expd. Apply the lemmatoz ¢ S C 1" C H,. We obtain
apointt ¢ 1 such that

x € H: 0= (gl (x —2), g7 (¢t —2) )T =S.

Clearly t 4 S.
The proof of Part (ii) of Theorem 1 can now be applied to cach of the half-
spaces:

hit = {x € Ha 0 £ (0o — 2), g7 (0 = 2)))
and
b= € Hi0z (¢ —2),07(t — 2)))

Using the notation of that proof, for 2, we would set ¥ equal to the » + 1
dimensional half space spanned by v — z for v € S and R, (¢t — 2z) and W
equal to the N — » — 2 dimensional hyperplane orthogonal to YV with respect
to the inner product B'(x, y) = (¢g~'x, g~'y). For h,~ we set Y equal to the
r-dimensional hyperplane spanned by v — z for v € S and letting W, be the
B’-orthogonal complement to V, we set W equal to the N — r — 1 dimensional
half space spanned by W, and R, (z — ¢).

Here r = dim S. Let k = N —r — 2. Let (x, y1 ...V, w1 ... w) be co-
ordinates on R¥'and define G: R¥~! — R by

r k
Gle ) = sen @' — (3 97) + 2 wi
1 1

Because of our choice of ¢, the proof of Theorem (ii) goes through and yields
a 1-1 continuous map ¢ from a neighborhood U of z in H, to a neighborhood of
0in R¥}such that F = G o ¢ on U. In fact Flh* behaves like a function with
a nondegenerate critical point of index » 4+ 1 at 0 restricted to a half-space,
and F|k,~ similarly but with index 7.

By invariance of domain, ¢ is a homeomorphism. [t only remains to show
that G is topologically ordinary at 0. But sgn (x)x* is topologically equivalent
to x, and G is equivalent to G’ (x, y, w) = x + G" (y, w) with G’ continuous.
This is obviously regular everywhere. This completes the proof.

4. Voronoi's theorem. In this section we apply Theorem 1 to obtain a
generalization of Voronoi's theorem that extreme equals perfect plus eutactic.
Let C, V, L, p, F, etc. be as in previous sections.

THEOREM 2. For any z in C, 3 is critical non-degenerate for I if und only if =
is cutactic.

Proof. These properties of z depend only on Rz, so we may assume z is in
the boundary of K, dK. Then by Theorem 1, s is critical, non-degenerate for
F < H, supports K and H, M K is the minimal face .S containing z.
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Let Q and U be as in Lemma 2 of Section 3. Note that Q = M (z) as defined
in Section 1. We have that S = K N {x + z: {, x) = 0forall [ ¢ Q}.

Now z is not eutactic < z~!is not in the interior relative to its span of the
convex hull of Q (definition) & thereexistsanx € V: (z7',x) = Oand (x,/) =
Oforall! € Qand (x, ;) > 0for somely € Q (separating hyperplane theorem)
< thereexistsanx € V:ix + 32 € H,andx + s € K butx + z ¢ .S (definition
of H, and S, and replacing x by ax with small @ > 0, so that x 4+ 2 € U) &
cither H, does not support K or H, supports K but H, VK 2 S.

Comparing with the first paragraph, we sce that the proof is complete.

To derive Voronoi's theorem for self-adjoint homogeneous cones as a
corollary, we need the following fact: For z € C, z is extreme if and only if 2 s
non-degenerate critical for F of index 0.

This is because by definition, z is extreme if and only if z is a local minimum
for F.

COROLLARY. For z € C, z1s extreme & z 1s perfect and eutactic.

Proof. Using Lemma 3 and Theorems 1 and 2, we have that z in K is
extreme if and only if z is eutactic and is a vertex of K. As pointed out in
Section 2, the latter condition is equivalent to 2z being perfect.

THEOREM 3. Let T = {g € Aut (C, V): gL = L} as in Section 1. Then there
are only a finite number of T-orbits of extreme, perfect, eutactic, and critical points
in C.

Proof. By Proposition 1, Section 2, the number of T'-orbits of vertices of K
is finite, and these are just the perfect points. Since extreme and eutactic points
are critical by what we have shown above, it remains only to prove the theorem
for critical points. By Theorem 1, z is critical if and only if H, supports K.
By Lemma 1, Section 3, H, is tangent to the discriminant hypersurface D,
at z. Since ¢ is strictly convex, this implies that ¢(z') > ¢(z) for every 2z’ in
H,NC, 3 # s

Now let " = H, M K and suppose w is in the interior of the face 7" and that
H,, supports K, so T'C K M H,. By the same reasoning, we have ¢(w) >
¢(z) and ¢(3) > ¢(w) if w # 2. Thus w = z, and there is at most one critical
point per face of K. The theorem now follows from Proposition 1 of Section 2.

Remark. There may exist faces without critical points. For instance, K has
unbounded faces in general. But for 2 € C, 271 € C, so H, M\ C is bounded.
Thus no z in the interior of an unbounded face could have H, support K.

5. Taylor expansion of the reciprocal of the characteristic function.
In this section we prove Proposition 3, Section 3. The proof is technical and
involves the real root structure of G = Aut (C, V) as investigated in [6].

Let p be as defined in the proof of Lemma 1, Section 3. Let f be the lie
algebra of the stabilizer of p. Then Lie G = £ ® p and there are canonical
identifications p =< tangent spacc of Catp = V.
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Pick v € V, v # 0, and denote the corresponding element of p again by v.
For ¢ near 0, let g, € exp p be such that g,p = p + tv. Then ¢~ (p + tv) =
det g,.

Now v is contained in some maximal commutative lie algebra a of p. As
shown on p. 90 of [6], 4 = exp a is a maximal R-split torus contained in exp p.

By p. 104 of [6], we have the following facts: There exists an orthonormal
set of vectorses,...,e, € V = psuch thatee; = §.,¢,1in the Jordan algebra 1/
and the orbit 4p = > i—; R,e;. Denoting left multiplication by x in the Jordan
algebra V' by L(x) as usual, write L(e;) = E;. Then E,0 E; = §;E, and

*) (exp Z siE,-)p = Z (exp s;)e; fors; € Ry.
g =1

Finally, p = > e,

Recall that {(x, y) = Tr L(xy) forx,y € V.

Now Lie 4 = a = Y i1 Re;. Since v € a, we may write v = Y. s;e; with
s; € R. However, v being in C, v = (exp w)p for some w € Lie G and hence
in a. This shows, by (*), that s; > 0 for every 1.

Therefore:

n

1) pH+tww=2 (1+ts)ey

i=1

(2) gi=-exp 20 log (L4 ts)E; by (*);
(3) detg, = exp (Tr > log (1 + tsi)Ei) since det exp = exp Tr;

(4) ey es)=1=TrL(e’) = TrL(e;) = TrE; = 1.

Hence

n

(5) detg, =exp », log (1 +ts;) TrE; = [] (1 4+ ts,)

i=1

L4+t si+ ﬁ( > sis,.) + 0(%).
i=1

i,j=1
i<j

6) (p,v)= > s; and (v,v) = . s;° since the e; are orthonormal.
i=1 i=1
= 1 N2 .2
Also ; $i8; = 2((2 s1> > sl> .
() ¢ (p+ ) =detg, =1+ ip,v) + 322({p,v)* — (v,9)) + O@F).

This being true for all v € 1 and ¢ near 0, Proposition 3 follows immediately.
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