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Abstract
High utility itemsets mining (HUIM) is an important sub-field of frequent itemset mining (FIM). Recently, HUIM
has received much attention in the field of data mining. High utility itemsets (HUIs) have proven to be quite use-
ful in marketing, retail marketing, cross-marketing, and e-commerce. Traditional HUIM approaches suffer from a
drawback as they need a user-defined minimum utility (min_util) threshold. It is not easy for the users to set the
appropriate min_util threshold to find actionable HUIs. To target this drawback, top-k HUIM has been introduced.
top-k HUIM is more suitable for supermarket managers and retailers to prepare appropriate strategies to generate
higher profit. In this paper, we provide an in-depth survey of the current status of top-k HUIM approaches. The
paper presents the task of top-k HUIM and its relevant definitions. It reviews the top-k HUIM approaches and
presents their advantages and disadvantages. The paper also discusses the important strategies of the top-k HUIM,
their variations, and research opportunities. The paper provides a detailed summary, analysis, and future directions
of the top-k HUIM field.

1. Introduction
High utility itemset mining (HUIM) is an important sub-area of frequent itemset mining (FIM), which
is the fundamental field of data mining. An itemset is frequent if that itemset possesses a frequency
greater than the user-specified minimum support threshold. FIM uses the downward closure property
(DCP)1 (Agrawal & Srikant, 1994) to reduce the search-space. The FIM algorithms suffer from two
major drawbacks. First, the item’s purchase quantities are not taken into account. For example, if a
customer has bought two pens, five pens, or ten pens, it is viewed as the same. The second drawback is
that all items have the same importance (e.g., unit profit, weight, price, etc.). For example, if a customer
has bought a very expensive diamond or just an ordinary pen, it is viewed as equally important. But these
assumptions often do not hold in real-life applications. In real life, retailers and corporate managers are
interested in finding the itemsets that give them more profit than the items bought together frequently.
Therefore, FIM does not fulfil the requirements of the user in real life. To address these important issues,
the HUIM (Liu et al., 2005; Liu & Qu, 2012; Fournier-Viger et al., 2014; Singh et al., 2018, n.d.) field
came into the limelight.

HUIM is one of the sub-fields of data mining that includes the price and quantity of items. Hence, it
is an important real-life-oriented research problem in data mining. An itemset is called high utility item-

1If an item is non-frequent, then all of its super-sets are non-frequent.
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sets (HUIs) if its utility value is no less than the user-specified minimum utility threshold (min_util).
HUIs has many applications such as mobile commerce (Shie et al., 2011), cross-marketing analysis
(Yen & Lee, 2007a), web usage mining (Pei et al., 2000), etc. The HUIM algorithms do not fol-
low the DCP for support count. Hence, the FIM strategies and methods cannot be directly applied
to the HUIM field. To target the issue of the DCP, Liu et al. proposed Transaction Weighted Utility
(TWU)-based overestimation method (Liu et al., 2005). In the literature, there are several HUIM
algorithms proposed that follow the TWU-based pruning property (Tseng et al., 2010, 2013; Ahmed
et al., 2009).

A major limitation of HUIM is setting the appropriate min_util threshold. The user does not know
which value for the min_util threshold is good for their requirements. Specifying the min_util threshold
is very crucial because it directly affects the number of HUIs. If the min_util threshold is set too high,
few or no HUIs are found, and we lose lots of interesting HUIs. If the min_util threshold is set too low,
a large number of HUIs are found. To find the appropriate min_util threshold, a user may thus need to
run a HUIM algorithm several times. There are several top-k-based mining algorithms in the literature
to solve this problem (Wu et al., 2012; Tseng et al., 2016; Ryang & Yun, 2015; Duong et al., 2016).
In the top-k HUIM field, the value of k needs to be set instead of the min_util threshold. The value of
k denotes the number of itemsets the user wants to obtain. A top-k HUIM algorithm then returns the k
itemsets having the highest min_util threshold. Thus, setting the value of k is much easier than min_util.
top-k HUIM is useful in many domains. For example, top-k HUIM is used to find the k sets of products
that are the most profitable when sold together.

Top-k HUIM is a very active research area. In the literature, we find several articles based on this
area, including various extensions of high utility itemset mining like closed, on-shelf, and sequential
for specific needs. This paper presents a survey of top-k HUIM approaches that can serve both as an
introduction and as a guide to recent advances and opportunities that will be useful for new researchers
in this field.

Contribution: The present paper provides an extensive review of top-k HUIM algorithms. A taxon-
omy of the state-of-the-art top-k HUIM algorithms is presented in Figure 1. The major contribution of
this survey is discussed below:

• A brief description of traditional HUIM and top-k HUIM approaches with examples is
presented.

• A taxonomy of top-k HUIM approaches, including tree-based, utility-based, and others, is
presented.

• A detailed comparative analysis and summary of the currently available state-of-the-art
approaches are presented.

• The comparative advantages and disadvantages of the current state-of-the-art approaches are
also demonstrated.

• A brief discussion and summary of the top-k HUIM approaches are presented. Furthermore,
future research directions are also discussed.

Differences from existing works
In literature, some works (Zhang et al., 2018; Rahmati & Sohrabi, 2019; Fournier-Viger et al., 2019;
Zhang et al., 2020; Gan et al., 2021; Kumar & Singh, 2023) have been presented to discover traditional
HUIs. In 2018, Zhang et al. presented an empirical evaluation survey on the HUIM algorithms. This
work uses real and synthetic datasets to compare the memory usage and runtime efficiency of selected
algorithms. This survey only included ten state-of-the-art HUIM algorithms. In 2019, Rahmati et al.
presented a comprehensive systematic survey of HUIM approaches. This survey reviews the state-of-
the-art HUIM approaches on transactional and uncertain datasets. This work compares the important
properties, advantages, and drawbacks of existing approaches. The survey did not discuss any future
directions for the existing HUIM field. Later, Fournier-Viger et al. (2019) presented a survey and
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Figure 1. Taxonomy of the state-of-the-art top-k HUIM algorithms

compared the HUIM approaches. The authors classified the existing state-of-the-art approaches into
two categories: one-phase and two-phase algorithms. This work highlighted little about an extension of
HUIM like closed HUIs, top-k HUIs, HUIM with negative utility, HUIM with discount strategies, on-
shelf HUIM, HUIs in dynamic datasets, and some other extensions. In 2020, Zhang et al. presented
a survey about the key technologies for HUIM. This survey categorised the current state-of-the-art
approaches into five sub-categories: Apriori-based, tree-based, projection-based, list-based, data-based,
and index-based approaches. This work also discussed data-stream-based HUIM algorithms. In 2021,
Gan et al. presented a structured and comprehensive survey of HUIM algorithms. The authors classified
the state-of-the-art algorithms into Apriori-based, tree-based, projection-based, vertical/horizontal data-
format-based, and other hybrid approaches. The survey compares the existing state-of-the-art approaches
as well as shows the pros and cons of the available approaches. All the above-discussed works pre-
sented surveys only of traditional HUIM approaches. These surveys are not focused on top-k HUIM
approaches.
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In the literature, we found only one study that shows the comparison of transactional dataset-
based top-k HUIM approaches. In 2019, Krishnamoorthy (2019a) presented a comparative study that
categorised the existing top-k HUIM algorithms into two groups: two-phase and one-phase-based algo-
rithms. This comparative study only shows the comparison of two two-phase (TKU and REPT) and
two one-phase (TKO and kHMC) algorithms. This work presents an experimental comparison among
four transactional dataset-based algorithms, that is, TKU, REPT, TKU, and kHMC. The author uti-
lized eight datasets and categorised them as sparse and dense. The experimental results include runtime
performance comparisons, number of candidate-generated comparisons, and memory consumption per-
formance comparisons. Furthermore, the author provides little discussion of other variant datasets, that
is, data-stream and on-shelf-based mining approaches.

Our work is distinct from the comparative study presented by Krishnamoorthy (2019a) on the
following aspects:

• Our work presents a detailed survey of more than 35 state-of-the-art papers, whereas
Krishnamoorthy’s work included only 4 papers. Our analysis included almost all the available state-
of-the-art papers in the top-k HUIM field.

• Krishnamoorthy’s work is an experimental comparative study, and our work is a theoretical
comparative analysis. Our analysis is more comprehensive and detailed.

• Krishnamoorthy compared only 12 internal threshold-raising strategies, whereas our analysis
included more than 50 threshold-raising strategies. Our analysis discussed more than 55 pruning
strategies too.

• Our analysis elaborated on the comparative advantages and disadvantages of the top-k HUIM
approaches, whereas Krishnamoorthy’s study does not.

• Our taxonomy included transactional dataset-based, incremental and data-stream-based, sequen-
tial dataset-based, basic and extended utility-based, and other hybrid approaches. On the other hand,
Krishnamoorthy’s study only included transactional dataset-based approaches.

• Furthermore, we discussed applications and also included a detailed summary and discussion of
the top-k HUIM approaches.We also elaborated dynamic dataset-based, and both positive and negative
utility value-based approaches.

Applications
User behavior mining: User behavior mining is an emerging topic in the domain of data mining. It
analyses the behavior of users and has various applications, for example, website design (Pei et al., 2000),
and cross-marketing analysis (Yen & Lee, 2007a). Periodic behavior can be defined as repeated activities
at certain locations with regular time intervals (Li et al., 2010). It provides insightful and concrete
information about the long-moving history. The experts must have specific background knowledge in the
domain that requires interesting periods or particular periods to be examined. The utility pattern mining
could be used to analysis the user behavior during different time-periods. For example, physicians need
to monitor older people to examine their daily and weekly behaviors.

Bio-informatics: Microarrays are effective techniques to evaluate the expression of a massive num-
ber of genes. It is used to identify the relationships between gene regulatory events and determine the
biological effects of stimuli in the environment. However, it is quite a challenging task to analyse the
biological effects on large-scale datasets. The utility pattern mining analysis is quite useful to identify
the different genes that frequently occur in the biological conditions in the microarray dataset (Liu et al.,
2013). A phylogeny or phylogenetic tree is used to identify the relationship among the set of species.
Utility pattern mining techniques are used to identify the common patterns, especially utility trees that
are the collection of the phylogenetic tree.

Market-basket analysis: HUIM algorithms (Liu et al., 2005) are extensively used in market-basket
analysis, which is the collection of the set of items purchased by customers to generate significant profits
for retail businesses, for example, Yahoo. The HUIM algorithms are quite useful for business retailers to
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make the correct decisions to identify highly profitable itemsets and reduce the inventory cost of more
frequent but less profitable itemsets (Liu et al., 2005).

Smart home: Due to the advancement of sensor technology, the electrical usage data of home
appliances can be gathered very easily. However, the relevant information about the appliance usage
data may exist but is hidden. The Correlation Pattern Miner (CoPMiner) algorithm (Chen et al.,
2014) is designed to identify usage patterns and correlations among appliances probabilistically.
HUIM algorithms could be a promising solution to find appliance usage patterns that are useful
for users to identify unnecessary appliance usage data and take corrective action for better usabil-
ity of appliances. Moreover, manufacturers can better design the intelligent control system for smart
appliances.

Interval-based events in temporal pattern mining: Temporal pattern mining is an interesting and
important sub-field of data mining. In medical applications, temporal pattern mining identifies the fre-
quent temporal patterns that a patient has a fever when they have a cough, and these symptoms occur
when he or she has flu (Wu & Chen, 2007). The sequential patterns identify the complex interval-
based temporal relationship among events. For example, in many diabetic patients, the presence of
hyperglycemia overlaps with the absence of glycosuria, which led to the development of effective
diabetic testing kits. It requires identifying the complex temporal relationships among events dura-
tion. The utility pattern mining could be used to analysis the interval-based events in temporal pattern
mining.

Web access pattern mining: Web access patterns are used to predict and understand the browsing
behaviour of the users, which is quite useful for enhancing the user experience and website configura-
tion. It is useful to analyse user motivation and give better recommendations and personalised services
to the users. Web access patterns, also known as web navigation patterns or click-streams, represent
the extracted path via one or more web pages on a website through the web server. The process of dis-
covering patterns from web access logs is known as web usage mining (or web log mining) (Pei et al.,
2000). HUIM algorithms can be quite interesting to mine the recorded information regarding the access
paths of website visitors. Web access sequence (WAS) mining algorithms access the sequences of web
pages visited by the users through web servers (Pei et al., 2000). It can enhance the design of a website
that provides effective accessibility among highly correlated web pages, user recommendations, cus-
tomer classification, and advertisement policies. HUIM algorithms are quite useful for both static and
incremental mining of high-utility web access sequences.

The rest of the paper is organised as follows: Section 2 describes the key definitions and nota-
tions used in this paper. Section 3 describes the detailed discussion of top-k HUIM approaches.
Section 4 presents the discussion and summary of all the available top-k HUIM approaches.
Section 5 highlights the future directions for the top-k HUIM problem. Section 6 gives concluding
remarks.

2. Preliminaries and definitions
Let I = {x1, x2, . . . , xm} be a finite set of distinct items. A transactional dataset D = {T1, T2, . . . , Tn} is a
set of transactions, where each transaction Tj ∈ D and n is the total number of transactions in D. Each
item in the transaction has a positive integer value called the internal utility (purchase quantity) of the
item. Each item Ij is associated with an integer value called an external utility (price or profit). If the
value of external utility is not positive, then the item Ij is called a negative item.

For example, Table 1 shows an example dataset containing six transactions. Each row presents the
transaction, where alphabetical letters (A, B, C, . . . ) denote the items. Each item has its own internal
utility value. Table 2 shows the external utility values for each item.

Definition 1 (Internal utility). Each item x ∈ I is assigned an internal utility (purchase quantity)
referred to as IU(x, Tj).

For example, the internal utility of item A in the transaction T1 is 1 as shown in Table 1.
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Table 1. A transactional dataset

TID Transaction
T 1 (A, 1) (C, 2) (D, 3) (E, 2)
T 2 (B, 2) (C, 5) (E, 1)
T 3 (B, 3) (C, 1) (D, 2) (E, 1)
T 4 (C, 1) (D, 1)
T 5 (A, 2) (B, 1) (C, 3) (D, 1) (E, 2)
T 6 (A, 3) (B, 3) (E, 1)

Table 2. External utility values

Item A B C D E
External utility 2 1 3 2 1

Table 3. Transaction utility of the running example.

TID Transaction Internal Utility Utility Transaction Utility (TU)
T1 A, C, D, E 1, 2, 3, 2 2, 6, 6, 2 16
T2 B, C, E 2, 5, 1 2, 15, 1 18
T3 B, C, D, E 3, 1, 2, 1 3, 3, 4, 1 11
T4 C, D 1, 1 3, 2 5
T5 A, B, C, D, E 2, 1, 3, 1, 2 4, 1, 9, 2, 2 18
T1 A, B, E 3, 3, 1 6, 3, 1 10

Definition 2 (External utility). Each item x ∈ I is assigned an external utility (e.g., unit profit) referred
to as EU(x).

For example, the external utility of item A is 2 as shown in Table 2.

Definition 3 (Utility of an item). The utility of an item x ∈ Tj is denoted by U(x, Tj), where U(x, Tj) =
IU(x, Tj) ×EU(x).

For example, the utility of item A in T1 is computed as: U(A, T1) = IU(A, T1) ×EU(A) = 1 × 2 = 2.
The 4th column of Table 3 shows the utility value of each item for all the transactions.

Definition 4 (Utility of an itemset in a transaction). The utility of an itemset X in a transaction Tj(X⊆Tj)
is denoted by U(X, Tj), which is defined as U(X, Tj) = ∑

x∈X∧X⊆Tj
U(x, Tj).

For example, U({A, C}, T1) = 2 + 6 = 8.

Definition 5 (Utility of an itemset in dataset). The utility of an itemset X in dataset D is denoted by
U(X) which is defined as U(X) = ∑

X⊆Tj∈D U(X, Tj).

For example, U({A, C}) = U({A, C}, T1) + U({A, C}, T5) = 8 + 13 = 21.

Definition 6 (Transaction utility). The transaction utility denoted by TU(Tj), for transaction Tj is
computed as TU(Tj) = ∑m

i U(xi, Tj), where m is the number of items in Tj transaction.

For example, TU(T1) = U(A, T1) + U(C, T1)+ U(D, T1) + U(E, T1) = 2 + 6 + 6 + 2 = 16. The TU
of all the transactions is shown in the last column of Table 3.

Definition 7 (Total utility). The total utility of a dataset D is denoted as TUD and is defined as

TUD = ∑
Tj∈D TU(Tj)
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Table 4. TWU values of the running example

Item A B C D E
TWU 44 57 68 50 73

For example, the total utility of the dataset D is TUD = TU(T1)+ TU(T2)+ TU(T3)+ TU(T4)+
TU(T5)+ TU(T6) = 16 + 18 + 11 + 5 + 18 + 10 = 78.

FIM mining discovers frequent patterns by using the DCP; however, the same support-based DCP
cannot be applied to the utility value in HUIs. A low-utility itemset may become HUIs when an item is
added that has a large utility value. To restore the DCP, HUIM algorithms use the TWU closure property
(Liu et al., 2005). All the HUIM algorithms follow the TWU technique to mine the HUIs (Liu et al.,
2005; Chu et al., 2009; Wu et al., 2012; Ryang & Yun, 2015; Yin et al., 2013; Zihayat & An, 2014).

Definition 8 (Transaction-weighted utility). The transaction weighted utility of an itemset X denoted
by TWU(X) can be defined as TWU(X) = ∑

X⊆Tj∈D TU(Tj).

For example, TWU(A) = TU(T1) + TU(T5) + TU(T6) = 16 + 18 + 10 = 44. Table 4 shows the TWU
values of all the items in the running example.

Property 1 (TWU based overestimation). If the TWU value of itemset X is greater than the utility value
of itemset X, that is, TWU(X) > U(X), then the itemset is assumed to be overestimated (Liu et al., 2005).

Property 2 (TWU based search-space pruning). If the TWU value of the itemset X is less than the
user-defined threshold (min_util), that is, TWU(X) < min_util, then the itemset cannot be included for
further processing (Liu et al., 2005).

Definition 9 (High utility itemset). An itemset X is called a high utility itemset if the utility of itemset
X is greater than or equal to the user-specified min_util threshold, that is, U(X) ≥ min_util. Otherwise,
the itemset is of low utility.

The HUIs for running example with min_util = 30 are as follows: {{A, C, D, E}:33, {C, D}:35,
{C, D, E}:35, {B, C}:33, {B, C, E}:37, {C}:36 and {C, E}:39}, where the number beside each itemset
indicates its utility value.

Definition 10 (Closed itemset). An itemset X is a closed itemset if there is no super-set of itemset X with
the same support count. Otherwise, the itemset X is a non-closed itemset.

Two-phase-based algorithms suffer from multiple dataset scans and the generation of lots of can-
didates. To overcome these limitations, we found several proposed one-phase algorithms. One-phase
algorithms are more efficient than two-phase algorithms in terms of execution time and memory space.
Most of the one-phase algorithms use a utility-list-based data structure to store information about items,
and the remaining utility-based pruning strategy to prune the search-space (Liu & Qu, 2012).

Definition 11 (Remaining utility of an itemset in a transaction). The remaining utility of itemset X
in transaction Tj denoted by RU(X, Tj) is the sum of the utilities of all the items in Tj/X in Tj where
RU(X, Tj) = ∑

i∈(Tj/X) U(i, T) (Liu & Qu, 2012).

Definition 12 (Utility-list structure). The utility-list structure contains three fields, Tid, iutil, and rutil.
The Tid indicates the transactions containing itemset X, iutil indicates the U(X), and the rutil indicates
the remaining utility of itemset X is RU(X, Tj) (Liu & Qu, 2012).

Property 3 (Pruning search-space using remaining utility). For an itemset X, if the sum of U(X) +
RU(X) is less than min_util, then itemset X and all its supersets are low utility itemsets. Otherwise, the
itemset is eligible for HUIs. The details and proof of the remaining utility upper-bound (REU)-based
upper-bound are given in Liu and Qu (2012).
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Table 5. High utility itemsets where k = 10

Itemsets Utility Itemsets Utility
{A, D, C} 29 {D, C, E} 35
{A, D, C, E} 33 {B, C} 33
{A, C, E} 25 {B, C, E} 37
{D, B, C, E} 25 {C} 36
{D, C} 35 {C, E} 39

Definition 13 (top-k high utility itemset). An itemset X is top-k HUIs if there exist no more than (k-1)
itemsets whose utility is higher than that of X.

In the running example, Table 5 shows the HUIs for k, where the value of k is 10.

3. Top-k high utility itemset mining algorithms
HUIM algorithms (Tseng et al., 2010; Liu & Qu, 2012; Tseng et al., 2013) are proposed that consider
both users’ preferences and items’ importance (for example, weight, cost, profit, quantity, and others).
However, HUIM does not follow the anti-monotonic property (Liu et al., 2005; Agrawal & Srikant,
1994). To deal with this issue, most of the HUIM approaches (Liu et al., 2005; Ahmed et al., 2009)
adopt the TWU model (Liu et al., 2005) that follows the TWDCP (Transaction-Weighted Downward
Closure Property)2. However, traditional HUIM approaches suffer from the following drawbacks:
(1) generation of numerous unpromising candidate itemsets. (2) scanning the dataset multiple times.
(3) It is difficult to set the appropriate threshold in advance. To address these issues, we discuss the
top-k HUIM algorithms in-depth that solve the above problems to a large extent. We divide the top-k
HUIM into three parts, namely tree-based, utility-list-based, and others.

3.1 Tree-based top-k HUIM algorithms
Tree-based top-k HUIM algorithms are categorised into the following three broad areas of datasets:
(1) static, (2) incremental and data stream, and (3) sequential.

3.1.1 Static dataset-based algorithms
Top-k HUIM algorithms (Wu et al., 2012; Ryang & Yun, 2015) are designed to mine top-k HUIs where
the user can specify the value of k to obtain the intended itemsets. It is easy to set the value of k
instead of setting the min_util threshold. However, it incurs the following challenges: (1) The utility
value of the itemsets is neither monotone nor anti-monotone. (2) Present a novel data structure to store
the items. (3) It is difficult to raise the intermediate threshold from 0 to prune the search-space. In this
sub-section, we have provided the most up-to-date discussion about the static dataset-based top-k HUIM
algorithms.

Wu et al. (2012) developed an effective approach, named TKU (Top-K Utility itemset mining), to
discover all the HUIs without setting a minimum-utility threshold from the transactional dataset. Firstly,
the authors present a baseline algorithm, named TKUBase, an extension of UP-Growth (Tseng et al., 2010)
and adopt the UP-Tree (Tseng et al., 2010), to keep the details of transactions and top-k HUIs. TKUBase

consists of the following three parts: (1) constructs the UP-Tree as in Tseng et al. (2010) and requires
two dataset scans, (2) generates the Potential top-k HUIs (PKHUIs) from the UP-Tree, and (3) identifies

2An itemset is HTWUI (High Transaction-Weighted Utility Itemset) if its TWU is no less than the minimum-utility threshold
specified by the user.
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Table 6. Comparison of three designed versions of the TKU by using different
threshold-raising strategies (Wu et al., 2012)

Algorithm TKU TKU (noSE) TKU (Base)
PE

√ √ ×
Phase 1 NU

√ √ ×
MD

√ √ ×
MC

√ √ √
Phase 2 SE

√ × √

the actual top-k HUIs from the set of PKHUIs. Four threshold-raising strategies, namely, raising the
threshold by Minimum-Utility Itemsets (MUI) of Candidate (MC), Pre-Evaluation (PE), raising the
threshold by Node Utilities (NU), and raising the threshold by MIU of Descendants (MD), are designed.
The MC strategy is used to determine that the estimated utility is no less than the border threshold. The
PE strategy raises the border threshold after the first scan by using the Pre-evaluation Matrix (PEM)
structure, which keeps the lower bounds of utility for the particular 2-itemsets. During the second dataset
scan, the NU strategy is performed while constructing the UP-Tree. The MD strategy is performed after
UP-Tree construction and before PKHUIs generation. These strategies effectively reduce the search-
space and unpromising candidates in the first phase. As the number of checked PKHUIs is too high, it
takes a lot of time to scan the dataset. To mitigate this effect in the second phase, the fifth threshold-
raising strategy, named Sorting candidates and raising threshold by the Exact utility of candidates (SE),
is designed to enhance the mining performance by minimising the number of checked candidates. Three
versions of TKU, namely TKU, TKUnoSE, and TKUBase, are proposed to measure the effectiveness of the
developed strategies that are shown in Table 6.

The experimental results show that TKU performs better than TKUBase and is close to the optimal case
of UP-Growth (Tseng et al., 2010) for the execution time over the foodmart, mushroom and chain-store
datasets. It is observed that the execution time of TKU is up-to 100 times faster than that of TKUBase

and two times less than the optimal case of UP-Growth. However, TKU relies on a two-phase model,
thereby resulting in a large number of candidates and multiple dataset scans.

TKU (Wu et al., 2012) fails to process all the patterns having utilities that are less than the specified
threshold. To resolve this issue, Ryang and Yun (2015) developed an effective approach, named REPT
(Raising threshold with Exact and Pre-calculated utilities for Top-k high utility pattern mining), to find
the top-k HUIs with highly reduced candidates from the non-binary datasets. Three threshold-raising
strategies, namely, raising the threshold based on Pre-evaluation with Utility Descending order (PUD),
raising the threshold by Real Item Utilities (RIU), and Raising the threshold with items in Support
Descending order (RSD), are designed with exact and pre-evaluated utility of itemsets of length 1 or 2 in
the first phase. During the second phase, the fourth threshold-raising strategy, named Sorting candidates
and raising the threshold Exact and Pre-calculated utilities of candidates (SEP), is designed with exact
and pre-calculated utilities to identify the actual top-k HUIs. The primary differences between REPT
and TKU are as follows: (1) During the first dataset scan, TKU employs the PE strategy, based on only
pre-evaluated itemsets, while REPT employs two strategies, PUD and RIU, based on both exact and
pre-evaluated itemsets. (2) During the second dataset scan, TKU constructs the tree using MD and NU
strategies, while REPT increases the threshold again by using RSD and NU strategies. (3) TKU uses
the SE strategy to employ only upper-bound utilities, while REPT uses the SEP strategy to employ
both exact and pre-calculated utilities of itemsets. Therefore, REPT significantly performs better than
TKU. The difference between REPT and TKU for the different threshold-raising strategies is shown in
Table 7.

It is observed that REPT performs better compared to the state-of-the-art works TKU (Wu et al.,
2012) and the optimal case of UP-Growth (Tseng et al., 2010) and UP-Growth+ (Tseng et al., 2013)
for the number of generated candidates, runtime, memory utilisation, and scalability from the dense and
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Table 7. Threshold-raising strategies used by REPT and TKU (Ryang & Yun, 2015)

Algorithm Phase 1 Phase 2
First scan Second scan Growth

REPT PUD & RIU RSD & NU MC SEP
TKU PE MD & NU MC SE

sparse datasets. Moreover, REPT effectively raises the threshold as compared to the TKU algorithm (Wu
et al., 2012) for different values of k and N (where N denotes the number of items). However, REPT
incurs the same drawbacks as the TKU approach. Furthermore, it is a tedious job for the users to specify
the suitable values of N , used by the RSD strategy.

REPT and TKU follow the two-phase model; therefore, these algorithms generate excessive candi-
dates and perform multiple dataset scans to find the accurate utilities of itemsets and extract the desired
top-k HUIs. To address these issues, Singh et al. (2019b) developed an effective method, named TKEH
(Efficient algorithm for mining top-k high utility itemsets), to find the top-k HUIs from the transactional
datasets. TKEH adopts the Estimated Utility Co-occurrence Pruning Strategy with Threshold (EUCST),
an extended version of FHM (Fournier-Viger et al., 2014) and later improved by kHMC (Duong et al.,
2016). EUCST efficiently raises the minimum utility threshold to prune the search-space. The EUCS
structure is implemented using a hash map instead of a triangular matrix, as in Fournier-Viger et al.
(2014). TKEH scans the dataset twice. In the first dataset scan, it computes the TWU of each 1-item
and sorts items as per the increasing order of TWU, while during the second scan, it builds the EUCS
structure. However, it is very costly to scan the dataset. To mitigate this effect, the proposed algorithm
adopts database projection and transaction merging techniques from EFIM (Zida et al., 2015). Both
of these techniques effectively reduce the dataset size, thereby resulting in high cost-effectiveness of
the dataset scans. However, the transaction merging technique finds lots of identical transactions. To
implement these techniques efficiently, TKEH adopts the method as used in EFIM (Zida et al., 2015).
The proposed work adopts the following three threshold-raising strategies: (1) The first strategy, Real
Time Utilities (RIU), is adopted from REPT (Ryang & Yun, 2015), and it raises the minimum utility to
the kth largest value stored in the RIU list. (2) Second strategy: CUD is adopted from kHMC (Duong
et al., 2016), and it incorporates the EUCS structure to keep the utilities of 2-itemsets. CUD is applied
after the RIU strategy. (3) The third strategy, Coverage (COV), is used to store the pairs of items in
the Coverage List (COVL) structure. Two pruning strategies, namely Pruning using sub-tree (SUP) and
Pruning using EUC (EUCP), are incorporated to efficiently reduce the search-space. SUP uses the notion
of sub-tree utility as in Zida et al. (2015), while EUCP is used to get the TWU value of each itemset
using the EUCS structure.

To measure the effectiveness of the strategies used, five versions of TKEH are designed, namely
TKEH, TKEH(CUD), TKEH(RIU), TKEH(sup), and TKEH(tm). Experiments show that TKEH with
five versions performs better in contrast to the state-of-the-art TKU (Wu et al., 2012), TKO (Tseng et al.,
2016), and kHMC (Duong et al., 2016) for runtime, memory utilisation, and scalability in dense and
sparse datasets. The proposed algorithm is 2.66 times and 73.98 times faster than that of kHMC and
TKO, respectively, for k = 1000. On the other side, TKU does not work for k = 1000. However, TKEH
shows poor performance on highly sparse datasets, for example, the retail dataset. The reason is that the
proposed algorithm does not utilise transaction merging and database projection techniques properly for
the highly sparse datasets.

Liu et al. (2018) proposed a novel one-phase, efficient and scalable algorithm, named TONUP
(TOp-N high Utility Pattern mining), an extension of d 2HUP (Liu et al., 2016) and formulated upon
the opportunistic pattern-growth approach, to mine the long top-n HUPs without generating candidates.
It grows top-k HUPs by enumerating patterns as prefix extensions using depth-first search, computes
the utility of each enumerated pattern by using an improved memory-resident structure, shortlists pat-
terns with the first n larger utilities among the enumerate patterns, and employs the nth largest utility as

https://doi.org/10.1017/S0269888924000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888924000055


The Knowledge Engineering Review 11

a border threshold to prune the search-space. The memory-resident data structure, improved Chain of
Accurate Utility Lists (iCAUL), an extended version of CAUL (Liu et al., 2016), is proposed to store the
utilities of enumerated patterns to enhance the mining performance. Materialized projection is efficient
to eliminate the unpromising items by enumerating the prefix extensions, but it incurs additional over-
head to allocate the memory and copy transactions. Therefore, a materialize transaction set for patterns
is selected based on the pattern length and the percentage of promising items. On the other hand, pseudo-
projection is independent of data characteristics, removing the burden on users. Materialized projection
works well on dense datasets, while pseudo-projection works well on sparse datasets. The Automatic
Materialization in projecting TS (AutoMaterial) strategy provides a balance between pseudo- and mate-
rialized projection of transaction sets, maintained in iCAUL by using the self-adjusting method. The
Dynamically resorting items in DESCENDing order (DynaDescend) strategy is used to initialise and
dynamically adjust the border threshold and dynamically resort the items in the decreasing order of local
utility upper-bound. However, it incurs additional costs to dynamically resort to the items. An oppor-
tunistic strategy is proposed that maintains the shortlisted patterns, efficiently computes the utilities,
quickly raises the border threshold, handles the very long patterns, and captures every opportunity to
enhance the efficiency and scalability of full-strength TONUP. The full-strength TONUP uses a suffix
tree to keep and shortlist the enumerated patterns. The threshold-raising strategy, named Exact utili-
ties to raise a Border threshold (ExactBoarder), is incorporated to rapidly raise the border threshold
by the exact utility of each enumerated pattern using min-heap. The threshold-raising strategy, named
Suffix Tree to maintain patterns (SuffixTree), is incorporated to efficiently keep the shortlisted patterns
by using a suffix tree. The Opportunistic Shift to a two-round approach (OppoShift) strategy opportunis-
tically shifts the two-round method when the enumerated patterns are too long. The two-round TONUP
is up to three times faster than the one-round TONUP.

TONUP is 1 to 3 orders of magnitude more efficient than the benchmark algorithms, TKU (Wu et al.,
2012) and TKO (Tseng et al., 2016), and up to 2 orders of magnitude faster than the optimal case of
the state-of-the-art methods, UP-Growth+ (Tseng et al., 2013), HUI-Miner (Liu & Qu, 2012) and EFIM
(Zida et al., 2015). The proposed algorithm incurs several disadvantages. It works only for static datasets.
Therefore, an incremental algorithm may be used to discover top-n HUPs from dynamic datasets. The
proposed algorithm only considers small and medium-sized datasets that can be entirely kept in memory.
In cases of massive data that cannot be completely occupied in memory, it fails to discover top-k HUIs
directly. One probable solution is that firstly, an extension is utilised to retrieve the data from datasets
subject to memory constraints, then computes the local top-k HUIs, and finally fetches results from local
datasets. However, this process is cumbersome, generates lots of unpromising candidates, and degrades
mining performance.

TopHUI (Gan et al., 2020) is the first work that can mine top-k HUIs with or without negative util-
ity; however, it incurs high memory costs and a long runtime. To resolve these problems, Chen et al.
(2021) proposed an approach named TOPIC (TOP-k high utility Itemset disCovering), with positive
and negative utility from the large dataset. An array-based utility-counting method is adopted to effi-
ciently compute the utility bounds to minimise the unpromising candidate generations. Two novel upper
bounds, namely Redefined Local Utility and Redefined Sub-tree Utility, are utilised by using the utility-
array (UA) to quickly reduce the search-space. TOPIC is an extension of EFIM (Zida et al., 2015),
and traverses the search-space by adopting the depth-first method. The items are arranged according to
the increasing order of TWU in the search-space when there are only positive utility values. However,
in the case of negative utility values, the ascending order of RTWU is considered to follow the lex-
icographical order. The negative items always follow the positive items in sorted order. The proposed
approach incorporates two efficient dataset scanning techniques, namely transaction merging and dataset
projection, to minimise the dataset scan cost and memory usage. Two pruning strategies, namely TWU-
based pruning strategy (Liu t al., 2005) and RTWU-based pruning strategy (Fournier-Viger, 2014), are
adopted to effectively reduce the search-space and discover the exact top-k HUIs. The Priority-queue and
threshold-raising strategy, RIU (Ryang & Yun, 2015), are employed, respectively, to store the itemsets
and automatically raise the minimum-utility threshold.
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Four versions of the proposed algorithm, namely TOPICmerge, TOPICsub−tree, TOPIC, and TOPICnone,
are designed to evaluate the effectiveness of adopted strategies. Experiments show that TOPIC outper-
forms the other proposed versions. The reason is that TOPIC does not require keeping unnecessary
details in memory. TOPIC works better than the state-of-the-art TopHUI (Gan et al., 2020) concerning
the runtime, memory cost, and scalability on the benchmark datasets. It produces excellent perfor-
mance on dense and moderately dense datasets. TOPIC adopts an efficient data structure to avoid the
large amount of information stored in memory, thereby resulting in high performance. Moreover, the
versions of the proposed algorithm, TOPICmerge, TOPICsub−tree, and TOPICnone, are significantly bet-
ter than TopHUI because of the adoption of tight upper bounds for RSU and RLU. It is observed
that the proposed algorithm is up to 3, 20, 4, and 2 times faster as compared to TopHUI (Gan et al.,
2020) on the Retail, Chess, Mushroom, and T10I4D100K datasets, respectively. Furthermore, TOPIC
consumes 8 times less memory than TopHUI to complete the mining process. However, more effi-
cient threshold auto-raising strategies and compressed data structures can be designed for high mining
performance.

There are some top-k HUIM algorithms (Gan et al., 2020; Chen et al., 2021) available in the literature
that deal with the negative itemsets. However, they are not performed well in terms of runtime, mem-
ory consumption, weak pattern pruning, and scalability. To deal with these issues, Ashraf et al. (2022)
proposed an efficient generalised and adaptive algorithm, named TKN (Efficiently mining Top-K HUIs
with positive or Negative profits), to mine top-k HUIs from the positive and negative profit datasets. It
uses the pattern-growth method that eliminates the unpromising candidates that exist in the dataset by
using a depth-first search. It uses a horizontal dataset presentation as used in EFIM (Zida et al., 2015)
that merges the duplicate transactions in the projected datasets, which significantly improves the mining
performance. The proposed algorithm utilised transaction projection and merging techniques to signifi-
cantly reduce the visiting cost of the dataset, thereby significantly reducing execution time and memory
usage. A data structure, named LIU, is adopted from THUI (Wan et al., 2021) that keeps the utilities of
itemsets in an ordered way in compact form. It is used to efficiently raise the minimum utility threshold
while holding both positive and negative utility. An upper-bound PTWU is introduced to reduce the
number of possible HUIs. Another upper-bound Remaining Utility (REU) is adopted from HUI-Miner
(Liu & Qu, 2012) to narrow the search-space of the mining process. Two efficient pruning properties,
namely Positive sub-tree utility (PSU) and Positive local utility (PLU) are used to prune the search-space
in a depth-first search manner. PSU and PLU are the generalised versions of the sub-tree utility and local
utility as proposed in EFIM (Zida et al., 2015). Two novel pruning strategies, namely Early pruning (EP)
and Early abandoning (EA), are designed. The EP strategy reduces the computational cost of construct-
ing the projected datasets of the prefix itemsets. The EA strategy reduces the number of evaluations
to estimate the upper-bound PSU and PLU of the candidates without performing unnecessary dataset
scans, thereby increasing mining speed. An array-based approach is utilised to compute the utility and
upper bounds in linear time, thus achieving the maximum efficiency to estimate the utility of itemsets.
There are three threshold-raising strategies, namely Positive real item utility (PRIU), Positive LIU-Exact
(PLIU_E), and Positive LIU-Lower Bound (PLIU_LB), to effectively raise the minimum utility thresh-
old. PRIU strategy is the generalised version of RIU strategy, adopted from the REPT algorithm (Ryang
& Yun, 2015) that is used to raise the minimum utility threshold from the zero value during the first
scan. PLIU_E strategy is based on the LIU-E strategy to raise the minimum utility threshold stored in
the LIU structure by using the priority queue PIQU_LIU of size k. The PLIU_LB strategy is based on
LIU-LB (Krishnamoorthy, 2019b) that computes the lower-bound utility for each stored sequence in the
LIU structure.

Three variants of the proposed algorithm, namely TKN(PRIU), TKN(PSU), and TKN(TM) are
developed to measure the effectiveness of TKN. TKN(PRIU), TKN(PSU), and TKN(TM) use all the
techniques except LIUS-based strategies, transaction merging techniques, and PSU pruning strategies,
respectively. It is observed that TKN achieves high speed as compared to TKN(PRIU), TKN(PSU),
and TKN(TM). The performance of the proposed algorithm is compared against the negative top-k
HUIM, named THN (Sun et al., 2021), top-k HUIM, namely THUI (Wan et al., 2021) and TKEH
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(Singh et al., 2019b), and finally with the optimal case of negative-utility-based HUIM, namely FHN
(Fournier-Viger, 2014) and GHUM (Krishnamoorthy, 2018), in terms of execution time and memory
consumption from the dense and sparse datasets. The experimental results show that TKN achieves one
order of magnitude more efficiently than THN and about four orders of magnitude more efficiently than
THUI and TKEH on highly dense and large datasets. TKN obtains performance very close to the opti-
mal cases of FHN and GHUM. It is observed that for different values of k, TKN prunes 82 percent at
the early stages, which saves a significant amount of time. TKN reduces the number of evaluations by
28 percent by computing the upper bound using the EA strategy.

Table 8 describes the overview of the tree-based top-k HUIM algorithms for static datasets. Table 9
highlights the pros and cons of all the available state-of-the-art tree-based top-k HUIM algorithms for
static datasets.

3.1.2 Incremental and data stream based algorithms
Several HUIM algorithms are proposed from data stream datasets (Ahmed et al., 2012). However, static
dataset based algorithms cannot be applied in the case of data streams because of the following reasons:
(1) data are coming rapidly, (2) unknown or unlimited data size, and (3) inability to know previous
transactions. To address these challenges, the HUIM method for data stream (Ahmed et al., 2012) is
proposed to efficiently discover the HUIs. However, it takes lots of time to process the data from the
data stream. Moreover, the user is required to set a minimum utility threshold. To resolve these issues,
the top-k HUIM algorithm (Wu et al., 2012) is designed to mine top-k HUIs without specifying the
minimum-utility threshold. However, this method works only for static data. Moreover, it requires high
runtime and memory utilization. In this sub-section, we provide an up-to-date discussion about the
incremental and data stream dataset-based top-k HUIM algorithms.

The conventional top-k HUIM algorithms (Wu et al., 2012; Ryang & Yun, 2015; Duong et al., 2016;
Tseng et al., 2016) are not suitable for the data stream because the number of items grows exponentially,
thereby failing to identify top-k HUIs. To resolve this problem, Zihayat and An (2014) proposed the
pattern-growth approach, named T-HUDS (Top-k High Utility itemset mining over Data Stream), the
first work of its kind, to mine the top-k high utility patterns over a sliding window from the data stream.
The authors proposed four strategies to automatically initialise and dynamically adjust the minimum-
utility threshold. The first three strategies are performed during the first phase, while the fourth strategy
is performed during the second phase of the mining process. The first strategy uses a novel estimation
utility model, named prefix utility, to find HUIs and a closer estimation of true utility than TWU. The
second strategy initialises the threshold using the Maximum Utility List (maxUtilList). It is computed
during the construction and updating of the HUDS-tree. The third strategy adjusts the threshold using
the Minimum Itemset Utility List (MIUList) by dynamically adjusting the threshold and storing the top-
k Minimum Itemsets Utility (MIU) values of current promising HUIs. The fourth strategy adjusts the
threshold with the minimum top-k utility (minTopKUtil) of the previous window. It uses a compressed
tree structure, named High Utility Data Stream Tree (HUDS-tree), like FP-tree (Han et al., 2000), to keep
the details about the transactions in the sliding window. HUDS-tree is built in one dataset scan only. In
phase one, HUDS-tree is mined to generate the Potential top-k HUIs (PTKHUIs), while in phase two,
the exact utility of PTKHUIs is calculated to discover the top-k HUIs. To measure the effectiveness
of the proposed strategies, two versions of T-HUDS are developed, namely T-HUDSI and T-HUDS.
The former utilises only the first three strategies during the first phase. On the other hand, T-HUDS
uses all the strategies during the first and second phases of the mining process. To measure the effec-
tiveness of threshold-raising strategies in phase one, three versions of the proposed algorithms, namely
T-HUDS1, T-HUDS2, and T-HUDS3, are evaluated. It is observed that T-HUDS3 performs better than
both T-HUDS1 and T-HUDS2, while T-HUDS2 performs better than T-HUDS1. The comparison of these
versions, T-HUDS1, T-HUDS2, and T-HUDS3, is shown in Table 10.

T-HUDS outperforms the state-of-the-art algorithm, HUPMS T (Ahmed et al., 2012) (Basic version
of TKU Wu et al., 2012), concerning the number of obtained candidates, threshold, first and second
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Table 8. An overview of the tree-based top-k HUIM algorithms for the static datasets
Threshold-

Data Database Search Pruning raising Utility State-of-the-art Base
Algorithm structure Phase scan Dataset Mining type strategies strategies value algorithms algorithms

TKU, 2012 Tseng
et al. (Wu et al.,
2012)

UP-Tree Three Multiple Transactional Top-k HUIs Min-heap DGU, DGN,
DLU & DLN

PE, NU, MD,
MC & SE

Positive only UPOptimal (Tseng et al.,
2010), TKUBase(Self)
(Wu et al., 2012)

UP-Growth
(Tseng et al.,
2010)

REPT, 2015
Ryang et al.
(Ryang & Yun,
2015)

UP-Tree Two Three Transactional KHUP Bottom-up
manner

TWU, DGN,
DLU & DLN

PUD, RIU, RSD,
NU, MC & SEP

Positive only TKU (Wu et al., 2012),
UP-Growth(Optimal)
(Tseng et al., 2010) &
UP-Growth+(Optimal)
(Tseng et al., 2013)

TKU (Wu et al.,
2012)

TKEH, 2018
Singh et al.
(Singh et al.,
2019b)

Pattern-
growth

One Twice Transactional Top-k HUIs DFS EUCP & SU RIU, CUD &
COV

Positive only kHMC (Duong et al.,
2016), TKU (Wu et al.,
2012), TKO (Tseng
et al., 2016) &
TKEH(Self) (Singh
et al., 2019b)

EFIM (Zida
et al., 2015)

TONUP, 2018
Liu et al. (Liu
et al., 2018)

iCAUL One Twice Transactional Top-n HUPs DFS uBitem &
uBfpe

ExactBorder,
SuffixTree,
AutoMaterial,
DynaDescend
& OppoShift

Positive only TKU (Wu et al., 2012),
TKO Tseng et al., 2016),
UP-Growth+

op (Tseng
et al., 2013),
HUI-Minerop (Liu & Qu,
2012) & EFIMop (Zida
et al., 2015)

d2HUP (Liu
et al., 2012)

TOPIC, 2021
Chen et al. (Chen
et al., 2021)

Priority queue One Trice Transactional Top-k HUIs with
negative utility

DFS RLU, RSU,
UA, TWU-
based &
RTWU-
based

RIU Positive &
Negative

TopHUI (Gan et al.,
2020) & TOPIC(Self)
(Chen et al., 2021)

EFIM (Zida
et al., 2015)

TKN, 2022
Ashraf et al.
(Ashraf et al.,
2022)

LIU &
PIQU_LIU

One Two Transactional Top-k HUIs DFS Ptwu. REU,
PSU, PLU, EP
& EA

PRIU,
PLIU_E &
PLIU_LB

Positive &
Negative

THN (Sun et al., 2021),
THUI (Krishnamoorthy,
2019b), TKEH (Singh
et al., 2019b), FHNOp

(Fournier-Viger, 2014)
& GHUMOp

(Krishnamoorthy, 2018)

EHIN (Singh
et al., 2018)
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Table 9. Advantages and disadvantages of the tree-based top-k HUIM algorithms for the static datasets

Algorithm Author Theoretical aspects Advantages Disadvantages
TKU (2012) Wu et al.

(2012)
The authors proposed a two-phase
model, an extension of UP-Growth
(Tseng et al., 2010), to keep the
information about transactions and
top-k HUIs without specifying the
minimum-utility threshold

TKU discovers the exact
number of top-k HUIs within
the specified time. It is 100
percent faster than the baseline
algorithm, TKUBase

The proposed algorithm generates a
large number of candidates.
Moreover, it needs to scan the dataset
multiple times. It does not perform
well in the case of extremely long
patterns for even small values of k

REPT
(2015)

Ryang and
Yun (2015)

A two-phase algorithm, REPT, mines
the top-k HUIs from the non-binary
datasets without setting the
minimum-utility threshold

REPT extracts the number of
candidates, which is
independent of the size of the
dataset. It effectively raises the
threshold in contrast to TKU
(Wu et al., 2012)

REPT suffers from numerous
candidate generations and multiple
dataset scans. Apart from selecting
values for k, it also needs to set an
additional parameter N , which is a
difficult task

TKEH
(2018)

Singh et al.
(2019b)

A pattern-growth approach is
proposed to efficiently mine the top-k
HUIs using depth-first search

TKEH always works well for
dense datasets. It is up to three
orders of magnitude faster than
benchmark algorithms

The transaction merging and dataset
projection techniques do not perform
well on highly sparse datasets

TONUP
(2018)

Liu et al.
(2018)

A one-phase algorithm is proposed,
which adopts an opportunistic
pattern-growth approach to mine
top-n HUPs

The proposed algorithm is
highly scalable and works for
extremely long patterns

TONUP algorithm is highly
dependent on the memory-resident
structure. Therefore, it may
eventually incur scalability issues

TOPIC
(2021)

Chen et al.
(2021)

The authors proposed an efficient
algorithm, based on EFIM (Zida
et al., 2015), that mines top-k HUIs
with both positive and negative
utility from the large datasets

TOPIC performs better than
TopHUI (Gan et al., 2020) for
dense and moderately dense
datasets. It uses almost 8 times
less memory than TopHUI

There is a wide scope for further
improvement of the threshold
auto-raising strategy and compact
data structure

TKN (2022) Ashraf et al.
(2022)

The authors proposed an efficient
generalized top-k HUIM algorithm to
mine top-k HUIs with both positive
and negative utility values from the
transactional datasets

TKN performs well as
compared to the state-of-the-art
algorithms on highly dense and
large datasets

The performance of TKN is nearly
close to the optimal cases of FHN
and GHUM
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Table 10. Comparison of three designed versions of the T-HUDS algorithm
using different threshold-raising strategies (Zihayat & An, 2014)

Method T-HUDS1 T-HUDS2 T-HUDS3
maxUtilList × √ √
MIUList

√ × √
minTopKUtil

√ √ ×

phase time, total runtime, memory usage, window size, and scalability on dense and sparse datasets.
However, the sliding window of the proposed algorithm cannot be entirely kept in memory, which may
lead to more database scans. Moreover, the HUDS-tree is a lossy compression of the transactions in the
sliding window, which may make it difficult to obtain the exact utility of the PTKHUIs.

The main issues of the top-k HUIM approach from data streams, based on the concept of sliding
window, follow as follows: (1) How do you maintain the window and keep the utility information of
itemsets because the old data needs to be deleted as the new data arrives? (2) How do you discover the
top-k HUIs for the sliding window? To solve these problems, Lu et al. (2014a) developed an effective
sliding window-based method, named TOPK-SW (Top-k high utility itemset mining based on Sliding-
Window), to mine the top-k HUIs without candidate generations from the data stream. It performs two
main tasks: (1) maintains the data in the current window. (2) mines top-k high utility itemsets on the
window. A novel tree structure, named High Utility Itemsets Tree (HUI-Tree), is proposed to maintain the
information about the item’s utility in lexicographical order and store each batch of data in the current
window. It does not require additional dataset scans. Experiments show that TOPK-SW outperforms
the optimal case of the state-of-the-art UP-Growth (Tseng et al., 2010) for the runtime and number
of generated patterns from the dense and sparse datasets. TOPK-SW also significantly outperforms the
UP(Optimal) in terms of time and space efficiency on dense and long transactional datasets. It is observed
that the time efficiency of TOPK-SW can be significantly improved up to one order of magnitude in the
case of dense and long transactional datasets. Moreover, the proposed algorithm is more stable as there
are variations in the value of k.

Table 11 describes the comparative overview of the tree-based top-k HUIM algorithms for increment
and data stream datasets. Table 12 highlights the pros and cons of all the currently available tree-based
top-k HUIM algorithms for increment and data stream datasets.

3.1.3 Sequential dataset-based algorithms
Traditional HUIM algorithms (Liu et al., 2005; Liu & Qu, 2012) cannot be applied to the sequential
datasets that consist of the itemsets with sequence related information. To address this issue, high-utility
sequential pattern mining (HUSPM) algorithm (Yin et al., 2012) is proposed to find the high-utility
sequential patterns (HUSPs) from the sequential datasets. However, they incur the following challenges:
(1) It is hard to set the appropriate threshold because users are unaware of the characteristics of datasets.
(2) It takes lots of time to extract the exact number of intended patterns. To address these issues, top-k
HUSPM algorithms are proposed, inspired by top-k SPM (Tzvetkov et al., 2003) and top-k HUIM (Wu
et al., 2012), to mine top-k HUSPs. However, there are the following challenges: (1) It is computationally
infeasible to prune the search-space. (2) combinatorial explosion of search-space; (3) identification of all
top-k HUSPs. In this sub-section, we provide an up-to-date discussion about the sequential dataset-based
top-k HUIM algorithms.

The mining of top-k high utility sequential itemsets is an arduous task than that of top-k HUIs for sev-
eral reasons: (1) The DCP does not hold for top-k high-utility sequences; hence, top-k frequent sequence
pattern mining (Tzvetkov et al., 2003) cannot be straight-forwardly applicable to high-utility sequences.
(2) Computational complexity and combinatorial explosion are very high because of the sequencing
among itemsets. (3) Raising the minimum threshold is difficult without any loss of the top-k high utility

https://doi.org/10.1017/S0269888924000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888924000055


The
K

nowledge
Engineering

Review
17

Table 11. An overview of the tree-based top-k HUIM algorithms for increment and data stream datasets
Threshold-

Data Database Pruning raising State-of-the-art Base
Algorithm structure Phase scan Dataset Mining Search type strategies strategies Utility value algorithms algorithms
T-HUDS, 2014
Zihayat et al.
(Zihayat & An,
2014)

HUDS-tree Two Once Data stream Top-k HUIs Auxiliary list PerfixUtil &
Local TWUs

maxUtilList,
MIUList &
minTopKUtil

Positive only TKU (Wu et al.,
2012) & HUMPS
(Ahmed et al., 2012)

UP-growth
(Tseng et al.,
2010)

TOPK-SW,
2014 Lu et al.
(Lu et al.,
2014a)

HUI-tree – Once Data stream TKHUIs Lexicographical
order

TWU None Positive only UP(Optimal) (Tseng
et al., 2010)

–
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Table 12. Advantages and disadvantages of the tree-based top-k HUIM algorithms for increment and data stream datasets

Algorithm Author Theoretical aspects Advantages Disadvantages
T-HUDS
(2014)

Zihayat & An
(2014)

A two-phase pattern-growth
approach is proposed to find
all the top-k HUPs over
sliding windows from a data
stream

The proposed algorithm
performs well on both large
and dense datasets. Its
runtime increases slowly with
an increase in window size

T-HUDS has the same
bottleneck as TKU (Wu et al.,
2012). It spends a high amount
of time verifying the patterns,
depending on the generated
candidates, which significantly
reduces the mining efficiency

TOPK-SW
(2014)

Lu et al.
(2014a)

A pattern-growth sliding
window-based top-k HUIM
algorithm is designed to
discover top-k HUIs from a
data stream without candidate
generations

TOPK-SW works well for
dense and long transactional
datasets. It is stable for
different values of k for time
performance

The proposed algorithm can be
further improved in the case of
sparse datasets. More efficient
pruning strategies can be used
to prune the search-space
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sequential itemsets. To address these issues, Yin et al. (2013) proposed a method, named TUS (Top-k
high Utility Sequence mining), to discover the top-k utility sequences without minimum-utility thresh-
old from the sequential datasets. The authors developed a baseline method, named TUSNaive, to mine
the top-k sequential itemsets with high utilities. It adopts the TUSList structure to keep the top-k HUSPs
on-the-fly. However, TUSNaive traverses excessive invalid sequences as the minimum threshold begins
with 0, thereby reducing the mining performance. To address this issue, three effective strategies are
designed. Firstly, the pre-insertion strategy is designed to raise the minimum threshold to stop unwanted
candidate generations. Secondly, the sorting concatenation order strategy is performed to effectively
identify the promising high-utility sequences. Lastly, a sequence-reduced utilisation (SRU) strategy is
applied to maintain the tighter sequence boundary that keeps refreshing the blacklist until all the items
in the whitelist satisfy the minimum-utility threshold value.

Three versions of the baseline algorithm, TUSNaive, are designed, namely TUSNaive+ (TUSNaive
with SRU), TUSNaive+I (TUSNaive with SRU and pre-insertion), and TUSNaive+S (TUSNaive
with SRU and sorting). It is observed that TUS, TUSNaive+I, and TUSNaive+S perform better than
TUSNaive+. TUSNaive+I performs better than TUSNaive+S for small values of k, while TUSNaive+S
performs better than TUSNaive+I when k exceeds a certain number. Hence, the proposed optimisation
measures–SRU, sorting, and pre-insertion–significantly extract the top-k patterns. The experiments are
performed on two syntactic datasets and two real datasets, show that TUS performs 10 to 1000 times
faster than the baseline algorithm, TUSNaive.

Rathore et al. (2016) proposed an effective method, named TUP (Top-k Utility ePisode mining),
to mine the top-k high-utility episode from a complex event sequence. The authors developed a basic
method, named TUP-Basic, to dynamically keep the sorted list of size k that consists of the top-k HUEs.
TUP-basic calculates the minimum occurrence, utility, and Episode-Weighted Utilization (EWU) of
1-length episodes by scanning the dataset only once. But it generates numerous candidates because
the threshold starts at 0. It is highly computationally expensive to extract the number of items in the
exponential search-space. To raise the minimum utility threshold, an effective Pre-insertion strategy is
proposed to pre-insert the event sets concurrently. It raises the minimum utility threshold from 0 to 13
before the start of the mining process. To further enhance the efficiency of the mining process, the EWU
strategy is proposed to effectively deal with frequency and utility. It explores those episodes first that
have a high EWU value. The TUP-combined strategy combines the features of both the pre-insertion
and EWU strategies. The effectiveness of pre-insertion, TUP-EWU, and TUP-Combined is measured
for runtime and memory usage. It is observed that the pre-insertion strategy performs better for the
total runtime and number of generated candidate episodes on the sparse datasets. On the other hand,
TUP-EWU and TUP-Combined perform better for total runtime and memory usage on dense datasets.
However, the performance of TUP-EWU is worse on sparse datasets because of a few short high-utility
episodes.

Sequential pattern mining is widely used to extract gene regulation sequential patterns. However, it
incurs the following challenges: (1) It depends on the frequency or support. (2) It is a tedious task to deter-
mine the threshold value. One possible solution is to design top-k HUP algorithms to efficiently work on
gene regulation. But the major issues are: (1) The threshold is unknown in advance. (2) raise the thresh-
old with the complete set of top-k patterns. To resolve these problems, Zihayat et al. (2016) proposed a
novel algorithm, named TU-SEQ (Top-k Utility-based gene regulation SEQuential pattern discovery),
the first work of its kind, that considers the utility model in terms of the gene importance and degree of
expression to mine the top-k high utility gene regulation sequential patterns (top-k HUGSs). TU-SEQ
only needs a user-specified number k and disease as an objective to traverse the k most high-utility gene
regulation sequences that guarantee to give the complete set of top-k patterns. The authors proposed a
baseline algorithm, named TU-SEQBase, an extension of the threshold-based approach, HUSP-Stream
(Zihayat et al., 2015) and adopt ItemUtilLists and HUSP-Tree, to keep the details of promising top-k
HUGSs. ItemUtilLists is a vertical representation of the time samples in the dataset; on the other hand,
HUSP-Tree is a lexicographic sequence tree that is constructed recursively in a top-down manner using
ItemUtilLists, where each non-root node represents a sequence of gene-sets. TU-SEQBase constructs a
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fixed-size sorted list, named top-k HUGS List (TKList), to maintain the information of top-k HUGSs
and their utility values. However, TU-SEQBase works efficiently, but it generates numerous non-valid
sequence candidates because the minimum utility begins with 0, thereby reducing the mining perfor-
mance. To enhance the mining performance, an efficient strategy, named Pre-Evaluation using genes
and Sequences (PES), is proposed to initialise the threshold and TKList by inserting the utility of genes
and sequences before the HUSP-Tree construction.

TU-SEQ compares with CTGR-Span (Cheng et al., 2013), and results show that TU-SEQ extracts
patterns whose popularity is considerably high and useful to identify the relation between promis-
ing genes and others. The experimental results show the effectiveness of TU-SEQ over TU-SEQBase

(self) and HUSP-Stream (Zihayat et al., 2015) in terms of execution time on the GSE6377 dataset
(McDunn et al., 2008). TU-SEQ is more than five times quicker than TU-SEQBase because of the PES
strategy. For the larger value of k, TU-SEQBase cannot be completed in a significant amount of time.
However, HUSP-Stream consumes less memory than that of TU-SEQ and TU-SEQBase. The reason is
that HUSP-Stream utilises an optimal threshold to prune the search-space, thus resulting in significant
memory usage.

Traditional HUSPM algorithm (Yin et al., 2012) generates numerous candidates and scan the dataset
multiple times. To address these issues, Wang et al. (2016) proposed HUS-Span to extract the HUSPs
by visiting the lexicographical tree using depth-first search. Two upper bounds, namely Prefix Extension
Utility (PEU) and Reduced Sequence Utility (RSU), and two pruning strategies are proposed to reduce
the generated candidates. An efficient data structure, called the utility chain, is designed to accelerate
the computational tasks of PEU, RSU, and utility sequences. HUS-Span first scans the dataset to accu-
mulate the Sequence Weighted Utility (SWU) of each 1-sequence and then builds the utility-chains of
1-sequences satisfying the minimum utility threshold. However, the major issue of HUS-Span is setting
the proper threshold. To resolve this issue, an efficient work is introduced for top-k HUSPM (Yin et al.,
2013) which uses the min-heap structure. It sets the value of k to mine the top-k patterns from the sequen-
tial datasets. The main problem with this approach is to rapidly pervade the min-heap data structure with
a high utility sequence to improve mining performance. To solve this problem, the authors proposed an
algorithm TKHUS-Span: (Top-k High Utility Sequential pattern mining) that has three variants, namely
TKHUS-SpanGDFS, TKHUS-SpanBFS, and TKHUS-SpanHybrid, which are used to prune the search-space
using a lexicographical tree as in Yin et al. (2013). TKHUS-SpanGDFS visits the tree by using the Guided
Depth-First Search (GDFS) that always visits child nodes first with the highest PEU value to complete
the mining process. To further improve the performance, TKHUS-SpanBFS is developed to explore the
search-space by using Best-First Search (BFS) and max-heap data structures that visit the nodes accord-
ing to their PEU value. TKHUS-SpanBFS effectively raises the minimum-utility threshold than that of
TKHUS-SpanGDFS and TUS (Yin et al., 2013), however, it consumes lots of memory. To alleviate the
limitations of TKHUS-SpanGDFS and TKHUS-SpanBFS, a hybrid approach, named TKHUS-SpanHybrid, is
proposed to balance mining efficiency and space usage by applying both BFS and DFS. It first uses BFS
where memory is limited, and then shifts to DFS where memory is not a constraint.

The experimental results prove the effectiveness of HUS-Span over the benchmark algorithm, USpan
(Yin et al., 2012), in terms of a utility threshold effect, number of generated candidates, projected
dataset scans, runtime, dataset size, and scalability from dense and sparse datasets. It is observed that
TKHUS-SpanBFS outperforms TKHUS-SpanGDFS, TKHUS-SpanHybrid, and TUS under different values
of k. TKHUS-SpanBFS and (Yin et al., 2013)TKHUS-SpanHybrid perform better than TKHUS-SpanGDFS

and TUS when k is large enough. TKHUS-SpanBFS generates 180 times less number of candidates than
that of TUS when k = 10 000. TKHUS-SpanBFS is 45 times faster than TKHUS-SpanGDFS when k = 50.
The reason is that TKHUS-SpanBFS discovers top-k HUSPs at an early stage. However, TKHUS-SpanBFS

suffers from high memory consumption. TKHUS-SpanHybrid is utilised to balance between runtime and
memory consumption.

Negative Sequential Patterns (NSP) mining refers to frequent sequences with Non-occurring
Behavior (NOB) and occurring behavior which includes positive and negative behaviors in behavior
sequential analysis (Zaki, 2001). NSP consists of more useful information than PSP (Positive Sequential
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Patterns).However, it incurs the following challenges: (1) How to mine the intended numbers of NSPs?
(2) How to select useful NSPs? (3) How to reduce the high-time computation? To resolve these problems,
Dong et al. (2019) proposed an optimisation approach called Topk-NSP+ (top-k Negative Sequential
Patterns Mining algorithm), the first of its kind, to find useful top-k NSPs from the top-k PSPs without
specifying the minimum threshold. Topk-NSP only mines top-k NSPs; it does not consider the efficiency
of the mining process. Therefore, the Topk-NSP+ algorithm is proposed that improves over Topk-NSP
by using three optimisation strategies, namely Weighted Support, Interestingness Metric, and Pruning
Strategy. Therefore, the Topk-NSP+ algorithm is proposed that improves over Topk-NSP by using three
optimization strategies, namely Weighted Support, Interestingness Metric, and Pruning Strategy. The
first optimization strategy uses two weights, wP and wN , to denote the user preference values for NSPs
and PSPs, respectively. It also utilizes Weight Support (wsup). The second optimization strategy is used
to improve wsup. It uses metric weight support, denoted by iwsup. It integrates the concepts of metric
weighted support and interestingness to efficiently change the top-k useful NSPs. But it consumes a
high amount of time to obtain all iwsup. To solve this issue, a third optimisation strategy is used that
only calculates a part of iwsup and prunes the unpromising operations. It consists of the following steps:
(1) First, it builds the seed set. (2) Second, it prunes the seed set. Topk-NSP+ generates NSCs (Negative
Sequential Candidates) by utilising the NSCgeneration method. It mines top-k NSPs from top-k PSPs
without scanning the dataset.

It is observed that Topk-NSP takes 0.01 percent to 3 percent less execution time than that of top-k
PSP over the benchmark datasets. The reason is that Topk-NSP does not require re-scanning the dataset.
The experimental results show the efficiency of the Topk-NSP+ over Topk-NSP in terms of computa-
tional cost and scalability on the benchmark datasets. When there is a five-fold increase in data size,
the memory consumption increases only about two times. Therefore, Topk-NSP+ effectively prunes the
seed sets and unpromising operations, thereby significantly improving the time efficiency. However,
there is a need to verify the correctness and completeness of the patterns discovered by the designed
approach.

Although top-k HUSPM algorithms are simple, user-friendly, and straightforward in implementation,
they incur the following challenges: (1) combinatorial explosion of search-space. (2) It is computation-
ally impractical to prune the search-space. (3) identification of all top-k patterns. To address these issues,
Zhang et al. (2021) designed a TKUS (Mining Top-K high Utility Sequential patterns) algorithm to dis-
cover the complete set of top-k HUSPs without specifying the minimum-utility threshold. TKUS utilises
projection and local search mechanisms to scan the dataset only once. It builds the dataset recursively by
constructing the projected datasets of current candidates and expanding it using the divide-and-conquer
approach to greatly prune the search-space, especially when it calculates the utilities of long candidates.
The LQS-Tree structure (Yin et al., 2012), an extension of the lexicographic sequence tree (Ayres et al.,
2002), is used to represent the search tree. An utility-chain structure (Wang et al., 2016) consists of util-
ity lists and is used to minimise the computational cost. A threshold-raising strategy, called Sequence
Utility Raising (SUR), is incorporated to raise the threshold in advance to an acceptable level to effec-
tively prune the non-promising candidates early. Three utility upper bounds, namely sequence-weighted
utilization (SWU), sequence-projected utilization (SPU), and sequence extension utility (SEU), are pro-
posed to efficiently prune the search-space. Two tight upper bounds, namely PEU and RSU (Wang
et al., 2016), are also incorporated to further reduce the search-space, resulting in the acceleration of
the mining process to a reasonable level. Two pruning strategies, namely Terminate Descendants Early
(TDE) and Eliminate Unpromising Items (EUI), are proposed to greatly prune the search-space. TDE
is a depth-based strategy that can stop the scanning of deep but non-promising nodes in the LQS-tree.
On the other hand, EUI is a width-based strategy to prevent the proposed algorithm from scanning the
new branches in the LQS-tree. Three variants of the proposed algorithm, namely TKUS SUR, TKUS TDE,
and TKUS EUI , are designed to measure the effectiveness of the pruning strategies. It has been observed
that these variants perform well in most cases. The experimental results prove that TKUS outperforms
the state-of-the-art algorithm TKHUS-Span (Wang et al., 2016) in terms of execution time, memory
usage, elimination of non-promising candidates, and scalability. A new metric, named search-space
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Shrinkage Rate (SSSR), is designed to compare the reduction of space of the proposed algorithm with
the TKHUS-Span. The proposed algorithm generates fewer candidates than the benchmark algorithm.
However, TKUS consumes more memory for some benchmark datasets because it needs high storage
space to maintain the utility and PEU values of all 1-sequences and 2-sequences along with the SUR
strategy.

Although the top-k utility episode mining (TUP) algorithm (Rathore et al., 2016) performed sig-
nificant work, there is still vast scope for further improvement. Wan et al. (2021) proposed a faster
and more efficient algorithm, named THUE (Discovering Top-k High Utility Episodes), based on the
UMEpi algorithm (Gan et al., 2023), to discover the complete set of HUIs within the complex event
sequences. It uses a prefix-shared tree, named lexicographical sequence tree (LS-tree), that consists of
all the candidate episode information to reduce the search-space using the depth-first method. However,
the number of episodes is extremely high, resulting in infeasible solutions to the exhaustive search. A
pruning strategy, Episode-Weighted Utilization (EWU) (Guo et al., 2014), is used as an upper bound on
the utility of episodes to accelerate the mining speed. However, EWU is loosely upper-bound; hence, it
cannot discover all high episodes (Guo et al., 2014), Therefore, to provide a tighter upper bound, two
pruning strategies, namely episode-weighted downward closure (EWDC) and optimized EWU (EWUopt)
(Gan et al., 2023). are adopted to significantly reduce the search-space, thereby resulting in the enhance-
ment of the mining process. Three threshold-raising strategies, RIU (Ryang & Yun, 2015), RTU (Gan
et al., 2020), and RUC (Wu et al., 2012), are adopted to effectively raise the threshold. Three ver-
sions of the proposed algorithm, namely THUEewu, THUErus, and THUE, are designed to evaluate the
effectiveness of the adopted strategies. THUEewu uses RTU and RUC but excludes the RIU strategy.
THUErus uses the RIU strategy but does not include the EWU pruning strategy. THUI uses all strate-
gies. It is observed that THUI outperforms THUEewu and THUErus in all cases. THUE performs better
than the existing algorithm, TUP (Rathore et al., 2016) for execution time, memory consumption, and
scalability.

Table 13 describes the overview of the strategies used in tree-based top-k HUSPM algorithms for the
sequential datasets. Table 14 highlights the pros and cons of the tree-based top-k HUSPM algorithms
for the sequential datasets.

3.2 Utility-list-based top-k HUIM algorithms
The utility-list-based top-k HUIM algorithms are categorised into two parts: basic utility-list and
extended utility-list based algorithms.

3.2.1 Basic utility-list-based algorithms
As we have seen previously, tree-based top-k HUIM algorithms (Wu et al., 2012; Ryang & Yun, 2015)
follow the general process to raise the minimum utility threshold from 0. The efficiency of the algorithm
depends not only on the data structures and pruning strategies but also on how to quickly raise the
threshold value to prune the search-space effectively. When the algorithm terminates, they should not
miss any top-k HUIs in the mining process. Two-phase top-k HUIM algorithms (Wu et al., 2012; Ryang
& Yun, 2015; Zihayat & An, 2014) scan the dataset multiple times and generate numerous unpromising
candidates. They even do not work in the case of a large dataset with long transactions and large itemsets.
To solve these issues, one-phase top-K HUIM methods (Tseng et al., 2016; Duong et al., 2016) are
developed to mine top-k HUIs from the large datasets. In this sub-section, we provide an up-to-date
analysis of the basic utility-list-based top-k HUIM algorithms.

Tseng et al. developed two effective methods, namely TKU (Wu et al., 2012; Tseng et al., 2016)
and TKO (Mining Top-k utility itemsets in One-phase) (Tseng et al., 2016), to mine the top-k HUIs
without the need to set the minimum-utility threshold from the transactional datasets. TKU (Wu
et al., 2012) is the two-phase tree-based algorithm, already discussed in detail in Section 3 and
Table 8. TKO is a one-phase utility-list-based algorithm that adopts the utility structure of HUI-Miner
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Table 13. An overview of the tree-based top-k HUSPM algorithms for the sequential datasets
Threshold-

Data Database Pruning raising State-of-the-art Base
Algorithm structure scan Dataset Mining Search type strategies strategies Utility value algorithms algorithms
TUS, 2013
Yin et al. (Yin
et al., 2013)

TUSList Once Sequential Top-k HUSPs DFS SPU & SRU Pre-insertion
& Sorting
concatena-
tion
order

Positive only TUSNaive(Self) (Yin
et al., 2013)

USpan (Yin
et al., 2012)

TUP, 2016
Rathore et al.
(Rathore
et al., 2016)

Top-k List Twice Sequential Top-k HUEs DFS HWUE Pre-insertion
& EWU

Positive only TUP-Basic(Self)
(Rathore et al., 2016),
TUP
Pre-insertion(Self)
(Rathore et al., 2016),
TUP-EWU(Self)
(Rathore et al., 2016)
&
TUP-Combined(Self)
(Rathore et al., 2016)

–

TU-SEQ,
2016 Zihayat
et al. (Zihayat
et al., 2016)

ItemUtilLists,
HUSP-Tree
& TKList

Once Sequential Top-k
HUGSs

Lexicographical
Sequential
order

GU PES Positive only CTGR-Span (Cheng
et al., 2013),
HUSP-Stream
(Zihayat et al., 2015)
& TU-SEQBase(Self)
(Zihayat et al., 2016)

HUSP-Stream
(Zihayat et al.,
2015)
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Table 13. (Continued)
Threshold-

Data Database Pruning raising State-of-the-art Base
Algorithm structure scan Dataset Mining Search type strategies strategies Utility value algorithms algorithms
TKHUS-
Span, 2016
Wang et al.
(Wang et al.,
2016)

Utility-chain Twice Sequential Top-k HUSPs DFS & BFS PEU, RSU &
SWU

None Positive only TUS (Yin et al.,
2013),
HUS-Span(Self)
(Wang et al., 2016),
TKHUS-
SpanGDFS(Self)
(Wang et al., 2016),
TKHUS-
SpanBFS(Self) (Wang
et al., 2016) &
TKHUS-
SpanHybrid(Self)
(Wang et al., 2016)

USpan (Yin
et al., 2012)

Topk-NSP+,
2020 Dong
et al. (Dong
et al., 2019)

ordNSP &
useNSP

Once Sequential Top-kNSP Descending
order of iwsup

wsup & iwsup None Positive and
Negative

Topk-PSP(Self)
(Dong et al., 2019) &
Topk-NSP(Self)
(Dong et al., 2019)

e-NSP (Cao
et al., 2016) &
NegGSP
(Zheng et al.,
2009)

TKUS, 2020
Zhang et al.
(Zhang et al.,
2021)

Utility-chain
& TKList

Once Sequential Top-k HUSPs DFS SWU, SPU,
SEU, PEU,
RSU, TDE &
EUI

SUR Positive only TKHUS-Span (Wang
et al., 2016), TKUS
SUR(Self) (Zhang
et al., 2021), TKUS
TDE(Self) (Zhang
et al., 2021) & TKUS
EUI(Self) (Zhang
et al., 2021)

–

THUE, 2021
Wan et al.
(Wan et al.,
2021)

LS-tree Twice Sequential Top-k HUEs DFS EWDC &
EWUopt

RIU, RTU &
RUC

Positive only TUP (Rathore et al.,
2016),
THUEewu(Self) (Wan
et al., 2021) &
THUErus(Self) (Wan
et al., 2021)

UMEpi (Gan
et al., 2023)
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Table 14. Advantages and disadvantages of the tree-based top-k HUSPM algorithms for the sequential datasets

Algorithm Author Theoretical aspects Advantages Disadvantages
TUS (2013) Yin et al.

(2013)
The authors proposed a novel
framework to efficiently mine
top-k HUSPs without minimum
utility from large-scale data
with large values of k

The proposed strategies
effectively prune the
search-space and the number of
generated candidates. TUS
efficiently works for large values
of k from large datasets

The TUSNaive+I does not raise
the threshold from 0. Hence, it
takes lots of time to prune the
unpromising candidates.
Moreover, it may miss some
top-k HUSPs

TUP (2016) Rathore
et al. (2016)

An approach is designed to
mine top-k HUPs from complex
event sequences without a
minimum utility threshold

The EWU strategy works well
on dense datasets because it
generates a large number of high
EWU episodes. TUP-Combined
shows higher performance than
other benchmark approaches

The TUP-Basic approach is
highly insufficient due to the
exponential search-space. The
EWU strategy does not perform
well on sparse datasets because
it generates few short, high
EWU episodes

TU-SEQ
(2016)

Zihayat
et al. (2016)

The authors proposed a novel
method to mine THUGS from a
time-course microarray dataset
by considering both the
importance of genes for disease
and their finer degree of
expression under a biological
investigation

TU-SEQ guarantees to mine the
complete set of top-k patterns. It
is five times faster as compared
to the baseline algorithm,
TU-SEQBase. The proposed PES
strategy is quite effective at
mining top-k patterns

TU-SEQ and TU-SEQBase

consume a high amount of
memory. TU-SEQBase takes lots
of time to complete the mining
process for large values of k.
Moreover, there is a wide scope
to improve the proposed
algorithms in terms of efficiency
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Table 14. (Continued)

Algorithm Author Theoretical aspects Advantages Disadvantages
TKHUS-
Span
(2016)

Wang et al.
(2016)

The authors proposed three
algorithms, TKHUS-SpanGDFS,
TKHUS-SpanBFS, and
TKHUS-SpanHybrid, by using
DFS, BFS, and a hybrid of BFS
and DFS, respectively

HUS-Span is highly scalable as
compared to USpan (Yin et al.,
2012) on dense datasets.
TKHUS-SpanHybrid performs
well under the memory
constraint environment

TKHUS-SpanBFS consumes a
high amount of memory.
TKHUS-SpanGDFS does not
perform well in terms of
execution time and generated
candidates for large values of k

Topk-NSP+

(2020)
Dong et al.
(2019)

An efficient algorithm is
proposed to discover k most
frequent negative patterns from
top-k PSPs

The proposed algorithm shows
high time efficiency and less
memory consumption than
Topk-NSP

There is a vast scope to develop
more effective methods to mine
useful top-k NSPs

TKUS
(2020)

Zhang et al.
(2021)

The authors develop an efficient
algorithm to mine top-k HUSPs
without specifying the
minimum utility threshold

The designed strategies
guarantee to not miss any top-k
HUSPs and ensure the
completeness of the proposed
algorithm

There is a wide scope for
improvement in terms of
memory usage, especially for
large values of k

THUE
(2021)

Wan et al.
(2021)

The authors proposed a novel
algorithm to discover all top-k
HUIs from the complex event
sequence

THUE shows high performance
in terms of runtime and memory
usage. It is almost 6–8 orders of
magnitude faster than TUP
(Rathore et al., 2016)

The proposed algorithm can be
further improved by
incorporating efficient minimum
utility threshold strategies to
gain better performance
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(Liu & Qu, 2012) and computes the utility of itemsets without the requirement of an original dataset scan.
The authors proposed a basic version of TKO, called TKOBase, using the min-heap structure to raise the
border threshold. It uses a strategy named Raising the threshold by the Utilities of Candidates (RUC),
which incorporates the TopK-CI-List data structure, to mine top-k HUIs. TKO adopts two strategies,
namely, Pre-Evaluation (PE) (Wu et al., 2012) and Discarding Global Unpromising items (DGU) (Tseng
et al., 2010), while two strategies are proposed, namely, Reducing estimated Utility values by using
Z-elements (RUZ) and Exploring the most Promising Branches first (EPB), to effectively reduce the
search-space. RUZ is performed during the candidates’ generation process to search the top-k HUIs,
while EPB generates the candidates with high utility first. Because the proposed algorithm raises the
minimum border utility threshold at an early stage, it rapidly reduces the search-space. The experimental
results show the effectiveness of TKO against TKU(Self) (Wu et al., 2012; Tseng et al., 2016), REPT
(Ryang & Yun, 2015) and the optimal case of the state-of-the-art, UP-Growth (Tseng et al., 2010) and
HUI-Miner (Liu & Qu, 2012), concerning the runtime, memory usage, and scalability on dense and
sparse datasets.

Duong et al. (2016) proposed an efficient approach, called kHMC (Top-k High utility itemset Mining
using Co-occurrence pruning), to mine the top-k HUIs using depth-first search from the transactional
datasets. Two effective pruning strategies, namely the Estimated Utility Co-occurrence Pruning Strategy
with Threshold (EUCPT) and the Transitive Extension Pruning strategy (TEP), are proposed to reduce
the search-space. The first strategy, EUCPT, adopts an efficient data structure, named Estimated Utility
Co-occurrence Structure with Threshold (EUCST), to eliminate the excessive number of join operations.
EUCPT is the refinement of the Estimated Utility Co-occurrence Pruning (EUCP) strategy as used in
Fournier-Viger et al. (2014). The EUCST is constructed during the second dataset scan and requires a
small amount of memory and rapid updates to mine the top-k HUIs. EUCPT reduces up to 95 percent
of candidates as compared to FHM (Fournier-Viger et al., 2014). The second strategy, TEP, prunes
the search-space by adopting a novel upper bound on the utilities of itemsets and their extensions. It
creates the single items during the initial dataset scan and applies them after the EUCPT strategy. It
significantly reduces the number of extensions to mine HUIs using utility lists and reduces up to 21
percent more candidates. kHMC presents a new utility-list construction method using utility-list (Liu
& Qu, 2012) to find HUIs in a single phase only. It keeps details regarding the utilities of itemsets
and rapidly computes the utilities by combining the utility lists of smaller itemsets. It utilises the early
abandoning (EA) strategy to terminate the utility-list construction at an early stage if it leads to the non-
result of the top-k HUIs. It significantly minimises execution time and memory usage. Three threshold
strategies, namely Real Item Utilities (RIU), raising the threshold based on Co-occurrence with Utility
Descending order (CUD), and raising the threshold based on COVerage with utility descending order
(COV), are used to initialise and dynamically adjust the border threshold. RIU is performed during the
first scan, while CUD and COV are performed during the second scan. RIU calculates the utilities of
all itemsets during the first scan and effectively raises the minimum utility threshold. CUD increases
the minimum-utility threshold using the utilities of 2-itemsets stored in the EUCST. RSD and PUD
strategies used by REPT (Ryang & Yun, 2015) are special cases of CUD strategies. CUD incorporates
all the cases of RSD and PUD, thus showing a higher performance of almost 100 percent as compared
to these strategies, and is also reasonable to be executed for runtime and memory usage. REPT scans
the dataset three times, while kHMC scans only twice. COV adopts a COVerage List (COVL) structure
that consists of a list of utility values. These strategies are very effective in raising the border threshold,
which is very close to the true utility of itemsets. These strategies also ensure that no top-k HUIs are
missed during the mining process. The notion of coverage is employed in HUIM algorithms to reduce
the search-space. It is used by the proposed algorithm to raise the minimum utility threshold without
additional dataset scans.

The authors proposed two versions of kHMC, namely kHMCTep and kHMCNoTep, to show the effec-
tiveness of the TEP strategy, and results show that kHMCNoTep generates 21 percent fewer candidates
than that of kHMCTep. It is observed that kHMC outperforms the state-of-the-art algorithms TKU
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(Wu et al., 2012), REPT (Ryang & Yun, 2015), and TKO (Tseng et al., 2016) for the number of promis-
ing candidates, runtime, memory consumption, and scalability on dense, sparse, and large datasets.
Furthermore, the execution time and memory usage of the proposed algorithm kHMC are significantly
less than those of REPT (Ryang & Yun, 2015) when k is set to large values (50 ≤ k ≤ 1000). The reason
is that REPT consumes a significant amount of time to enumerate 2-itemsets consisting of promising
itemsets for each transaction. However, more effective pruning and threshold-raising strategies could be
designed for further improve the mining process of the proposed algorithm.

The uncertain minimum utility of traditional top-k HUIM algorithms leads to more candidate gen-
erations and high memory usage. Lee and Park (2016) proposed a new method, named TKUL-Miner
(Top-k high utility itemset mining based on utility-list structures), to efficiently find the top-k HUIs.
A utility-list is proposed to keep relevant details at each node of the search tree to mine the itemsets.
The proposed algorithm scans the dataset twice and builds the data structures using min-heap, as in
Fournier-Viger et al. (2014). Firstly, it scans the dataset to compute the TWU of each 1-itemset and
rearranges it in ascending order of TWU. Secondly, it again scans the dataset to construct the utility
list and EUCS structure. Two main algorithms of TKUL-Miner, namely, TKUL-FirstLevelSearch and
TKUL-Search, are proposed. The first algorithm, TKUL-FirstLevelSearch, uses two strategies, namely
First-level Search in TWU Decreasing-order (FSD) and Reducing the overestimated Utility by Sum
_zrutils (RUZ). FSD searches 1-itemsets of the first level in the descending order of TWU, while RUZ
effectively reduces the overestimated utilities of the itemsets. The second algorithm, TKUL-Search, fur-
ther enhances the efficiency of pruning the search-space because it searches the itemsets in the ascending
order of TWU and uses an efficient strategy named First child pruning by using Sum _Cutil (FCU). FCU
significantly overestimates the utility of itemsets. These strategies, FSD, RUZ, and FCU, effectively raise
the border threshold quickly and significantly prune the search-space. TKUL-FirstLevelSearch searches
1-itemsets and generates 2-itemsets; on the other hand, TKUL-Search searches and generates all the
itemsets. The following notations are used to represent the different strategies of the proposed algorithm:
(1) TKUL-base denotes TKUL-Miner without any strategy. (2) FLS denotes TKUL-base with FLS
strategy. (3) RUZ denotes FLS and RUZ strategy. (4) TKUL-full denotes the full version of TKUL-
Miner, including the FSD strategy. It is observed that TKUL-base performs worse execution time, while
FLS is 70 percent faster than TKUL-base. RUZ also performs better than TKUL-base, but not very
significantly as compared to FLS. Finally, TKUL-full shows almost a 20 percent improvement over
TKUL-base. Overall, FLS performs better because it increases the minimum utility as quickly as min-
ing the top-k HUIs. The experimental results prove the effectiveness and efficiency of the TKUL-Miner
over benchmark algorithms TKU (Wu et al., 2012), REPT (Ryang & Yun, 2015), and the optimal case
of UP-Growth+ (Tseng et al., 2013) concerning the runtime and memory usage on dense, sparse, and
long datasets. TKUL-Miner performs 10 times faster than REPT (Ryang & Yun, 2015) when k = 5000.
The proposed algorithm also works better than other algorithms for varied values of k. TKUL-Miner is
much faster, especially for dense and longer average-length datasets.

Dam et al. (2017) proposed an effective utility-based method, called KOSHU (Top-k On-Shelf High
Utility itemset miner with or without negative unit profits), the first of its kind, to mine all top-k high
on-shelf utility itemsets by taking into consideration the on-shelf time periods of items with positive
and/or negative profit values. KOSHU uses three effective strategies, namely Estimated co-occurrence
Maximum Period Rate Pruning (EMPRP), Concurrence Existing of a pair 2-itemset Pruning (CE2P),
and Period Utility Pruning (PUP), to prune the search-space and reduce the costly join operations. The
first strategy, EMPRP, is based on a novel Estimated co-occurrence Maximum Period Rate Structure
(EMPRS). KOSHU scans the dataset twice. In the first scan, it calculates the RTWU and utility of each
item according to the increasing order of RTWU in such a way that all negative items succeed positive
items. During the second scan, the EMPRS structure is constructed using a triangular matrix. However,
a few pairs of items do not appear together in any transaction. Therefore, the second strategy for CE2P is
to adopt the bit matrix to keep the information about 2-itemsets together. This strategy effectively works
for sparse and large datasets. The third strategy, PUP, is to further reduce the search-space and costly
join operations to enhance the mining process. The designed method also adopts two effective strategies,
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namely the Real 1-Itemset Relative Utilities threshold raising strategy (RIRU) and the Real 2-Itemset
Relative Utilities threshold raising strategy (RIRU2), to initialise and dynamically adjust the internal
relative utility threshold to enhance the mining performance. RIRU is inspired by the RIU strategy
as described in Ryang and Yun (2015) and is performed after the first scan. It calculates the relative
utilities of all 1-itemsets, while RIRU2 is applied after the second scan to calculate the relative utility
of all 2-itemsets. The EMPRS structure is constructed after RIRU and RIRU2 because it is built once
and is used during the entire mining process. KOSHU includes a novel low-complexity optimisation
procedure and a faster binary search method to construct the utility lists, as used in Liu and Qu (2012),
Fournier-Viger et al. (2014), Tseng et al. (2016). It remembers the last search position index to start the
next search from this position, resulting in a high-performance gain. The proposed algorithm adopts the
Exploring the most Promising Branches first (EPB) strategy as used in Tseng et al. (2016) to extend the
itemsets that have the largest estimated utility value first. Hence, it quickly raises the minimum utility
threshold to reduce the search-space.

Experiments show that KOSHU performs better than the optimal cases of state-of-the-art, TS-HOUN
(Lan et al., 2014) and FOSHU (Fournier-Viger & Zida, 2015) for runtime, memory utilisation, and
scalability on the benchmark datasets. On the BMS-POS dataset, KOSHU outperforms the optimal case
of FOSHU when k ≤ 400, while it is slightly less than the optimal case of FOSHU for large values of
k. On the other side, TS-HOUN (Lan et al., 2014) fails to terminate when k ≥ 400. EMPRP and PUP,
respectively, prune up to 89 percent and 93 percent of candidates. Therefore, PUP is more effective than
EMPRP. Moreover, the utility list reduces execution time by up to 41 percent. It achieves high scalability
in terms of the number of time periods because it mines all time periods concurrently. It also has high
scalability in terms of the number of items and transactions. However, it is a little slow when the dataset
consists of more time periods. Since KOSHU is the first algorithm to mine the top-k on-shelf HUIs.
There is a wide scope for further improvement to build the approximate list of top-k high on-shelf utility
itemsets mining.

Le et al. (2017) develop a non-candidate approach, named REPTPLUS (Enhancing Threshold-
Raising Strategies for Effective Mining Top-k High Utility Patterns), to mine the top-k high utility
patterns (HUPs) from the transactional dataset. REPTPLUS scans the dataset twice. In the first scan, it
computes the actual utilities of items and saves the k highest utility items in the top-k HUIs list accord-
ing to the ascending order of the utility. During the second scan, it constructs the initial utility list of
items to raise the minimum utility threshold by using the RSD strategy. Then, it builds the utility list
of k-itemsets (k ≥ 2) to find HUIs. It reuses the RIU strategy as used in Ryang and Yun (2015) during
the first scan. After that, it incorporates the RSD strategy to again raise the threshold during the second
scan. It joins the utility lists of smaller itemsets (k ≥ 2) to construct the utility list of k-itemsets (k ≥ 3).
REPTPLUS adopts the utility-list structure according to the ascending order of TWU without generat-
ing the candidates. It does not use the given threshold to exploit the set of HUIs as used in UP-Growth
(Tseng et al., 2010), UP-Growth+ (Tseng et al., 2013), and MU-Growth (Yun et al., 2014). REPTPLUS
adopts the utility-list structure as per the increasing order of TWU, while REPT uses the UP-Tree struc-
ture as per the decreasing order of TWU. It uses two strategies, RIU and RSD, to raise the threshold
in two scans, while REPT uses the two strategies, PUD and RIU, in the first scan. In the second scan,
it builds the tree and further raises the threshold by using RSD and NU strategies. REPTPLUS uses a
novel strategy for top-k real HUPs, while REPT uses the SEP strategy to process the top-k HUPs.

It is observed that REPTPLUS outperforms the benchmark algorithm, REPT (Ryang & Yun,
2015) and the optimal case of the state-of-the-art algorithms, TKU (Wu et al., 2012) and UP-Growth
(Tseng et al., 2010) concerning the runtime and memory usage from the dense and synthetic datasets.
REPTPLUS takes less time than REPT for k ≥ 20, while it consumes more time than REPT when k < 20.
REPTPLUS significantly performs better for the large average length of the transactions in the dataset.
However, there is a wide scope for improvement in the proposed algorithm for large and distributed
datasets.

In the business scenario, the managers keep watch on the regular behaviour of customers and changes
in customer behavior. A regular HUI denotes an itemset that appears at regular intervals specified by
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the customer in the transactional dataset. Two constraints, namely Minimum Utility (min_util) and
Maximum Regularity (maxper), are defined to satisfy the itemsets. min_util finds the minimum util-
ity of an itemset, while maxper finds the maximum time difference between two consecutive itemsets in
the dataset. Kumari et al. (2019) proposed an efficient algorithm, named TKRHU miner (Top-k Regular
High Utility Itemset miner), to mine all top-k RHUIs that appear regularly and specify min_util, max-
per, and minimum support, where k denotes the intended number of regular high itemsets. A novel
list structure, named Regular Utility-lists (RUL), is designed to keep the information in each itemset
compact format. The proposed algorithm scans the dataset twice: (1) During the first phase, the RULs
of the 1-itemset are constructed to maintain both utility and regularity information. All itemsets are
arranged according to their TWU value. Then, the Regular HUI miner algorithm is applied to find the
complete set of RHUIs. It recursively mines top-k RHUIs by constructing the RULs of itemsets with
length greater than 1. (2) During the second phase, the support of each RHUI is computed based on
counting the number of elements that appear in each utility list. The TKRHU miner suffers from two
bottlenecks: (1) During the initial stage, the unpromising candidate itemsets are pruned based on their
TWUs. It does not take into consideration the regularity of itemsets that may lead to more memory con-
sumption, search, and update of the RULs. (2) The number of RULs is quite large in the case of large
datasets, which may lead to a computationally expensive procedure to obtain a comprehensive search of
each utility list. To address these issues, the proposed algorithm TKRHU adopts the pruning strategy,
named Early Abandoning (EA), that terminates the RULs construction process of unpromising itemsets
by using the local periodicity upper bound. It is based on a greedy approach that significantly reduces
the computational cost of the mining process.

The experimental results show that the proposed algorithm TKRHU performs better than the optimal
case of the state-of-the-art PHM (Fournier-Viger et al., 2016b), in terms of execution time, number of
determined nodes, memory usage, and scalability. It is observed that TKRHU is 200 times better than
PHM (optimal) for (5 ≤ k ≤ 25). The reason is that the proposed algorithm significantly reduces the
number of comparisons of regular itemsets, resulting in a smaller number of candidate generations.
However, for sparse datasets, for different values of k (5 ≤ k ≤ 30), the execution time of the proposed
algorithm TKRHU is moderately increased.

HUIM algorithms are extended to perform the task of High Utility Quantitative Itemset Mining
(HUQIM) (Nouioua et al., 2021) to find the High Utility Quantitative Itemsets (HUQIs) that consist
of cost-effective and quantity information. HUQIs give more information compared to HUIs; however,
it is a quite challenging task to mine HUQIs. The reason is that different items and different quantities
are considered to obtain the HUQIs. To solve this problem, Nouioua et al. (2022) redefined the problem
as top-k HUQIM and proposed an efficient algorithm, named TKQ (Top-K Quantitative itemset miner),
that lets users directly obtain the k number of patterns without specifying the min_util threshold. The
proposed algorithm is based on the utility-list structure that rapidly computes the utility of its associated
Q-itemsets without performing the dataset scan. Three pruning strategies, namely TWU, Remaining
utility, and Co-occurrence, are adopted to efficiently mine HUQIs. The TWU pruning strategy is an
upper bound on the utility of Q-itemsets and their super-sets that is used to prune the unpromising
Q-itemsets. The Remaining utility pruning strategy is based on the remaining utility (SumRutil) of
Q-itemsets stored in their utility lists. The Co-occurrence pruning strategy is based on the TWU of
Q-items Co-occurrence based Structure (TQCS) that is built during the second scan and finds all pairs
of Q-itemsets along with their utility information. This strategy removes the Low Utility Quantitative
Itemsets (LUQIs) with their transitive extensions without even building the utility lists. Two pruning
strategies, namely the Exact Q-items Co-occurrence Pruning Strategy (EQCPS) and the Range Q-items
Co-occurrence Pruning Strategy (RQCPS), are further adopted and are based on the TQCS structure.
EQCPS and RQCPS are used to reduce unpromising exact and unpromising range Q-itemsets respec-
tively. Three effective threshold strategies are adopted to raise the min_util threshold to get higher values
without the loss of any top-k HUQIs. The first two strategies, RIU and CUD, are applied before the depth-
first search method, while the third one is applied during the depth-first search based on the current top-k
HUQIs.
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Two modified versions of the proposed algorithm, namely TKQ-RIU and TKQ-CUD, are designed
to use the RIU and CUD strategies, respectively. It is observed that TKQ performs better than TKQ-RIU
and TKQ-CUD from the benchmark datasets as the value of k is increased. However, for small values
of k, the performance of TKQ is quite similar with both modified versions. The reason is that for small
values of k, RIU quickly raises min_util than CUD, while for large values of k, CUD quickly raises
min_util than RIU. Therefore, both strategies can be combined to obtain better results. The performance
of TKQ is compared against the state-of-the-art FHUQI-Miner (Nouioua et al., 2021), and it is found
that the FHQI-Miner is generally faster than the proposed algorithm. This is because of the optimal
min_util threshold used by FHUQI-Miner. However, in a real-life scenario, it is difficult for the users
to obtain the optimal min_util threshold; therefore, FHUQI-Miner needs to be executed multiple times
to get the optimal min_util threshold. It is recommended to use TKQ to obtain the desired number of
patterns instead of FHUQI-Miner. Moreover, it allows the user to save a significant amount of time to
obtain the min_util threshold to just get enough patterns.

Table 15 describes an overview of the techniques and important strategies which are used in basic
utility-list-based top-k HUIM algorithms. Table 16 highlights the pros and cons of all the state-of-the-art
basic utility-list-based top-k HUIM algorithms.

3.2.2 Extended utility-list-based algorithms
As we have seen previously, one-phase top-k HUIM algorithms (Tseng et al., 2016; Duong et al.,
2016) utilise the vertical-list data structure to discover the top-k HUIs. However, they are not very
effective in rapidly raising the border threshold in the early stages, especially on dense datasets. In
this sub-section, we provide an up-to-date discussion about the extended utility-list-based top-k HUIM
algorithms.

Dawar et al. (2017) proposed an efficient one-phase vertical dataset based mining algorithm, named
Vert_top-k_DS (Mining Top-k high utility itemsets over Data Streams), to mine the complete set of
top-k HUIs without candidate generations over the sliding window from the data stream. The algorithm
keeps the batch-wise TWU of items to smoothly update the TWU of items upon the arrival of the new
batch and discard the oldest batch. An inverted-list structure, named iList, an adaption of utility-list (Liu
& Qu, 2012), is designed to capture the utility information of an itemset across the sliding windows. It
maintains the First-In-First-Out (FIFO) queue to perform the insertion and deletion of batches rapidly.
It scans the sliding window twice. During the first scan, it computes the TWU of the items. During the
second scan, it sorts the items in each transaction as per the increasing order of TWU and iList for each
item. The proposed algorithm Vert_top-k_DS adopts a threshold-raising strategy (Zihayat & An, 2014)
to calculate the finer threshold for the next sliding window. It calculates the utility of top-k itemsets in
the common batches between two sliding windows. It is observed that the vertical mining algorithm
works well in the case of the increasing order of TWU values (Liu & Qu, 2012). Therefore, a variant
of the proposed algorithm, named Vert_top-k naive, is developed to construct the iLists of items from
scratch for each sliding window by calculating the sum of the Exact Utility (EU) and Remaining Utility
(RU) while scanning the iList data structure.

The results show the effectiveness of Vert_top-k naive over Vert_top-k concerning the candidate’s
generation and TWU distribution on the dense and sparse datasets. It is observed that the designed
approaches outperform the state-of-the-art T-HUDS algorithm (Zihayat & An, 2014) for the varied
values of the parameter k, varying window size, computation time, runtime, memory usage, and
scalability on dense and sparse datasets. The running time of both approaches grows steadily and lin-
early, respectively, for sparse and dense datasets. The proposed algorithm performs 20–80 percent and
300–700 percent better on sparse and dense datasets, respectively. However, the efficiency of the pro-
posed algorithm could be further enhanced by reducing the number of intersections of the inverted
lists.

Krishnamoorthy (2019b) proposesd an efficient algorithm, named THUI (Top-k High Utility Itemset
mining), to find top-k HUIs from the dense datasets. A new structure, Leaf Itemset Utility (LIU), based
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Table 15. An overview of the basic utility-list-based top-k HUIM algorithms
Threshold-

Data Database Pruning raising State-of-the-art Base
Algorithm structure Phase scan Dataset Mining Search type strategies strategies Utility value algorithms algorithms
TKO, 2016
Tseng et al.
(Tseng et al.,
2016)

Utility-list &
TopK-CI-
List

One Twice Transactional Top-k HUIs Min-heap DGU, RUZ,
EPB &
U-Prune

RUC & PE Positive only UP-Growth(Opt)
(Tseng et al., 2010),
HUI-Miner(Opt)
(Liu & Qu, 2012),
REPT (Ryang &
Yun, 2015),
TKU(Self) (Wu
et al., 2012; Tseng
et al., 2016) &
TKO Base(Self)
(Tseng et al., 2016)

HUI-Miner (Liu
& Qu, 2012)

kHMC, 2016
Duong et al.
(Duong et al.,
2016)

Utility-list,
EUCST &
CUDM

One Twice Transactional Top-k HUIs DFS TWU, EUCPT,
TEP, U-Prune
& LA

RIU, COV,
CUD & RUC

Positive only TKU (Wu et al.,
2012), TKO (Tseng
et al., 2016) &
REPT (Ryang &
Yun, 2015)

FHM
(Fournier-Viger
et al., 2014) &
HUI-Miner (Liu
& Qu, 2012)

TKUL-Miner,
2016 Lee et al.
(Lee & Park,
2016)

Utility-list &
EUCS

One Twice Transactional Top-k HUIs Min-heap TWU FSD, RUZ &
FCU

Positive only UP-Growth+(Opt)
(Tseng et al., 2013),
TKU (Wu et al.,
2012), REPT
(Ryang & Yun,
2015) &
TKUL-Base(Self)
(Lee & Park, 2016)

FHM
(Fournier-Viger
et al., 2014)
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Table 15. (Continued)
Threshold-

Data Database Pruning raising State-of-the-art Base
Algorithm structure Phase scan Dataset Mining Search type strategies strategies Utility value algorithms algorithms
KOSHU, 2017
Dam et al. (Dam
et al., 2017)

Utility-list &
EMPRS

Two Twice Transactional Top-k on-shelf
HUIs

Fast binary
search

EMPRP, PUP
& CE2P

RIRU, RIRU2 &
EBP

Positive &
Negative

TS-HOUN(Opt)
(Lan et al., 2014) &
FOSHU(Opt)
(Fournier-Viger &
Zida, 2015)

FOSHU
(Fournier-Viger
& Zida, 2015)
& FHM
(Fournier-Viger
et al., 2014)

REPTPLUS,
2017 Le et al.
(Le et al., 2017)

Utility-list &
RSD Matrix

One Twice Transactional Top-k HUIs Increasing order
of TWU

TWU,
Remaining
utility,
Co-occurrence,
EQCPS &
RQCPS

RIU & CUD Positive only REPT (Ryang &
Yun, 2015)

HUI-Miner (Liu
& Qu, 2012)

TKRHU miner,
2019 Kumari
et al. (Kumari
et al., 2019)

Regular
Utility-lists
& EUCS

Two Twice Transactional Top-k RHUIs TWU Greedy
approach

EA Positive only PHM
(Fournier-Viger
et al., 2016b)

–

TKQ, 2021
Nouioua et al.
(Nouioua et al.,
2022)

Utility-list &
TQCS

– Twice Transactional Top-k HUQIs Depth-first
Search

TWU,
Remaining
Utility,
Co-occurrence,
EQCPS &
RQCPS

RIU & CUD Positive only FHUQI-Miner
(Nouioua et al.,
2021)

HUQA (Yen &
Lee, 2007b)
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Table 16. Advantages and disadvantages of the basic utility-list-based top-k HUIM algorithms

Algorithm Author Theoretical aspects Advantages Disadvantages
TKO (2016) Tseng et al.

(2016)
The authors proposed a
single-phase vertical data
representation model to mine
top-k HUIs without the need to
specify the minimum utility
threshold

TKO is the first one-phase
approach that integrates with
RUC, RUZ, and EPB strategies
to significantly enhance the
performance of the mining
process

The proposed approach is not
scalable. It does not perform
well on large datasets.
Moreover, it cannot even work
for small values of k, when there
are extremely long patterns

kHMC (2016) Duong et al.
(2016)

The authors proposed a
one-phase approach that adopts
a vertical utility-list-based data
structure from the HUI-Miner
algorithm (Liu & Qu, 2012) and
mines the complete set of top-k
HUIs from the transactional
dataset

The pruning strategies, EUCPT
and TEP, effectively prune the
search-space. kHMC prunes up
to 95 percent of candidates by
using the EUCPT strategy.
Additionally, it prunes up to 21
percent more candidates by
using the TEP strategy. TEP is
applied after EUCPT

The proposed algorithm does
not effectively raise the
threshold during the initial
stages of the mining process,
especially for dense datasets.
Therefore, there is a wide scope
for improvement to enhance
mining performance by
adopting effective pruning and
threshold-raising strategies

TKUL-Miner (2016) Lee and
Park (2016)

The proposed TKUL-Miner
algorithm efficiently mines the
top-k HUIs from the
transactional dataset by using
the utility list and EUCS
structure (Fournier-Viger et al.,
2014)

TKUL with the FSD strategy is
70 percent faster than
TKUL-base. The proposed
algorithm shows almost 98
percent memory efficiency for
dense datasets

The memory usage of the
TKUL-Miner is dependent on
the number of transactions in
the dataset. The algorithm could
be further improved in terms of
efficiency, especially for sparse
datasets
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Table 16. (Continued)

Algorithm Author Theoretical aspects Advantages Disadvantages
KOSHU (2017) Dam et al.

(2017)
The authors proposed an
on-shelf top-k HUIM algorithm
to mine the complete set of the
top-k on-shelf HUIs with both
positive and negative utility

KOSHU is more than 1000
times faster as compared to the
existing TS-HOUN (Opt)
algorithm (Lan et al., 2014). It is
closer or faster than the existing
FOSHU (Opt) algorithm
(Fournier-Viger & Zida, 2015)

The proposed algorithm shows
low performance when the
datasets contain more time
periods. There is wide scope for
further improvement in terms of
runtime and memory
consumption

REPTPLUS (2017) Le et al.
(2017)

The authors proposed a highly
efficient and non-candidate
algorithm to mine top-k HUIs
by using a utility-list structure

REPTPLUS shows high
performance by incorporating
utility lists, pruning strategies,
and threshold-raising strategies

REPTPLUS consumes a high
amount of time for the small
values of k

TKRHU miner (2019) Kumari
et al. (2019)

An efficient approach The
TKRHU miner proposes to
mine the complete set of RHUIs
by using the greedy method. It
is used to obtain local and
global regularity, which results
in lower computation costs

The proposed algorithm works
well on dense datasets

It does not perform well in the
case of the sparse dataset for
smaller values of k

TKQ (2021) Nouioua
et al. (2022)

The authors redefined the task
of top-k quantitative high-utility
itemset mining and proposed an
efficient algorithm, TKQ, that
directly specifies the number of
patterns by the users

The proposed algorithm obtains
good results by combining both
RIU and CID threshold-raising
strategies. In real life, TKQ is
preferred because of the
flexibility to choose the desired
number of patterns directly by
the users

TKQ does not perform well as
compared to the FHUQI-Miner
algorithm
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Table 17. Comparison of THUI with the state-of-the-art approaches (Krishnamoorthy, 2019b)

Threshold-raising strategy
Phase 1 Phase 2

Number of Data Pruning
Algorithms phases structure Scan 1 Scan 2 Growth strategy
TKU Two UP-Tree PE MD, NU MC SE DGU, DGN,

DLU, DLN
REPT Two UP-Tree PUD, RIU RSD, NU MC SEP TWU, DGN,

DLU, DLN
TKO One Utility-list RUC PE RUC · · · DGU, RUZ,

EPB, U-Prune
kHMC One Utility-list,

EUCS,
CUDM

RIU CUD, COV RUC · · · TWU, EUCP,
U-Prune, LA,
TEP

THUI One Utility-list
LU

RIU LIU-E,
LIU-LB

RUC · · · TWU,
U-Prune, LA

on a triangular matrix, is designed to store the utility information of the contiguous itemsets in a con-
cise form to improve the performance of the mining process. As the space is too small to hold the long
contiguous itemsets in the transactions, a hash-map structure is adopted to optimise the search-space.
Moreover, a priority queue based data structure is utilised to keep only the top-k utility values. The
proposed algorithm THUI adopts two threshold-raising strategies, RIU and RUC, which are described
in detail in the literature (Duong et al., 2016). The author proposed two new threshold-raising strate-
gies, namely LIU-Exact Utilities (LIU-E) and utility lower-bound estimation (LIU-LB), to effectively
raise the threshold. The first threshold strategy, LIU-E, effectively raises the threshold during the initial
stage of mining. The second threshold strategy, LIU-LB, stores the information of contiguous itemsets
in the LIU matrix to significantly increase the threshold without calculating the real utility values of
longer itemsets. THUI adopts the following pruning strategies: (1) The TWU-Prune pruning strategy
(Liu et al., 2005) is performed during the initial stage to eliminate non-promising 1-itemsets. (2) The
U-Prune pruning strategy (Krishnamoorthy, 2017) is performed during the exploration of the search
tree. (3) The LA-Prune pruning strategy (Krishnamoorthy, 2015) is performed during the traversal of
the tree. The proposed approach consists of the following three distinct stages: (1) The TWU values of
all 1-itemsets are calculated by scanning the dataset. After that, the RIU strategy is performed to raise
the threshold from zero. (2) Unpromising items are pruned based on the TWU-Prune. The ordering
of items in the transaction is done according to the ordering heuristic. The LIU matrix is constructed
to update the utility values. Finally, a utility list is constructed. First, LIU, and then LIU-LB strategies
are performed for raising the threshold. (3) Itemsets are explored in the search-space to mine the top-k
HUIs by dynamically raising the threshold in each iteration. The comparative analysis of the proposed
algorithm THUI with two-phase algorithms, TKU (Wu et al., 2012) and REPT (Ryang & Yun, 2015),
and with one-phase algorithms, TKO (Tseng et al., 2016) and kHMC (Duong et al., 2016), is shown in
Table 17.

The effectiveness of THUI is measured against the state-of-the-art, kHMC (Duong et al., 2016) and
TKO (Tseng et al., 2016), for the initial stage of the mining process for the varied values of k, which
proves that the proposed algorithm is quite effective to raise the threshold on dense datasets. It can raise
the threshold nearly to 100 percent during the initial stages, even for highly dense datasets. Hence, it
leads to a significant reduction in candidate generations and improves the overall top-k mining perfor-
mance. The proposed algorithm THUI is 1–3 orders of magnitude runtime improvement, highly memory
efficient, and scalable for the benchmark methods (Duong et al., 2016; Tseng et al., 2016) on dense and
large datasets. However, the proposed LIU structure could be further optimised to effectively maintain
the utility of long itemsets.
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Table 18. Comparative analysis of the EMUP and EA strategies of the TKAU
algorithm (Wu & He, 2018)

Algorithm TKAUEMUP&EA TKAUEMUP TKAUBothNot

EMUP
√ √ ×

EA
√ × ×

RIU
√ √ √

CAD
√ √ √

EPBF
√ √ √

Wu and He (2018) proposed an effective one-phase method, named TKAU (Top-k high Average-
Utility mining), the first of its kind, to find all top-k high average-utility itemsets (HAUIs) from
transactional dataset. A novel list data structure, Average-Utility List with Option field (AUO-List),
and the construction process are designed to store the information of itemsets in a concise form. The
proposed method scans the dataset twice to construct the initial AUO-Lists of 1-itemsets by reorganising
the transaction, and then again scans the dataset to build the AUO-Lists of k-itemset (k ≥ 2) by taking the
intersection of the AUO-Lists of (k − 1)-itemset and 1-itemsets. It mines all the candidate HAUIs with-
out the candidate’s validation process by recursively constructing the AUO-Lists of itemsets of length
more than 1. Two novel pruning strategies, namely the Estimated Maximum Utility Pruning strategy
(EMUP) and Early Abandoning (EA), are designed to reduce the search-space, avoid costly join oper-
ations, and compute the utilities of itemsets. The EMUP is based on the maximum utility information
and prunes the unpromising itemsets by avoiding the number of join operations when mining the HAUIs
with the AUO-List structure. It is very effective, especially on sparse datasets. The EA strategy termi-
nates the AUO-List construction process of unpromising itemsets in the extension of itemsets using the
Local Maximum Average Utility (LMAU) upper bound to significantly minimise the runtime and mem-
ory usage. Three threshold-raising strategies, namely RIU, Co-occurrence Average-utility Descending
order (CAD), and Exploring the most Promising Branches First (EPBF), are employed for initialising
and dynamically adjusting the threshold effectively to reduce the search-space. The RIU strategy (Duong
et al., 2016) computes utilities for all items and is applied after scanning the dataset once. The CAD
strategy, a revised version of CUD as in Duong et al. (2016), is used to store the average utility of
item pairs in the CAD matrix (CADM) structure and is performed after the RIU and second scan. The
EPBF is proposed after the construction of initial AUO-Lists of 1-itemsets by extending the itemsets that
have a larger average utility value first. Hence, it rapidly raises the threshold to reduce the search-space.
The proposed algorithm can reduce up to 90 percent of candidates by using the EPBF strategy. Three
versions of TKAU are proposed, namely TKAUEMUP&EA, TKAUEMUP, and TKAUBothNot, to measure the
effectiveness of the designed strategies. The EUMP strategy can reduce numerous candidates, while the
EA strategy can further reduce the candidates based on EUMP. EA is quite effective on sparse datasets.
TKAUEMUP&EA reduces 88 percent more candidates than that of TKAUBothNot. The comparative evaluation
of these strategies is shown in Table 18.

It is observed that TKAU outperforms the optimal case of the state-of-the-art algorithms HAUI-Tree
(Lu et al., 2014b), HAUI-Miner (Lin et al., 2016), and MHAI (Yun & Kim, 2017) for the execution time,
number of determining nodes, memory usage, and scalability on dense and sparse datasets. TKAU is 1
to 2 orders of magnitude faster than the optimal cases of HAUI-Tree and HAUI-Miner. TKAU is best
suited for real-time applications because of its effectiveness and efficiency. However, TKAU shows less
performance than the optimal cases of HAUI-Miner and MHAI in some cases if the proper threshold is
set for these existing algorithms.

Gan et al. (Gan et al., 2020) proposed an effective and scalable exploration approach, named TopHUI
(Top-k high utility itemset mining with negative utility), the first of its kind, to find all top-k HUIs with
the positive and negative unit profits from the transactional dataset. The proposed algorithm incorpo-
rates a vertical list-based structure called Positive-and-Negative Utility-list (PNU-list), as used in FHN
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(Fournier-Viger, 2014), to keep the information in compact form along with positive and negative utility.
The search-space is represented as a set-enumeration tree (Liu & Qu, 2012) to explore all the promising
itemsets using the depth-first search. The items are arranged as per the increasing order of Redefined
TWU (RTWU) to efficiently prune the search-space (Liu et al., 2005; Liu & Qu, 2012). PNU-list
avoids multiple scans and easily computes the total utility, total positive utility, total negative utility, and
remaining utility of itemsets in the whole processed dataset. Several pruning strategies, RTWU-prune
(Liu et al., 2005), RU-prune (Liu & Qu, 2012; Fournier-Viger, 2014), EUCS-prune (Fournier-Viger
et al., 2014), and LA-prune (Fournier-Viger, 2014; Krishnamoorthy, 2015), are incorporated to prune
the search-space, minimise the runtime, and improve the searching efficiency. These pruning strategies
are performed during the different stages of the mining process. RTWU-prune removes unpromising
1-itemsets during the initial stages. RU-prune and EUCS-prune explore the search-space during a depth-
first search. LA-prune applies during the construction of the PNU-list. The proposed algorithm TopHUI
uses pruning techniques to compute the actual utilities of itemsets and their upper bound on utility in
linear time. The threshold-raising strategies, RIU (Ryang & Yun, 2015), RTU (Ryang & Yun, 2015),
Raising threshold based on RTWU (RTWU), and RUC (Tseng et al., 2016), are incorporated to quickly
raise the minimum-utility threshold.

Two variants are designed to measure the effectiveness of the proposed algorithm. The basic ver-
sion, TopHUIBasic, incorporates only threshold-raising strategies, while TopHUI includes both pruning
and threshold-raising strategies. It is observed that TopHUI outperforms the basic version TopHUIBasic

in terms of search-space, unpromising candidates, and dataset scans. The reason is that the pruning
strategies used significantly minimise the number of dataset scans and reduce the number of candidates.
TopHUI outperforms the state-of-the-art THUI (Krishnamoorthy, 2019b) in terms of execution time and
memory usage on dense and sparse datasets.

Nouioua et al. (Nouioua et al., 2020) proposed a cross-level approach, named TKC (Top-k Cross-
level high utility itemset miner), to discover all top-k cross-level HUIs. It adopts depth-first search and
optimisation to enhance mining performance. The cross-level HUIs consist of generalised and non-
generalised items with high utilities. The higher items in the taxonomy are traversed before the lower
items to prune the specialisation of generalised itemsets having lower upper-bound values on the utilities.
TKC explores the search-space by considering itemsets having a single item from the taxonomy. Then,
it repeatedly applies two types of itemsets expansion, namely Joined-based and Tax-based (Fournier-
Viger et al., 2020), to discover the other itemsets. The proposed algorithm utilises a list-based structure,
named tax-utility-list, as used in CLH-Miner (Fournier-Viger et al., 2020), to maintain information about
each pattern in the mining process. It rapidly computes the utility and upper bound on itemsets utility
and their extensions without scanning the dataset multiple times. The tax-utility-list is constructed for
each explored itemset while searching the cross-level itemsets. It can extend the utility list as used in
Qu et al. (2019) with additional taxonomy details. The tax-utility-lists of larger itemsets are built using
the simple join operations of smaller itemsets by a modified construct procedure (Cagliero et al., 2017).
Although the structure is efficient for computing the utility of an itemset. However, it is impractical to
conduct an exhaustive search to take into account all the transitive extensions of single items, especially
if there are an excessive number of items. To deal with this issue, two pruning strategies (Fournier-
Viger et al., 2020) are utilised to efficiently discover the cross-level HUIs. The first strategy is based on
the Generalised-Weighted Utilization (GWU) measure, a generalisation of TWU as used in Liu et al.
(2005), while the second strategy is based on the notion of Remaining Utility (RU) (Qu et al., 2019). The
proposed algorithm incorporates an optimisation by raising the threshold with the utility of (generalised)
items to enhance the mining performance.

It is observed that the designed algorithm TKC optimizes the performance on two real-time customer
datasets (Fruithut and Liquors) with taxonomy information in terms of the tax-based and join-based
extension count, execution time, memory consumption, and scalability. TKC performs better than the
state-of-the-art CLH-Miner (Fournier-Viger et al., 2020) for the optimal minimum-utility threshold for
all values of k. However, TKC is slightly faster and consumes more memory than CLH-Miner. But the
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proposed algorithm still has advantages as it obtains the exact top-k cross-level HUIs and spends less
time to get the optimal threshold to discover promising top-k patterns.

Table 19 shows a detailed overview of extended utility-list-based top-k HUIM algorithms. Table 20
depicted the pros and cons of extended utility-list-based top-k HUIM algorithms.

3.3 Other top-k HUIM algorithms
In real-time applications, the profit of recommended itemsets is measured by using only the utility values
of the itemsets. However, the diversity of intended itemsets is equally important for the satisfaction
of the users. Traditional top-k HUIM algorithms (Wu et al., 2012; Ryang & Yun, 2015; Tseng et al.,
2016; Duong et al., 2016) cannot mine the diversify top-k HUIs. This problem can be solved by using
multi-objective optimisation that considers both measure, utility, and coverage to mine diversified top-k
HUIs (Zhang et al., 2019). Moreover, the traditional top-k HUIM algorithm can work only for small or
medium-sized data that can be kept completely in memory. They do not perform well on extremely large
data sets. There is a need to design an efficient algorithm that can efficiently work in cases of extremely
large dataset (Han et al., 2021). To deal with this issue, the concept of cross-entropy (de Boer et al., 2004)
is utilised to estimate the probabilities of the promising candidates. An efficient top-k HUIM approach
is proposed to find top-k using combinatorial optimisation (Song et al., 2020). In this sub-section, we
provide a brief analysis of the other data structure based top-k HUIM algorithms.

There is a recent trend in increasing Recommender Systems (RS) because they allow customers to
quickly analyse their purchases without wasting time. These systems allow retailers to easily analyse
their profits. However, most RS fails to optimise revenue. To meet these challenges, Yang et al. (2017)
defined the problem of the utility of recommendation sets and proposed an efficient algorithm named
RAOTK (Adaptive Online Top-K high utility itemsets mining model) that provides real-time utility-
based recommendation to optimise the revenue of itemsets on the streaming data. The RAOTK algorithm
utilises three strategies, namely Itemsets normalization by utility (INU), Weighted random selection
(WRS), and Personalized strategy (PS), that are used to generate the recommendation candidates. Three
variants of the proposed algorithm, namely RAOTK with Ratings (RAOTK-R), RAOTK with Frequency
(RAOTK-F), and Hybrid RAOTK with ratings and frequency (RAOTK-H), are designed to provide the
overall set of utility-based recommendation systems. RAOTK-R incorporates the utility-based rating
(UR) into RAOTK, which improves the performance of the utility-based recommendation system. It
also uses the UR-guided selection strategy to generate recommendation candidates with the probability
method. It uses a Modified personalized strategy (MPS) based on UR to control the parameters. RAOTK-
F incorporates the frequency information into utility-based recommendations. It uses a Utility-based
frequency (UF) and UF-guided selection strategy that improves the performance of the system. RAOTK-
H combines the features of both RAOTK-R and RAOTK-F that incorporate the Hybrid Utility Evaluation
(HUE) and a HUE-guided selection strategy to improve the performance of the system. The authors
also provide an effective method, named Online consumers’ Willingness to Pay (OWP), to consider the
buying power of customers to make the system more accurate and personalized. The RAOTK algorithm
utilises the user’s purchase history (PH) to achieve better accuracy. PH works in the following two ways:
first, it combines with the top-k HUIs pool, and then, PH is inserted into the online transaction stream
to obtain the personalised recommendation.

To measure the effectiveness of the revenue optimisation, the proposed algorithm RAOTK is com-
pared with the state-of-the-art G-Greedy (Lu et al., 2014c), TopR (Top-rating) recommends (Gantner
et al., 2011), and TopF (Top-frequency) recommends (Thanh Lam & Calders, 2010). It is observed
that RAOTK generates 20 percent more revenue as compared to G-Greedy. It is about 2–3 times better
than TopR and TopF. There is a significant difference in the performance of RAOTK-R and RAOTK-F
because of the different preferences of the users. The OWP model gains effectiveness by about 10–20
percent in most cases as compared to the benchmark datasets.
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Table 19. An overview of the extended utility-list-based top-k HUIM algorithms
Threshold-

Data Database Pruning raising Utility State-of-the-art Base
Algorithm structure Phase scan Dataset Mining Search type strategies strategies value algorithms algorithms
Vert_top-k_DS,
2017 Dawar
et al. (Dawar
et al., 2017)

iList One Twice Data stream Top-k HUIs Increasing order
of TWU

TWU maxUtilList,
MIUList &
minTopKUtil

Positive
only

T-HUDS (Zihayat
& An, 2014) &
Vert_top-k
Naïve(Self)
(Dawar et al.,
2017)

–

THUI, 2018
Krishnamoorthy
(Krishnamoorthy,
2019b)

Utility-list
& LIU

One Twice Transactional Top-k HUIs Priority queue TWU-Prune,
U-Prune &
LA-Prune

RIU, LIU-E,
LIU-LB &
RUC

Positive
only

kHMC (Duong
et al., 2016) &
TKO (Tseng et al.,
2016)

FHM
(Fournier-Viger
et al., 2014) &
HUI-Miner (Liu
& Qu, 2012)

TKAU, 2018 Wu
et al. (Wu & He,
2018)

AUO-List
& CADM

One Twice Transactional Top-k HAUIs Ascending order
of auub

EMUP & EA RIU, CAD &
EPBF

Positive
only

HAUI-tree(Opt)
(Lu et al., 2014b),
HAUI-Miner(Opt)
(Lin et al., 2016)
& MHAI(Opt)
(Yun & Kim,
2017)

–

TopHUI, 2020
Gan et al. (Gan
et al., 2020)

PNU-list One Twice Transactional Top-k HUIs DFS RTWU-Prune,
RU-Prune,
EUCS-Prune,
LA-Prune &
L-Prune

RIU, RTU,
RTWU & RUC

Positive &
Negative

THUI
(Krishnamoorthy,
2019b) &
TopHUIbase(Self)
(Gan et al., 2020)

THUI
(Krishnamoorthy,
2019b) & FHN
(Fournier-Viger,
2014)

TKC, 2020
Nouioua et al.
(Nouioua et al.,
2020)

Tax-
utility-list

– Twice Transactional Top-k
cross-level
HUIs

DFS GWU & RU Utility of
(generalized)
items

Positive
only

CLH-Miner(Opt)
(Fournier-Viger
et al., 2020)

CLH-Miner
(Fournier-Viger
et al., 2020)
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Table 20. Advantages and disadvantages of the extended utility-list-based top-k HUIM algorithms

Algorithm Author Theoretical aspects Advantages Disadvantages
Vert_top-k_DS
(2017)

Dawar et al.
(2017)

A vertical mining algorithm is
designed to mine top-k HUIs
from every sliding window
without missing any itemset

The data structure, iList, quickly
performs insertion and deletion
because it maintains the
batch-wise TWU of items

The proposed algorithm produces
a large number of intersections of
inverted lists, resulting in the
degradation of mining
performance

THUI (2018) Krishnamoorthy
(2019b)

The author proposed a
single-phase utility-list-based
algorithm to mine top-k HUIs
from the transactional dataset

THUI shows higher
performance than existing
benchmark methods for large,
dense, and long average
transaction length datasets

The LIU structure is inefficient for
raising the threshold for highly
dense datasets. THUI works only
for small and medium-sized
transactional datasets that can be
kept entirely in memory

TKAU (2018) Wu and He
(2018)

The proposed algorithm adopts
a novel AUO-List structure and
two pruning strategies, EMUP
and EA, to find all top-k HAUIs
in one phase from the
transactional dataset

The EMUP pruning strategy is
very effective, especially for
sparse datasets. TKAU is 1 to 2
orders of magnitude faster than
HAUI-tree (Opt) (Lu et al.,
2014b) and HAUI-Miner (Opt)
(Lin et al., 2016)

If the threshold is set properly,
then HAUI-Miner (Opt) (Lin et al.,
2016) and MHAI (Opt) (Yun &
Kim, 2017) perform better than
TKAU in some cases

TopHUI (2020) Gan et al.
(2020)

The authors proposed a scalable
exploration algorithm to mine
top-k HUIs with or without
negative utility from the
transactional dataset

TopHUI efficiently reduces the
unpromising candidates by
using effective pruning and
threshold-raising strategies

TopHUI suffers from a long
execution time and a high memory
cost. It suffers from the same
drawbacks as FHN
(Fournier-Viger, 2014)

TKC (2020) Nouioua
et al. (2020)

The authors redefined the
problem of cross-level HUIM
and proposed the top-k
cross-level HUIM algorithm to
efficiently mine the complete set
of the top-k cross-level HUIs

TKC discovers useful and
interesting patterns at different
taxonomy levels than those of
conventional HUIM algorithms.
TKC is faster than CLH-Miner
(Opt) (Fournier-Viger et al.,
2020)

Tax-utility-list structure is
inefficient for performing an
exhaustive search, especially when
the number of items is large. TKC
consumes a higher amount of
memory than CLH-Miner (Opt)
(Fournier-Viger et al., 2020)
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The existing bio-inspired algorithms (Holland, 1975; Kennedy & Eberhart, 1995; Yang, 2011)
maintain the current optimal values in the next population, which gives the undesired results because
of the non-uniformity of the distribution of HUIs. To resolve this issue, Song & Huang (2018) pro-
posed an efficient algorithm, named Bio-HUIF (Bio-inspired based HUIM framework), to mine top-k
HUIs. It utilises a roulette wheel selection procedure to find the optimal values for the next population.
The authors proposed three novel algorithms, namely Bio-HUIF-GA, Bio-HUIF-PSO, and Bio-HUIF-
BA, based on GA (Genetic algorithm) (Holland, 1975), PSO (Particle swarm optimization) (Kennedy
& Eberhart, 1995), and BA (Bat Algorithm) (Yang, 2011), respectively. The three strategies, namely
bitmap dataset representation (Song et al., 2014), promising encoding vector checking (PEVC), and bit
difference sets, are utilised to speed up the process of discovering the top-k HUIs. In the first scan, the
1-HTWUIs are calculated based on the TWU model (Liu et al., 2005). After this, a bitmap represen-
tation is formed by using PEVC. Finally, the complete set of HUIs is obtained. The experiments show
the effectiveness of the proposed algorithm over the existing bio-inspired algorithms, HUPEumu-GRAM
(Kannimuthu & Premalatha, 2014) and HUIM-BPSO (Lin et al., 2017), and two state-of-the-art HUIM
algorithms, IHUP (Ahmed et al., 2009) and UP-Growth (Tseng et al., 2010), regarding the runtime,
number of discovered HUIs, and converging speed on the benchmark datasets.

The notion of coverage (Zuo et al., 2015) is used to measure the diversification of top-k patterns. By
using the concepts of relative utility and coverage, the users can get both high (relative) utility and diver-
sified patterns. However, both of these concepts conflict with each other, meaning that high utility results
in low coverage and vice versa. To address the above issues, Zhang et al. (2019) proposed an indexed
set-based representation MOE algorithm, named ISR-MOEA (Indexed Set Representation-based Multi-
Objective Evolutionary Approach), the first of its kind, to mine diversified top-k HUIs to improve the
user’s satisfaction. The ISR-MOEA is implemented by using the designed indexed set-based represen-
tation scheme and the frameworks of MOEA/D (Zhang & Li, 2007), NSGA-II (Deb et al., 2002), and
SPEA-II (Zitzler et al., 2001) to guarantee a better trade-off between the convergent and diverse popula-
tions during the evolution process. The framework of ISR-MOEA consists of the following three steps:
(1) population initialization, (2) population evolution, and (3) population selection. A new population
initialization strategy is proposed, based on NSGA-II (Deb et al., 2002), to generate diversified and
useful solutions. Two effective evolutionary operators, namely crossover and mutation, are proposed to
accelerate the convergence of the population.

Three variants of the proposed algorithms, namely ISR-MOEA (Support), ISR-MOEA (Utility),
and ISR-MOEA (Random), are designed to measure the effectiveness of ISR-MOEA. It is observed
that ISR-MOEA with both utility and support performs better than ISR-MOEA (support) or ISR-
MOEA (utility), while ISR-MOEA (random) cannot coverage all the possible generated solutions.
For example, on chess and OnlineRetail datasets, ISR-MOEA can converge very quickly within
100 generations. The ISR-MOEA outperforms the state-of-the-art and their variants, namely TKO,
TKO-Greedy, PSO-Miner, BGSA-Miner, SSDP-Miner, ISR-NSGA2, ISR-SPEA2, ISR-SPEA2, ISR-
MOEA(Support), ISR-MOEA(Utility), and ISR-MOEA(Random), in terms of the population size,
neighbour size, generated patterns, and mutation probability on the large and sparse datasets. ISU-
MOEA with the MOEA/D framework provides better results than those obtained using NSGA-II or
SPEA-II. The proposed ISR-MOEA provides multiple recommendations simultaneously in a single run
to make the decision quickly.

Lin et al. (2019) proposed an algorithm, named PKU (Parallel Top-K High Utility Itemset Mining),
the first of its kind, to mine the top-k HUIs parallel mining on the Spark in-memory environment.
The proposed algorithm consists of the following three stages: (1) Pre-Evaluation in Parallel (PEP)
(2) Reorganize Transactions in Parallel (RTP); (3) Mining Patterns in Parallel (MPP). PEP performs the
following two steps: (1) During the first step, it finds all the items and their corresponding utilities in a
MapReduce pass. (2) During the second step, it finds a few 2-itemsets and their partial utilities in the
MapReduce pass. RTP performs the following two steps: (1) During the first step, it finds all the items
along with TWUs by using the MapReduce pass. (2) During the second step, it uses TWDCP (Wu et al.,
2012; Tseng et al., 2016) to prune the unpromising itemsets. MPP performs the following two steps:
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Table 21. Characteristics of TKU, HUI-Miner, PHUI-Growth, and the PKU algorithm
(Lin et al., 2019)

Algorithm Mining Parallel Hadoop Spark
HUI-Miner (Liu & Qu, 2012) HUIM NO NO NO
PHUI-Growth (Lin et al., 2015) HUIM YES YES NO
TKU (Wu et al., 2012) Top-k HUIM NO NO NO
PKU (Lin et al., 2019) Top-k HUIM YES NO YES

(1) During the first step, it uses a pattern-growth method to find top-k HUIs using the MapReduce
iterations. (2) During the second step, it sorts all the items in the PKHUI List (PKL) according to the
decreasing order of their utilities. The novel pruning strategies, namely Discarding Local Unpromising
Items in Parallel (DLUP) and Merge Conditional Transactions in Parallel (MCTP), are proposed to
reduce the redundant unpromising candidates and size of conditional datasets, resulting in a significant
decrease in the runtime and memory consumption in each MapReduce pass. The threshold-raising strate-
gies are proposed to effectively raise the border min_util threshold by using the dynamically adjusted
internal variable. PKU mines the complete set of top-k HUIs after the mining process. The proposed
algorithm performs well as compared to the optimal value of the state-of-the-art TKU (Wu et al., 2012),
HUI-Miner (Liu & Qu, 2012), and PHUI-Growth (Lin et al., 2015) in terms of communication cost, fault
tolerance, and scalability. The characteristics of these algorithms are shown in Table 21. The experimen-
tal results show that for k ≤ 100, TKU and HUI-Miner perform better than PKU. The reason is that PKU
incurs additional communication costs among nodes. However, as the value of k increases, PKU works
better than the optimal cases of TKU, HUI-Miner, and PHUI-Growth because the benchmark algorithms
cannot handle the increasing overhead, while the proposed algorithm has features of the parallel frame-
work that significantly reduce the overhead. For k = 10 000, PKU is 50 times better than TKU. It is
observed that PKU with MCTP performs better than PKU without MCTP. The runtime of PKU with
MCTP is approximately 90 times less than that of PKU without MCTP to complete the mining process.
The runtime of PKU is about 4–5 times better than PHUI-Growth.

Han et al. (2021) proposed a baseline algorithm (BA) with Apriori-like level-wise execution mode to
deal with very large data from the transactional dataset. It significantly reduces the number of scans and
numerous candidates; however, it suffers from high computation and I/O costs. Therefore, the authors
proposed an efficient prefix-partitioning-based approach, named PTM (Prefix-partitioning-based Top-k
high utility itemset Mining), to find the top-k HUI on the very large data from the transactional dataset.
PTM has the following features: (1) generates all the top-k HUIs, (2) maintains the entire data in memory,
and (3) reduces the processing cost. The prefix-based partition is applied only once using the sequential
scan, computes the utility of an itemset in one partition only, and significantly accelerates the min-
ing process. PTM uses pre-constructed concise data structures, namely Utility Information in Partition
(UIPa), UIP information of Offset and Maximum twu (UOM(mtwu, offs)), and copy of UIP (UIPsor),
to skip most of the partitions that do not consist of the top-k HUIs, resulting in saving computational
cost and I/O cost-effectively. The elements in UIPa are arranged in the decreasing order of TWU by
performing a single scan. UOM(mtwu, offs) consists of the offset of the first element of UIPa in UIP
and the maximum TWU value among UIPa. PTM keeps UIPsor in the decreasing order of utility values.
PTM processes the partitions in the selection order of average transaction utility to rapidly raise the bor-
der optimal minimum utility threshold. Therefore, it significantly prunes the search-space to enhance
mining performance. The full-suffix-utility-based sub-tree pruning rule is also designed to reduce the
exploration search-space, thereby accelerating the in-memory processing further.

It is observed that PTM works better than the baseline algorithm (BA) concerning the number of
transactions, result size, number of items, and average transaction width on the massive data from the
transactional datasets. PTM maintains 9.32 times more transactions as compared to the original dataset.
Moreover, PTM consists of six times more items in the prefix-based partition than the original dataset.
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However, it occupies a large space overhead. PTM is 48.271 times faster, 429.798 fewer candidates, and
4.634 times less I/O cost than that of baseline BA. PTM performs better than the state-of-the-art TKO
(Tseng et al., 2016), kHMC (Duong et al., 2016), THUI (Krishnamoorthy, 2019b), and TONUP (Liu
et al., 2018) for the runtime and number of promising itemsets on the small and medium-size data from
the real and synthetic datasets. However, PTM incurs higher I/O costs than the existing algorithms. It
does not perform well on highly dense datasets.

To avoid the constant threshold-raising, Song et al. (2020) adopted the heuristic method of cross-
entropy (CE) method (de Boer et al., 2004), and proposed the novel efficient algorithm, named TKU-CE
(Top-k high Utility mining based on Cross-Entropy method), the first of its kind, to mine the top-k HUIs.
CE solves combinatorial optimization problems (COP) to estimate the probabilities of a complex event
in stochastic networks. The proposed algorithm follows the COP methodology to determine the top-k
HUIs. TKU-CE adopts the utility value by using a bitmap item information representation structure.
It uses the bitmap cover to represent the itemset, in that one bit is assigned for each transaction in the
dataset. It does not require additional tree or list structures to modify the actual information. It avoids
the threshold-raising and pruning strategies of the existing methods to get the intended results.

It is observed that TKU-CE performs better than the state-of-the-art TKU (Wu et al., 2012) and TKO
(Tseng et al., 2016) for execution time, memory usage, and accuracy on the benchmark datasets. On
the T25I100D5k dataset, TKU-CE is 8.70 times and 1 order of magnitude faster than that of TKU and
TKO when k is set to be (20 ≤ k ≤ 100). Similarly, on the T35I100D7k dataset, TKU-CE is 3 orders of
magnitude faster than TKO when k is set to be (3 ≤ k ≤ 11), while TKU fails to terminate for these values
of k. On the chess dataset, TKU-CE is 4.43 times faster than TKO when k is set to be (20 ≤ k ≤ 100),
while TKU runs out of memory for these values of k. TKU-CE consumes 2.69 times, 2.75 times, and 4.92
times less memory than TKO on the Chess, T25I100D5k, and Connect datasets, respectively. However,
the performance evaluation of TKU-CE is compared only with TKU and TKO on two real and two
synthetic datasets, but there are many other efficient algorithms available in the literature.

Heuristic approaches can explore the extremely large search-space to obtain optimal solutions. Song
et al. (2021) proposed two cross-entropy (CE)-based approaches, namely TKU-CE and TKU-CE+
(Heuristically mining the Top-K high Utility itemsets with Cross-Entropy optimization). TKU-CE+
is an extended version of TKU-CE which mines the top-k rules heuristically. TKU-CE uses bitmap
representation to compute the utility values of the intended itemsets. The dataset is transformed into a
bitmap to encode each itemset in a binary vector (or itemset vector (IV)). It adopts CE optimisation to
model the top-k HUIM problem. The probability vector is initialised randomly to iteratively discover
top-k HUIs. The improved TKU-CE+ further improves the performance of TKU-CE by considering
the following three observations: (1) Non-promising items can be avoided during the early stage to min-
imise the length of item vectors. It significantly prunes the search-space, thereby speeding up the mining
process. (2) The performance of the mining process can be significantly enhanced by considering only
the promising item vectors. (3) Population diversity can be used to improve the diversity of each sample
to obtain the intended results. TKU-CE+ proposes several strategies to improve mining performance.
The critical utility value-based pruning strategy, named CUV-based pruning, is designed to reduce the
unpromising itemsets in the early stages. The size of an elite sample is gradually increased as the number
of iterations increases. Therefore, a sample refinement (SR) strategy is proposed to reduce the search-
space and computational cost. Another strategy, named smoothing mutation, is proposed to increase the
diversity of the item vectors in each iteration, thereby leading to a reduction in the number of generated
item vectors. TKU-CE+ outperforms TKU-CE in the following ways: (1) The CUV strategy prunes
the itemsets in the early stages, resulting in a reduction in the length of item vectors and probability
vectors. (2) The SR strategy considers only the elite item vectors in each iteration, thus reducing the
computational cost. (3) A smooth mutation strategy generates more diversified item vectors.

TKU-CE+ outperforms the state-of-the-art TKU (Wu et al., 2012), TKO (Tseng et al., 2016), and
kHMC (Duong et al., 2016) for the runtime and memory usage. It is observed that TKU-CE and TKU-
CE+ are always faster than TKU and TKO. In most cases, they are faster compared to kHMC, especially
on synthetic datasets. However, TKU-CE+ consumes 27.57 percent more memory than kHMC on the
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Chainstore dataset. TKU-CE+ is faster than TKU-CE because of CUV, SR, and smoothing mutation
strategies. TKU-CE and TKU-CE+ consume almost constant memory because both algorithms do not
use additional data structures or threshold-raising strategies. TKU-CE+ achieves a greater reduction in
the length of item vectors than TKU-CE because of the CUV strategy, especially on real datasets. Bit
Edit Distance (BED) (Song & Li, 2020) is used to check the effectiveness of the smoothing mutation
strategy. The Maximal BED (Max_BED) and Average BED (Ave_BED) are used, respectively, to find
the greatest and average diversity of all pairs of item vectors. It is observed that TKU-CE+ discovers
more Max_BED and Ave_BED than TKU-CE on benchmark datasets. It means that the smoothing
mutation strategy improves the diversity of samples to a large extent, thus increasing the execution
speed and reducing memory consumption. TKU-CE+ and TKU-CE achieve 100 percent accuracy in
68 percent and 72 percent cases, respectively, in most of the datasets. Although TKU-CE+ mines top-k
HUIs within a limited time, it incurs high computation costs.

Pallikila et al. (2021) proposed a novel algorithm, named TKSHUIM (Top-K Spatial High Utility
Itemset Miner), that mines the top-k SHUIs from the spatiotemporal datasets. The proposed algorithm
deals with both raster and vector data of spatial items that may be of any size and shape. It uses the
depth-first search to find all top-k SHUIs in just a single database scan. A novel utility constraint, named
Dynamic utility constraint (dMinUtil), is designed to significantly prune the search-space by utilising the
greedy approach. The Min-Heap data structure is used to store the top-k candidates SHUIs because it is
easy to update the dMinUtil as the utility of itemset presents at the root node of Min-Heap. The pruning
strategy, named Probable maximum utility (PMU), is designed to consider both utility and distance
constraints to prune the search-space. The proposed algorithm uses two utility and neighborhood-
based pruning strategies, namely Neighborhood sub-tree utility (NSTU) and Neighborhood local utility
(NLU), with respect to the sub-tree of an itemset in the search enumeration tree. Five novel threshold
strategies, namely Raising dMinUtil using 1-itemsets (RD-1), Raising dMinUtil using 2-itemsets (RD-
2), Raising dMinUtil using closed spatial itemsets (RD-3), Raising dMinUtil using utility lower-bound
(RD-4), and Raising dMinUtil using exact utility (RD-5), effectively raise the dMinUtil threshold. The
first four strategies are employed during the initial phase, while the fifth strategy is employed in the
recursive mining phase. An upper triangular matrix, named Utility matrix (UM), is created by using the
neighbouring lists of each item by scanning the spatial dataset. The R-tree structure (Guttman, 1984) is
used to store the neighbouring lists of each itemset. RD-1 and RD-2 threshold-raising strategies use the
UM to calculate the exact utilities of 1-itemsets and 2-itemsets, respectively, that are used to effectively
raise the dMinUtil. They use the top-k Min-Heap (top-k MH) to store the non-zero values of 1-itemsets
and 2-itemsets in the UM. RD-3 and RD-4 threshold-raising strategies generate the Closed spatial item-
sets (CSIs). CSIs are the longest itemsets that are produced by an item in such a way that each pair of
items in the generated itemsets exists in the neighbour lists. RD-3 calculates the exact utilities of all
generated CSIs, and if the value of CSIs is no less than dMinUtil, then they are added to the top-k MH
to effectively raise the dMinUtil. On the other hand, RD-4 uses the utility lower-bound (ULB), and if the
ULB of an itemset is no less than dMinUtil, it is added to top-k MH to effectively raise the dMinUtil.
RD-5 uses a depth-first search during the recursive mining phase of the proposed algorithm. It calculates
the exact utility of an itemset, and if this utility is no less than dMinUtil, then it is added to the top-k
MH to effectively raise the dMinUtil. The proposed algorithm consists of three stages: (1) In the first
stage, the spatial dataset is scanned to compute the PMU, UM, and utility of CSIs. Then, RD-1, RD-2,
RD-3, and RD-4 threshold-raising strategies are applied to raise the dMinUtil. (2) In the second stage,
it first prunes the PMU values of items that are no more than dMinUtil, then it scans the dataset to sort
the itemsets according to the ascending order of their PMU value. (3) In the third stage, it recursively
explores itemsets by using a depth-first search.

The experimental results show that the proposed algorithm TKSHUIM performs well compared to
the state-of-the-art THUI (Krishnamoorthy, 2019b) and optimal case of SHUI-Miner (Kiran et al., 2019)
in terms of runtime and memory consumption from the benchmark datasets. It is observed that the use
of pruning and threshold-raising strategies effectively enhances mining performance. Two case studies
are also carried out to show the usefulness of the proposed algorithm. The first case study is performed
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to identify the top-k COVID hot spots in Tokyo, while the second case study is performed to identify
the top-k global heavy rainfall regions. The experiments show significant results in both case studies.

The existing top-k HUIM algorithms (Wu et al., 2012; Tseng et al., 2016) show poor performance
when the number of distinct items is significantly increased in the database. To address this issue, the
heuristic-based bio-inspired evolutionary computation (EC) algorithm (Song & Li, 2020) is proposed,
which obtain optimal solutions in the large search-space. However, they consume a high amount of time
to find HUIs. To address this issue, Pham et al. (2022a) proposed an efficient Binary particle swarm
optimization (BPSO)-based algorithm, named TKO-BPSO (top-k high utility itemset mining in One
phase based on Binary Particle Swarm Optimization), to effectively mine top-k HUIs. The utility-list
structure (Liu & Qu, 2012) is used to store the utility information of the itemsets in the database, which
significantly reduces database scans. A threshold-raising strategy named RUC (Strategy to Raise the
threshold by the Utilities of Candidates) is used to raise the border threshold, which effectively prunes
the search-space. A sigmoid function is also adopted to update the process of the particles, which signifi-
cantly reduces the combinatorial problems in HUIM. The experiments prove that the proposed algorithm
TKO-BPSO outperforms the state-of-the-art algorithms TKU (Wu et al., 2012) and TKO (Tseng et al.,
2016) in terms of runtime and memory usage on the benchmark datasets.

Pham et al. (2022b) proposed an efficient bio-inspired algorithm named TKO-HUIM-PSO (mining
top-k high utility itemset in One phase based on a HUIM Framework of Particle Swarm Optimization)
to mine top-k HUIs. It uses the bitmap data representation to check the promising encoding vector
that speeds up the discovery process to find HUIs. Furthermore, it applies roulette wheel selection to
probabilistically select the explored HUIs, which improves the diversity of the populations. A pruning
strategy named PEVC (Promising encoding vector check) is designed to prune the search-space, thereby
increasing the mining performance. The experimental results prove that the proposed algorithm performs
well as compared to the state-of-the-art algorithms TKO (Tseng et al., 2016) and TKO-BPSO algorithm
(Pham et al., 2022a) regarding runtime and memory consumption on the benchmark datasets.

The existing HUIM algorithms (Ahmed et al., 2009; Liu et al., 2005; Tseng et al., 2013) suffer from
long execution times and high memory consumption, especially in the case of the large search-space.
Moreover, these algorithms work only in the case of positive utility. However, in real-time applications,
negative utility, real unit profits, and integers also exist. To resolve these issues, (Luna et al., 2023) pro-
posed an efficient algorithm named TKHUIM-GA (top-k High Utility Itemset Mining through Genetic
Algorithms) to mine top-k HUIs. It utilises two data representations, namely vertical and horizontal data
representations, to minimise runtime and memory usage, thereby increasing the mining speed. The ver-
tical data representation provides fast access to the utilities associated with each transaction, while the
horizontal data representation uses the hashing function to speed up the mining process. The proposed
algorithm efficiently works on positive utility, negative utility, real unit profits, and integer value because
it only considers the items.

The experimental results show that the proposed algorithm TKHUIM-GA outperforms the exist-
ing bio-inspired algorithms, namely HUIM-GA (Kannimuthu & Premalatha, 2014), HUIM-BPSO (Lin
et al., 2016), HUIM-GA-tree (Lin et al., 2016), HUIM-BPSO-tree (Lin et al., 2016), HUIF-PSO (Song &
Huang, 2018), HUIF-GA (Song & Huang, 2018), HUIF-BA (Song & Huang, 2018), HUIM-ABC (Song
et al., 2021), HUIM-SPSO (Song & Li, 2020), HUIM-AF (Song et al., 2021), HUIM-HC (Nawaz et al.,
2021), and HUIM-SA (Nawaz et al., 2021), two heuristic-based algorithms, namely TKU-CE (Song
et al., 2020) and TKU-CE+ (Song et al., 2021), and two deterministic algorithms, namely TKU (Wu
et al., 2012) and TKO (Tseng et al., 2016), regarding runtime and memory usage on the benchmark
datasets. It is observed that the proposed algorithm finds the best optimal solution in most of the cases.
However, it is uncertain to find the best solutions because it works heuristically. Table 22 describes the
overview of other data-structure based top-k HUIM algorithms. Table 23 highlights the pros and cons
of all the state-of-the-art top-k HUIM algorithms of other category.
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Table 22. An overview of other top-k HUIM algorithms
Threshold-

Data Database Pruning raising Utility State-of-the-art Base
Algorithm structure Phase scan Dataset Mining Search type strategies strategies value algorithms algorithms

RAOTK, 2017
Yang et al.
(Yang et al.,
2017)

Real-time
utility-
based

– – Data stream Recommendation
set

– – – Positive only G-Greedy (Lu et al.,
2014c), TopR (Gantner
et al., 2011) & TopF
(Thanh Lam &
Calders, 2010)

Bio-HUIF, 2018
Song et al.
(Song & Huang,
2018)

Bitmap One Two Transactional Top-k HUIs TWU PVCE – Positive only HUPEumu-GRAM
(Kannimuthu &
Premalatha, 2014) &
HUIM-BPSO (Lin
et al., 2017)

IHUP Ahmed
et al., 2009) &
UP-Growth
(Tseng et al.,
2010)

ISR-MOEA,
2019 Zhang
et al. (Zhang
et al., 2019)

Index-set
based

One Once Transactional Top-k HUPs Utility
probability

Cross-over &
Mutation

None Positive only TKO (Tseng et al.,
2016), TKO-Greedy
(Tseng et al., 2016),
PSO-Miner (Liu et al.,
2007), BGSA-Miner
(Esmat Rashedi &
Saryazdi, 2010),
SSDP-Miner (Lucas
et al., 2017),
ISR-NSGA2 (Deb
et al., 2002),
ISR-SPEA2 (Zitzler
et al., 2001) & ISR-
MOEA(Binary)(Self)
(Zhang et al., 2019)

–

PKU, 2019 Lin
et al. (Lin et al.,
2019)

PKL Two – Transactional Top-k HUIs Pattern-growth DLUP &
MCTP

PEP, RTP &
MPP

Positive only TKU (Wu et al., 2012),
HUI-Miner (Liu & Qu,
2012) & PHUI-Growth
(Lin et al., 2015)

–

PTM, 2020 Han
et al. (Han et al.,
2021)

UIPa,
UOM(mtw)
& UIPSor

One Once Transactional Top-k HUIs DFS Full-suffix-
utility &
Prefix-based-
partition

Selection order
of average
transaction
utility

Positive only TKO (Tseng et al.,
2016), kHMC (Duong
et al., 2016), THUI
(Krishnamoorthy,
2019b), TONUP (Liu
et al., 2018) &
BA(Self) (Han et al.,
2021)

–
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Table 22. (Continued)
Threshold-

Data Database Pruning raising Utility State-of-the-art Base
Algorithm structure Phase scan Dataset Mining Search type strategies strategies value algorithms algorithms

TKU-CE, 2020
Song et al.
(Song et al.,
2020)

Bitmap Transactional Top-k HUIs Descending
order of utility

None None Positive
only

TKU (Wu et al.,
2012) & TKO (Tseng
et al., 2016)

Cross-entropy
(de Boer et al.,
2004)

TKU-CE+,
2021 Song
et al. (Song
et al., 2021)

Bitmap Transactional Top-k HUIs Descending
order of utility

TWU, CUV,
Sample
Refinement &
Smoothing
Mutation

None Positive
only

TKU (Wu et al.,
2012), TKO (Tseng
et al., 2016), kHMC
(Duong et al., 2016)
& TKU-CE(Self)
(Song et al., 2021)

Cross-entropy
(de Boer et al.,
2004)

TKSHUIM,
2021 Pallikila
et al. (Pallikila
et al., 2021)

Top-k MH
& R-tree

Two Two Spatiotemporal Top-k SHUIs Depth-first
search

dMinUtil,
PMU, NSTU
& NLU

RD-1, RD-2,
RD-3, RD-4 &
RD-5

Positive
only

THUI
(Krishnamoorthy,
2019b) &
SHUI-MinerOpt

(Kiran et al., 2019)

SHUI-Miner
(Kiran et al.,
2019)

TKO-BPSO,
2022 Pham
et al. (Pham
et al., 2022a)

Utility-list One Two Transactional Top-k HUIs TWU – RUC Positive
only

TKU Wu et al., 2012)
& TKO (Tseng et al.,
2016)

BPSO
(Kennedy &
Eberhart,
1997)

TKO-HUIMF-
PSO, 2022
Pham et al.
(Pham et al.,
2022b)

Bitmap One Two Transactional Top-k HUIs TWU PEVC – Positive
only

TKO (Tseng et al.,
2016) & TKO-BPSO
(Pham et al., 2022a)

BPSO
(Kennedy &
Eberhart,
1997)

TKHUIM-GA,
2023 Luna
et al. (Luna
et al., 2023)

Vertical &
Horizontal

One – Transactional Top-k HUIs Utility of each
item

– – Positive
utility,
Negative
utility, Real
unit profits
& Integer

TKU-CE (Song et al.,
2020), TKU-CE+
(Song et al., 2021),
TKU (Wu et al.,
2012) & TKO (Tseng
et al., 2016)

GA (Holland,
1975)
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Table 23. Advantages and disadvantages of other top-k HUIM algorithms

Algorithm Author Theoretical aspects Advantages Disadvantages
RAOTK
(2017)

Yang et al.
(2017)

A real-time, utility-based
recommendation system is proposed
to optimise the revenue in the online
transaction stream

The use of the OWP method
effectively enhances the
performance of the proposed
system

The users may get different
performance gains based on their
preferences, which makes the
system a more complicated
process of analysis for the retailers

Bio-HUIF
(2018)

Song and
Huang
(2018)

The authors proposed an efficient
algorithm, Bio-HUIF, based on GA,
PSO, and BA that utilises bitmap data
representation to mine top-k HUIs

The proposed algorithm finds
more HUIs with fewer iterations.
Moreover, it enhances the diversity
of solutions with fewer iterations

Bio-HUIF-GA consumes a high
amount of time to find the
complete set of HUIs

ISR-MOEA
(2019)

Zhang et al.
(2019)

An index-set representation-based
MOE framework is designed to
discover the diversified top-k HUPs
by considering utility and coverage

The proposed framework can
provide multiple recommendations
concurrently in only one run to
make a suitable decision

The concept of coverage could be
better utilised to gain high
performance

PKU (2019) Lin et al.
(2019)

A novel framework for parallel
mining of top-k HUIs is proposed for
the Spark in-memory environment

PKU performs well on dense
datasets. It significantly achieves
high scalability, fault recovery, and
low communication overheads

The performance of the proposed
algorithm degrades on sparse
datasets. For smaller values of k,
PKU does not perform well

PTM (2020) Han et al.
(2021)

The authors proposed a novel
prefix-partition-based approach to
discover top-k HUIs from the
massive data

PTM executes 51.795 times faster
and consumes 4.6 times less cost
than the baseline algorithm BA

PTM is slower than benchmark
algorithms on small and
medium-size dense datasets.
Moreover, it incurs high I/O costs

PTM (2020) Han et al.
(2021)

The authors proposed a novel
prefix-partition-based approach to
discover top-k HUIs from the
massive data

PTM executes 51.795 times faster
and consumes 4.6 times less cost
than the baseline algorithm BA

PTM is slower than benchmark
algorithms on small and
medium-size dense datasets.
Moreover, it incurs high I/O costs

TKU-CE
(2020)

Song et al.
(2020)

A heuristically CE-based TKU-CE
algorithm is proposed to solve the
problem of top-k HUIM without
specifying the minimum utility
threshold

The proposed algorithm does not
consider any additional tree or
utility-list data structure to store
the information. Moreover, it does
not include pruning and
threshold-raising strategies

TKU-CE suffers from high
memory usage in the initial stage
of the mining process. There is a
wide scope to compare the
performance of TKU-CE with
more efficient algorithms on dense
and sparse datasets
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Table 23. (Continued)

Algorithm Author Theoretical aspects Advantages Disadvantages
TKU-CE+

(2021)
Song et al.
(2021)

The authors proposed a top-k HUIM
algorithm to heuristically mine top-k
HUIs by avoiding the additional data
structures and threshold-raising
strategies

TKU-CE+ shows higher
performance than TKU-CE (Self)
because of CUV-based pruning,
sample refinement, and smoothing
mutation strategy

kHMC (Duong et al., 2016) is
faster than TKU-CE, however, it is
slower than TKU-CE+. Moreover,
TKU-CE+ suffers from high
computational costs

TKSHUIM
(2021)

Pallikila
et al. (2021)

The authors proposed a novel
algorithm to mine top-k spatial HUIs
from the spatiotemporal datasets

The proposed algorithm is both
memory and runtime efficient, as
demonstrated in the two case
studies performed in different
domains

It does not perform well on sparse
datasets

TKO-BPSO
(2022)

Pham et al.
(2022a)

The authors proposed an efficient
algorithm that uses the vertical data
representation to mine top-k HUIs in
one phase

The proposed algorithm works
well when the database consists of
a large number of distinct items

The proposed algorithm maintains
only the current optimal values in
the next population; thereby,
variations in the populations are
limited

TKO-
HUIMF-
PSO
(2022)

Pham et al.
(2022b)

The authors proposed an efficient
algorithm that uses the bitmap
database representation to mine top-k
HUIs in one phase

It uses the roulette wheel selection
instead of the current optimal
values in the next population,
thereby leading to more variety in
the populations

More efficient search strategies
that could be utilised to efficiently
mine HUIs

TKHUIM-
GA
(2023)

Luna et al.
(2023)

The authors proposed an efficient
genetic-based algorithm to mine
top-k HUIs that guides the
search-space by considering the
utility of each item to generate the
best solutions

The proposed algorithm uses a few
parameters to find top-k HUIs. A
novel data representation (Vertical
and horizontal) is used to reduce
runtime and memory usage. It can
work with any type of item that
may consist of positive utility,
negative utility, real unit profits,
and an integer value

The proposed algorithm works
heuristically to find the best
solutions, thereby leading to
uncertainty. However, in real-life
situations, for example, medicine,
it does not perform well where the
exact solutions are required
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4. Discussions and summary
In this survey paper, we have discussed the top-k HUIM algorithms in-depth that are mainly divided
into two categories: tree-based and utility-list-based. The tree-based top-k HUIM algorithms are fur-
ther classified based on the utilized datasets: static, incremental, data stream, and sequential datasets.
The utility-list-based top-k HUIM algorithms are further categorized into basic utility-list and extended
utility-list. We have also discussed the top-k algorithms that consider both positive and negative util-
ity profit. The main objectives of these algorithms are to design efficient upper bounds, data structures,
pruning strategies, and threshold-raising strategies that, respectively, reduce the unpromising candidates,
provide efficient memory usage, prune the search-space, and quickly raise the internal threshold.

Tree-based top-k HUIM algorithms, TKU (Wu et al., 2012) and REPT (Ryang & Yun, 2015),
adopt a two-phase approach to find top-k HUIs. They suffer from multiple dataset scans and numer-
ous unpromising candidates. Moreover, they do not work for large values of k. To deal with these issues,
one-phase tree-based algorithms, TKEH (Singh et al., 2019b) and TONUP (Liu et al., 2018), are pro-
posed to mine top-k HUPs. However, TKEH does not perform well on highly sparse datasets. TONUP
is a memory-resident-based algorithm; hence, it may lead to scalability issues. Moreover, these algo-
rithms are applicable only for positive utility. Therefore, TOPIC (Chen et al., 2021) is proposed to find
top-k HUIs with both positive and negative utility. The vertical list-based one-phase algorithms TKO
(Tseng et al., 2016), kHMC (Duong et al., 2016), and TKUL-Miner (Lee & Park, 2016) are designed
to efficiently find the top-k HUIs from the transactional datasets. However, they work for positive util-
ity only. Moreover, they mine top-k HUIs across the same time periods, which is not beneficial for
business-makers. To deal with these issues, another list-based KOSHU algorithm (Dam et al., 2017)
is proposed to mine top-k on-shelf HUIs with both positive and negative utility. However, it does not
work well for longer periods of time. Another list-based one-phase THUI algorithm (Krishnamoorthy,
2019b) is proposed to efficiently mine top-k HUIs from the transactional dataset. However, it only
works for small and/or medium-sized data that can be entirely stored in memory. The average utility
plays a vital role in real-time applications. Therefore, an efficient one-phase TKAU algorithm (Wu &
He, 2018) is designed to find top-k HAUIs from the transactional dataset. However, these algorithms
(Krishnamoorthy, 2019b; Wu & He, 2018) work only for positive unit profits. To deal with this issue,
the TopHUI algorithm (Gan et al., 2020) is proposed to mine top-k HUIs from the transactional dataset
with both positive and negative unit profits. However, it suffers from the same drawbacks as FHN
(Fournier-Viger, 2014).

The previous tree-based and utility-based top-k HUIM algorithms only work for static datasets. They
are not applicable to incremental, data stream, or sequential datasets. To address these issues, a two-phase
pattern-growth T-HUDS algorithm (Zihayat & An, 2014) is developed to find top-k HUIs from a data
stream. However, it has the same drawbacks as the two-phase methods. To deal with these issues, another
pattern-growth TOPK-SW algorithm (Lu et al., 2014a) is designed to find top-k HUIs over the sliding
windows from a data stream. However, it does not work efficiently on sparse datasets. A vertical utility-
list-based one-phase algorithm, Vert_top-k_DS (Dawar et al., 2017), is proposed to efficiently mine top-k
HUIs over each sliding window from a data stream. However, it has a large number of intersections of
inverted-list (iList), thereby resulting in the degradation of mining performance.

In the last decade, HUSPM has become the core emerging area of data mining among researchers.
Therefore, the TUS algorithm (Yin et al., 2013) is designed to find top-k HUSPs from the sequen-
tial dataset. However, it takes a lot of time to prune the unpromising candidates. Moreover, a few
top-k HUSPs may be missed in the mining process. Utility episode mining is another important area
of data mining. The TUP algorithm (Rathore et al., 2016) is designed to mine top-k HUEs from the
sequential dataset. However, it does not work properly on sparse datasets. Three efficient algorithms,
TKHUS-SpanGDFS (Wang et al., 2016), TKHUS-SpanBFS (Wang et al., 2016), and TKHUS-SpanHybrid

(Wang et al., 2016), are proposed to mine top-k HUSPs from the sequential dataset by using GDFS,
BFS, and hybrid of DFS and BFS, respectively. However, TKHUS-SpanGDFS consumes lots of time
to traverse the nodes. TKHUS-SpanBFS consumes a high amount of memory. The previous algorithms
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(Yin et al., 2013; Rathore et al., 2016;Wang et al., 2016) work only in cases of positive utility. To address
this issue, the Topk-NSP+ algorithm (Dong et al., 2019) is designed to mine top-k NSPs from the sequen-
tial dataset. Another efficient TKUS algorithm (Zhang et al., 2021) is proposed to find top-k HUSPs from
the sequential dataset. It ensures that no top-k HUSPs are missed in the mining process. THUE (Wan
et al., 2021) is proposed to discover all top-k HUEs from the sequential dataset. Although these previ-
ous algorithms efficiently mined top-k HUSPs. However, there is wide scope to design efficient pruning
strategies and threshold-raising strategies to improve mining performance.

The various lower-bounds, upper-bounds, and data structures used by the top-k HUIM algorithms are
discussed. The PEM structure is used to store the lower bounds of the utilities of 2-itemsets (Wu et al.,
2012). The PUM structure (Ryang & Yun, 2015) is used for the PIU threshold-raising strategy, and it
calculates the lower-bound utilities of 2-itemsets. The RSD matrix is used for RSD strategy and com-
putes the utilities of their possible 2-itemsets (Ryang & Yun, 2015). The ECUS structure is implemented
by using hash-map and stores only those values for that TWU not equal to 0. The CUDM structure is
used to store the utilities of pairs of items. Then, the COVL structure is utilized to store values from
CUDM during the COV strategy (Singh et al., 2019b). The iCAUL (Liu et al., 2018) is a memory-
resident data structure, an improved version of CAUL (Liu et al., 2012), that computes the utilities of
enumerated patterns. An array-based UC technique (Chen et al., 2021) is used to calculate the TWU
and upper bound of itemsets in linear time. The RLU upper-bound (Chen et al., 2021), adopted from
the EFIM (Zida et al., 2015), consists of both positive and negative utility. It is tighter than TWU. RSU
upper-bound (Chen et al., 2021), which also adopts from EFIM (Zida et al., 2015), efficiently prunes the
search-space. It is tighter than Remaining Utility (RU) (Liu & Qu, 2012). The EUCST structure (Duong
et al., 2016), an extension of EUCS (Fournier-Viger et al., 2014), is performed during the second dataset
scan. It avoids the costly join operations and occupies less memory to efficiently mine the top-k HUIs.
The TEP upper bound (Duong et al., 2016) greatly reduced the number of extensions to be explored
to mine HUIs. The EMPPS structure (Dam et al., 2017) is implemented using a triangular matrix. It
reorders the items according to the increasing order of RTWU values in such a way that all negative
items succeed the positive items. The HUI-tree structure (Lu et al., 2014a) keeps the utilities of item-
sets according to the lexicographical order corresponding to the current window. A fixed-size sorted
TUSList structure (Yin et al., 2013) is used to keep the top-k HUSPs dynamically, and the minimum-
utility threshold is set to prune the unpromising candidates. The SWU upper bound (Wang et al., 2016)
calculates the utilities of sequences and their sub-sequences and the actual utility of candidates. But it
generates excessive candidates. To solve this problem, two tighter upper bounds, PEU and RSU (Wang
et al., 2016), are proposed. Two tighter upper bounds, SPU (Zhang et al., 2021) and SEU (Zhang et al.,
2021), are proposed to effectively prune the search-space by using the DCP, thereby resulting in the
improvement of the mining process. An inverted-list, iList data structure (Dawar et al., 2017), an adap-
tation of utility-list (Liu & Qu, 2012), and a FIFO queue maintain the utility information of the itemsets
across sliding windows by scanning the dataset twice according to the increasing order of TWU. It
performs both insertion and deletion very rapidly. The LIU structure (Krishnamoorthy, 2019b) is a tri-
angular matrix that maintains the utility information of the contiguous itemset concisely. A utility lower
bound, LIU-LB (Krishnamoorthy, 2019b), significantly increases the minimum-utility threshold with-
out the need to compute the actual utility of the long itemsets. The AUO-List structure (Wu & He, 2018)
maintains the utility information of itemsets and facilitates the pruning strategies, EMUP, and EA in a
compact form. But it needs to perform excessively costly join operations. A vertical list-based PNU-
list structure (Gan et al., 2020), adopted from FHN (Fournier-Viger, 2014), computes the total utility,
remaining utility (RU), total positive utility, and total negative utility of the intended itemsets from the
dataset.

In this survey paper, we have discussed the various pruning strategies of top-k HUIM algorithms.
The DGU pruning strategy is used to eliminate the unpromising itemsets and their utilities from the
transaction during the first scan (Ryang & Yun, 2015). The DGN strategy is used to decrease the
utilities of nodes during tree construction according to their decreasing order (Ryang & Yun, 2015).
The DLU strategy eliminates the local unpromising itemsets and their estimated utilities in the tree
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(Ryang & Yun, 2015). The DLN strategy is used to construct the local tree, also called a conditional
pattern tree, during tree construction (Ryang & Yun, 2015). The pruning strategies EUCP (based on
EUCS structure) and SUP are used to efficiently prune the search-space (Singh et al., 2019b). The
EUCPT strategy (Duong et al., 2016), an improved version of EUCP (Fournier-Viger et al., 2014), uti-
lizes the item co-occurrences information to reduce the search-space by utilizing the EUCST structure.
The EA strategy (Duong et al., 2016) is used to obtain good performance for the utility-list construction
in the mining process. However, it can be applied only when the utility list is completely constructed.
The EMPRP strategy (Dam et al., 2017) computes the utilities of each 1-itemset and all 2-itemsets by
using the EMPRS structure. It avoids the costly join operations. However, some pairs of items may not
appear simultaneously in any transaction. To deal with this issue, the CE2P strategy (Dam et al., 2017)
is proposed by using the bit matrix. It avoids the large number of utility-list join operations. This strat-
egy is effective on sparse and very large datasets. Another pruning strategy, PUP (Dam et al., 2017), is
proposed to further reduce the utility-list join operations. The SRU strategy (Yin et al., 2013) is used
to keep refreshing the blacklist until all the itemsets in the whitelist ensure that the SRU of an item-
set is no less than the minimum-utility threshold. The EWU strategy (Rathore et al., 2016) is used to
explore those itemsets first that have higher EWU values as compared to others. However, it works bet-
ter on dense datasets. A utility-chain structure (Wang et al., 2016) is proposed to efficiently calculate
the values of PEU, RSU, and utility of the itemsets. The TDE strategy (Zhang et al., 2021) limits the
number of dataset scans. It reduces the unpromising candidates in the LQS-tree by using the depth-first
method. A width-based EUI strategy (Zhang et al., 2021) stops the new branches in LQS-tree. It ensures
the acquisition of the complete set of top-k HUIs. The optimized EWUopt strategy (Wan et al., 2021),
optimized version of EWU (Rathore et al., 2016), is proposed to traverse the tree using the depth-first
method. The EMUP strategy (Wu & He, 2018) greatly reduces the large number of costly join opera-
tions performed by AUO-List. The RTWU-prune strategy (Gan et al., 2020) prunes the candidates by
using the depth-first method if the RTWU value of the candidate is no less than the minimum utility
threshold. The RU-prune strategy (Gan et al., 2020) states that if the sum of positive utility and remain-
ing utility of an itemset is no more than the minimum threshold, then that itemset is not top-k HUI and
hence can be eliminated from the mining process. The LA-prune strategy (Gan et al., 2020) states that
if the sum of overall utility and remaining utility of an itemset is no more than the minimum threshold,
then this itemset is discarded. The L-prune strategy (Gan et al., 2020) states that if the utility of the leaf
node is no more than the minimum threshold, then there is no need to evaluate the extension of those
itemsets.

A brief discussion about the various threshold-raising strategies of top-k HUIM algorithms is elabo-
rated. To mine the new Potential top-K HUIs (PKHUIs), the MC threshold-raising strategy determines
that if its Minimum Item Utility (MIU), TWU, and Maximum Utility (MAU) are no less than the current
border minimum-utility threshold, then it is safe to use the MIU of an itemset to raise the border thresh-
old (Wu et al., 2012). The PE is used to raise the border threshold during the first dataset scan (Wu et al.,
2012). The NU is performed during the construction of UP-Tree (Wu et al., 2012). The MD is performed
after the UP-Tree construction and before the PKHUIs generations (Wu et al., 2012). It takes a lot of time
to check the large number of PKHUIs in the dataset. To deal with this issue, SE is performed to sort the
candidates in the decreasing order of estimated utilities during the second phase (Wu et al., 2012). The
PIU strategy (Ryang & Yun, 2015) is performed to increase the current minimum-utility threshold set
to 0 during the first scan. The RIU strategy (Ryang & Yun, 2015) discards those unpromising itemsets
that have smaller TWUs than the raised threshold and selects N promising itemsets. The RSD and NU
strategies are further used to raise the threshold (Ryang & Yun, 2015). The EUCST strategy, proposed
by FHM (Fournier-Viger et al., 2014) and improved by kHMC (Duong et al., 2016), effectively raises
the minimum-utility threshold and prunes the search-space. The CUD and COV strategies (Duong et al.,
2016) raise the threshold using the 2-itemsets stored in the EUCS structure. The CUD is performed after
the RIU strategy. iCAUL maintains the autoMaterial strategy (Liu et al., 2018) to balance the pseudo-
projection and materialized projection of the transaction set by using the self-adjusting threshold. The
reason is that pseudo-projection works well on sparse datasets, while materialized projection is good on
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dense datasets. The DynaDescend strategy (Liu et al., 2018) effectively raises the border threshold and
prunes search-space by dynamically resorting the items according to the decreasing order of local utility
upper-bound. However, it incurs additional costs. The ExactBoarder strategy (Liu et al., 2018) is used to
rapidly raise the border threshold by using the exact utility of each enumerated pattern. The SuffixTree
strategy (Liu et al., 2018) effectively maintains the shortlisted patterns by using the suffix tree. The
OppoShift strategy (Liu et al., 2018) is used to opportunistically shift to a two-round approach when the
enumerated patterns are very long. However, it is computationally expensive. The RUZ strategy (Tseng
et al., 2016) is performed during the candidate generations to search the top-k HUIs, while the EPB
strategy (Tseng et al., 2016) is performed to generate the candidates that have the highest utility first.
Two threshold-raising strategies, RIRU and RIRU2, are proposed to quickly raise the threshold during
the first and second dataset scans of the mining process (Dam et al., 2017). The FCU strategy (Lee &
Park, 2016) is performed from the first child node in the tree. The advantage is that the first child node
does not affect the other nodes. Therefore, it generates all the promising candidates. The FSD strategy
searches 1-itemsets according to the descending order of TWU values in the TKUL-Miner algorithm
(Lee & Park, 2016). It quickly raises the border threshold and efficiently prunes the search-space. The
maxUtilList (Zihayat & An, 2014; Dawar et al., 2017) of a HUDS-tree initializes the threshold during
the construction and update of the HUDS-tree. The MIUList (Zihayat & An, 2014; Dawar et al., 2017)
dynamically adjusts the threshold by maintaining the top-k MIU values of current promising HUIs. The
minTopKUtil (Zihayat & An, 2014; Dawar et al., 2017) adjusts the threshold by using the utilities of
top-k HUIs in the last sliding window and is performed during the second phase of the mining process.
The Pre-insertion and sort concatenation strategies (Yin et al., 2013) effectively raise the threshold in the
TUSList structure. SRU quickly raises the minimum-utility threshold as fast as possible and ensures that
no top-k HUIs miss from the mining process. The RTU strategy (Wan et al., 2021) utilizes the hash-map
structure to calculate each simultaneous event set. The RUC strategy (Wan et al., 2021) uses the priority
queue structure to keep the top-k HUEs according to the descending order of utilities of episodes. The
LIU-E strategy (Krishnamoorthy, 2019b) effectively raises the threshold during the initial stages of the
mining process. The EPBF (Wu & He, 2018) is performed after the initial construction of the AUO-List
of 1-itemsets. It extends the itemsets that have a large average utility first because these itemsets may
have a high probability of having a high average utility.

5. Future directions
Top-k HUIM has many applications. However, it has some fundamental limitations. To address these
issues, extensions of the problem of top-k HUIM can be proposed. This section aims at providing future
directions by extending these algorithms. One of the limitations of the top-k HUIM problem is that a
lot of smaller itemsets may be found by the algorithms, which often need to be generated first. Finding
too many smaller itemsets is an issue because users typically do not have much time to analyze a large
amount of itemsets with these smaller itemsets. Moreover, as more itemsets are found, the performance
of algorithms decreases in terms of memory and runtime. To address this issue, a solution is to dis-
cover concise representations of top-k HUIs instead of all top-k HUIs. There are two main concise
representations of top-k HUIM, for example, closed and constraint-based.

5.1 Closed top-k HUIs
Closed HUIs are the itemsets that do not have super-sets having the same support count. The discovery
of closed top-k HUIs instead of all top-k HUIs reduces the number of itemsets. Hence, closed top-k HUIs
are more interesting and actionable because they are a lossless representation of all the top-k HUIs. In
other words, using closed top-k HUIs, the information about all top-k HUIs, including their support,
can be recovered without scanning the dataset. Closed itemsets are more actionable because they rep-
resent the largest set of all top-k HUIs. Recently, many closed algorithms for HUIs have been proposed
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(Wu et al., 2015; Fournier-Viger et al., 2016). But till now, no algorithm has been presented for closed
top-k HUIs. Therefore, closed top-k HUIs are a good area to explore. The coverage concept of the kHMC
algorithm (Duong et al., 2016) could be further explored to significantly prune the search-space in other
HUIM algorithms, for example, closed and maximal HUIM. Similarly, the KOSHU algorithm (Dam
et al., 2017) could be further developed for closed and maximal on-shelf HUIM. A detailed survey of
closed HUIM algorithms is available in Singh et al. (2021).

5.2 Constraint-based top-k HUIs
Although a top-k HUIM uncovers thousands of high-utility itemsets, the end user is particularly inter-
ested in only long and more actionable itemsets. Efficient mining for only the itemsets that satisfy
user-specified constraints is called constraint-based mining. To fulfil the end-user requirements, length-
based HUIM (Fournier-Viger et al., 2016a; Singh & Biswas, 2019) plays an important role. Two upper
bounds (minimum length and maximum length) can be defined to mine length-based top-k HUIs. To
remove the tiny items, the user can set the minimum length threshold with k. Length-based top-k HUIs
can remove lots of small itemsets and produce more interesting and actionable HUIs. A maximum length
constraint can be applied to prune too large itemsets (Singh et al., 2019a). Therefore, minimum and max-
imum length based constraint can be utilized with top-k HUIM algorithms. To find rules more efficiently,
we need to push the constraint as deep as we can. In other words, the constraints are applied during the
search for itemsets to reduce the search-space. The algorithms adopting this approach can be orders
of magnitude faster and generate much fewer itemsets than top-k HUIM algorithms, depending on the
utilized constraints.

5.3 Negative utility based top-k HUIM
Top-k HUIM focuses on the discovery of items that are positively correlated in the dataset. However, for
some applications, negative utility mining is more interesting than positive utility mining. A negative
utility itemset contains the negation of at least one item. Mining negative HUIs is more difficult than
mining only positive HUIs as the search-space becomes larger. Initially, to mine negative HUIs, the
HUINIV (Chu et al., 2009) algorithm was proposed. A detailed survey of negative utility based HUIM
approaches is presented by Singh et al. (n.d.). But none of the algorithms are available for mining top-k
HUIs with negative utility. Hence, in the future, this problem can also be explored. The TKN (Ashraf
et al., 2022) algorithm can be further extended on the different top-k mining variations that include top-k
local and peak HUIM, periodic HUIM, and closed HUIM. Topk-NSP+ (Dong et al., 2019) considers the
influence of PSPs on NSPs mining; however, more effective methods could be further designed to mine
useful NSPs. It is an open issue to find the correctness and completeness of the Topk-NSP+ algorithm
to find the intended patterns.

5.4 Top-k HUIM from data stream
Another limitation of top-k HUIM algorithms is that the datasets are assumed to be static. Top-k HUIM
algorithms are said to be batch algorithms, as they are designed to be applied once to a dataset to obtain
rules. Then, if the dataset is updated, algorithms need to be run again to obtain the updated rules. This
type of approach is not efficient because sometimes only small changes are made to the datasets, and
algorithms have to scan the whole dataset again to mine rules. A solution to this problem is to design
a top-k HUIM algorithm with dynamic datasets. To the best of our knowledge, T-HUDS (Zihayat &
An, 2014) is the only promising algorithm to mine top-k HUIs from a data stream. T-HUDS is a two-
phase algorithm; hence, there is wide scope to implement efficient one-phase algorithms. Similar to
tree structures used in HUPMS (Ahmed et al., 2012) and TKU (Wu et al., 2012), T-HUDS utilizes
an HUDS-tree structure that is lossy compression of the transaction in a sliding window. The sliding
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window is small enough to fit entirely in memory. It can greatly reduce the scans to enhance the mining
performance. However, a lossless compression structure can be further designed to keep the information
needed to calculate the exact utility. The approximation methods can also be further developed to gen-
erate an approximate list of top-k patterns from the lossy compressed information. The Vert_top-k_DS
algorithm (Dawar et al., 2017) could be further developed in other data stream models.

5.5 Top-k HUIM in Big data environment
The TKUS (Zhang et al., 2021) algorithm could be further applied in the big data environment. The
different extensions of TKUS could be considered; for example, Hadoop is used to enhance the mining
speed of the algorithm. It would be interesting to design a parallel and distributed version of the KOSHU
algorithm (Dam et al., 2017) that could be run on massive data. The REPTPLUS algorithm (Le et al.,
2017) could be further developed to effectively address the issues of large and distributed datasets in
parallel model environments. There is wide scope to develop the distributed version of TKQ (Nouioua
et al., 2022) in big data environments. The Vert_top-k_DS algorithm (Dawar et al., 2017) has enough
room to apply to big data, for example, Apache Strom and Apache Spark. Another interesting research
opportunity is to redesign the TKAU algorithm (Wu & He, 2018) as a distributed algorithm to find the
top-k HAUIs in the big data.

5.6 Other top-k HUIM problems
Some other extensions of top-k HUIs that can mine rich itemsets in various ways, such as mining item-
sets from uncertain data, Fuzzy top-k HUIM, top-k high utility sequential itemset mining, periodic top-k
HUIM, episode top-k HUIM, and top-k on-shelf HUIM, etc. The THUE (Wan et al., 2021) algorithm
could be further developed to find different types of episodes, for example, parallel and closed episodes.
Moreover, the useful minimum utility based strategies could be further designed to improve mining
performance. The design of the distributed version of THUE is an interesting and challenging oppor-
tunity for researchers. There is a wide room for the further exploration of the TKO algorithm (Tseng
et al., 2016) in the area of top-k HUE, top-k closed+ HUI, top-k high utility web access patterns, and
top-k mobile HUSPs. There is an interesting research direction to design the approximate version of the
KOSHU algorithm (Dam et al., 2017) that would return the approximate list of top-k on-shelf HUIM.
The mining performance of the THUI algorithm (Krishnamoorthy, 2019b) could be further improved by
materializing more promising non-contiguous itemsets. Another open research opportunity is to adopt
the THUI algorithm for the other top-k HUIM variants, for example, on-shelf HUIM, data stream mining,
and sequential pattern mining. Another interesting future work is to mine HAUIs and strongly associated
itemsets (Wu & He, 2018) with combined criteria. There is ample research opportunity to redesign the
TKC algorithm (Nouioua et al., 2020) in the other top-k HUIM variants, high average utility patterns
(Singh et al., 2022) and soft computing (Kumar & Singh, 2022).

6. Conclusion
In this paper, we have presented a detailed survey of top-k HUIM approaches. We also discussed the
important preliminary definitions of the HUIM and top-k HUIM problems. The paper presented three
broad categories of top-k HUIM algorithms: tree-based, utility-list-based, and other hybrids. The paper
showed a comparative analysis of the available state-of-the-art top-k HUIM approaches for each cat-
egory. This survey also discussed the comparative advantages and disadvantages of each category.
The paper also presented important future directions for top-k HUIM problems that address some
shortcomings of top-k HUIM. In addition, the paper discussed other research problems and research
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opportunities related to top-k HUIM, such as concise top-k HUIM, constraint-based top-k HUIM, neg-
ative utility-based top-k HUIM, and top-k HUIM from the data stream. In the future, we can extend this
work with an experimental comparison.
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