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CENTRAL *-DIFFERENTIAL IDENTITIES IN PRIME RINGS

P.H.LEE AND T. L. WONG

ABSTRACT.  Let R be a prime ring with involution and d, 6 be derivations on R.
Suppose that xd(x)—é(x)x is central for all symmetric x or for all skew x. Thend = 6 = 0
unless R is a commutative integral domain or an order of a 4-dimensional central simple
algebra.

It was shown in [1] that if R is a prime ring and d,  are two derivations of R such
that xd(x) — 6(x)x lies in the center of R for all x € R, then eitherd = 6§ = Oor R is
commutative. In this paper we are concerned with a similar problem in the setting of
rings with involution. Let R be a prime ring with an involution *. Suppose that d and ¢
are derivations of R such that xd(x) — 6(x)x is central for all x = x* or for all x = —x*.
Here we show that d = § = 0 unless R is a commutative integral domain or an order of
a 4-dimensional central simple algebra. This extends the results in [7] where the same
conclusions were proved under the additional assumption d = 6.

In what follows, R will always denote a prime ring with an involution * and 2 the
center of R. S = {x € R | x* = x} is the set of symmetric elementsin Rand K = {x € R |
x* = —x} the set of skew elements. Let d and § denote two derivations of R. We are
going to show that R satisfies the standard identity s4 = ¥ ses,(—1)° Xo(1yXo2)Xo3)Xow)
provided d # 0 or § # 0. Let C stand for the extended centroid of R and C the algebraic
closure of C. RC is the central closure of R and R is called centrally closed if RC = R.
For subsets 4 and B, [4, B] will denote the additive subgroup generated by elements of
the form [a, b] = ab — ba with a € A and b € B. The involution * on R can be extended
to an involution on RC [4, Lemma 2.4.1] which will also be denoted by *. The involution
* is said to be of the first kind if o* = o for all o € C and of the second kind otherwise.

We begin with a well-known
LEMMA. Ifd(S) C Zord(K) C Z, then either d = 0 or R satisfies ss.

PROOF. Assume that d # 0. If char R # 2, then R satisfies s4 by [6, Lemma 5 and
Corollary] or [8, Lemma 1.6]. Hence, assume that char R = 2 and then K = S in this
case. Fors € S, we have d(s?) = 2sd(s) = 0. Thus, 0 = s?d(s’x+x*s?)+d(s*x+x*s%)s* =
s*d(x) + s2d(x + x*)s? + d(x*)s* = s*d(x) + d(x + x*)s* + d(x*)s* = s*d(x) + d(x)s* for all
x € R. Thatis, [s*, d(R)] = 0and so s* € Z by a theorem due to Herstein [5]. Therefore,
R satisfies s4 by [7, Thm.3].

Now we prove a symmetric version of Bresar’s Theorem.
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THEOREM 1. If sd(s) — b(s)s € Z for all s € S, then either d = 6 = 0 or R satisfies
S4.

PROOF. Linearize the relation sd(s)—6(s)s € Z to obtain sd(t)—0(f)s+td(s)—o(s)t €
Z for all 5, ¢ in S. Replacing ¢ with [s, k] for k € K and using sd(s) — o(s)s € 2, we
have s[s, d(k)] — [s, 6(k)]s € Zforalls € Sand k € K. Thus, for each £ € K, the
inner derivations Dy and A;, defined by Di(x) = [x, d(k)] and As(x) = [x, d(k)], satisfy
sDi(s) — Ay(s)s € Z for all s € S. Suppose that the theorem has been proved for inner
derivations; then we can conclude that either D, = A, = 0 for each & € K or R satisfies
s4. In the former case, we have d(K) C Z and 6(K) C Z whence eitherd =6 = 0 or R
satisfies s4 by the Lemma. So it suffices to consider the situation when d(x) = [x, a] and
o(x) = [x, b] for some fixed elements a, b in R.

Assume first that Z N S # 0, that is, there exists « € 2 with o = a # 0. From
sd(a) — 6(a)s + ad(s) — 6(s)a € Z, it follows that d(s) — 6(s) € Z for all s € S since
d(a) = 6(x) = 0. Again, by the Lemma, either d = §é or R satisfies s4. But if d = 9,
we are done by [7, Thm.1 and Thm.5]. So assume that Z N S = 0 from which Z = 0
follows. Thus s[s, a] — [s, b]s = 0 for all s € S. We assume that a and b are not both zero
and proceed to show that R satisfies s4. Applying * to s[s, a] — [s, b]s = 0, we obtain
that s[s, b*] — [s, a*]s = 0 and so both s[s, a + b*] — [s, b+ a*]s = 0 and s[5, a — b*] —
[s,b—a*]s=0foralls € S. Since a # 0 or b # 0, a+ b* and a — b* cannot be both
zero in case char R # 2, and so we may replace a with a + * or a — b* and assume that
b = a* or b = —a”* respectively. In case char R = 2, we may still replace a with a + b* if
a+b* # 0, while if a + b* = 0, we have b = a* already. Hence, we assume that b = a*
or b = —a*. Also, we may assume that b # a.

Let f(X, V) = X+ YV)[X+ 7Y, a]l —[X+7, bl(X +Y). Then f(X, Y) is a nontrivial
generalized polynomial identity (GPI) and R satisfies the *-GPI f(X, X*) = 0. Since
sd(t) — 6(t)s + td(s) — 6(s)t = O for all 5, ¢ € S, replacing ¢ with s? yields 2s%d(s) +
sd(s)s — s6(s)s — 26(s)s*> = 0. But s2d(s) = s6(s)s and 6(s)s> = sd(s)s, so we have
sd(s)s = s6(s)s or, equivalently, s[s, c]s = 0 for all s € S where ¢ = a — b # 0. Set g(X,
Y) =X+ DNX+Y, c](X+7Y). Then R satisfies the nontrivial *-GPI g(X, X*) = 0. In
light of [2, Prop.4], RC also satisfies both *-GPIs f(X, X*) = 0 and g(X, X*) = 0. If Cis
infinite and * is of the second kind, R satisfies f(X, Y) = 0 by [2, Prop.1]. In particular,
x[x,a] — [x, blx =0 forallx € Rand so a € Z = 0 by BreSar’s Theorem [1, Thm.4.1],
a contradiction. If C is infinite and * is of the first kind, * can be extended to RC ®¢ C
and standard arguments show that both f(X, X*) = 0 and g(X, X*) = 0 hold in RC®¢ C.
Since both RC and RC ®c C are prime and centrally closed [3, Thm.2.5 and Thm.3.5],
we may replace R with RC or RC ®@¢ C and assume that R is centrally closed over C and
that C is either finite or algebraically closed.

By Martindale’s Theorem [9], R is then a primitive ring having a nonzero socle H and
with C as the associated division ring. In light of Kaplansky’s Theorem [4, Thm.1.2.2],
there exists a vector space ¥ over C, equipped with a Hermitian or alternate form, such
that R acts faithfully and densely on ¢/ and that »* is the adjoint of » for each r € R.
Moreover, A consists of the finite-rank linear transformations having adjoints on ¢ V.
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If ¥V is finite-dimensional over C, the density of R on ¢V implies that R = M, (C) for
some n > 1 with symplectic or transpose type involution [4, p.19]. We want to show that
n = 2. Assume the contrary and we will proceed to arrive at a contradiction that either
c€Zorac 2.

Suppose that * is symplectic on M,(C), that is, » is even and * is given by (a;)* =
(a7) where a;; is the 2 x 2 matrix block at the (i, j)-position and o is the involution

(a A ) = ( 6 “;xﬂ ) on M>(C). Consider first the case when n = 4 and write

Y 6 =

¢l Cn2 . 0 7IY. . S

c = . Setting X = in g(X, X*) = 0 where / is the 2 x 2 identity
1 00

matrix, we have ¢;; = ¢ and ¢12 = ¢31. Thenset X = € én ) €n € and

0 [F]] 0 €11
(6(1)1 221 ) successively in g(X, X*) = 0 where {e;} are the usual 2 x 2 matrix units,
|

and we obtain that ¢;; = 0 and ¢y is a scalar matrix in M,(C) and hence ¢ € Z. Now
assume that n > 4. For h # k, let e = (a;) with ay, = a = I and a;; = 0 otherwise.
Then & = e = e* and eRe = M,(C). Proceeding as above, we will get c € Z.

Suppose next that * is of the transpose type, namely, (v;)* = (7'ri7rj‘l’)’;,.) where
T1,..., Ty are nfixed nonzero symmetric elements in C. Write a = }_ ajje;; where oy € C
and {e;} are the usual matrix units. By setting X = me;; with i # j in (X, X*) = 0, we

have, for k # i, j, oy = oy = 0 and o + a;; = a;.+aﬁ or o — o = a}‘j—aj,-
according as b = a* or b = —a* respectively. In other words, a is a diagonal matrix and
a*+aora*—aliesin Zifn > 3. Inany case b+a € Z and so 6 = —d. Thus we have

sd(s)+d(s)s € Zforalls € S. Hence, a € Z follows from [7, Thm.6].

It remains to consider the case when V is infinite-dimensional over C. For any e =
& = e € H, we have eRe = M,(C) for some n = dim¢ Ve. Since R satisfies
ef(eXe, eX*e)e = 0 and g(eXe, eX*e) = 0, the subring eRe satisfies f(X, X*) =
(X + XX + X*, eae] — [X + X*, ebe)}(X + X*) = 0 and g.(X, X*) = (X + X*)[X + X*,
ece](X+X*) = 0. As we have shown above, eae (or ece) is central in eRe if n > 3. Given
any h € H, there is a symmetric idempotent e € H such that &, ha and ah (or hc and ch)
are all in eRe by the x-version of Litoff’s Theorem. Since V is infinite-dimensional over
C, we may choose e so that n = dim¢ Ve > 3. Then eae (or ece) is central in eRe. Hence
ah = eah = eaeh = heae = hae = ha (similarly ch = hc). Thus, a (or c) centralizes the
nonzero ideal H of the prime ring R and hence lies in 2. This completes the proof of the
theorem.

One might wonder why we use the identity f(X, X*) = 0 instead of g(X, X*) =
0 in the transpose case. Indeed g(X, X*) = 0 implies ¢ € Z as in the symplectic
case provided the characteristic is not 2. However, one can verify, for instance, that
(x +x)[x +x*, y+y l(x +x*) = 0 for all x, y in M3(C) if char C = 2 and * is of
the first kind and of the transpose type.

Finally, we give a skew version of Bresar’s Theorem.

THEOREM 2. Ifkd(k) — 6(k)k € Z for all k € K, then either d = 6 = 0 or R satisfies
S4.
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PROOF. In light of Theorem 1, it suffices to prove the theorem in the situation when
char R # 2.

Linearize the relation kd(k)—é(k)k € Zto obtain kd(h)—b6(h)k+hd(k)—6(k)h € Z for
all 4, k in K. Replacing » with [k, h] we obtain k[k, d(h)] — [k, 6(h)]k € Z. Thus for each
h, we have kD (k) — A, (k)k € Z for all k € K where D), and A, are the inner derivations
defined by d(h) and 6(h) respectively. As before, we need only consider the inner case
because of the Lemma. So assume that d(x) = [x, a] and §(x) = [x, b] for some fixed
elements a and b in R. Applying x to k[k, a] — [k, blk € Z, we get k[k,b*] — [k, a*lk € 2
and hence k[k,a + b*] — [k,b + a*lk € Z and k[k,a — b*] — [k,b — a*lk € Z for all
k € K. So we may assume further that » = a* or b = —a* and proceed to show that
either a € Z or R satisfies s4.

If a & Z, then R satisfies the nontrivial *-GPI h(X, X*, ¥) = [(X — XX - X,
al—[X—-X,bJX—X"),Y ] = 0. A reduction as in the proof of Theorem 1 enables us
to consider only the case when R = M,(C) for some n > 2 with symplectic or transpose
type involution. We are going to show that a € Z which contradicts our hypothesis.

Assume that * is symplectic on M,(C). As before, it suffices to prove in the case
whenn = 4. Write a = (Z; Z;) Suppose first that b = a*. Set X = ¢); in h(X,
X*, Y) = 0; then aj; = 0. Similarly, a;; = 0 follows from setting X = e33 in A(X, X¥,
Y) = 0. Next, by setting X = ej3 + e3; in A(X, X*, ¥) = 0, we get a; +af, = an +af,.
Thus a+a* € Zand henceé(x) = [x,a*] = —[x, a] = —d(x) forall x € R. Then we have
kd(k)+d(k)k € Zforall k € Kandsoa € Z by [7, Thm.7]. Suppose next that b = —a*.
Set X = e in A(X, X*, Y) = 0; then a;» = 0 and ay; is a diagonal matrix. Similarly,
az = 0 and ay, being diagonal follow from setting X = e33 in (X, X*, Y) = 0. Next, by
setting X = e); + e2 in A(X, X*, Y) = 0 we obtain that a); is a scalar matrix. Similarly,
ay; is also scalar by setting X = e33+e3q in A(X, X*, Y) = 0. Thusa* = aandso$ = —d.
Then a € Z follows again from [7, Thm.7].

Finally assume that * is of the transpose type, say (V)" = (7r,-7rf‘7}§). Write a =
¥ aj;e;; where a; € C. By setting X = me; with i # j in A(X, X*, Y) = 0, we obtain that
aisadiagonaland a*+a € Zora*—a € Zaccordingasb = a* orb = —a* respectively.
Hence, we get b+ a € Z in any case and so § = —d. Thus, we have kd(k) + d(k)k € Z
for all £ € K and the proof of the theorem is completed by [7, Thm.7].
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