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CENTRAL *-DIFFERENTIAL IDENTITIES IN PRIME RINGS 

P. H. LEE AND T. L. WONG 

ABSTRACT. Let R be a prime ring with involution and d, Ô be derivations on R. 
Suppose that xd(x)—6(x)x is central for all symmetric x or for all skew x. Then d — 6 = 0 
unless R is a commutative integral domain or an order of a 4-dimensional central simple 
algebra. 

It was shown in [1] that if R is a prime ring and d, 8 are two derivations of R such 
that xd(x) — 8(x)x lies in the center of R for all x E R, then either d = 8 = 0 or R is 
commutative. In this paper we are concerned with a similar problem in the setting of 
rings with involution. Let R be a prime ring with an involution *. Suppose that d and 8 
are derivations of R such that xd(x) — 8(x)x is central for all x = x* or for all x = — x*. 
Here we show that d = 8 = 0 unless R is a commutative integral domain or an order of 
a 4-dimensional central simple algebra. This extends the results in [7] where the same 
conclusions were proved under the additional assumption d = 6. 

In what follows, R will always denote a prime ring with an involution * and Z the 
center ofR. S = {x E R | JC* = JC} is the set of symmetric elements in R and K = {x E R \ 
x* = —x} the set of skew elements. Let d and 8 denote two derivations of R. We are 
going to show that R satisfies the standard identity S4 = J2aes4(—^)a^a(\y^a(2)^a(3}^a(4) 
provided d ^ 0 or 8 ^ 0. Let C stand for the extended centroid of R and C the algebraic 
closure of C. RC is the central closure of R and R is called centrally closed if RC = R. 
For subsets A and B, [A, B] will denote the additive subgroup generated by elements of 
the form [a, b] = ab — ba with a E A and b E B. The involution * on R can be extended 
to an involution on RC [4, Lemma 2.4.1 ] which will also be denoted by *. The involution 
* is said to be of the first kind if a* = a for all a E C and of the second kind otherwise. 
We begin with a well-known 

LEMMA. Ifd(S) Ç Zor d(K) Ç Z, fAe/i e/YAer d = 0 or R satisfies s4. 

PROOF. Assume that d 7̂  0. If char R ^ 2, then /? satisfies 54 by [6, Lemma 5 and 
Corollary] or [8, Lemma 1.6]. Hence, assume that char R = 2 and then K = S in this 
case. For s E S, we have d(s2) = 2sd(s) = 0. Thus,0 = s2d(s2x+x*s2)+d(s2x+x*s2)s2 = 
^rf(jc) + s2J(x + x*)s2 + d(x*)s4 = s4d(x) + d(x + * V + d(x*)s4 = s4d(x) + </(x>4 for all 
x £ R. That is, [s4, d(R)] — 0 and so ss E Z by a theorem due to Herstein [5]. Therefore, 
7? satisfies 54 by [7, Thm.3]. 

Now we prove a symmetric version of Bresar's Theorem. 
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THEOREM 1. Ifsd(s) - 8(s)s G Zfor all s e S, then either d = b = 0 or R satisfies 

s4. 

PROOF. Linearize the relation sd{s)—b(s)s G Z to obtain sd(t)—è(t)s+td(s)—6(s)t G 
Z for all 5, t in S. Replacing t with [5, k] forkeK and using sd(s) — S(s)s G Z, we 
have s[s, d(k)] - [s, 6(k)]s G Z for all s G S and k £ K. Thus, for each k e K, the 
inner derivations D# and A*, defined by D^x) = [x, d(k)] and A (̂x) = [x, 8(k)]9 satisfy 
sDk{s) — Ak(s)s G Z for all s G 5. Suppose that the theorem has been proved for inner 
derivations; then we can conclude that either Dk — Â  = 0 for each k £ K orR satisfies 
S4. In the former case, we have d(K) Ç Z and 6(K) Ç Z whence either d = è = 0 or R 
satisfies 54 by the Lemma. So it suffices to consider the situation when d(x) = [x, a] and 
<5(x) = [x, 6] for some fixed elements a, b in R. 

Assume first that ZHS ^ 0, that is, there exists a G Z with a* = a 7̂  0. From 
sd(a) — <5(a)s + ad(s) — 8(s)a G Z, it follows that d(s) — è(s) G Z for all s G S since 
<i(a) = 6(a) = 0. Again, by the Lemma, either d = 8 or R satisfies 54. But if <i = 69 

we are done by [7, Thm. 1 and Thm.5]. So assume that ZHS = 0 from which Z = 0 
follows. Thus s[s, a] — [5, ft]s = 0 for all s e S. We assume that a and è are not both zero 
and proceed to show that R satisfies S4. Applying * to s[s, a] — [5, b]s = 0, we obtain 
that s[s, b*] — [5, a*]s = 0 and so both s[s, a + b*] — [5, b + a*]s = 0 and s[s, a — 6*] — 
[5, Z? — a*]s = 0 for all s G S. Since a =£ 0 or b =^ 09 a + b* and a — Z>* cannot be both 
zero in case char R ^ 2, and so we may replace a with a + b* or a — b* and assume that 
b = a* or b = —a* respectively. In case char R = 2, we may still replace a with a + 6* if 
a + 6* =̂  0, while if a + 6* = 0, we have b = a* already. Hence, we assume that b = a* 
or b = — a*. Also, we may assume that b ^ a. 

Let / t r , y) = (JST+ }%Y + 7, a] - [JST + r, *](* + y). Then/(X, Y) is a nontrivial 
generalized polynomial identity (GPI) and R satisfies the *-GPI/(Ar, A"*) = 0. Since 
sd(/) — 8(t)s + fc/(5) — <5(5)f = 0 for all s, t £ S, replacing t with s2 yields 2s2d(s) + 
sd(s)s — 55(5)5 — 26(s)s2 = 0. But s2d(s) = 56(5)5 and <5(5)52 = sd(s)s, so we have 
sd(s)s = s8(s)s or, equivalently, s[s, c]s = 0 for all 5 G 5 where c — a — b =fi 0. Set g(X, 
y) = (X + 7)[X+ 7, c](AT + F). Then # satisfies the nontrivial *-GPI g(X, X") = 0. In 
light of [2, Prop.4], RC also satisfies both *-GPIs/(A; A*) = 0 and g(Z, A*) = 0. If C is 
infinité and * is of the second kind, R satisfies f(X9 Y) — 0 by [2, Prop.l]. In particular, 
x[x, a] — [x, b]x = 0 for all x G ^ and so a G Z = 0 by Bresar's Theorem [1, Thm.4.1], 
a contradiction. If C is infinité and * is of the first kind, * can be extended to RC ®c C 
and standard arguments show that both/(Z, X*) = 0 and g(X, A*) = 0 hold in RC <S>c C. 
Since both RC and RC (8>c C are prime and centrally closed [3, Thm.2.5 and Thm.3.5], 
we may replace R with RC or RC (g>c C and assume that R is centrally closed over C and 
that C is either finite or algebraically closed. 

By Martindale's Theorem [9], R is then a primitive ring having a nonzero socle H and 
with C as the associated division ring. In light of Kaplansky's Theorem [4, Thm. 1.2.2], 
there exists a vector space V over C, equipped with a Hermitian or alternate form, such 
that R acts faithfully and densely on c ̂  and that r* is the adjoint of r for each r G R. 
Moreover, H consists of the finite-rank linear transformations having adjoints on cV-
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If V is finite-dimensional over C, the density of R on cV implies that R = Mn{C) for 
some n > 1 with symplectic or transpose type involution [4, p. 19]. We want to show that 
n = 2. Assume the contrary and we will proceed to arrive at a contradiction that either 
c G Z or a G Z. 

Suppose that * is symplectic on Mn(C), that is, n is even and * is given by (ay)* = 
(ajj) where ay is the 2 x 2 matrix block at the (/, y)-position and a is the involution 

^ I = I on Mi(C). Consider first the case when n = 4 and write 

c= (Cu C l 2 V s e t t i n g X = ( J {) in g(X,X*) = 0 where / i s the 2 x 2 identity 
\C2\ C22J VU U 7 

I Q\\ e\\ i f C\\ e\i I 
matrix, we have c\\ = cu and en = Qi- Then setX = ^ , ^ and 

V 0 e\\) V ° ^117 
( G\\ Cli i 

n successively in g(X, A*) = 0 where {ey} are the usual 2 x 2 matrix units, 
and we obtain that en = 0 and c\\ is a scalar matrix in Mi(C) and hence c G Z. Now 
assume that n > 4. For h ^fi k,\ete = (ay) with a/,/, = a^ = / and a,y = 0 otherwise. 
Then e2 = e = e* and eRe = M4(Q. Proceeding as above, we will get c £ Z. 

Suppose next that * is of the transpose type, namely, (7//)* = (-KI'KJ1!^) where 
7Ti,..., 7T„ are « fixed nonzero symmetric elements in C. Write a = £ a ^ y where a,y G C 
and {e//} are the usual matrix units. By setting X — 7r/e,y with / ^j inf(X, X*) = 0, we 
have, for k ^ i, j , aik = a# = 0 and a* + al7 = a* + a7y or a? — a„ = a» — % 
according as b = a* or b = —a* respectively. In other words, a is a diagonal matrix and 
a* + a or a* — a lies in Z if « > 3. In any case b + a G Z and so 8 = —d. Thus we have 
sd(s) + d(s)s G Z for all s G 5. Hence, a G £ follows from [7, Thm.6]. 

It remains to consider the case when V is infinite-dimensional over C. For any e = 
e2 = e* G H, we have eRe = Mn(C) for some n = dime ffe. Since R satisfies 
ef(eXe, eX*e)e = 0 and g(eXe, eX*e) = 0, the subring eRe satisfies fe(X, X*) = 
(X + X*)[X + X*,eae]-[X + X*9ebe](X + X*) = 0 and g*(X, .Y*) = (X + X*)[X + X*, 
ece](X+X*) = 0. As we have shown above, eae (or ece) is central in eRe if n > 3. Given 
any h G H9 there is a symmetric idempotent e G / / such that /*, /*a and ah (or /*c and c/z) 
are all in eRe by the *-version of Litoff's Theorem. Since V is infinite-dimensional over 
C, we may choose e so that n — dime Ve >3. Then e#e (or ece) is central in eRe. Hence 
ah = eah = eaeh — heae = hae = ha (similarly ch = he). Thus, a (or c) centralizes the 
nonzero ideal H of the prime ring R and hence lies in Z. This completes the proof of the 
theorem. 

One might wonder why we use the identity f(X, Xe) = 0 instead of g(X, X*) = 
0 in the transpose case. Indeed g(X, X") = 0 implies c G Z as in the symplectic 
case provided the characteristic is not 2. However, one can verify, for instance, that 
(x + JC*)[JC + x\ y + / ] ( * + x*) = 0 for all x, y in M3(Q if char C = 2 and * is of 
the first kind and of the transpose type. 

Finally, we give a skew version of Bresar's Theorem. 

THEOREM 2. Ifkd(k) - 8(k)k G Zfor all keK, then either d = 6 = 0orR satisfies 
s4. 
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PROOF. In light of Theorem 1, it suffices to prove the theorem in the situation when 
char # ^ 2. 

Linearize the relation kd(k)-6(k)k G Z to obtain kd(h)-6(h)k+hd(k)-S(k)h G Zfor 
all /z, k in K. Replacing h with [k, h] we obtain k\k, d(h)] - [k, è{h)]k G Z. Thus for each 
/z, we have kDh(k) — Ah(k)k G Z for all k G K where Dh and A/, are the inner derivations 
defined by d(h) and £(/z) respectively. As before, we need only consider the inner case 
because of the Lemma. So assume that d(x) = [x, a] and 5(x) = [,x, ft] for some fixed 
elements a and ft in /?. Applying * to k\k, a] - [k, b]k G Z, we get k[k, ft*] — [k, a*]k G Z 
and hence *:[*, a + ft*] - [jfc, ft + <?*]£ G Z and &[£, a - ft*] - [k, ft - a*]* G Z for all 
/: G K. So we may assume further that ft = a* or ft = —a* and proceed to show that 
either a £ ZOY R satisfies 54. 

If a £ Z, then fl satisfies the nontrivial *-GPI /z(X, A"\ Y) = [(X - X*)[X - X", 
a] — [X — X*, b](X — X"), 7J = 0. A reduction as in the proof of Theorem 1 enables us 
to consider only the case when R — Mn(C) for some n > 2 with symplectic or transpose 
type involution. We are going to show that a G Z which contradicts our hypothesis. 

Assume that * is symplectic on Mn(C). As before, it suffices to prove in the case 

when n = 4. Write a = I Qn an I. Suppose first that ft = a*. Set X = en in MX, 
{a2\ a22J 

X", Y) — 0; then a\2 — 0. Similarly, a2\ = 0 follows from setting X = e^ in /z(X, JT\ 
F) = 0. Next, by settingX = eu + e3\ in h(X9 X", Y) = 0, we get fl,i + ar* = 022 + «22-
Thusa+a* G Z and hence <5(JC) = [x,a*] = — [x, a] = —rf(x) for all x G /?. Then we have 
kd(k) + d(k)k<E Z for all A: G ^ and so « G Z by [7, Thm. 7]. Suppose next that ft = -a*. 
Set Jf = en in h(X, X*, Y) = 0; then a12 = 0 and on is a diagonal matrix. Similarly, 
a2\ = 0 and a22 being diagonal follow from setting X = £33 in /z(X, Jf\ Y) = 0. Next, by 
setting X = en + en in /*(X, A*, 7) = 0 we obtain that a\\ is a scalar matrix. Similarly, 
a22 is also scalar by setting X — e^ +£34 in h(X,X*, Y) = 0. Thus a* — a and so S = —d. 
Then « G Z follows again from [7, Thm.7]. 

Finally assume that * is of the transpose type, say (7/,)* = (jtiirj1!^). Write a = 
£ cxy-ey where a,y G C. By setting X = 717^ with / ^ y in h(X, Xe, Y) = 0, we obtain that 
(3 is a diagonal and a*+a G Z or a*—a G Z according as ft — a* orb — —a* respectively. 
Hence, we get ft + a G Z in any case and so 6 = —d. Thus, we have kd(k) + d(k)k G Z 
for all A: G AT and the proof of the theorem is completed by [7, Thm.7]. 
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