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Abstract

We study logarithmically averaged binary correlations of bounded multiplicative functions g1 and g2.
A breakthrough on these correlations was made by Tao, who showed that the correlation average
is negligibly small whenever g1 or g2 does not pretend to be any twisted Dirichlet character, in
the sense of the pretentious distance for multiplicative functions. We consider a wider class of
real-valued multiplicative functions g j , namely those that are uniformly distributed in arithmetic
progressions to fixed moduli. Under this assumption, we obtain a discorrelation estimate, showing
that the correlation of g1 and g2 is asymptotic to the product of their mean values. We derive several
applications, first showing that the numbers of large prime factors of n and n + 1 are independent
of each other with respect to logarithmic density. Secondly, we prove a logarithmic version of the
conjecture of Erdős and Pomerance on two consecutive smooth numbers. Thirdly, we show that if
Q is cube-free and belongs to the Burgess regime Q 6 x4−ε , the logarithmic average around x of
the real character χ (mod Q) over the values of a reducible quadratic polynomial is small.

2010 Mathematics Subject Classification: 11N37 (primary); 11N60, 11L40 (secondary)

1. Introduction

Let D = {z ∈ C : |z| 6 1} be the unit disc of the complex plane, and let g1,

g2 : N→ D be multiplicative functions. We consider the logarithmically averaged
binary correlations

1
log x

∑
n6x

g1(n)g2(n + h)
n

, (1.1)
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with h 6= 0 a fixed integer and x tending to infinity. If h < 0 in (1.1), we can
extend g1 and g2 arbitrarily to the negative integers, since this affects (1.1) only
by o(1).

In a recent breakthrough work, Tao [30] showed that the correlation (1.1) is o(1)
as x →∞, provided that at least one of the two functions g j does not pretend to
be a twisted Dirichlet character, in the sense that

lim inf
X→∞

inf
|t |6X

D(g j , χ(n)ni t
; X) = ∞, (1.2)

for all fixed Dirichlet characters χ , with the pretentious distance D(·) measured
by

D( f, g; X) :=
(∑

p6X

1− Re( f (p)g(p))
p

)1/2

. (1.3)

The main theorem in [30] that (1.1) is o(1) under the nonpretentiousness
assumption (1.2) is a logarithmically averaged version of the binary case of a
conjecture of Elliott. Elliott’s original conjecture [7, 8] (in the slightly corrected
form presented in [23]) states that for any integer k > 1, any multiplicative
functions g1, . . . , gk : N→ D and any distinct integer shifts h1, . . . , hk we have
the discorrelation estimate

1
x

∑
n6x

g1(n + h1) · · · gk(n + hk) = o(1) (1.4)

as x → ∞, provided that at least one of the g j satisfies the nonpretentiousness
assumption (1.2). (In the case where the functions g j are allowed to depend
on x , one needs a slightly stronger pretentiousness hypothesis; see [29].) The
k = 1 case of Elliott’s conjecture is known as Halász’s theorem [15]. Already
for k = 2, there is not much progress towards the nonlogarithmic version of
Elliott’s conjecture (see though [7]). However, if one averages (1.4) over the
shifts h1, . . . , hk ∈ [1, H ], with H = H(x) tending to infinity with any speed,
then Elliott’s conjecture holds on average by the work of Matomäki, Radziwiłł
and Tao [23]. This was generalized by Frantzikinakis [11] to averages along
independent polynomials. In the case of logarithmically averaged correlations,
there has been a lot of recent progress, initiated by [30]; see [12, 31, 33].

We study in this paper the same logarithmically averaged correlation (1.1) as
Tao studied in [30], but for a wider class of real-valued multiplicative functions
(in [30] one works also with complex-valued functions). The multiplicative
functions g j : N→ [−1, 1] that we consider are uniformly distributed in residue
classes to fixed moduli. Many of the most interesting bounded multiplicative
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functions have such a uniform distribution property; in particular, the Liouville
function λ and the indicator function of xa-smooth numbers up to x have that
property. Also the real primitive Dirichlet character χQ (mod Q) will be seen to
be uniformly distributed in arithmetic progressions on [x, 2x], provided that the
modulus Q grows neither too slowly nor too rapidly in terms of x . Indeed, many
of the applications of our main theorem concern consecutive smooth (or friable)
numbers or quadratic residues.

The uniformity assumption we require of multiplicative functions is as follows.

DEFINITION 1.1 (Uniformity assumption). Let x > 1, 1 6 Q 6 x and η > 0. For
a function g : N→ D, we write g ∈ U(x, Q, η) if we have the estimate∣∣∣∣1x ∑

x6n62x
n≡a (mod q)

g(n)−
1

qx

∑
x6n62x

g(n)
∣∣∣∣ 6 η

q
for all 1 6 a 6 q 6 Q.

REMARK 1.2. Note that in this definition we do not send x to infinity (but
naturally we want x to be large). The fact that Definition 1.1 is not an asymptotic
relation is important, since later we shall to apply it to g(n) = 1n6x,n is xa -smooth,
which is a function dependent on x .

REMARK 1.3. Let g : N→ [−1, 1] be a nonpretentious multiplicative function,
in the sense that for some small ε > 0 and some large x we have

inf
|t |6x

D(g, χ(n)ni t
; x) > ε−10

for all Dirichlet characters χ of modulus 6 ε−10. By expressing the condition
n ≡ a (mod q) in Definition 1.1 in terms of Dirichlet characters (after reducing
to a coprime residue class), and applying Halász’s theorem, one sees that
g ∈ U(x, ε−1, ε). Therefore, the collection of uniformly distributed real-valued
multiplicative functions g : N → [−1, 1] contains all nonpretentious real
functions.

We use the notation oε→0(1) to denote a quantity depending on ε and tending
to 0 as ε→ 0, uniformly with respect to all other parameters. With this notation,
our main theorem asserts the following.

THEOREM 1.4. Let a small real number ε > 0, a fixed integer h 6= 0, and a
function ω : R>1 → R with 1 6 ω(X) 6 log(3X) and ω(X)

X→∞
−−−→ ∞ be given.

Let x > x0(ε, h, ω). Then, for any multiplicative functions g1, g2 : N→ [−1, 1]
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such that g1 ∈ U(x, ε−1, ε), we have

1
logω(x)

∑
x/ω(x)6n6x

g1(n)g2(n + h)
n

=

(
1
x

∑
x6n62x

g1(n)
)(

1
x

∑
x6n62x

g2(n)
)

+ oε→0(1).

REMARK 1.5. Theorem 1.4 can be viewed as stating that the functions g1 and g2

do not correlate with the shifts of each other. Note that in the case where the mean
values of g1 and g2 on [x, 2x] are not o(1), Theorem 1.4 is not covered by the
logarithmically averaged Elliott conjecture from [30].

REMARK 1.6. In the case where g1 and g2 are complex-valued, one does not
always have the conclusion of Theorem 1.4. Namely, take g1(n) = ni t and
g2(n) = niu for some t, u 6= 0 with t + u 6= 0. One easily sees that g1 and g2

are uniformly distributed in arithmetic progressions, and by partial summation the
shifted product g1(n)g2(n+1)= ni(t+u)

+o(1) has logarithmic mean value o(1) on
[x/ω(x), x]. However, by the simple estimate (1/x)

∑
n6x ni t

= (x i t/(1+ i t))+
o(1), the product of the mean values of g1 and g2 on [x, 2x] is an oscillating
function.

REMARK 1.7. Although the statement of Theorem 1.4 does not hold for all
complex-valued multiplicative functions, one could show that it continues to hold
if g1, g2 : N → D take values in the roots of unity of fixed order. Indeed, the
only places in the proof of the main theorem where real-valuedness plays a role
are Lemmas 2.2, 2.5 and 3.4. The first two lemmas could be proved also for
functions g j taking values in the roots of unity of bounded order by applying
a standard generalization of [23, Lemma C.1] to such functions. For Lemma 3.4,
one would also apply this generalization of [23, Lemma C.1] together with an
extension of [22, Theorem 3] to multiplicative functions taking a bounded number
of complex values. For this last extension, one notes that the only place in the
proof of [22, Proposition 1] where real-valuedness is used is [22, Lemma 3], and
this lemma can also be made to work for functions taking values in the roots of
unity of fixed order. We leave the details to the interested reader.

REMARK 1.8. The bound ω(X) 6 log(3X) in Theorem 1.4 is not restrictive in
reality, since if one wants an asymptotic formula for the logarithmic correlation
over the interval [1, x], say, one can sum together the asymptotics for the
correlations over [y/ log(3y), y] for various y 6 x . It is nevertheless necessary
for technical reasons to have an upper bound on ω(X) in the main theorem, since
otherwise the asymptotic would not be valid for example for the correlations of
the indicator function of xa-smooth numbers.
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REMARK 1.9. One could prove the same correlation bound for the more general
logarithmic averages of g1(a1n+h1)g2(a2n+h2)with (a1, h1) = (a2, h2) = 1 and
a1, a2 > 1 and h1, h2 fixed integers. This is due to the fact that the main theorem
in [30] deals with such correlations. To avoid complicating the notations, however,
we deal with the case a1 = a2 = 1 here.

One might wonder at first why in the asymptotic formula in Theorem 1.4 one
side of the formula involves the values of the functions g j on [x/ω(x), x], whereas
the other side only involves the values on [x, 2x]. However, by a result we present
in Appendix A, essentially due to Granville and Soundararajan [13], the mean
value of a real-valued multiplicative function is almost the same over the intervals
[x/ω(x), x] and [x, 2x], explaining the phenomenon.

Owing to Remark 1.3, the main theorem contains as a special case the
logarithmically averaged binary Elliott conjecture from [30]. This is not
surprising, since we use the same proof method. Of course, our interest lies
in those cases where the functions g1 and g2 are pretentious (in the sense that
(1.2) fails) but still satisfy our uniformity assumption.

It was recently shown by Klurman [20] that one can obtain an asymptotic
formula for the k-point correlations

1
x

∑
n6x

f1(n + h1) · · · fk(n + hk)

for any integers h1, . . . hk , when f1, . . . , fk : N → D are pretentious
multiplicative functions, in the sense that D( f j , χ j(n)ni t j ; x) � 1 for some
characters χ j . This result does not imply Theorem 1.4, however, since our
theorem is in a nonasymptotic form, allowing the multiplicative functions g1 and
g2 to strongly depend on x . Indeed, allowing the multiplicative functions g j to
depend on x is crucial for applications to smooth numbers and to Burgess-type
bounds. The asymptotic formula in [20] is a sieve-theoretic product of local mean
values, but one cannot express the density of smooth numbers as such a product.

1.1. Applications of the main theorem. We have a number of corollaries to
Theorem 1.4. To state them, we recall the notion of logarithmic density of a set of
integers.

DEFINITION 1.10. The logarithmic density of a set A ⊂ N is

δ(A) = lim
x→∞

1
log x

∑
n6x
n∈A

1
n
,

whenever it exists.
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We prove using Theorem 1.4 the following theorem about the largest prime
factors of consecutive integers.

THEOREM 1.11 (Independence of the number of large prime factors of n and
n + 1). Let ω>y(n) := |{p > y : p | n}| be the number of prime factors of n
that are larger than y. Then, for any real numbers a, b ∈ (0, 1) and any integers
0 6 k < 1/a, 0 6 ` < 1/b, we have

δ({n ∈ N : ω>na (n) = k, ω>nb(n + 1) = `})
= δ({n ∈ N : ω>na (n) = k}) · δ({n ∈ N : ω>nb(n) = `}).

Moreover, under the same assumptions, the set {n ∈ N : ω>na (n) = k, ω>nb(n +
1) = `} has positive asymptotic lower density.

REMARK 1.12. From the proof of Theorem 1.11 in Section 4, we can easily
deduce a discorrelation estimate for the ‘truncated Liouville function’ λ>y(n),
which is a multiplicative function taking the value +1 at the primes p 6 y and
−1 at the primes p > y. This estimate takes the form

1
log x

∑
n6x

λ>xε(n)λ>xε(n + 1)
n

= oε→0(1), (1.5)

for ε ∈ (0, 1) and x > x0(ε). This result may be compared with that of Daboussi
and Sárkőzy [3] and Mangerel [21], which states that if we define λ<y(n) as the
completely multiplicative function taking the value −1 at the primes p < y and
+1 at the primes p > y (so that λ<y(p) has the opposite sign as λ>y(p)), then

1
x

∑
n6x

λ<xε(n)λ<xε(n + 1) = oε→0(1); (1.6)

moreover, they proved this in a quantitative form. The proof of (1.6) is based on
sieve theory and is very different from the proof of (1.5).

Our next applications concern smooth numbers, so we introduce the function
P+(n), whose value is the largest prime factor of the positive integer n > 2 (and
P+(1) = 1). We say that a number n is y-smooth if P+(n) 6 y. The simultaneous
distribution of the function P+(·) at consecutive integers is the subject of several
conjectures. There is for instance a conjecture of Erdős and Pomerance [10],
asserting that the largest prime factors of n and n + 1 are independent events.
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CONJECTURE 1.13 (Erdős–Pomerance). For any a, b ∈ (0, 1), the asymptotic
density of the set

{n ∈ N : P+(n) 6 na, P+(n + 1) 6 nb
} (1.7)

exists and equals ρ(1/a)ρ(1/b), where ρ(·) is the Dickmann function (see [18,
Section 1]).

What we are able to prove, taking k = ` = 0 in Theorem 1.11, is a logarithmic
version of the conjecture.

THEOREM 1.14. Conjecture 1.13 holds when asymptotic density is replaced with
logarithmic density; that is, for any a, b ∈ (0, 1) we have

δ({n ∈ N : P+(n) 6 na, P+(n + 1) 6 nb
}) = ρ

(
1
a

)
ρ

(
1
b

)
.

A closely related conjecture, formulated in the correspondence of Erdős and
Turán in the 1930s (see [28, pp. 100–101], [9], [26, Section 1]) is that the
distribution of (P+(n), P+(n + 1)) is symmetric.

CONJECTURE 1.15 (Erdős–Turán). The asymptotic density of the set

{n ∈ N : P+(n) < P+(n + 1)} (1.8)

exists and equals 1
2 .

There has been some progress towards this conjecture. Erdős and
Pomerance [10] showed that the lower asymptotic density of the set in (1.8)
is positive (in fact, at least 0.0099). The lower bound for the density was
improved to 0.05544 by de la Bretèche, Pomerance and Tenenbaum [5], to
0.1063 by Wang [35], and a further improvement to 0.1356 was given by Wang
in [36].

We can prove Conjecture 1.15 if asymptotic density is again replaced with
logarithmic density.

THEOREM 1.16. Conjecture 1.15 holds when asymptotic density is replaced with
logarithmic density; that is,

δ({n ∈ N : P+(n) < P+(n + 1)}) = 1
2 .
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In fact, Theorem 1.14 implies Theorem 1.16, via the following theorem,
which was also conjectured by Erdős [9] in the case of asymptotic density.
(Erdős conjectured the existence of the density of integers n for which P+(n +
1) > P+(n) · nα.)

THEOREM 1.17. Let α ∈ [0, 1] be a real number. Let u(x) := ρ((1/x)− 1)/x
for x ∈ (0, 1), where ρ is the Dickmann function. Then we have

δ({n ∈ N : P+(n + 1) > P+(n) · nα}) =
∫

Tα

u(x)u(y) dx dy, (1.9)

where Tα is the triangular domain {(x, y) ∈ [0, 1]2 : y > x + α}. In particular,
the logarithmic density above exists.

REMARK 1.18. The appearance of the function u(·) is to be expected in
Theorem 1.17, since u is the derivative of x 7→ ρ(1/x), with the latter function
expressing the probability that P+(n) 6 nx .

We prove Theorem 1.11, and consequently Theorem 1.14, in Section 4, where
we also see that Theorem 1.17 quickly follows from the latter theorem. With
Theorem 1.17 available, Theorem 1.16 follows by taking α = 0 and noting that
then the integral in (1.9) is symmetric in x and y, implying that its value is 1

2 . For
the details, see Section 4.

We can also prove another approximation to Conjecture 1.13. This was obtained
earlier by Hildebrand [17], using a combinatorial method, in the special case
(a, b) = (c, d) (Hildebrand’s proof also applies to so-called stable sets, with
power-smooth numbers being an example of such a set). The following theorem
also implies a result of Wang [36, Théorème 2] on the integers n 6 x with
P+y (n) < P+y (n+1) having a positive density, where P+y (n) = max{p 6 y : p | n}
and y > x ε.

THEOREM 1.19. Let a, b, c, d ∈ (0, 1) be real numbers with a < b and c < d.
Then the set

{n ∈ N : na 6 P+(n) 6 nb, nc 6 P+(n + 1) 6 nd
}

has positive asymptotic lower density.

Note that Theorem 1.19 is not implied by Theorem 1.14, as there are sets of
positive logarithmic density having zero asymptotic lower density. Nevertheless,
the proof we use for the latter theorem also works for the former, owing to the
presence of an arbitrarily slowly growing function ω(X) in Theorem 1.4.
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Since we can prove satisfactory results for the distribution of the largest prime
factor function P+(·) at two consecutive integers, it is natural to ask about the
distribution of P+(·) also at longer strings of consecutive integers. A conjecture
of De Koninck and Doyon [4] states the following.

CONJECTURE 1.20 (De Koninck and Doyon). Let k > 2 be an integer and
(a1, . . . ak) any permutation of the set {1, 2, . . . , k}. Then the set

{n ∈ N : P+(n + a1) < · · · < P+(n + ak)} (1.10)

has an asymptotic density, and it equals 1/k!.

The case k = 2 of this is the earlier mentioned Conjecture 1.15 of Erdős and
Turán. Little is known about this conjecture for k > 3; it is not even known that
the sets in (1.10) have positive asymptotic lower density. Recently, Wang [36]
proved a result about orderings of P+(·) at consecutive integers, showing that

P+(n + i) < min
j6J
j 6=i

P+(n + j) and P+(n + i) > max
j6J
j 6=i

P+(n + j) (1.11)

hold with positive asymptotic lower density for any J > 3 and 1 6 i 6 J .
The method of [36] is based on the linear sieve and Bombieri–Vinogradov
type estimates for smooth numbers. Applying Theorem 1.4 together with the
Matomäki–Radziwiłł theorem [22] on multiplicative functions in short intervals
(and using the method of [24]), we can give a different proof of the J = 3 case of
Wang’s result. We leave the details of this special case of (1.11) to the interested
reader.

As our last application, we study character sums along the values of a reducible
quadratic polynomial n(n + h). A famous result of Burgess [1] states that for any
nonprincipal Dirichlet character χ modulo Q we have∑

y6n6y+x

χ(n)�r,ε x1−1/r Q(r+1)/4r2
+ε,

whenever r ∈ N and Q is cube-free (that is, p3 - Q for all primes p). In particular,
we have the important special case∑

n6x

χQ(n) = o(x), 3 6 Q 6 x4−ε (1.12)

for cube-free values of Q, where χQ is a real primitive Dirichlet character
modulo Q. Using Theorem 1.4, we can prove that a variant of the estimate (1.12)
continues to hold for character sums over the values of a reducible quadratic
polynomial.
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THEOREM 1.21 (Character sums over n(n+h) in the Burgess regime). Let ε > 0
be small, h 6= 0 a fixed integer, and 1 6 ω(X) 6 log(3X) any function tending to
infinity. For x > x0(ε, h, ω), let Q = Q(x) 6 x4−ε be a cube-free natural number
with Q(x)

x→∞
−−−→ ∞. Then, the real primitive Dirichlet character χQ modulo Q

satisfies the estimate

1
logω(x)

∑
x/ω(x)6n6x

χQ(n(n + h))
n

= o(1).

Moreover, if Q is as before and QNR stands for quadratic nonresidue (that is, an
integer n with χQ(n) = −1), we have

1
log x

∑
n6x

n,n+1 QNR (mod Q)

1
n
=

1
4

∏
p|Q

(
1−

2
p

)
+ o(1) (1.13)

and

1
x
|{n 6 x : n and n + 1 QNR (mod Q)}| �

∏
p|Q

(
1−

2
p

)
. (1.14)

REMARK 1.22. In light of Remark 1.7, we could also prove Theorem 1.21 for
primitive characters χ modulo Q whose order is bounded (that is, characters χ
such that χ k is principal for some k � 1).

This theorem is related to [27, Problem 11], although there one asks for
cancellation in the ordinary average instead of the logarithmic one, and one
wants to take a maximum over h 6 Q (but there Q is restricted to primes and
Q 6 x2+δ for some small δ > 0). We also remark that in the much smaller
range Q = o(x2/(log x)) and with Q prime, one can use the Weil bound [19,
Theorem 11.23] to prove the above estimate. In the same range Q 6 x4−ε as in
Theorem 1.21, it was shown by Burgess [2] that

x −
∑

y6n6y+x

χQ(n(n + h))�ε,h x ε/2,

and the same estimate holds with n(n + h) replaced by any polynomial that
factorizes into linear factors and is not the square of another polynomial.

We note that Theorem 1.21 does not directly follow from the logarithmically
averaged binary Elliott conjecture proved in [30], since if the Vinogradov
quadratic nonresidue conjecture failed, it would be the case that

D(χQ, 1; x)� 1. (1.15)
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The Vinogradov conjecture states that for any q > q(ε), there is a quadratic
nonresidue (mod q) on the interval [1, qε]. We of course do not expect (1.15)
to hold, but it cannot be ruled out with current knowledge. Furthermore, the
correlation asymptotic in [20] does not apply either to Theorem 1.21, since the
function χQ depends heavily on the length x of the sum. Nevertheless, the function
χQ has mean value o(1) by the Burgess bound, and by a slight generalization
of that, it also has mean o(1) in fixed arithmetic progressions, which is what is
required to apply Theorem 1.4. For the details of the proof of Theorem 1.21, see
Section 4.

1.2. Structure of the paper. The main theorem, Theorem 1.4, will be proved
in Sections 2 and 3. In the former of these sections, the entropy decrement
argument from [30, 33] is deployed to replace the correlation average with a
simpler, bilinear average. The proof of one lemma in Section 2, concerning
stability of mean values of multiplicative functions, is postponed to Appendix A.
In Section 3, we use circle method estimates and a short exponential sum estimate
for multiplicative functions to show that the bilinear average we mentioned
has the anticipated asymptotic formula, concluding the proof. The proof of this
exponential sum estimate, which is a slight modification of the one by Matomäki,
Radziwiłł and Tao [23], is left to Appendix B. In Section 4, we apply Theorem 1.4
to deduce the applications mentioned in the Introduction. Theorem 1.11 will
be proved first, and then Theorems 1.14 and 1.19 will be deduced from this.
Theorems 1.17 and 1.16 will in turn follow from Theorem 1.14. Theorem 1.21
will be deduced from the main theorem and the Burgess bound.

1.3. Notation. The functions g1, g2 : N → [−1, 1] are always multiplicative
functions. The pretentious distance D( f, g; x) between two multiplicative
functions is given by (1.3). We denote by µ(n) the Möbius function, by ϕ(n)
the Euler totient function, and by P+(n) the largest prime factor of n, with the
convention that P+(1) = 1. By (a, b), we denote the greatest common divisor of
a and b. For a proposition P(n), the indicator 1P(n) is defined as 1 if P(n) is true
and as 0 if P(n) is false. By δ(S) we denote the logarithmic density of S ⊂ N,
not to be confused with δ1, δ2 ∈ [−1, 1], which are the mean values of g1 and g2,
as defined in formula (2.1).

The variables p, p1, p2, . . . will always be primes. We reserve various letters,
such as d, k, `,m, n, q for positive integer quantities. The variables x, y in turn
will be understood to be large, whereas ε > 0 will tend to zero. The integer h 6= 0
is always fixed, and the function ω : R>1 → R is a growth function satisfying
1 6 ω(X) 6 log(3X) and tending to infinity with X .

We use the standard Landau and Vinogradov asymptotic notations O(·),
o(·),�,�, with the convention that the implied constants are absolute unless
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otherwise indicated. Thus for instance oε→0(1) denotes a quantity depending on ε
and tending to 0 as ε→ 0, uniformly with respect to all other involved parameters.
All the logarithms in the paper will be to base e, and the function log j x is the j th
iterate of the logarithm function. The function exp j x is analogously the j th iterate
of x 7→ ex .

2. The entropy decrement argument and some reductions

Given a function ω(X) having the same properties as in Theorem 1.4, we define
for a ∈ Z the correlation sequence

fx,ω(a) :=
1

logω(x)

∑
x/ω(x)6n6x

g1(n)g2(n + a)
n

.

As was noted in the Introduction, one can define this equally well for a < 0. Our
task is then to show that if

δ1 :=
1
x

∑
x6n62x

g1(n), δ2 :=
1
x

∑
x6n62x

g2(n) (2.1)

are the mean values of g1 and g2 (which depend on x), then | fx,ω(h) − δ1δ2| =

oε→0(1) under the assumptions of Theorem 1.4. By replacing ε with 1/ exp2(ε
−2)

in Theorem 1.4, with exp2 the second iterated exponential, we may in fact assume
that

g1 ∈ U(x, exp2(ε
−2), 1/ exp2(ε

−2)); (2.2)

we do this for notational convenience. We may also assume that |h| 6 ε−1, since
h is fixed in Theorem 1.4 and ε is small.

We average fx,ω(h) over the primes belonging to a small scale using
multiplicativity, and then apply the entropy decrement argument to relate
fx,ω(h) to a bilinear analogue (log P/P)

∑
p∼P (g1(p)−1g2(p)−1/p) fx,ω(ph) of

the same sum (this is the same approach as in Tao’s paper [30], and in the later
works [31, 33]). Similarly to [30], we then apply the circle method and establish
a slight variant of the short exponential sum estimate for multiplicative functions,
due to Matomäki, Radziwiłł and Tao [23], to finish the proof. Since Theorem 1.4
involves both pretentious and nonpretentious functions g j , we need to make a
distinction between them in certain parts of the argument. We also separate the
case where |g1(p)g2(p)| is small for many primes p from the opposite case, since
expressions such as g1(p)−1g2(p)−1 naturally appear in the proof. To deal with
these distinctions for g j , we need the fact that the entropy argument works not
only in infinitely many dyadic scales [2m, 2m+1

], but in fact in almost all of them
with respect to some measure. Such a strengthening was presented in [33]. We
begin with this entropy decrement argument.
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LEMMA 2.1 (Entropy decrement argument). Let ε > 0 be small, |h| 6 ε−1 an
integer, x > x0(ε, h, ω), and ω : R>1 → R a function with 1 6 ω(X) 6 X and

ω(X)
X→∞
−−−→ ∞. Let g1, g2 : N → D be 1-bounded multiplicative functions and

cp ∈ D any complex numbers. Then for all m ∈M ∩ [1, log2 ω(x)] we have

m log 2
2m

∑
2m6p<2m+1

cpg1(p)g2(p) · fx,ω(h) =
m log 2

2m

∑
2m6p<2m+1

cp fx,ω(ph)

+ oε→0(1),

with the set M ⊂ N being independent of cp and being large in the sense that∑
m>1

m 6∈M

1
m
� ε−10. (2.3)

Proof. This follows from the proof of [33, Theorem 3.6], but since that argument
uses generalized limit functionals, we outline how it goes through without
them. We also remark that, without the density bound (2.3), Lemma 2.1 follows
from [30, Section 3], and that in [32, Theorem 3.1] the lemma was proved in the
special case of the Liouville function.

We may assume that m > ε−1 for all m ∈ M, since removing the numbers
m < ε−1 from M alters the sum in (2.3) by

∑
m<ε−1 1/m � ε−1. We have the

multiplicativity property g j(p)g j(n) = g j(pn)+ O(1p|n) for any prime p, so for
2m 6 p < 2m+1 with ε−1 6 m 6 log2 ω(x) we have

g1(p)g2(p) · fx,ω(h) =
1

logω(x)

∑
x/ω(x)6n6x

g1(pn)g2(pn + ph)
n

+ O
(

1
logω(x)

∑
x/ω(x)6n6x

p|n(n+h)

1
n

)

=
1

logω(x)

∑
x/ω(x)6n6x

g1(pn)g2(pn + ph)
n

+ O(ε)

=
1

logω(x)

∑
px/ω(x)6n6px

g1(n)g2(n + ph)
n

p1p|n + O(ε)

=
1

logω(x)

∑
x/ω(x)6n6x

g1(n)g2(n + ph)
n

p1p|n + O(ε),

where the last step comes from estimating the terms n ∈ [x/ω(x), px/ω(x)] and
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n ∈ [x, px] trivially. (This is the part of the argument where it is crucial to work
with logarithmic averaging.)

Define the modified functions g(ε)j (n) by rounding g j(n) to the nearest element
of the Gaussian lattice εZ[i]. Then, averaging over p the above formula for
g1(p)g2(p) · fx,ω(h), we get

m log 2
2m

∑
2m6p<2m+1

cpg1(p)g2(p) · fx,ω(h)

=
m log 2

2m logω(x)

∑
2m6p<2m+1

cp

∑
x/ω(x)6n6x

g(ε)1 (n)g
(ε)

2 (n + ph)
n

p1p|n + O(ε).

(2.4)

The concentration of measure argument in [33] tells that we may replace p1p|n

with 1+ O(ε) in (2.4), provided that the random variables

Xm : = (g(ε)r (n+ j))16r62, 06 j6(1+|h|)2m+2,

Ym : = (n (mod p))2m6p<2m+1, Y<m := (Ym′)m′<m

enjoy the conditional mutual information bound

I(Xm : Ym |Y<m) 6 ε4
·

2m

m
. (2.5)

(For the definition of conditional mutual information, see [33, Section 2].) We
thus need to show that the set M of m for which (2.5) holds satisfies (2.3). But
this was shown in [33, Proposition 3.5] (see also Remark 3.7 there), so we obtain
the claim.

Before utilizing Lemma 2.1, we show that the quantities δ1 and δ2 in (2.1) are
the mean values of g1 and g2 also on many other intervals than [x, 2x]. For this
we use a slight generalization of a lemma due to Elliott [6] and Granville and
Soundararajan [13, Proposition 4.1]. Such results are also proved in Matthiesen’s
work [25] in a more general setting.

LEMMA 2.2 (Stability of mean values of multiplicative functions). Let g : N→
[−1, 1] be a real-valued multiplicative function, x > 10, and y ∈ [1, log10 x]
arbitrary. Then, for a, q ∈ N, we have∣∣∣∣1x ∑

x6n62x
n≡a (mod q)

g(n)−
1

x/y

∑
x/y6n62x/y
n≡a (mod q)

g(n)
∣∣∣∣�q (log x)−1/400.
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Proof. We prove this in Appendix A.

Owing to the above lemma, we can show that the uniformity assumption on g1

implies the seemingly stronger assumption that g1 be uniformly distributed also
on intervals [x/ω(x), x]. For this purpose, we need the following definition.

DEFINITION 2.3 (Stronger uniformity assumption). Let 1 6 Q 6 x , η > 0, and
δ ∈ C. Let ω : R>1 → R be a function with 1 6 ω(X) 6 X for all X > 1. For a
function g : N→ C, we write g ∈ Uω(x, Q, η, δ) if we have the estimate∣∣∣∣1y ∑

y6n62y
n≡a (mod q)

g(n)−
δ

q

∣∣∣∣ 6 η

q
for all 1 6 a 6 q 6 Q and

x
ω(x)

6 y 6 x .

With the above notation, if δ1 and δ2 are as in (2.1), by Lemma 2.2 we have

g1 ∈ Uω(x, exp2(ε
−2), 2/ exp2(ε

−2), δ1),

g2 ∈ Uω(x, 1, 2/ exp2(ε
−2), δ2) for ω(X) 6 log10 X.

(2.6)

This property will be used several times in the rest of the proof of the main
theorem. In particular, we have for all y ∈ [x(log x)−10, x] the estimate∑

y6n62y

g j(n) = (δ j + O(ε))y,

where, as always, the O(·) constant is absolute. Summing this over the dyadic
intervals [y/2 j+1, y/2 j

] for j > 0 and assuming that y > x(log(3x))−1, say, we
get ∑

n6y

g j(n) = (δ j + O(ε))y.

Subtracting this formula for two different lengths of summation, we see that∑
y6n6z

g j(n) = δ j(z − y)+ O(εz)

for all x(log(3x))−1 6 y 6 z 6 2x . From this and partial summation, we obtain

1
logω(x)

∑
x/ω(x)6n6x

g j(n)
n
= δ j + O(ε) (2.7)

for 1 6 ω(X) 6 log(3X), which also will be utilized in what follows.
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We return to applying the entropy argument. Defining the normalized
correlation sequence

f̃x,ω(a) :=
1

logω(x)

∑
x/ω(x)6n6x

(g1(n)− δ1)(g2(n + a)− δ2)

n

and using the simple identity XY = δ1δ2+δ1(Y−δ2)+δ2(X−δ1)+(X−δ1)(Y−δ2),
we deduce from Lemma 2.1 that

m log 2
2m

∑
2m6p<2m+1

cpg1(p)g2(p) · fx,ω(h)

= δ1δ2
m log 2

2m

∑
2m6p<2m+1

cp +
m log 2

2m

∑
2m6p<2m+1

cp f̃x,ω(ph)

+ O
(

max
r∈{1,2}

1
logω(x)

∣∣∣∣ ∑
x/ω(x)6n6x

gr (n)− δr

n

∣∣∣∣)+ oε→0(1),

m ∈M ∩ [1, log2 ω(x)]. (2.8)

Formula (2.7) tells that the O(·) error term in (2.8) is oε→0(1). Then (2.8) takes
the form

m log 2
2m

∑
2m6p<2m+1

cpg1(p)g2(p) · fx,ω(h)

= δ1δ2
m log 2

2m

∑
2m6p<2m+1

cp +
m log 2

2m

∑
2m6p<2m+1

cp f̃x,ω(ph)+ oε→0(1)

(2.9)

for m ∈M ∩ [1, log2 ω(x)].
It is natural to predict that the average of the normalized correlation f̃x,ω(h) in

(2.9) is small, and this is indeed what we prove in Section 3. Before we deal with
that term, we consider the main term arising in (2.9). One would like to choose
cp = g1(p)−1g2(p)−1 there, since then the main term becomes just δ1δ2+oε→0(1).
However, it may be that |g j(p)| takes very small values (or even 0), in which case
cp would be unbounded. To avoid this, we prove two lemmas, the first of which
tells that if the correlation average in Theorem 1.4 is not negligibly small, then
|g1(p)g2(p)| > 1

2 for most primes p. The second lemma in turn tells that if |δ1|

and |δ2| are not negligibly small, then g1(p)g2(p) behaves like 1 in most scales.

https://doi.org/10.1017/fms.2018.10 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.10


Binary correlations of multiplicative functions 17

LEMMA 2.4 (Dealing with small values of g j(p)). Let the notations be as in
Theorem 1.4. Suppose that∣∣∣∣ 1

logω(x)

∑
x/ω(x)6n6x

g1(n)g2(n + h)
n

∣∣∣∣ > ε2. (2.10)

Let exp2(ε
−1) 6 y 6 log log x be arbitrary. Then there exists a set N ⊂ [1, y]

such that for all m ∈ N we have∑
2m6p<2m+1

|g1(p)g2(p)|>1/2

1 > (1− ε) ·
2m

m log 2
,

with N being large in the sense that

1
log y

∑
n6y
n∈N

1
n
> 1− ε.

Proof. Suppose for the sake of contradiction that such a set N does not exist.
Then by the prime number theorem we have∑

2m6p<2m+1

|g1(p)g2(p)|61/2

1 >
ε

2
·

2m

m log 2
(2.11)

for all m ∈ N1 ⊂ [1, y] with N1 being a set with the property∑
m∈N1

1
m

>
ε

2
log y. (2.12)

In particular, from (2.11) we have∑
2m6p<2m+1

|g1(p)g2(p)|61/2

1
p
>

ε

8m

for m ∈ N1. Summing over m ∈ N1 and using (2.12), we conclude that∑
p62y+1

|g1(p)g2(p)|61/2

1
p
>
ε2

16
log y.
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Hence, for at least one of j = 1 and j = 2 we have∑
p62y+1

|g j (p)|61/
√

2

1
p
>
ε2

32
log y. (2.13)

Fix such j ∈ {1, 2}. Let

P :=
{
ε−10 6 p 6 2y+1

: |g j(p)| 6
1
√

2

}
,

and let µ2
P(n) be the indicator function of integers n that are not divisible by p2

for any p ∈ P . Note that if µ2
P(n) = 1, then

|g j(n)| 6
(

1
√

2

)ωP (n)

,

where ωP(n) is the number of prime factors of n from P . In particular, we have
|g j(n)| 6 ε10 whenever ωP(n) > ε−1 (and still µ2

P(n) = 1). In conclusion, if we
show that

1
logω(x)

∑
x/ω(x)6n6x
µ2
P (n)=0

or ωP (n)<ε−1

1
n
6 ε3, (2.14)

then (2.10) is violated, giving the desired contradiction. We are now left with
showing (2.14), and for this we use some basic sieve theory. Note that

1
logω(x)

∑
x/ω(x)6n6x
µ2
P (n)=0

1
n
6
∑
p∈P

1
logω(x)

∑
x/p2ω(x)6m6x/p2

1
p2m
�

∑
p∈P

1
p2
� ε10.

Note also that if ωP(n) = M and µ2
P(n) = 1, then we may write n = p1 · · · pM m

with pi ∈ P and ωP(m) = 0. Hence, by the sieve of Eratosthenes and Mertens’
theorem,∑

x/ω(x)6n6x
ωP (n)<ε−1

µ2
P (n)=1

1
n
6 ε−1 max

M<ε−1

∑
p1,...,pM62y+1

∑
x/(ω(x)p1···pM )6m6x/(p1···pM )

ωP (m)=0

1
p1 · · · pM m

� ε−1 max
M<ε−1

∑
p1,...,pM62y+1

1
p1 · · · pM

∏
p∈P

(
1−

1
p

)
· logω(x)
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� ε−1 max
M<ε−1

∑
p1,...,pM62y+1

1
p1 · · · pM

exp
(
−

∑
p∈P

1
p

)
· logω(x)

� ε−1(log y)ε
−1

y−ε
2/32 logω(x)� ε10 logω(x)

by (2.13) and the fact that y > exp2(ε
−1). Combining the above estimates, we

obtain (2.14), and hence also the statement of the lemma.

LEMMA 2.5 (Dealing with pretentious functions). Let the notations be as in
Theorem 1.4. Suppose that |δ1| > ε

2 and |δ2| > ε
2, where δ1 and δ2 are as in (2.1).

Let exp2(ε
−1) 6 y 6 log log x be arbitrary. Then there exists a set N ′ ⊂ [1, y]

such that for all m ∈ N ′ we have

m log 2
2m

∣∣∣∣ ∑
2m6p<2m+1

(1− g1(p)g2(p))
∣∣∣∣ < ε,

with N ′ large in the sense that

1
log y

∑
n6y

n∈N ′

1
n
> 1− ε.

Proof. Note that 1 − g1(p)g2(p) > 0 always holds. Arguing just as in the proof
of Lemma 2.4, we see that if the statement failed, we would have∑

p62y+1

1− g1(p)g2(p)
p

>
ε2

8
log y.

In particular, by the inequality (1− a)+ (1− b) > 1− ab for a, b ∈ [−1, 1], for
at least one of j = 1 and j = 2 we would have∑

p62y+1

1− g j(p)
p

>
ε2

16
log y. (2.15)

Now, by (2.15) and a version of Halász’s theorem for real-valued multiplicative
functions [16], we have

|δ j | =

∣∣∣∣1x ∑
n6x

g j(n)
∣∣∣∣� exp

(
−

1
10

∑
p62y+1

1− g j(p)
p

)

� exp
(
−
ε2

200
log y

)
� ε10

for y > exp2(ε
−1), and this contradicts |δ j | > ε2, proving the lemma.
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Now we return to (2.9) and consider two cases separately. Suppose first that
|δ1|, |δ2| > ε2. Let y = exp2(ε

−1)2. Then, if N ′ ⊂ [1, y] is the set in Lemma 2.5
and M is the set in Lemma 2.1 (which is independent of cp), taking cp = 1 we
deduce from (2.9) and Lemma 2.5 that

fx,ω(h) =
m log 2

2m

∑
2m6p<2m+1

g1(p)g2(p) fx,ω(h)+ oε→0(1)

= δ1δ2 +
m log 2

2m

∑
2m6p<2m+1

f̃x,ω(ph)+ oε→0(1) (2.16)

for m ∈M ∩N ′. We can pick some m ∈M ∩N ′ with m ∈ [
√

y, y], since we
have the lower bound∑

m∈M∩N ′
m∈[
√

y,y]

1
m

> log y −
1
2

log y − ε−100
− ε log y >

1
3

log y

for y = exp2(ε
−1)2.

Consider then the case where either |δ1| 6 ε2 or |δ2| 6 ε2. We may suppose that
(2.10) holds, since otherwise Theorem 1.4 holds by the fact that δ1δ2+oε→0(1) =
oε→0(1) in this situation. Let y = exp2(ε

−1)2. Taking m ∈M∩N (with N ⊂ [1,
y] as in Lemma 2.4) and cp = g1(p)−1g2(p)−11|g1(p)g2(p)|>1/2 in (2.9), we see from
Lemma 2.4 that

fx,ω(h)+ oε→0(1) =
m log 2

2m

×

(
δ1δ2

∑
2m6p<2m+1

|g1(p)g2(p)|>1/2

(g1(p)g2(p))−1
+

∑
2m6p<2m+1

|g1(p)g2(p)|>1/2

(g1(p)g2(p))−1 f̃x,ω(ph)
)
.

for m ∈ M ∩ N , which again contains an element m ∈ [
√

y, y] by the same
argument as above. We know that |(g1(p)g2(p))−1

| 6 2 for all 2m 6 p < 2m+1,
except for at most 10ε(2m/m) exceptions. Since by assumption δ1δ2 = O(ε), we
deduce that

fx,ω(h) = δ1δ2 +
m log 2

2m

∑
2m6p<2m+1

2ap f̃x,ω(ph)+ oε→0(1)

for m ∈ M ∩ N , where ap :=
1
2 (g1(p)g2(p))−11|g1(p)g2(p))|>1/2. In conclusion,

regardless of the values of δ j , Theorem 1.4 will follow once we prove that
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m
2m logω(x)

∑
2m6p<2m+1

ap

∑
x/ω(x)6n6x

(g1(n)− δ1)(g2(n + ph)− δ2)

n
= oε→0(1)

(2.17)

for arbitrary ap ∈ D and m ∈ [exp2(ε
−1), exp2(ε

−1)2].

3. Circle method estimates

We proceed to prove (2.17) by applying the circle method and (slightly
modified versions of) the short exponential sum estimates for multiplicative
functions due to Matomäki, Radziwiłł and Tao [23]. We start with two lemmas,
the first of which reduces (2.17) to bounding a short exponential sum and the
second of which shows that the set of large frequencies of the exponential sum
has small cardinality.

LEMMA 3.1 (A circle method estimate). Let η > ε > 0 be small, h an integer with
1 6 |h| 6 ε−1, and exp2(ε

−1) 6 H 6 log y. For any complex numbers ap ∈ D,
introduce the exponential sum

SH (θ) :=
∑

P6p<2P

ape(pθ),

where P := ε10 H. Let ΞH be the set of residue classes ξ ∈ Z/HZ that satisfy∣∣∣∣SH

(
−

hξ
H

)∣∣∣∣ > η2 P
log H

. (3.1)

Then, for any functions g′1, g′2 : N→ C with |g′1(n)|, |g
′

2(n)| 6 2, we have∣∣∣∣ log P
P

∑
P6p<2P

ap

∑
y6n6y+H

g′1(n)g
′

2(n + ph)
∣∣∣∣

6 ηH + 10
∑
ξ∈ΞH

∣∣∣∣ ∑
y6n6y+H

g′1(n)e
(
−
ξn
H

)∣∣∣∣.
Proof. This follows from [30, Lemma 3.6], writing it using different notation.

In order to make use of Lemma 3.1, we must know that the exceptional set ΞH

in that theorem is not too large. Indeed, we have the following bound.

LEMMA 3.2 (Cardinality of large Fourier coefficients). Let the notations be as in
Lemma 3.1, and assume that H is a prime. Then we have |ΞH | � η−20.
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Proof. Since 1 6 |h| 6 ε−1 and H is a prime, the number of those ξ that
satisfy (3.1) remains unchanged when h is replaced by 1 in that formula. In [30,
Lemma 3.7], it was proved using a fourth moment bound and the Selberg sieve
that |SH (−ξ/H)| > η2 P/ log H for�η 1 values of ξ ∈ Z/HZ, but the same proof
gives the claimed quantitative bound.

To make use of the two lemmas above, we split in (2.17) the sum over n into
sums of length H , where H is a prime belonging to [ε−10

· 2m, 2ε−10
· 2m
], and

approximate the sum with an integral, after which (2.17) is reduced to

1
logω(x)

∫ x

x/ω(x)

m
2m

∑
2m6p<2m+1

ap

H

∑
y6n6y+H

(g1(n)− δ1)(g2(n + ph)− δ2)
dy
y

= oε→0(1). (3.2)

By Lemmas 3.1 and 3.2, it suffices to show that

sup
α∈R

1
logω(x)

∫ x

x/ω(x)

1
y

∣∣∣∣ 1
H

∑
y6n6y+H

(g1(n)− δ1)e(αn)
∣∣∣∣ dy = oε→0(1), (3.3)

for H ∈ [exp3(
1
2ε
−1), exp3(2ε

−1)], where exp3 is the third iterated exponential.
Indeed, if the left-hand side of (3.3) is 6 F(ε), where F(u) → 0 as u → 0 is
a slowly decaying function, one can take η = F(ε)0.01 in Lemma 3.2 to deduce
(3.2). Covering the interval [x/ω(x), x] with dyadic intervals, (3.3) will follow
from

sup
α∈R

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

(g1(n)− δ1)e(αn)
∣∣∣∣ dy = oε→0(1) (3.4)

for all X ∈ [x/ω(x), x/2] and all H ∈ [exp3(
1
2ε
−1), exp3(2ε

−1)]. This is what we
set out to prove, following [23].

It is natural to split the supremum over α in (3.4) to major and minor arcs,
defined using Dirichlet’s approximation theorem as

M :=

{
θ ∈ R :

∣∣∣∣θ − a
q

∣∣∣∣ 6 W
q H

with a ∈ Z, q < W, (a, q) = 1
}

and

m := R \M ⊂
{
θ ∈ R :

∣∣∣∣θ − a
q

∣∣∣∣ 6 W
q H

with a ∈ Z, q ∈
[

W,
H
W

]
, (a, q) = 1

}
,

with W := log5 H 6 exp(5 exp(2ε−1)).

(3.5)

In the case of the major arcs, the exponential e(αn) can essentially be replaced
with e(an/q), and this will lead us to study the distribution of the multiplicative
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function g1 in arithmetic progressions over short intervals. For that purpose, we
prove a lemma that is closely related to [22, Theorem 1] and [23, Theorem A.1].
For this lemma, we need to introduce the same ‘nicely factorable’ set as in [22,
Section 2] and [23, Definition 2.1].

DEFINITION 3.3. Let 10 < P1 < Q1 6 X and
√

X 6 X0 6 X , with Q1 6
exp(

√
log X0). For j > 1, set

Pj := exp( j 4 j(log Q1)
j−1 log P1), Q j := exp( j 4 j+2(log Q1)

j).

Letting J be the largest integer such that Q J 6 exp(
√

log X0), we define
SP1,Q1,X0,X as the set of those 1 6 n 6 X that have at least one prime factor
from each of the intervals [Pj , Q j ] for all 1 6 j 6 J .

For a specific choice of the parameters, present in the next lemma, we denote

S := SP1,Q1,X0,X , where P1 = W 200, Q1 =
H

W 3
, X0 =

√
X . (3.6)

LEMMA 3.4 (Uniform distribution of multiplicative functions in short intervals).
Let ε > 0 be small, X > 100 large, and H ∈ [exp2(

1
10ε
−1), log log X ]. Let g :

N→ [−1, 1] be a real-valued multiplicative function. Further, let b, q ∈ N with
1 6 b 6 q 6 W ∈ [log5 H, log10 H ]. Then, if S is as in (3.6), we have

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

n≡b (mod q)

g(n)1S(n)−
1
X

∑
X6n62X

n≡b (mod q)

g(n)1S(n)
∣∣∣∣ dy � W−10.

(3.7)

REMARK 3.5. If the bound on the right-hand side of (3.7) was replaced with
W−0.001, the proof of the lemma would work even when g(n)1S(n) is replaced
with g(n). However, for larger values of q we need to introduce the nicely
factorable set S to get better error terms.

Proof of Lemma 3.4. We first reduce to primitive residue classes b (mod q). Let
d0 = (b, q), b0 = b/(b, q) and q0 = q/(b, q). Then we have

1
H

∑
y6n6y+H

n≡b (mod q)

g(n)1S(n) =
1
H

∑
y/d06n′6(y+H)/d0

n≡b0 (mod q0)

g(d0n′)1S(n′), (3.8)

since 1S(d0n′) = 1S(n′) for d0 6 q 6 W < P1. Since the residue class b0

(mod q0) is primitive, we may use a Dirichlet character expansion to write the
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right-hand side of (3.8) as

1
H

1
ϕ(q0)

∑
χ (mod q0)

χ̄(b0)
∑

y/d06n′6(y+H)/d0

g(d0n′)1S(n′)χ(n′)

=
1
H

1
ϕ(q0)

∑
χ (mod q0)

χ̄(b0)
∑
t |d∞0

∑
y/d06n′6(y+H)/d0

t |n′
(n′/t,d0)=1

g(d0n′)1S(n′)χ(n′), (3.9)

where t | d∞0 means that t | dk
0 for some k. Since we have the condition

(n′/t, d0) = 1, we may use multiplicativity to write this as

1
ϕ(q0)

∑
χ (mod q0)

χ̄(b0)
∑
t |d∞0

g(d0t)χ(t)
d0t

d0t
H

∑
y/(d0t)6m6(y+H)/(d0t)

g(m)1S(m)χψ0(m),

(3.10)

where ψ0(m) = 1(m,d0)=1 is the principal character (mod d0) and we used the fact
that 1S(tm) = 1S(m) for t having no prime factors that are larger than d0 6 q 6
W < P1. By crude estimation, the contribution of the terms t > H ε to (3.10) is
� H−ε, so we may assume that t < H ε. We now wish to compare the short sums
in (3.10) to the corresponding long sums.

Suppose first that χ is real-valued. Then we may apply the Matomäki–
Radziwiłł theorem [22, Theorem 3] to the real-valued multiplicative function
gχψ0 conclude that

d0t
H

∑
y/(d0t)6m6(y+H)/(d0t)

g(m)1S(m)χψ0(m)

=
d0t
X

∑
X/(d0t)6m62X/(d0t)

g(m)1S(m)χψ0(m)+ Eχ,H (y), (3.11)

for y ∈ [X, 2X ], with the error Eχ,H (y) satisfying the L2 bound

1
X

∫ 2X

X
|Eχ,H (y)|2 dy �

(log H)1/3

P1/10
1

+ (log X)−1/50
� W−19, (3.12)

since W ∈ [log5 H, log10 H ], and P1 = W 200 in our definition of S .
Suppose then that χ is complex-valued. We again write (3.11), and want to

obtain an L2 bound for the error Eχ,H (y). By an argument of Granville and
Soundararajan (see [23, Lemma C.1]), the fact that gψ0 is real and χ is complex
(and that q 6 (log3 X)10) leads to

inf
|t |6x

D(gχψ0, ni t
; x) > 1

10

√
log log x . (3.13)
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Now we appeal to a variant of the Matomäki–Radziwiłł theorem, established by
Matomäki, Radziwiłł and Tao in [23, Theorem A.2]. This result (applied with
h = H and h = X separately) gives

1
X

∫ 2X

X
|Eχ,H (y)|2 dy � exp

(
− inf
|t |6X

D(gχψ0, ni t
; X)2

2

)
+
(log H)1/3

P1/10
1

+ (log X)−1/50, (3.14)

which is� W−19 by (3.13).
Now, for all characters χ (mod q0), we have (3.11) with the error bound (3.12).

Note also that
∑

t |d∞0
1/d0t = 1/d0

∏
p|d0
(1 + 1/p + 1/p2

+ · · · ) � log d0/d0.
Hence, applying the triangle inequality, and summing over χ and t | d∞0 , we see
that (3.10) equals

1
ϕ(q0)

∑
χ (mod q0)

χ̄(b0)
∑
t |d∞0

g(d0t)χ(t)
d0t

d0t
X

∑
X/(d0t)6m62X/(d0t)

g(m)1S(m)χψ0(m)

+ E(y), (3.15)

with the error term E(y) satisfying

1
X

∫ 2X

X
|E(y)|2 dy � W−10.

We can then reverse the deduction that led to (3.10) to conclude that (3.15) (and
hence (3.8)) equals

1
X

∑
X6n62X

n≡b (mod q)

g(n)1S(n)+ E(y).

This completes the proof.

The major arc case α ∈M of (3.4) is dealt with the following Lemma, whose
proof uses Lemma 3.4 as an ingredient.

LEMMA 3.6 (Major arc estimate). Let ε > 0 be small, x > 100 large, ω(X) as
in Theorem 1.4, and H ∈ [exp3(

1
2ε
−1), exp3(2ε

−1)]. Let g1 : N → [−1, 1] be a
multiplicative function satisfying g1 ∈ Uω(x, exp2(ε

−2), 2/ exp2(ε
−2), δ1). Then

we have

sup
α∈M

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

(g1(n)− δ1)e(αn)
∣∣∣∣ dy = oε→0(1)

for all X ∈ [x/ω(x), x/2], with the major arcs M as in (3.5).
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Proof. This is proved in Appendix B.

The minor arc case α ∈ m of (3.4), in turn, is taken care of by the next lemma.

LEMMA 3.7 (Minor arc estimate). Let ε > 0 be small, x > 100 large, and suppose
that H ∈ [exp3(

1
2ε
−1), log log x]. Then, for any multiplicative function g1 : N→

[−1, 1] and for any δ1 ∈ [−1, 1] we have

sup
α∈m

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

(g1(n)− δ1)e(αn)
∣∣∣∣ dy � (log H)−1/10 (3.16)

for all X ∈ [
√

x, x], with the minor arcs m as in (3.5).

Proof. This is proved in Appendix B.

With these lemmas available, Theorem 1.4 quickly follows.

Proof of Theorem 1.4. We reduced the proof of the theorem to proving (3.4).
As was observed after Lemma 2.2, we may assume that we have g1 ∈ Uω(x,
exp2(ε

−2), 2/ exp2(−ε
−2), δ1). Now, if α ∈ M in the supremum present in that

formula, we appeal to Lemma 3.6. In the opposite case α ∈ m, we appeal to
Lemma 3.7. In both cases, we get a bound of oε→0(1) for the left-hand side of
(3.4). This finishes the proof.

4. Proofs of the applications

Proof of Theorem 1.11. Given any real numbers z, w ∈ [−1, 1], define the
multiplicative functions g1, g2 : N→ [−1, 1] by setting at prime powers

g1(p j) =

{
1 if p 6 xa

z if p > xa,
g2(p j) =

{
1 if p 6 xb

w if p > xb.

We apply Theorem 1.4 to g1 and g2, and then use a generating function argument
to deduce Theorem 1.11. In order to use Theorem 1.4, we must verify that g1 ∈

U(x, ε−1, ε) for all x > x0(ε).
First observe that g1(n) = zω>xa (n), so for any c, q ∈ N we have

1
x

∑
x6n62x

n≡c (mod q)

g1(n) =
∑

06k<1/a

zk
·

1
x

∑
x6n62x

n≡c (mod q)

1ω>xa (n)=k .
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From this we see that g1 ∈ U(x, ε−1, ε) for all x > x0(ε) will follow, once we
show that

1
x

∑
x6n62x

n≡c (mod q)

1ω>xa (n)=k =
1

qx

∑
x6n62x

1ω>xa (n)=k + oq(1)

as x →∞ for all fixed c, q, k ∈ N. Write d0 = (c, q), c′ = c/d0, q ′ = q/d0. Then
we have

1
x

∑
x6n62x

n≡c (mod q)

1ω>xa (n)=k =
1
x

∑
x/d06n′62x/d0
n′≡c′ (mod q ′)

1ω>xa (n′)=k := Sk, (4.1)

because ω>xa (d0n′) = ω>xa (n′) for all d0 < xa . Let b−1 (mod q) denote the
inverse of b modulo q . Using the fact that 1ω>xa (n)=0 = 1P+(n)6xa , we have

Sk =
∑

xa<p1<···<pk6x
p1···pk6x

1
x

∑
x/d0 p1···pk6m62x/d0 p1···pk

m≡c′(p1···pk )
−1 (mod q ′)

1P+(m)6xa + oq ′(1),

with the o(1) term coming from those numbers n′ 6 x such that p2
| n′ for some

p > xa . As is well known, smooth numbers are uniformly distributed in arithmetic
progressions to fixed moduli (see for instance [18, Formula (6.1)]), in the sense
that

1
y
|{y 6 n 6 2y : P+(n) 6 yu, n ≡ c (mod q ′)}| =

1
q ′
ρ

(
1
u

)
+ oq ′(1), (4.2)

for u ∈ [0, 1] and y →∞, with ρ(·) being the Dickmann function. Therefore,

Sk =
1

q ′d0

∑
xa<p1<···<pk6x

p1···pk6x

1
p1 · · · pk

(
ρ

( log x
d0 p1···pk

a log x

)
+ oq ′(1)

)
. (4.3)

One easily sees that x 7→ ρ(x) is a Lipschitz function, so that |ρ(u) − ρ(v)| 6
C |u − v| for all u, v > 0 with some constant C > 0. Hence, we can use the
prime number theorem in the form that the nth prime is asymptotic to n log n and
approximate the term involving ρ(·) in (4.3) to deduce that

Sk =
1

q ′d0k!

∑
xa<n1,...,nk6x

n1···nk6x

1
n1 · · · nk(log n1) · · · (log nk)

ρ

( log x
n1···nk

a log x

)
+ oq ′(1).

(4.4)
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Here we have estimated trivially as oq ′(1) the contribution of the tuples (n1, . . . ,

nk) with two of the ni equal, or with ni ∈ [xa/2 log x, xa
] ∪ [x/2 log x, x] for

some i , as for them it is not necessarily the case that the ni th prime belongs to
[xa, x]. Approximating the expression (4.4) with an integral, again using the fact
that ρ(·) is Lipschitz, it equals

Sk =
1

q ′d0
·

1
k!

∫
xa6xi6x
x1···xk6x

ρ
( log x

x1 ···xk
a log x

)
x1 · · · xk(log x1) · · · (log xk)

dx+ oq ′(1)

=
1

q ′d0
·

1
k!

∫
a6u1,...,uk61
u1+···+uk61

ρ
( 1−u1−···−uk

a

)
u1 · · · uk

du+ oq ′(1),

where the last integral comes from a change of variables ui = log xi/ log x .
Combining (4.1) with the previous equation, we have shown that

1
x

∑
x6n62x

n≡c (mod q)

1ω>xa (n)=k =
Ia,k + oq(1)

qk!
,

1
x

∑
x6n62x

n≡c (mod q)

1ω
>xb (n)=` =

Ib,` + oq(1)
q`!

,

where

Iα,m :=
∫
α6u1,...,um61
u1+···+um61

ρ
( 1−u1−···−um

α

)
u1 · · · um

du. (4.5)

This implies that g j ∈ U(x, ε−1, ε) for all x > x0(ε).
Now that we have shown that g1 and g2 satisfy our uniform distribution in

arithmetic progressions assumption, Theorem 1.4 with ω(X) = log(3X) gives

1
log2 x

∑
x/ log x6n6x

g1(n)g2(n + 1)
n

=
1

log2 x

∑
x/ log x6n6x

zω>xa (n)wω
>xb (n+1)

n

=

(
1
x

∑
x6n62x

zω>xa (n)

)(
1
x

∑
x6n62x

wω
>xb (n)

)
+ o(1). (4.6)

Note that the numbers n ∈ [x/ log x, x] with ω>xa (n) 6= ω>na (n) have a prime
divisor on the interval [(x/ log x)a, xa

], so their contribution to the left-hand side
of the above sum is bounded by∑

(x/ log x)a6p6xa

1
log2 x

∑
x/ log x6n6x

p|n

1
n
= o(1).
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We can do a similar computation to exclude the terms with ω>xa (n) 6= ω>na (n) on
the right-hand side of (4.6). Applying the same arguments also to ω>xb(n), (4.6)
takes the form

1
log2 x

∑
x/ log x6n6x

zω>na (n)wω
>nb (n+1)

n
=

(
1
x

∑
x6n62x

zω>na (n)

)(
1
x

∑
x6n62x

wω
>nb (n)

)
+ o(1). (4.7)

By the preceding considerations,

1
X

∑
X6n62X

zω>na (n)
=

∑
06k< 1

a

zk
·

Ia,k

k!
+ o(1) (4.8)

as X →∞, with Ia,k as in (4.5), so summing this dyadically we find that (4.8) also
holds with the summation range being 1 6 n 6 X . Thus, by partial summation,

1
log x

∑
n6x

zω>na (n)

n
=

∑
06k<1/a

zk Ia,k + o(1)
k!

,

1
log x

∑
n6x

wω
>nb (n)

n
=

∑
06`<1/b

w` Ib,` + o(1)
`!

.

(4.9)

Based on (4.7) and (4.9), if we put

ck,`(x) : =
1

log2 x

∑
x/ log x6n6x

1ω>na (n)=k1ω
>nb (n+1)=`

n
,

ak(x) : =
1

log x

∑
n6x

1ω>na (n)=k

n
, b`(x) :=

1
log x

∑
n6x

1ω
>nb (n)=`

n
,

then we have∑
06k<1/a
06`<1/b

ck,`(x)zkw`
=

( ∑
06k<1/a

ak(x)zk

)( ∑
06`< 1

b

b`(x)w`

)
+ o(1)

for all z, w ∈ [−1, 1]. Expanding out, we see that∑
06k<1/a
06`<1/b

(ck,`(x)− ak(x)b`(x))zkw`
= o(1). (4.10)
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We show that ck,`(x) = ak(x)b`(x)+ o(1). Suppose for the sake of contradiction
that this is not the case. Then, by compactness, we can find a sequence xi tending
to infinity such that the numbers Dk,` := limi→∞(ck,`(xi) − ak(xi)b`(xi)) exist,
and at least one of them is nonzero. Taking limits in (4.10), we infer∑

06k<1/a
06`<1/b

Dk,`zkw`
= 0

for all z, w ∈ [−1, 1]. We now have a polynomial in two variables vanishing in an
open set, so its coefficients Dk,` must all be zero, which is a contradiction. Thus
we have

ck,`(x) = ak(x)b`(x)+ o(1) = δ∗1δ
∗

2 + o(1) (4.11)

for all 0 6 k < 1/a, 0 6 ` < 1/b, with δ∗1 := Ia,k/k! and δ∗2 := Ib,`/`!.
Using (4.11) for x ∈ {y1, y2, . . . , yJ−1}, where y1 = x , y j+1 = y j/ log y j and

yJ ∈ [
√

log x, log x], it follows that

1
log x

∑
n6x

1ω>na (n)=k1ω
>nb (n+1)=`

n
=

1
log x

J−1∑
j=1

log log y j · (δ
∗

1δ
∗

2 + o(1))

= (δ∗1δ
∗

2 + o(1))
1

log x

J−1∑
j=1

log
y j

y j+1

= δ∗1δ
∗

2 + o(1) = ak(x)b`(x)+ o(1)

by telescopic summation. Taking limits as x → ∞ from this, we reach the
statement of the theorem about logarithmic densities.

For the part of the theorem involving asymptotic density, we apply the same
argument as above, but with 1 6 ω(X) 6 log(3X) an arbitrary function tending
to infinity (instead of ω(X) = log(3X)). We again have

1
logω(x)

∑
x/ω(x)6n6x

1ω>na (n)=k1ω
>nb (n+1)=`

n
= δ∗1δ

∗

2 + o(1). (4.12)

In particular, we get

1
x

∑
n6x

1ω>na (n)=k1ω
>nb (n+1)=` >

1
2
δ∗1δ
∗

2
logω(x)
ω(x)

(4.13)

for all large enough x (where large enough depends on the function ω(X)). Now,
supposing that the part of Theorem 1.11 concerning asymptotic density fails, there
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is a function ψ(x) tending to infinity such that the left-hand side of (4.13) is
6 1/ψ(x) for infinitely many integers x . However, taking ω(x) = ψ(x) in (4.13),
we get a contradiction as x →∞. Hence, there exists some c0 > 0 such that the
left-hand side of (4.13) is > c0 for all large enough x , which was to be shown.

Our theorems on smooth numbers follow rather quickly from Theorem 1.11. In
fact, one could also deduce these applications directly from Theorem 1.4, using
the fact that smooth numbers are uniformly distributed in arithmetic progressions.
We leave the details of this alternative argument to the interested reader.

Proof of Theorem 1.14. It follows from (4.2) with q ′ = 1 and partial summation
that the set {n ∈ N : P+(n) 6 na

} has logarithmic density ρ(1/a). Taking k =
` = 0 in Theorem 1.11 and noticing that ω>y(n) = 0 if and only if P+(n) 6 y,
the conclusion is immediate.

Theorem 1.16 is a corollary to Theorem 1.14, as we see next.

Proof of Theorems 1.16 and 1.17. As mentioned in the introduction, taking α = 0
in Theorem 1.17 implies Theorem 1.16, since by symmetry∫

(x,y)∈[0,1]2
x>y

u(x)u(y) dx dy =
1
2

∫
(x,y)∈[0,1]2

u(x)u(y) dx dy =
1
2
,

where the last equality comes from the fundamental theorem of calculus and the
fact that u(x) = (d/dx)ρ(1/x). Thus it suffices to prove Theorem 1.17. Let
0 < a, b, c, d < 1 be given real numbers with a < c and b < d . Applying
the inclusion–exclusion formula to the sets {n ∈ N : P+(n) 6 na

}, . . . , {n ∈
N : P+(n) 6 nd

} and employing Theorem 1.14 and the fundamental theorem of
calculus, we see that

δ({n ∈ N : na < P+(n) < nb, nc < P+(n + 1) < nd
})

= ρ

(
1
b

)
ρ

(
1
d

)
− ρ

(
1
a

)
ρ

(
1
d

)
− ρ

(
1
b

)
ρ

(
1
c

)
+ ρ

(
1
a

)
ρ

(
1
c

)
=

(
ρ

(
1
d

)
− ρ

(
1
c

))(
ρ

(
1
b

)
− ρ

(
1
a

))
=

∫ b

a

∫ d

c
u(x)u(y) dx dy.
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In other words, for any rectangle R ⊂ [0, 1]2 parallel to the coordinate axes we
have

δ

({
n ∈ N :

(
log P+(n)

log n
,

log P+(n + 1)
log n

)
∈ R

})
=

∫
R

u(x)u(y) dx dy.

(4.14)

Now, if S ⊂ [0, 1]2 is any set such that 1S is Riemann integrable, we can
approximate S from the inside and outside with finite unions of rectangles, so
by the monotone convergence theorem we see that (4.14) continues to hold for
such sets S. Taking S = Tα, Theorem 1.17 is proved.

Proof of Theorem 1.19. Let 1 6 ω(X)6 log(3X) be a function tending to infinity.
Defining Fu(n) := 1P+(n)6nu , by the inclusion–exclusion principle we have

∑
x/ω(x)6n6x

1P+(n)∈[na ,nb]1P+(n+1)∈[nc,nd ]

n

=

∑
x/ω(x)6n6x

Fb(n)Fd (n + 1)− Fa(n)Fd (n + 1)− Fb(n)Fc(n + 1)+ Fa(n)Fc(n + 1)
n

.

From (4.12) (with k = ` = 0), it follows that the previous expression is logω(x)
times

ρ

(
1
b

)
ρ

(
1
d

)
− ρ

(
1
a

)
ρ

(
1
d

)
− ρ

(
1
b

)
ρ

(
1
c

)
+ ρ

(
1
a

)
ρ

(
1
c

)
+ o(1)

=

(
ρ

(
1
d

)
− ρ

(
1
c

))(
ρ

(
1
b

)
− ρ

(
1
a

))
+ o(1). (4.15)

In particular, as in (4.13), we get∑
n6x

1P+(n)∈[na ,nb]1P+(n+1)∈[nc,nd ]

n
>

1
2

c0(a, b, c, d)
logω(x)
ω(x)

, (4.16)

where c0(a, b, c, d) > 0 is the constant in (4.15), and since ω(X) was allowed
to tend to infinity as slowly as we please, the left-hand side of (4.16) is lower-
bounded by some positive constant, as asserted.

Lastly, we deduce our quadratic character sum bound from the main theorem.

Proof of Theorem 1.21. The first part of the theorem will follow directly from
Theorem 1.4, once we show that for any fixed a, q ∈ N we have∑

x6n62x
n≡a (mod q)

χQ(n) = o(x)
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as x → ∞. Denoting d0 = (a, q), a′ = a/d0, q ′ = q/d0, and using complete
multiplicativity, it suffices to show that∑

x/d06m62x/d0
m≡a′ (mod q ′)

χQ(m) = o(x).

Expanding the congruence condition in terms of Dirichlet characters, we are left
with showing that ∑

x/d06m62x/d0

χQ(m)ψ(m) = o(x) (4.17)

for all Dirichlet characters ψ (mod q ′). Note that the character χ∗ := χQψ has
modulus Q∗ := Qq ′ 6 x4−ε/2 if x is large enough. In addition, the character χQψ

cannot be the principal character, since then χQ would be induced byψ , which has
modulus q ′ < Q (since Q(x) is assumed to tend to infinity with x), contradicting
the assumption that χQ is primitive. The number Q∗ is not necessarily cube-
free, but we can apply a slight generalization of the Burgess bound from [19,
formula (12.56)] to bound the left-hand side of (4.17) with

�r,ε

(
x
d0

)1−(1/r)

q1/r (Q∗)((r+1)/4r2)+ε2
= o(x)

for r = 10bε−2
c, say. Now the first part of the theorem has been proved.

For the proof of (1.13), note that the quantity on the left-hand side of that
formula is

1
log x

∑
n6x

(n(n+1),Q)=1

1
n
·

1− χQ(n)
2

·
1− χQ(n + 1)

2

=
1

4 log x

∑
n6x

(n(n+1),Q)=1

1
n
−

1
4 log x

∑
n6x

χQ(n)χ0(n + 1)
n

−
1

4 log x

∑
n6x

χ0(n)χQ(n + 1)
n

+
1

4 log x

∑
n6x

χQ(n)χQ(n + 1)
n

,

where χ0 stands for the principal character (mod Q). Here the first term equals
the right-hand side of (1.13) by elementary sieve theory. The other three terms
are seen to be o(1) just as in the first part of the theorem (in order to apply
Theorem 1.4, it suffices that one of χQ and χ0 is uniformly distributed in
arithmetic progressions).
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For the last part of the theorem, namely proving (1.14), we apply the same
argument as in the second part to show that

1
logω(x)

∑
x/ω(x)6n6x

1n,n+1 QNR (mod Q)

n
=

1
4

∏
p|Q

(
1−

2
p

)
+ o(1).

Since ω(X) is any function tending to infinity slowly, we can apply exactly the
same argument as at the end of the proof of Theorem 1.11 to conclude that (1.14)
holds.
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Appendix A. Stability of mean values of multiplicative functions

We prove Lemma 2.2, which was used in the proof of Theorem 1.4 and tells
that mean values of the functions g j over the arithmetic progression a (mod q)
vary very slowly in terms of the interval over which the mean value is taken. The
case q = 1 of the lemma was proved by Elliott [6] and refined by Granville and
Soundararajan [13, Proposition 4.1] (see also [14, Theorem 4]). Also Matthiesen’s
work [25] contains estimates of the type of Lemma 2.2, but for the sake of
completeness we give a proof here. We have not aimed to optimize the error terms
in the lemma.

Proof of Lemma 2.2. By writing

1
x

∑
x6n62x

n≡a (mod q)

g(n) =
1
x

∑
n62x

n≡a (mod q)

g(n)−
1
x

∑
n6x

n≡a (mod q)

g(n)
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and the same with x/y in place of x , we see that it suffices to show that∣∣∣∣1x ∑
n6x

n≡a (mod q)

g(n)−
1

x/y

∑
n6x/y

n≡a (mod q)

g(n)
∣∣∣∣�q (log x)−1/400. (A.1)

for y ∈ [1, 2 log10 x]. Putting d0 := (a, q), a′ := a/d0 and q ′ := q/d0, (A.1)
becomes∣∣∣∣1x ∑

n′6x/d0
n′≡a′ (mod q ′)

g(d0n′)−
1

x/y

∑
n′6x/d0 y

n′≡a′ (mod q ′)

g(d0n′)
∣∣∣∣�q (log x)−1/400.

Making use of the orthogonality of Dirichlet characters and the triangle inequality,
it suffices to show that∣∣∣∣1x ∑

n′6x/d0

g(d0n′)χ(n′)−
1

x/y

∑
n′6x/d0 y

g(d0n′)χ(n′)
∣∣∣∣�q (log x)−1/400.

for all Dirichlet characters χ (mod q ′). Writing n′ = rm, where (m, d0) = 1
and r | d∞0 (meaning that r | dk

0 for some k), and using the fact that g(d0rm) =
g(d0r)g(m), the previous bound will follow from

∑
r |d∞0

1
d0r

∣∣∣∣d0r
x

∑
m6x/d0r
(m,d0)=1

g(m)χ(m)−
d0r
x/y

∑
m6x/d0r y
(m,d0)=1

g(m)χ(m)
∣∣∣∣�q (log x)−1/400.

(A.2)

The terms r > log x can be discarded, since∑
r |d∞0

r>log x

1
rd0

6 (log x)−1/2 1
d0

∏
p|d0

(
1+

1
p1/2
+

1
p
+ · · ·

)
�q (log x)−1/2,

since d0 6 q . Writing x ′ := x/d0r �q x/ log x and applying the triangle
inequality to (A.2), together with the simple fact that

∑
r |d∞0

1/r �q 1, it suffices
to show that∣∣∣∣ 1

x ′
∑
m6x ′

g(m)χ(m)ψ0(m)−
1

x ′/y′
∑

m6x ′/y

g(m)χ(m)ψ0(m)
∣∣∣∣�q (log x)−1/400

(A.3)
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for all x/ log x �q x ′ 6 x , 1 6 y′ 6 2 log10 x and for all characters χ (mod q),
with ψ0 the principal character (mod d0). Note that

D(gχψ0, f ; x ′) = D(gχ, f ; x ′)− Oq(1) (A.4)

for any function f : N→ D, so we may replace ψ0 with 1 in any computations
involving the pretentious distance.

Consider the character χ (mod q) for which the left-hand side of (A.3)
is maximal. If χ is complex, we may apply an argument of Granville and
Soundararajan (see [23, Lemma C.1]) and the assumption that g is real-valued
to obtain the pretentious distance bound

√
M := inf

|t |6x
D
(

gχψ0, ni t
;

x ′

y′

)
= inf
|t |6x

D(gχ, ni t
; x)− Oq(log3 x)

>
1

10

√
log log x

by (A.4), since q is fixed and x is large enough. Thus by Halász’s theorem [34,
Ch. III.4], we may bound (A.3) by� Me−M

� (log x)−1/200.
In the opposite case that χ is real in (A.3), we appeal to [13, Proposition

4.1], provided that D(gχψ0; 1; x) 6 2
3

√
log log x holds. This gives a bound of

� (log x)−1/10 for (A.3), so we may assume that D(gχψ0; 1; x) > 2
3

√
log log x .

But since gχ is real-valued, again by [23, Lemma C.1] we have

√
M : = inf

|t |6x
D
(

gχψ0, ni t
;

x ′

y′

)
= inf
|t |6x

D(gχ, ni t
; x)− Oq(log3 x)

>
1
10

D(gχ, 1; x)− Oq(log3 x) >
1
16

√
log log x

for all large enough x . Now, again applying Halász’s theorem, (A.3) is bounded
by� Me−M

� (log x)−1/400. This shows that (A.3) always holds, which proves
the lemma.

Appendix B. Short exponential sum bounds for multiplicative functions

We prove the short exponential sum estimates over major and minor arcs that
were employed in the proof of Theorem 1.4 in Section 3. The proofs of both
lemmas follow the ideas of Matomäki, Radziwiłł and Tao [23] for estimating short
exponential sum bounds weighted by a multiplicative function, but require some
small modifications to the arguments.
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Proof of Lemma 3.7. Since α ∈ m, we have the trivial estimate∣∣∣∣ ∑
y6n6y+H

e(αn)
∣∣∣∣� 1
‖α‖
�

H
W
� H(log H)−1/10,

so by the triangle inequality we may assume that δ1 = 0 in (3.16). We introduce
the same nicely factorable set S := SP1,Q1,X0,X as in (3.6). By a simple sieve
estimate [23, Lemma 2.3], we have∑

n6X+H

(1− 1S(n))�
log log H

log H
X. (B.1)

Hence, by the triangle inequality,

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

g1(n)(1− 1S(n))e(αn)
∣∣∣∣ dy �

log log H
log H

� (log H)−1/10.

This means that (3.16) has been reduced to

sup
α∈m

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

g1(n)1S(n)e(αn)
∣∣∣∣ dy � (log H)−1/10. (B.2)

This estimate would follow directly from [23, Section 3] (with d = 1 there), if the
function g1 was completely multiplicative, but we show that the argument goes
through even without that assumption.

Let S ′ be the set of those n 6 X that have a prime factor from each of the
intervals [Pj , Q j ] (defined in Definition 3.3) for j > 2. We have the Ramaré
identity

g1(n)1S(n) =
∑

n=mp∈S
P16p6Q1

g1(mp)1S(mp)
|{P1 6 p1 6 Q1 : p1 | n}|

=

∑
n=mp

p-m
P16p6Q1

g1(m)g1(p)1S ′(m)
1+ |{P1 6 p1 6 Q1 : p1 | m}|

+ O
( ∑

P16p6Q1

1p2|n

)

=

∑
n=mp

P16p6Q1

g1(m)g1(p)1S ′(m)
1+ |{P1 6 p1 6 Q1 : p1 | m}|

+ O
( ∑

P16p6Q1

1p2|n

)
.

By trivial estimation,∑
n6X+H

∑
P16p6Q1

1p2|n �
∑
p>P1

X
p2
� X W−200

� X (log H)−1/10,
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so proving (B.2) has been reduced to proving∑
P16p6Q1

∑
m

1S ′(m)g1(m)g1(p)e(mpα)
1+ |{P1 6 p1 6 Q1 : p1 | m}|

∫
R
θ(x)1x6mp6x+H dx

� H X (log H)−1/10

for all measurable functions |θ(x)| 6 1 supported on [0, X ]. This is same
expression as in [23, Section 3], so the proof continues from here in an identical
manner (since the rest of the argument does not use multiplicativity).

Proof of Lemma 3.6. We follow the proof of the major arc exponential sum in [23,
Section 4]. However, here we need to be a bit more careful when approximating
the exponential e(αn) with e(an/q), as we do not want to lose a factor of W/q
that would come from a partial summation approximation of e(αn).

By our assumption g1 ∈ Uω(x, exp2(ε
−2), 2/ exp2(ε

−2), δ1) and formula (B.1),
it suffices to show that

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
x6n6x+H

(g1(n)1S(n)− δ′1)e(αn)
∣∣∣∣ dx = oε→0(1), (B.3)

where the nicely factorable set S is as in (3.6) and

δ′1 :=
1
X

∑
X6m62X

g1(n)1S(n).

Let H ′ := H/W 3. By exchanging the order of integration and summation, we
have

1
H

∑
x6n6x+H

an =
1
H

∫ x+H

x

1
H ′

∑
y6n6y+H ′

an dy + O
(

H ′

H

)

for any an ∈ D. Applying this, we see that the left-hand side of (B.3) is

=
1
X

∫ 2X

X

∣∣∣∣ 1
H

∫ x+H

x

1
H ′

∑
y6n6y+H ′

(g1(n)1S(n)− δ′1)e(αn) dy
∣∣∣∣ dx + O

(
1

W 2

)

�
1

H X

∫ 2X

X

∫ x+H

x

∣∣∣∣ 1
H ′

∑
y6n6y+H ′

(g1(n)1S(n)− δ′1)e
(

an
q

)∣∣∣∣ dy dx + O
(

1
W 2

)
,

where we used the fact that any n ∈ [y, y + H ′] obeys
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e(αn) = e(αy) e(α(n − y))

= e(αy) e
(

a
q
(n − y)

)
+ O

(
1

W 2

)
= e

((
α −

a
q

)
y
)

e
(

an
q

)
+ O

(
1

W 2

)
by the inequality∣∣∣∣e(α(n − y))− e

(
a
q
(n − y)

)∣∣∣∣ 6 2π
∣∣∣∣α − a

q

∣∣∣∣|n − y| 6
2πW
q H
· H ′ 6

2π
W 2

.

By exchanging the order of integration above, it suffices to show that

1
X

∫ 2X

X

∣∣∣∣ 1
H ′

∑
x6n6x+H ′

(g1(n)1S(n)− δ′1)e
(

an
q

)∣∣∣∣ dx � ε. (B.4)

for all 1 6 a 6 q 6 W = log5 H , and with H ′ = H/W 3, as before. By splitting
into residue classes (mod q), (B.4) would follow from

1
X

∫ 2X

X

∣∣∣∣ 1
H ′

∑
x6n6x+H ′

n≡b (mod q)

g1(n)1S(n)−
1

q X

∑
X6n62X

g1(n)1S(n)
∣∣∣∣ dx �

ε

q
(B.5)

for all 1 6 a 6 q 6 W . Applying the triangle inequality and Lemma 3.4 (and the
fact that q 6 W ), it suffices to show that∣∣∣∣ 1

X

∑
X6n62X

n≡b (mod q)

g1(n)1S(n)−
1

q X

∑
X6n62X

g1(n)1S(n)
∣∣∣∣� ε

q
. (B.6)

As in [23, Section 2], the fundamental lemma of sieve theory gives for q 6 W the
estimate ∑

X6n62X
n≡a (mod q)

(1− 1S(n))�
X
q
·

log log H
log H

�
ε

q
X.

Taking this into account on both sides of (B.6), that claim is reduced to∣∣∣∣ 1
X

∑
X6n62X

n≡b (mod q)

g1(n)−
1

q X

∑
X6n62X

g1(n)
∣∣∣∣� ε

q

for X ∈ [x/ω(x), x], and this follows immediately from our uniform
distribution assumption g1 ∈ Uω(x, exp2(ε

−2), 2/ exp2(ε
−2), δ1) and the fact

that q 6 log5 H 6 exp2(10ε−1). The proof is complete.
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[9] P. Erdős, ‘Some unconventional problems in number theory’, in Journées Arithmétiques de
Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), Astérisque, 61 (Soc.
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