BULL. AUSTRAL. MATH. SOC. 90C33, 46Cl0
VOL. 36 (1987) 295-310. 49829

FIXED POINT THEORY AND
COMPLEMENTARITY PROBLEMS IN HILBERT SPACE

G. ISAC

In this paper we study both the implicit and the explicit
complementarity problem using some special and interesting
connections between the complementarity problem and fixed

point theory in Hilbert space.
1. Introduction

The complementarity problem is one of the interesting and important
problems defined since 1964 and it has been much studied in the last
fifteen years.

The extensive literature on the (explicit or implicit) complemen-
tarity problem (at least three hundred papers) is motivated by its
interesting and deep connections with nonlinear analysis and by its
interesting applications in areas such as: Optimisation Theory, Engi-
neering, Structural Mechanics, Elasticity Theory, Lubrication Theory,
Economics, Variational Calculus, Equilibrium Theory on Networks,
Stochastic Optimal Control etcetera [Z0].

We consider in this paper the complementarity problem (explicit
and implicit) in Hilbert spaces.

Some natural connections between the complementarity problem and
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some special fixed point theorems are used to prove several existance
theorems.

We observe that Theorem 2 is a substantial improvement on our
recent result ([ 161, Theorem 1).

This improvement is based on an incomplete remark of Professor

W. Qettli, but our result is more general.
2. Definitions

Let <E,E*> be a dual system of locally convex spaces and let
K ¢ E Dbe a closed convex cone.
We denote by KX* the dual cone of KX , that is,
K* = {u € E¥|<x,u> 2 0 ; Vo ¢ K} .
Given the mappings, f:K > E* and g:X + E we consider the follow-

ing complementarity problems:
E.C.P.(f,K): find x, e K such that f(xo) € K* and <xo,f(xo)> =0,

I.C.P.(f,g,K}): find xole such that g(xo) € K, f(xo) € K* and

<g(xo), f(x0)> =0

We say that E.C.P,(f,K) is the explicit complementarity problem
and I.C.P.(f,g,K) the implicit complementarity problem.

The reader can find more details on these problems in [1], [Z2],
[14-191, [23-271, [30]1, £32] and particularly in [20].

The implicit complementarity problem arises in Stochastic Optimal
Control Theory and it was considered by Bensoussan, Lions, Dolcetta, Mosco
etcetera [3-7]1, (131, (291].

We remark that I.C.P.(f,g,K) has not been studied very much in
infinite dimensional spaces.

In 1969 Karamardian [25], proved the following result:

THEOREM [Karamardian]. The problem E.C.P.(f,K) , where E=R"
and K==RZ » has a unique solution if f <is a continuous and strongly
monotone mapping. O

Now, it is well-known [2], [27] that this result is true in an
ordered reflexive Banach space if f is a hemicontinuous and a-monotone

mapping.
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Another generalisation of Karamardian's theorem is a result proved
in 1984 by Dash and Nanda [72] which states that the problem E.C.P.(f,K)
has a solution if it is feasible ({xeK|[f(x)eK*} # ¢) and f is a
hemicontinuous and strictly monotone mapping.

We prove in this paper a similar result (Theorem 2), but for the
implicit complementarity problem.

Finally, we remark that our results are considered in a Hilbert
space, since in this case we have several interesting connections with

fixed point theory.

3. Main results

Let (H,<,>) be a Hilbert space and let X ¢ H be a closed convex
cone.
If DcH 1is a subset and f,g:D > H are two mappings, we consider

the following implicit complementarity problem:
(I.C.P.): find =z, e D such that g(x,) ¢ K, f(z,) ¢ K* and
<glx,), flx,)>=0

We recall that if P

x denotes the projection onto K , that is,

for every x € H, PKLr) is the unique element satisfying:
le - PK(x)“ = min |-yl ,
yek

then we have the following classical result.
PROPQSITION 1. [ 34]. For every element =x ¢ H, PK(:x:) is

characterised by the following properties:

o

1) <PK(x)-x, y> = 0; ¥y e K,
o
27) <PK(x)-x, PK(x)> =0 . 0

Our next result on the problem (I.C.P.) is based on the following
fixed point theorem. (Theorem 1)

We recall that a metric space (X,p) is said to be metrically
convex, if for each x, y € X, (x # y) there is a 2z # x,y for which
plx,y) = p(x,z) + plz,y).

We write P = {p(z,y)|x,y ¢ X} .
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THEOREM 1 [Boyd and Wongl [9]. Let (X,0) be a complete
metrically convex metric space. If for the mapping T:X - X there is a
mapping ¢: P - P+ satisfying,

1°) o(T(x), T(y)) < ¢lo(x,y)) ,

o

2°) $(t) <t , for all t e P|{0} ,
then T has a unique fized point z and T'(z) » z, for each =z ¢ X .0

DEFINITION 1. Given a subset D c H , we consider the mappings
Fsg:D ~H; &, ¢: JR+ ->1?+ and we say that:

a@®) f is a ¢-Lipschitsz mapping with respect to g 1if ,
1flx) - fy)lh < lglx) -gly)l ellglx) -gly)l); Vx, y ¢ D,

b°) f is a VY-strongly monotone mapping with respect to g <if

< flz) - fty), glz) -glyl)> = llglx) —g(y}llz ¥(lglx) -glyll) ;
Ve, y € D .

If in Definition 1, g(x) = x; Y2 € D then we say that f is a
d-Lipschitz mapping (respectively, f is a Y¥Y-strongly monotone mapping).

Obviously, if & and V¥ are strictly positive constants, we obtain
from Definition a® (respectively be) that f 1is a Lipschitz (respectively

strongly monotone) mapping.

THEOREM 2. Let (H,<,>) be a Hilbert space and let K c H be a
elosed convex cone. If, for a subset D c H , the mappings f,g:D — H
satisfy the following assumptions:

1°) f 48 a 9-Lipschita mapping with respect to ¢ ,

2°) f 1is a VY-strongly monotone with respect to g ,

3°) there exists a real number T > 0 such that, w02(£) < 2v(t) <

1 2
<z + T (t); VteR+,

4°) K< g(D)-,
then the problem (I.C.P.) is soluble.
Moreover, if g <s one to one, then the problem (I.C.P.) has a

unique solution.

Proof. Using assumption 4°, we consider the mapping h:K —> H

(which is not unique) defined by h(u): = f(x) , where x is an

-1
arbitrary element of g " (u) and u e K .
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From this definition we observe that A has the following
Properties:

5°) Mhw) - k)l s llu-vIl ¢ lu-vll); Vu, vek,

6°) <Rl -h(v), u-v>2lu-ol2¥lu-ol); Tu vek.

We observe now that tﬁe problem (I.C.P.) is equivalent to the

following explicit complementarity problem:
E.C.P.(h,K): find u, € K such that h(u,) ¢ X' and
< Uy hlugd> =10,

But, from Proposition 1, we deduce that problem E.C.P. (h,K) has a
solution if and only if the mapping T7T:K —> X defined by
T(u) = PK(u - th(u)); Vuek,

has a fixed point (where 1 is the real number used in assumption 3.
We prove now that in fact T has a fixed point.

Indeed we have,

N7 (u)

TN? = 1P (u-th(w)) - Pv-<h(w))I? <

IA

l(u-th(u)) - (v-—rh(v))H2 = lu-v) - t(h(u) - h(v))H2

N - 012 - 2r<u-v,h(w) - h(v)> + tolh(w) - hw) % <

< Ju-v1% = 2tlu=vl ¥ (Ju-vl) + 2lu-v126% (fu-vl) =

lu - 01201 = 2e¥(lu-vl) + 1202 (lu—vll)] ,

which implies

1T(w) = T(w)l < lu-vlLI-2v¥ (fuevl) + t26% (Qu-vl)1/2; w0 € &,

If we write

o(t) = tl1-zew(t) + Pof ) ¥ vt em,

we observe, using assumption 3° and the fact that a Hilbert space is a
complete metrically convex metric space, that all assumptions of Theorem

1 are satisfied. (P =lR+).
Hence, T has a unique fixed point u, and for every uek ,

' (u) Uy -
Obviously, if g is one to one then the problem (I,C.P.) has a

unique solution. ’ 0
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Remark. From the proof of Theorem 2 we obtain that, a solution of
the problem (I.C.P.) 1is a solution of equation, g(x) = u,; xeD , where
U, is obtained by successive approximations using the operator T .

The next Corollary is a substantial improvement of our result

(Theorem 1, [161).

COROLLARY 1. [ILet (H,<,>) be a Hilbert space and let K < H be
a closed convex cone. If for a subset D < H the mappings, f,g:D » H
satisfy the following assumptions:

1°) f is k-Lipschitz with respect to g ,

2°) f 1is c-strongly monotone with respect to g ,

3°) K< g(D),
then the problem I.C.P.) has a solution and this solution is unique 1f g

18 one to one.

Proof. we observe that, by replacing the constant ¢ by a smaller

constant 01(0 <e, <¢) and noting that f is still c,-strongly monotone

with respect to g , we may find a real number T > 0 such that

Tk2<20<%—+‘rk2,

and we apply Theorem 2.

Indeed, as in the proof of Theorem 2 we consider the mapping

T(u) = PK(u-rh(u)) , where 0 < 1 < gg- and replacing ¢ by
k

01(0 < ¢, < e) such that Tk2 < 2 ¢, < min (%-+ rkZ, 2¢) , we obtain

1 1
that assumption 3°) of Theorem 2 is satisfied with f cl—strongly

monotone with respect to g .

COROLLARY 2. ©Let (H,<,>) be a Hilbert space and let K < H be a
closed cone. If f:K ~ H satisfies the following asswmptions:

1°) ‘ f is o-Lipschitz,

2°) f is VY¥-strongly monotone,

3°)  there exists a real number <t > 0 such that,

1

t02(2) < 2 w(t) < 1y 1020t) 5 vt <R, ,

then the problem E.C.P.(f,K) has a solution and this solution is unique.[]
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COROLLARY 3. If (H,<,>) s a Hilbert space, K < H a closed
convex cone and f:K +~ H satisfies the following assumptions:

1°) f 4is k-Lipschitz ,

2°) f 1is e-strongly monotone,
then the problem E.C.P.(f,K) has a solution and this solution is unique. [

COROLLARY 4. ILet (H,<,>) be a Hilbert space and let K < H be a
closed convex cone. If for a subset D < H and f,g:D+H the
following assumptions are satisfied:

1°) f 1is a VY-strongly monotone mapping with respect to g ,

2°) g 1is an expansive mapping, that is,

(Ax21) (Vxz,y € D) (llg(x)-g(y)ll = Mz-yl) ,

3°) Nf(x) - fy)l < lz-yliellglz) - gly)ll); Vz,yeD ,

4°) there exists a real number <t > 0 such that,

1

102(8) < 2u(t) < 14 wo(t) ; vteR, ,

5°) K < g(D),
then the problem (I.C.P.) has a unique solution. 0

We recall that a mapping h:D -~ H 1is said to be accretive if and
only if

lx-yl < f(x-y) + A(h(x) - h(y)ll ; for all x,yeD and all X 2 0 .

Also, U:D~+H is said to be pseudo-contractive if and only if, for
all x,yeD and all X > 0 we have ,

-yl < 1(21+X) (z-y) - (Ulx) - Uyl .
A classical result proved by Kato and Browder is the following.
If g =1d-U , where U:H ~ H , then the mapping U is pseudo-

contractive if and only if g is accretive.

COROLLARY 5. et (H,<,>) be a Hilbert space and let K < H be a
closed convex cone. For a subset D < H and f,g:D ~ H , suppose the
following assumptions are satisfied:

1°) f is V¥-strongly monotone with respect to g ,

2°) g-pId 1is accretive for some o >0 on D,

3°) Af(z)-Fy)l < lz-yllo(lglxt-g(y)l); Vz, y ¢ D

4°) K< g(D) ,

5°) there exists a real number 1 > 0 such that, r@Z(t) <

< 2 p®(t) < % + T@Z(t); Vte R+ s then the problem (I.C.P.)
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has a solution which is ynique if o 2 1.
Proof. As in our paper [ /4] we obtain,

-yl < pﬂlllg(x) -gly)l ; Vv, ye D,

and consequently from assumption 3° we deduce,

if(x) - Ffy)l < p_lllg(x) - gly)lelliglx) - gly)l)
and we can apply Theorem 2. (i}
Given f, g:D + H we say that f is o-monotone with respect to
g , if there exists a strictly increasing function a:[0, +«) > [0, +=)

with af(0) =0 and 1lim a(t) =+« such that,
ot

< flx)-fly), glx)-glyl)> 2 llg(x)-gyllallg(x)-gy)l); ¥ 2, y € D .
If g(x) = x , for every & ¢ D we say that f 1is a-monotone.

The following result is a direct conseguence of Luna's Theorem [Z7].

PROPOSITION 2. Let (H,<,>) be a Hilbert space and K c H a
elosed convex cone. Suppose h:K +~ H <is hemicontinuous and a-monotone.
Then there exists a unique solution of the problem E.C.P.(h,K). 0

Using this result we can prove the following proposition:

PROPOSITION 3. rLet (H,<,>) be a Hilbert space and K < H a
closed convex cone. If for a subset D < H the mappings f, g:D + H
satisfy the following asswmptions:

1°) f is a ¢-Lipschitz mapping with respect to g and

im ¢(r) #= ,
=0

2°) f is o-monotone with respect to g ,
3°) K cg(p),
then the problem (I.C.P.) has a solution.
Proof. we consider the problem E.C.P.(h,K) where the mapping
h:X —> H is defined as in the proof of Theorem 2 and we observe that all

the assumptions of Proposition 2 are satisfied. O
4. Another complementarity problem

We consider again a Hilbert space (H,<,>) and let K c H be a

closed convex cone.

https://doi.org/10.1017/50004972700026575 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700026575

303
Complementarity problems

Given a mapping f:K + H we consider in this section the

complementarity problem:

(C.P.): I

. * =
find z e K such that f(xo) € K* and << s f(xo)> 0

PROPOSITION 4. The problem (C.P.) has a solution if and only if

the mapping
d(x) = PK(x) - f(PK(x)); VaxekH

has a fixed point in H .
If z is a fixed point of ¢ then x, = PK(xo) 18 a solution

of the problem (C.P.).

Proof. Suppose that ¢ has a fixed point, for example, x = ¢(x0),
that is,
= - f(P )
z PK(xO) 1 Kﬂro))

We write z, = PK(xo) , which implies x, € K , and

€, =Ty - flwy), or z,-=z = flx,)

[\

From Proposition 1 we obtain <f(x,), y > 20 ; Vy € K, that is,
flx,) € x*

Using Proposition 1 again we have, <f(x,), x, > = 0 and hence &x,
is a solution of the problem (C.P.).

Conversely, suppose that x, € K is a solution of the problem
(c.p.).

We write X =Ly - f(x,) and from Moreau's decomposition Theorem

[ 28] (since &z, is a solution of the problem (C.P.J)), we deduce that,
PK(xO) = x, and finally
¢(x0) = PK(xo) - f(PK(xo)) =x, - flx,) = x s

that is, xo is a fixed point of ¢ . 0

Thus, we can solve the problem (C.P.) if we are able to find a
fixed point for the mapping ¢ .

This problem is not simple since many known fixed point theorems
are not applicable in this case.

We consider this problem, in this paper, in the particular case

when the cone K has the property that PK is monotone increasing with
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respect to the order defined by K , that is, for every x, y such that
< <
Z S,y , we have, PK(x) % PK(y).
Recently we studied this property in [21], [27].
Let (Rn,<,>) be the Euclidean space ordered by a closed convex

cone K .

we write X° = {y € A <, y> s0; ¥z e K} .

A closed proper and generating cone K in 7' ois said to be "thin"

if for any two vectors u and v on two different extreme rays of Ko
one has <u, v> <0 . [2]].
We proved the following result in [27]:

The metric projection PK onto the proper closed and generating

cone K E_Rn is monotone increasing if and only if X is thin.

As yet we do not know a similar result for infinite Hilbert spaces,
but we know several sufficient conditions.

We say that an ordered Hilbert space (H,<,>, K) is a Hilbert
lattice if and only if,

1°) H is a vector lattice , [29]

2°) (Y, yeHi|e| < |y| => |zl < lyl) .

We proved the following result in [22].
[0:9] If (H,<,>, K) is a Hilbert lattice, then PK is monotone

. . +
increasing and moreover, PK(x) =z .

(B) If (H,<,>,K) 1is an ordered Hilbert space, then the following

statements are equivalent:
* . . .
1°) X < X and PK is monotone increasing,
2°) H is a vector lattice and Hlxlﬂ = |lx| for all xz e H .

A convex cone K ¢ H is said to be polyhedral if there exists,

a,; 1 =1, 2, ..., n such that
K={zel|l<a,z><0;vi=1,2..,n}.

(c) If K ¢ H is polyhedral and @, aj> =0; ¥i #5 , then PK

is monotone increasing.
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1f (H, <, >) 1is a Hilbert space and K < H 1is a closed convex
cone, then we say that KX 1is sequentially regular if every increasing
ordered bounded sequence of K is convergent.

We can prove that every closed normal cone in H is sequentially
regular [17].

If Ac H is a subset, we denote by afA) the measure of non-
compactness of A defined by a(A) = inf {r>0|A can be covered by a
finite family of subsets of H of diameter <r} .

If Dc H is a subset, then a mapping f:D > H is said to be an

a-contraction if:

1°) f 1is a continuous mapping,

2°) ¥ A <D, A bounded ==> f(4)

3°) there exists ke (0,1) such that, for every bounded set

A c D we have a(f(A)) < ka(4) .

More generally, a mapping f:D ~ H is said to be condensing if:

1°) f 1is a continuous mapping,

2°) for every non-compact bounded set A < D we have

al(f(A)) < al4)

The next result on the complementarity problem uses the following
fixed point theorems.

THEOREM 3. [(Browderl. Let (E,| II) be a uniformly convex Banach
space and let C ¢ E be a bounded closed comvex subset. If T:C +C is

non-expansive then T has a fixed point. 0

THEOREM 4. (sadovski [33]). Let (E,ll |) be a Banach space and
let C < E be a closed bounded convex subset. If T:C+C 1is a
condensing mapping, then T has a fized point. |

THEOREM 5. Let (H, <,>) be a Hilbert space and let K < H be a
closed convex cone. Suppose that Py is monotone increasing and X
sequentially regular. Consider a mapping f:K +~ H of the form,

flx) = fl {x) +f2(x) +d, where fl 18 monotone decreasing, f2 monotone

increasing and deH .
Suppose the following assumptions are satisfied:
1°) there exist Ty, € H such that,

z ,y,1 = {xeﬂlxo sz<y } is bounded,
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2°) the sequences {xn}nEN s {yn}nelv defined by ,
€ 7= PK(xn) - fl(PK(xn)) - fZ(PK(yn)) -d;
Ype1 = Fx¥,) - F1(Pely,)) - folPylx, )) - d

satisfy the conditions, x <@ and y; 59, -
If the mapping, ¢(x) = PK(x) - fJ(PK(x)) - f2(PK(x)) -d 1is:

i1°) nonexpansive,

or 11°) condensing,

or 1i11°) continuous and dim H < + =,
then there exists a fiwed point x, of ¢ and the complementarity
problem C.P.(f,K) has a solution of the form PK(x*) where

x =X

" *Syn,forevery nebn.

Proof. wWe consider the mapping ¢:H4 - H defined by ¢(x) = PKLr) -

fj(PK(x)) - fé(PK(x)) - d; x € H and by recurrence we prove that

(a,):(¥n e W)(x, sz . Sy, ;% Y,/
Indeed, since for n = (0 we have
xosxlsyz syo,

supposing (al) true for »n we obtain,

x and

2 = Tnal 3 Ynra = Ynaa

Ty = Pgppq) = Fq By, 1)) = FolPyly, )0 -4

S Py(Yppg) = £y By W) ) ~ FoByl, 1)) ~d =y, q -
Hence, we have,

x sx, < ... £x £... < < ve. S < .
(7] 1 n yn yl yo

Moreover, we have,

(ag): ¢([xn,yn]) c [xn,yn] ; for every n e NV .

Indeed, let X € [xn,yn] be an arbitrary element. We have,

A PK(xn) - fﬁ(PKﬁxn) - fé(PK(yn))"d

IA

PK(ac) - fJ(PK(:c)) - fZ(PK(a:)) -d

IA

Puly) = £1(Byly ) - fo(Pple)) - d =y
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that is, ¢([xn,yn]) c [ 1ec [xn,yn] .

xn+1’yn+1

Since X is regular, there exist u = lim z s v = lim Y, and we
N t{zasd

have u < v .
Now, we remark that,

(a,): ¢(Clu,v]) < [u,v] .

3
Indeed, if we consider x € [u,v] we observe that, xn S x < yn N
for every nelN , which implies,
X 1= PK(xn) - fJCEKan)) - fé(PK(yn)) -d

IA

$(z) S Puly ) - f£(Ply )) ~ fp(Pulz ) - d
= yn+1 s mel ,
and hence, u < ¢(x) s v .

Finally, we observe that for [u,v] and ¢ we can apply Browder's
Theorem or Sadovski's Theorem or Brower's Theorem and the proof is
finished. 0

Using again the mapping ¢(x) = PKﬂx) - f(PK(x) we

obtain a very simple and nice result on the complementarity problem.

PROPOSITION 5. Let (H,<,>) be a Hilbert space and let K c H
be a closed convex cone. If f(x) = xz-h(x); ¥x ¢ K , where h:K-+H 1is a
contraction, then the complementarity problem C.P.(f,K) has a solution.
(This solution is different from zero if h(0)¢ - K*)

Proof. 1Indeed, if we consider the mapping, ¢(z) = PKCx) - f(F}(X));
for every x ¢ H , we obtain, ¢(x) = PK(x) - PKﬁx) + h(PKCx)) = h(PKCx)),

which is a contraction from H into # .

From Banach's contraction Theorem, ¢ has a fixed point xo € H

and I, = PK(xo) is a solution of the problem C.P. (f,K), 0
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