
JFP 12 (4 & 5): 435–468, July & September 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S0956796802004392 Printed in the United Kingdom

435

A typed representation for
HTML and XML documents in Haskell

PETER THIEMANN

Universität Freiburg, Germany

(e-mail: thiemann@informatik.uni-freiburg.de)

Abstract

We define a family of embedded domain specific languages for generating HTML and XML

documents. Each language is implemented as a combinator library in Haskell. The generated

HTML/XML documents are guaranteed to be well-formed. In addition, each library can

guarantee that the generated documents are valid XML documents to a certain extent

(for HTML only a weaker guarantee is possible). On top of the libraries, Haskell serves

as a meta language to define parameterized documents, to map structured documents to

HTML/XML, to define conditional content, or to define entire web sites. The combinator

libraries support element-transforming style, a programming style that allows programs to

have a visual appearance similar to HTML/XML documents, without modifying the syntax

of Haskell.

1 Introduction

HTML and XML (HTML 4.01, 1999; XML 1.0, 2000; XHTML 1.0, 2000) have

emerged as standard formats for the dissemination of information. HTML is pri-

marily targeted at delivering information via the Web. Besides some fixed means

for structuring documents, it includes facilities to control their layout on the screen.

In contrast, XML has been developed as an extensible format for tree struc-

tured documents and it does not include a layout semantics per se. In both cases,

trees are represented using strings with markup notation to delimit the individ-

ual nodes (elements in XML terminology) of the tree. Each element may have a

finite number of child elements and a finite number of attributes. For example,

<DL compact="compact">

<DT> DTD </DT>

<DD> Document Type Definition </DD>

</DL>

represents a tree with five elements. The root element has name DL, an attribute with

name compact and (string) value compact, and two child elements. The first child

has name DT and, as only child, the text DTD. The second child has name DD and also

a textual child. Each non-textual element starts with an opening tag, e.g. <DL>, and

ends with a closing tag, e.g. </DL>, where both tags carry the name of the element.

Early information sources in the Web were static, in the sense that a request for

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

436 P. Thiemann

a document resulted in delivering the contents of a file via the network. This simple

picture changed quickly and radically. Today’s information sources are dynamic and

highly configurable. As requests are often parameterized (by language preference,

image quality, and so on), servers must compose their responses from templates,

results of computations, and data base accesses.

Hence, there is an increasing demand for convenient ways of creating HTML

and XML documents dynamically. Unfortunately, many applications do so in an

inappropriate way by treating documents as strings. However, HTML and XML

have structural restrictions that are easily violated using a string-based approach.

First, documents must be well-formed, which means that opening and closing tags

match. Moreover, documents must be valid, which means that they conform to a

DTD (document type definition). A DTD governs the nesting of tree elements. For

example, the following part of HTML’s DTD governs the contents of DL elements:

<!ELEMENT DL - - (DT | DD)+>

It specifies that the children of a DL element must be a non-empty sequence of

either DT or DD elements. The content description (DT | DD)+ is essentially a regular

expression.

The DTD also governs the set of attributes that each element may assume.

For example, here is the declaration of the compact attribute for the DL element

(excerpted from the HTML DTD):

<!ATTLIST DL compact (compact) #IMPLIED>

It tells us that a DL element can take an attribute named compact. The value of

this attribute must be the string compact, but the attribute needs not be present

(expressed by #IMPLIED).

In a valid document, each element carries at most one occurrence of each declared

attribute. An attribute declaration may require that certain attributes be present and

it can impose type restrictions on the value of the attribute.

Early browsers and HTML processors where fairly lax about these restrictions

and corrected many of the blunders automatically. Such an approach was feasible

because HTML is defined by one fixed DTD. In addition, HTML’s DTD is rather

permissive because it was created after the fact. With XML, each organization

can define its own DTDs for its applications and validating XML processors (for

example, browsers) must report violations of the DTD and may reject invalid

documents. Hence, it is important that generated documents conform to their stated

DTD.

It is easy to construct libraries that support the generation of well-formed HTML

and XML. It is more demanding to support the generation of valid HTML and

XML. The latter is the design goal of the libraries that we present in this work:

Whenever the generating program is type correct,

the generated document should be valid.

The main contribution of this work is the demonstration that it is possible to

create practically useable Haskell libraries that achieve this goal by exploiting recent

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 437

extensions to its type system. For pragmatic reasons, we are offering a number of

alternatives with the following weaker guarantees:

• Well-formedness In a well-formed document, opening and closing tags match

and attributes have the form name="value", where value is an arbitrary

string.

• Weak validity A document is weakly valid if it is well-formed and valid with

respect to a flattened version of its DTD. To obtain the flattened version of

a DTD, each content description c is replaced by (L1 | ...| Ln)* where L1,

. . . , Ln are the distinct element names that occur in c.

Attributes are only admissible if they are specified in the DTD. The types of

the attribute values are also checked, but it is not checked whether required

attributes are present, nor whether attributes are given multiple times.

• Elementary validity A document is elementary valid if it is weakly valid and if

the contents of each element satisfies the content description given for it.

• Validity A document is valid if it is elementary valid and all attribute

occurrences conform to the DTD (XML 1.0, 2000).

We will sometimes say full validity instead of just validity to distinguish it from the

weaker notions.

Our approach builds on a generic representation for XML elements. The repre-

sentation ensures well-formedness and it comes with a pretty-printer that renders

documents in XML syntax. We wrap this representation in three differently typed

combinator libraries that guarantee weak, elementary, and full validity, respectively.

Each library models the information from the DTD in Haskell’s type class system,

relying on multi-parameter type classes (Peyton Jones et al., 1997) and functional

dependencies (Jones, 2000), in particular.

All typed libraries wrap the underlying generic representation of an XML element

into a value of type ELT t, where t is a tag type which determines the name of the

represented element. The only operation on values of type ELT t is the function

add :: AddTo s t => ELT s -> ELT t -> ELT s

add elem child = ...

which adds a child of type ELT t to an element of type ELT s. The predicate

AddTo s t in the type of add refers to a two-parameter type class. It ensures that

the new child is admissible according to the DTD. The type class AddTo and the tag

types both depend on the DTD and they are generated from it:

• for each element name t, generate a tag type t (by a slight abuse of language,

we sometimes use the element name for the tag type, and vice versa);

• for each pair of tag types s and t, where the name t occurs in the content

description for s elements, generate an instance declaration instance AddTo

s t (this achieves weak validity).

For instance, according to the HTML DTD, the tag type for the DL element is DL,

the type for DL elements is ELT DL, and the instance declarations concerning DL

elements and its children are

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

438 P. Thiemann

instance AddTo DL DD

instance AddTo DL DT

They express that add may be used at types

add :: ELT DL -> ELT DD -> ELT DL

add :: ELT DL -> ELT DT -> ELT DL

(among others defined by further instance declarations). Hence, both DD and DT

elements are allowed as child elements of a DL element.

Building on this framework, the library defines, for each element name t, an

element constructor, i.e. a function that creates an empty t element. There is also a

higher-order version of the element constructor for t that takes as a parameter an

element transformer function of type ELT t -> ELT t, which adds children to the

t element, and that returns another element transformer of type ELT s -> ELT s,

which adds the constructed t element to an s element. The resulting higher-order

element constructor has a type of the form

AddTo s t => (ELT t -> ELT t) -> (ELT s -> ELT s)

For instance, the higher-order constructors for DL, DD, and DT elements are

dl :: AddTo s DL => (ELT DL -> ELT DL) -> ELT s -> ELT s

dd :: AddTo s DD => (ELT DD -> ELT DD) -> ELT s -> ELT s

dt :: AddTo s DT => (ELT DT -> ELT DT) -> ELT s -> ELT s

The higher-order constructors enable element-transforming style, a programming style

which treats single elements, attributes, and groups of elements and attributes in a

uniform way. Element-transforming style is the preferred way of using the library

because it avoids some typing problems (see section 2.2.1) and also leads to a natural

appearance of document generators. For example, the expression

dl (attr COMPACT "compact" ##

dt (text "DTD") ## dd (text "Document Type Definition"))

generates the example document at the beginning of this section (the infix function

composes element transformers). The function attr inserts the attribute COMPACT.

It will be discussed in section 2.2.4.

We develop the typed encodings with example HTML documents and concentrate

on weak validity, since our experience indicates that weak validity gives sufficient

guarantees in practice. Later on, we generalize to XML by specifying a translation

from an XML DTD to a specialized Haskell module. We also consider strengthening

the guarantees of the library for elementary and full validity. By choosing other

translations, the generated library enforces weak, elementary, or full validity. It is

not possible to achieve full validity for HTML 4.01 because it is defined by an SGML

DTD which relies on features not present in XML. Still, we obtain a very good

approximation. However, full validity can be achieved for XHTML. See section 6.3

for a detailed discussion.

While the encodings for weak validity and elementary validity are practically

useful for generating parameterized documents, the encodings for full validity are

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 439

too restrictive for that purpose. Still, they demonstrate that a Haskell compiler may

be used as a validation tool for XML documents.

Our libraries are being used to generate Web pages offline and to construct

CGI programs (WASH, 2001). The current version of the library, generated for

HTML 4.01 from the official DTD (HTML 4.01, 1999), is available from the

author’s Web page1.

1.1 Related work

In previous work (Thiemann, 2000) we made a first attempt at the library presented

here. The previous implementation is less flexible and unnecessary complicated.

MAWL (Atkinson et al., 1997) is one of the first languages for generating HTML

documents. It relies on first-order templates, where holes can be filled with data

items, but not with other document templates. There is a repetition construct, which

can fill a hole repeatedly with the elements of a list.

MAWL has been refined in a number of ways by Sandholm & Schwartzbach

(2000), who define a language and a type system for dynamically composable

documents with higher-order templates from scratch. They define an inference

engine based on standard flow analysis techniques and prove its soundness. Their

type system provides form-specific type information and it ensures that composition

does not destroy the document structure. Our libraries also provide for dynamically

composable documents. While we do not provide form-specific information, we

guarantee validity of the generated documents in various degrees. Furthermore, our

library is integrated into Haskell.

Subsequent work by Brabrand and others (2001) addresses the issue of validity

using a type system.

Wallace & Runciman (1999) describe Haskell libraries for parsing, unparsing, and

processing XML. They have two different approaches for processing XML. The

generic approach uses one fixed data type to represent documents and it comes

with a powerful set of combinators for processing documents. While this library is

suitable for document generation, it only guarantees well-formedness of the output.

In contrast, our library provides different degrees of validity with respect to a given

DTD.

In their second approach, Wallace and Runciman transform an XML DTD into

a number of specialized Haskell data types and provide functions for parsing from

and unparsing to XML syntax. The actual functions to process elements of these

data types must be written from scratch; the document-processing combinators

are not applicable. This approach guarantees that the resulting XML document

is valid by giving up a lot of flexibility in processing. In contrast, our approach

uses an underlying generic representation and employs the type system for further

guarantees.

Some libraries for CGI programming (Hanus, 2000; Hughes, 2000; Meijer, 2000)

1 http://www.informatik.uni-freiburg.de/~thiemann/haskell/WASH/

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

440 P. Thiemann

rely on generic representations, similar to the one chosen by Wallace and Runciman,

to generate their output. These libraries make no guarantees beyond well-formedness.

XDuce (Hosoya & Pierce, 2000; Hosoya et al., 2000) is a typed first-order language

for processing XML documents. Its type system is based on regular expressions,

which describe the nesting of elements, and subtyping. The element part of a DTD

can be translated to XDuce types without changing its semantics.

A companion paper (Hosoya & Pierce, 2001) defines a pattern-matching facility

which allows for regular expressions in patterns. The typing discipline (regular

expression types) provides precise typings for pattern variables and guides the

checks for redundant patterns and exhaustiveness of pattern matching.

Type-indexed rows (Shields & Meijer, 2001) form the basis of the language XMλ,

a higher-order functional language for typed processing of XML documents. Type-

Indexed Rows (TIR) generalize record typing by indexing a type not with a set

of field names, but rather with a set of types. TIRs are well suited for XML

document processing because they can express untagged unions (by using a TIR to

generate a sum type) as well as unordered sequences (by using a TIR to generate

a “record” type). Like XML, TIRs require one-unambiguous content descriptions

(Brüggemann-Klein & Wood, 1998).

Both approaches, XDuce and XMλ, are applicable to document generation as

a special case of document transformation. In comparison to either approach,

our libraries are specialized to a particular DTD, they do not consider the typed

inspection of documents, and their types fit into Haskell’s type system, so that it is

not necessary to learn a new type system.

There are quite a few approaches to XML query languages that are loosely related

to our work. We just pick two illustrative examples. YAT (Cluet et al., 1998) is a

system for building mediators. A mediator performs transparent data conversion

between different formats. YAT consists of a number of converters from external

formats into an internal, tree-based format. A particular feature of YAT is its

transformation language YATL that works on this internal format. It is a pattern-

based language with the distinctive feature that programs may be instantiated

according to a particular subject pattern. Programs may also be composed. YATL

has a type system whose primary purpose is to check that composition is safe.

Generated trees conform to the patterns that generate them, and these output

patterns can encode similar information than a DTD.

XML Query Algebra (Fernandez et al., 2001) is a typed XML transformation lan-

guage. It works on a generic representation of XML and enforces further guarantees

through the type system. The type system is closely related to XDuce and is largely

compatible with XML Schema (World-Wide Web Consortium, 2000a; World-Wide

Web Consortium, 2000b).

In the logic programming world, there are several toolkits for generating HTML

pages. The PiLLoW toolkit (Cabeza & Hermenegildo, 1997) allows for easy cre-

ation of documents, including CGI functionality. It is widely used to connect logic

programs to the WWW. LogicWeb (Loke & Davison, 1996) offers an even tighter

integration which includes client-side scripting. None of these offers advanced typing

features.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 441

1.2 Overview

In section 2, we first introduce the main concepts and then work through three

simple examples to explain the programmer’s view of the library. Section 3 gives a

brief introduction to document type definitions (DTDs). Then, section 4 deals with

the implementation of the library for the special case of weak validity. Starting from

the underlying, untyped representation, we move on to define the typed wrapper on

top of the untyped layer. Finally, we discuss the type classes that determine how

elements and attributes may be put together. Section 5 defines the translation from

a DTD to an instance of the library for weak validity. In section 6, we discuss the

progression from weak validity to full validity (for XML) and explain the problem

with modeling full validity for HTML in Haskell’s type system. Section 7 concludes.

In the paper, we assume some familiarity with Haskell, HTML, and XML.

Strictly speaking, the libraries are not valid Haskell98 programs due to the use of

multi-parameter type classes (Peyton Jones et al., 1997) and functional dependencies

(Jones, 2000) (only for elementary and full validity). However, a number of Haskell

implementations support this extension.2

2 Examples

After a brief overview of the functionality of the HTML library, we work through

some examples. The first example is a Hello World document. For pedagogical rea-

sons, the example does not use the higher-order element constructors mentioned in

the introduction. In the next section, when we move on to parameterized documents,

we point out the deficiencies of using plain element constructors and introduce

element-transforming style. The second example describes a prototype implementa-

tion of a simple hypertext system.

2.1 Hello world

In this section, we construct a generator for a static document:

<html><head><title>Hello World!</title>

</head>

<body><h1>Hello World!</h1>

</body>

</html>

The basic pattern for constructing a document is to create an empty element and

then add child elements to it. The function

make :: TAG t => t -> ELT t

maps a tag type t to an empty element with the corresponding name. The type

of an element ELT t indicates its name t. The predicate “TAG t =>” restricts the

2 In particular, the code in this paper has been tested with ghc version 5.00 and the February 2001
release of the Haskell interpreter Hugs in -98 mode. The storage space for instances in Hugs has been
increased to 10000 (redefine NUM INSTS in src/prelude.h).

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

442 P. Thiemann

possible instances of t to elements of the type class TAG. A type class is a set of types

that permit a particular set of operations, the member functions. In this case, the

type class TAG characterizes the set of admissible tag types and make is its member

function.

For each element name Tag of HTML, there is a data type Tag with a single

element Tag and each of these types is an instance of TAG. Hence, the expression

HTML has type HTML and the predicate TAG HTML is satisfied so that the expression

make HTML

has type

ELT HTML

and stands for the document

<html></html>

The function text’ :: String -> ELT CDATA is the constructor for textual ele-

ments. The type CDATA is the tag type for these elements. Hence,

hwtext :: ELT CDATA

hwtext = text’ "Hello World!"

constructs the textual element used in the example.

The next task is the addition of a child element to an element. The function

add :: AddTo s t => ELT s -> ELT t -> ELT s

serves this purpose. The parent element has type ELT s whereas the child element

has type ELT t. The two-parameter type class AddTo implements a binary relation

between the name t of a child element and the name s of its parent. An instance

declaration states that a particular pair of types belongs to AddTo. For example, the

declarations

instance AddTo TITLE CDATA

instance AddTo H1 CDATA

indicate that

make TITLE ‘add‘ text’ "Hello World!"

make H1 ‘add‘ text’ "Hello World!"

are both acceptable expressions of type ELT TITLE and ELT H1, respectively3.

Consulting the DTD assures us that that following combinations must also be

acceptable.

instance AddTo HEAD TITLE

instance AddTo HTML HEAD

instance AddTo BODY H1

instance AddTo HTML BODY

Hence, the complete code for our example is

3 In Haskell, an identifier in grave accents (like ‘add‘) is an infix operator.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 443

make HTML

‘add‘ (make HEAD ‘add‘ (make TITLE ‘add‘ hwtext))

‘add‘ (make BODY ‘add‘ (make H1 ‘add‘ hwtext))

This expression has type ELT HTML and it stands for the document shown at the

beginning of this section.

If there is no instance declaration for a particular combination of element name

and child element name, then the type checker prevents us from adding the child

element. For example, it is illegal to put a header H1 element into a title element:

> make TITLE ‘add‘ make H1

ERROR - Unresolved overloading

*** Type : AddTo TITLE H1 => ELT TITLE

*** Expression : add (make TITLE) (make H1)

2.2 Parameterized documents

Although direct use of make and add as in the preceding subsection is sufficient to

demonstrate the basic features of the library, their use is cumbersome and has severe

limitations. In this subsection, we identify the limitations and propose a solution

that works well for many parameterized documents.

2.2.1 Limitations of simple element construction

Suppose we want to generate the body of a document with a parameterized function

that adds a fixed header and footer:

genBody’ contents =

make BODY ‘add‘ (make H1)

‘add‘ contents

‘add‘ (make ADDRESS)

This function type-checks, but the inferred type is unfortunate news:

genBody’ :: AddTo BODY t => ELT t -> ELT BODY

Why is it unfortunate? Because the parameter contents is restricted to exactly one

element. It cannot be empty and it cannot stand for more than one element. The

straightforward idea of “somehow” passing a standard list of elements fails because

standard lists are homogeneous. In a homogeneous list, each element has the same

type. Such a restriction rules out a list containing both, a textual element of type ELT

CDATA and a definition list of type ELT DL. Hence, standard lists are not suitable for

grouping elements.

A similar problem occurs when we consider conditional content.

mytext’ italic =

if italic then make I ‘add‘ text’ "mytext"

else text’ "mytext"

In this case, the type checker rejects the definition. The True-branch of the condi-

tional has type ELT I whereas the False-branch has type ELT CDATA. Hence, a type

clash results.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

444 P. Thiemann

We solve the above problems by proposing not to use the constructors directly,

but rather wrap the them into higher-order functions. The resulting element-trans-

forming style of programming yields a satisfactory and natural programming model

for document generators.

2.2.2 Element-transforming style

The idea of element-transforming style is to never return elements directly but rather

deal with them indirectly using transformer functions. Hence, an element constructor

takes as a parameter a transformer that modifies the constructed element and returns

as its result a transformer that adds the constructed element to an enclosing element.

For example, the combinator for TITLE is

title :: AddTo s TITLE => (ELT TITLE -> ELT TITLE) -> (ELT s -> ELT s)

that is, it maps a transformer for TITLE elements to a transformer for s elements,

provided that the s element admits the addition of TITLE.

The combinator for textual elements is simpler, since text cannot be transformed:

text :: AddTo s CDATA => String -> (ELT s -> ELT s)

Let us now first review our “Hello World” example in this style, and then check

that element-transforming style addresses the two problems mentioned above. The

revised expression

html (head (title (text "Hello World!"))

body (h1 (text "Hello World!")))

type checks with type AddTo s HTML => ELT s -> ELT s. The code is visually

more appealing than the previous attempt and arguably more concise than the

HTML source generated from it.

It remains to explain the combinator ##. The argument of an element constructor

is a transformer of the element. An addition of a child element is an elementary

transformation. If we want to add more children, then we need to compose trans-

formations using ##. Since transformations are just functions, composition is just

(forward, diagrammatic) composition of functions:

f ## g = \x -> g (f x)

Whenever we do not want to transform an element, we plug in the empty

transformation, the identity function:

empty x = x

It turns out that element-transforming style gives us a powerful means to deal with

sequences of elements (and attributes, as we will see). Intuitively, each constructor

returns a singleton sequence, empty returns an empty sequence, and ## concatenates

sequences. Due to the implementation by function composition, concatenation is an

associative operation that runs in constant time.

The ability to talk about sequences of elements solves our problem with the

parameterized document:

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 445

genBody contents =

body (h1 empty ## contents ## address empty)

The function genBody has type (AddTo s BODY) => (ELT BODY -> ELT BODY) ->

ELT s -> ELT s. Hence, contents can assume an arbitrary sequence of elements,

provided that each participant of the sequence is a transformer for BODY. All three

expressions below are legal and have type (AddTo s BODY) => ELT s -> ELT s.

genBody empty

genBody (text "Heureka!")

genBody (h2 empty ## h2 empty)

Element-transforming style also solves the problem with conditional content: the

function mytext defined by

mytext italic =

if italic then i (text "mytext")

else text "mytext"

has type (AddTo s I, AddTo s CDATA) => Bool -> ELT s -> ELT s, which ex-

presses that the enclosing element must be ready to accept an I element as well as

a CDATA element.

2.2.3 The Toplevel Element

There is no direct access to the constructed elements anymore. Hence, the library

provides a combinator

build_document :: (ELT HTML -> ELT HTML) -> ELT DOCUMENT

to construct a toplevel element. The expression build document tr creates an

empty HTML element, applies the HTML transformer tr to it, and returns a data

structure that represents an entire HTML document, including header information.

For example, pretty-printing the value of

build_document (head (title (text "Hello World!"))

body (h1 (text "Hello World!")))

yields

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html><head><title>Hello World!</title>

</head>

<body><h1>Hello World!</h1>

</body>

</html>

2.2.4 Attributes

Attribute names are treated in the same way as element names. For each attribute

name, there is a one-element type Attr with element Attr. Each of these types is

an instance of a type class ATTRIBUTE. For example, the href attribute gives rise

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

446 P. Thiemann

to the type HREF with element HREF. Similar to the relation between tag types and

elements, the type HREF only provides the name of the attribute. The actual attribute

instance (a name-value pair) is represented by a value of type ATTR HREF.

Similar as with elements, there is a direct function to add an attribute to an

element.

add_attr :: AddAttr t a => ELT t -> ATTR a -> ELT t

The type class AddAttr t a used in its type determines whether a t element admits

an attribute with name a. For example, the declaration

instance AddAttr A HREF

determines that an HREF attribute is admissible for an A element.

Clearly, we want to group attributes in the same way as we have worked it out for

elements above. Hence, we proceed immediately to the element-transforming style

definition of the attribute constructors.

attr :: (AttrValue a v, AddAttr t a) => a -> v -> ELT t -> ELT t

The first parameter (of type a) is the attribute name. The second parameter (of

type v) is the attribute value. The result is an element transformer for elements with

name t, provided that

• AddAttr t a: the attribute name is admissible for a t element and

• AttrValue a v: the type of the attribute value is admissible for this attribute

name.4

For example, the expression attr HREF "mailto:thiemann@acm.org" evaluates to

an element transformer of type AddAttr t HREF => ELT t -> ELT t.

Again, element-transforming style makes it easy to define parameterized attributes.

hlink :: (AddTo t A, AttrValue HREF v)

=> (ELT A -> ELT A) -> v -> ELT t -> ELT t

hlink body url =

a (body ## attr HREF url)

The definition of hlink shows that the attributes for an element can appear any-

where in the transformer for this element. Supplying them through transformers

immediately enables grouping of attributes and it frees us from supplying extra ar-

guments to the constructors or having special attribute-sensitive constructors, which

is the approach commonly taken in HTML libraries (Meijer, 2000; Hanus, 2001).

2.3 A larger example: simple hypertext

In this subsection, we consider the translation of a simple hypertext system to

HTML. The system structures a text as a set of nodes which are interconnected by

hyperlinks. Each node has a unique name, by which it can be referred to, and (in our

simplified version) three links. The links point to the next, previous, and up nodes,

4 This pattern should be clear by now, so we defer the explanation of AttrValue to section 4.5.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 447

that is, the next or previous one on the same hierarchical level of nodes, whereas the

up link points to a node higher up in the hierarchy. Each of these nodes is rendered

to HTML in essentially the same way.

The datatype for a node has six fields.

data Node =

Node String -- name of node

[NodeContent] -- contents of the node

[Node] -- list of children

-- administrative fields (filled in automatically):

String -- name stub for generated files

Int -- unique number of node

[Int] -- section counter

type NodeContent = String

The author of such a structure only has to specify the contents of each node

and to list the children. The function node2html below translates one node into the

corresponding HTML data structure.

node2html :: Node -> Maybe Node -> Maybe Node -> Maybe Node -> ELT DOCUMENT

node2html (Node name contents children _ _ count) m_next m_previous m_up =

html_doc title

(maybe_link "Next" m_next

maybe_link "Previous" m_previous

maybe_link "Up" m_up

hr empty

pars contents

my_menu node_ref children)

where

title = show_sec_count count ++ name

The function html_doc takes a title String and an element transformer for a <body>

element to create a simple standard document structure. In the body, there are three

hyperlinks labeled Next, Previous, and Up created by maybe_link. The maybe_link

function takes a label of type String and an optional node. If there is a node present,

then maybe_link creates a labeled link. Otherwise, the label appears as plain text.

Next there is a horizontal rule, followed by the text structured in paragraphs (pars

contents) and finally a menu of the children (my menu node ref children), where

node ref creates a link to a node. Of these, the functions my menu and pars are

probably the most interesting ones.

my_menu :: (AddTo MENU a, AddTo b MENU) =>

(item -> ELT LI -> ELT a) -> [item] -> ELT b -> ELT b

my_menu make_ref [] =

empty

my_menu make_ref children =

menu (foldr add_node empty children)

where

add_node node items = li (make_ref node) ## items

The function my menu takes as arguments a function make ref that constructs a

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

448 P. Thiemann

link from an item and a list of menu items. If the list of items is empty, then no

element is constructed. Otherwise, my menu creates a <menu> that contains one

element with a link for each item.

The pars function takes a list of strings and transforms it into a sequence of

paragraphs.

pars :: AddTo a P => [String] -> ELT a -> ELT a

pars = (foldr (##) empty) . (Prelude.map (p . text))

Each input string is first transformed by text into a textual element, which is

wrapped into a paragraph by p. The function Prelude.map is the usual map

function for lists.5

The complete implementation only requires some simple auxiliary functions and

a main function tree2html :: Node -> Maybe Node -> String -> IO () which

takes a Node data structure, an optional reference to an enclosing document, and a

filename stub into an IO action. Executing this main function results in automatically

assigning a filename to each node, translating it to HTML, and writing the resulting

HTML source texts to the respective files. The code is available through the WASH-

web page (WASH, 2001).

3 Document Type Definitions

The validity of a particular combination of an element name and a child element

name as well as of an element name and an attribute is governed by a DTD

(document type definition). This section considers a subset of SGML-DTDs since

widely used versions of HTML are defined in this way. Dealing with XML-DTDs

is analogous.

Basically, a DTD contains two kinds of entries, element definitions and attribute

definitions6. An element definition defines an element name and declares its child

elements using a content description. An attribute definition defines the admissible

attributes for an element, their types, and sometimes their default values.
A typical element definition has the form

<!ELEMENT DL - - (DT | DD)+>

where DL defines the name of the element, the two dashes state that both the opening

tag and the closing tag must be written (an O indicates that they are optional), and

the (DT | DD)+ is the content description. The latter specifies the names of the child

elements. In this case, the child elements may have names DT or DD, and at least one

of them must be present. The content description is a restricted regular expression

using the operators , for sequencing, | for alternative, * for repetition, + for one

or more repetitions, and ? for one or zero occurrences.7 Also, EMPTY is a content

5 The qualification by the module name Prelude. is necessary because the library also defines a function
map, which implements the HTML element map. The other occurrences of dots . are infix operators
that denote (backwards) function composition.

6 We ignore the abbreviation and structuring mechanisms of entities and conditional sections, since they
can be eliminated by a pre-pass.

7 SGML has an additional operator a & b, which denotes an arbitrary interleaving of a and b.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 449

<!ATTLIST OL

type CDATA #IMPLIED -- numbering style --

compact (compact) #IMPLIED -- reduced interitem spacing --

start NUMBER #IMPLIED -- starting sequence number --

>

Fig. 1. Definition of attributes for OL (excerpt).

description, which is self-explanatory. The restriction on regular expressions is that

they must be one-unambiguous (Brüggemann-Klein & Wood, 1998).

Figure 1 shows a typical attribute definition from the HTML4.01 DTD. It declares

admissible attributes and enforces a simple type discipline on attribute values. In

the definition

• OL is the name of the element to which the attributes belong,

• type, compact, and start are the names of attributes,

• CDATA, (compact), and NUMBER specify their respective types: a string, an

enumeration type with one element compact, and a number, and

• #IMPLIED specifies that the attribute is optional and has no default value.

Alternatively, attributes can be #REQUIRED or this column can provide a

default value.

The text between the pairs of dashes -- is a comment.

4 Implementation

In this section, we explain the implementation of the library for weak validity. We

start out with the underlying representation for well-formed HTML documents and

build a typed layer on top of it. The main tools for building the typed layer are type

classes and phantom types (parameterized types where the type parameter does not

appear on the right side of the definition).

4.1 Data representation

A generic representation for XML elements must define two abstract datatypes of

attribute instances and elements.

data ATTR_ -- abstract

attr_ :: String -> String -> ATTR_

attr_name :: ATTR_ -> String

attr_value :: ATTR_ -> String

A value of type ATTR_ is an attribute instance. It is created from two strings,

the attribute name and its value, by the constructor attr_. The selector functions

attr_name and attr_value extract the respective components, again.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

450 P. Thiemann

data ELEMENT_ -- abstract

element_ :: String -> [ATTR_] -> [ELEMENT_] -> ELEMENT_

empty_ :: String -> [ATTR_] -> ELEMENT_

cdata_ :: String -> ELEMENT_

doctype_ :: [String] -> [ELEMENT_] -> ELEMENT_

add_ :: ELEMENT_ -> ELEMENT_ -> ELEMENT_

add_attr_ :: ELEMENT_ -> ATTR_ -> ELEMENT_

putElement :: ELEMENT_ -> IO ()

The datatype ELEMENT_ models elements. It has four constructors. The first one,

element_ creates an element from an element name (a string), a list of attribute

instances, and a list of child elements. The empty_ constructor is intended to model

HTML elements like <hr> whose content description is empty and whose closing

tags may be omitted. Elements constructed with empty_ are only printed differently

to elements constructed with element_.8 The cdata_ constructor creates a textual

element from a string, and the doctype_ constructor creates the toplevel element of

a document.

The expression add el child adds the element child to the list of ele-

ments of el . The expression add attr el at adds the attribute instance at

to the list of attributes of element el . Finally, the expression putElement el re-

turns an IO action that prints the element el in HTML syntax. For example,

element_ "DL" []

[element_ "DD" [] [cdata_ "Document Type Definition"],

element_ "DT" [] [cdata_ "DTD"]])

prints as

<DL><DT>DTD</DT>

<DD>Document Type Definition</DD>

</DL>

The low level representation keeps the list of child elements in reverse order so

that the add operation runs in constant time.

4.2 Types for attributes

The typed layer for attributes consists of a phantom type for attribute instances, a

number of singleton types that stand for attribute names, a type class that collects

these singleton types, and a type class that enforces a simple type discipline on the

values of an attribute.

The phantom type is realized by

data ATTR a = ATTR { unATTR :: ATTR_ }

8 This constructor will probably be phased out in the transition to XML due to XML’s shorthand
notation for empty elements <hr/>.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 451

which defines the constructor ATTR and the selector unATTR. The intention is that

the type variable, a, is only ever instantiated by types that stand for attribute names.

Later on, we use this typing to relate admissible attributes to elements using the type

class AddAttr. The attribute-name types are collected in the type class ATTRIBUTE:

class Show a => ATTRIBUTE a where

show_name :: a -> String

--

show_name = map toLower . show

The first line says that every member type of ATTRIBUTE must belong to the

predefined class Show9. Every type t that belongs to Show has a show function of

type t -> String. The default implementation of ATTRIBUTE’s member function

show name is to convert the attribute name to a string and then convert this string

to all lower case.

For example, the declarations for the attribute TYPE of (cf. figure 1) are as

follows:

data TYPE = TYPE deriving Show

instance ATTRIBUTE TYPE

The first line constructs a one-element type TYPE and instructs the compiler to

automatically make it into (“derive”) an instance of Show.10 The second line makes

TYPE an instance of the ATTRIBUTE class. Since there is no overriding definition for

show_name, its default definition (from the class declaration) is used for TYPE.

As explained in section 3, a DTD enforces a simple type discipline on the attribute

values. Consequently, we provide a type class AttrValue that relates an attribute-

name type to the types of its potential values. The class AttrValue has no member

functions and is just used to restrict the type of a function mkAttr that takes an

attribute name and a value and constructs an attribute of the right type. The type

of the attribute name, a, must be a member of ATTRIBUTE and the type of the value,

v, must be a member of Show, so that it can be converted to a string.

class (ATTRIBUTE a, Show v) => AttrValue a v

mkAttr :: AttrValue a v => a -> v -> ATTR a

mkAttr a v = ATTR (attr_ (show_name a) (show v))

This typing in connection with the instance declarations for AttrValue ensures that

only values of the correct type can be adopted for attributes.

For example, the attributes specific to (cf. figure 1) require the following

instance declarations:

instance AttrValue TYPE String

instance AttrValue COMPACT COMPACT_compact

instance AttrValue START Integer

9 See section 6.3.3 of Haskell98 (1998).
10 The deriving mechanism is only available for a few predefined classes.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

452 P. Thiemann

The type COMPACT compact has just a single element, which shows as compact. With

the above definitions in place, we can write code like this:

mkAttr TYPE "i" :: ATTR TYPE

mkAttr COMPACT COMPACT_compact :: ATTR COMPACT

mkAttr START (42::Integer) :: ATTR START

4.3 Types for elements

The typed representation of elements introduces another phantom type.

data ELT t = ELT { unELT :: ELEMENT_ }

In addition, there is one data type (tag type) for each HTML element name. These

types are the candidates for the parameter t of ELT. For example, the tag types for

<dl>, <dd>, and <dt> are defined thus

data DL = DL deriving Show

data DD = DD deriving Show

data DT = DT deriving Show

Every tag type is a member of the type class TAG.

class Show t => TAG t where

make :: t -> ELT t

show_tag :: t -> String

--

make = make_standard

show_tag = map toLower . show

make_standard t = ELT (element_ (show_tag t) [] [])

make_empty t = ELT (empty_ (show_tag t) [])

The member function make of this class maps a value of type t to a “wrapped”

element of type ELT t. This way, the type of a wrapped element reflects its name. The

default implementation of make, make_standard, uses the element_ constructor.

Elements declared as empty in the DTD override make with make_empty in their

instance declaration. Elements constructed with make have neither children nor

attributes, initially.

4.4 Adding elements

This section considers the addition of a weakly valid child element to a weakly valid

element. Such an addition preserves weak validity if the name of the child element

is mentioned in the content description of the parent element. The type checker can

guarantee preservation because the name of each element is exactly the tag type in

the type of an element, ELT t.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 453

4.4.1 Relating elements to children

The library models the relation between the name of an element and the name of a

child element by the two-parameter type class AddTo.

class (TAG s, TAG t) => AddTo s t

add :: AddTo s t => ELT s -> ELT t -> ELT s

add (ELT e_) (ELT e’_) =

ELT (add_ e_ e’_)

In AddTo s t the s is the name of the parent element and t is the name of the child

element. The function add unwraps both elements, adds the “raw” child element

e’_ into the raw element e_, and wraps the result back into an element of type ELT

s. The type class AddTo merely restricts the polymorphic type of add.

Each instance of AddTo specifies that a certain parent element accepts a certain

child element. For example,

instance AddTo DL DT

instance AddTo DL DD

state that the only allowed contents of a definition list (<dl>) are <dt> (term in

definition list) and <dd> (definition of a term) elements. It corresponds directly to

the HTML DTD (document type definition) which defines the dl element like this:

<!ELEMENT DL - - (DT | DD)+>

Actually, this phrase says a little more than our instance declarations because it

insists that each <dl> contains at least one <dt> or <dd>. We’ll return to that point

later in Section 6.

4.4.2 Element transformers

In Sec. 2.2.1, we have seen that direct programming with make and add is awk-

ward and limiting. Hence, we introduced higher-order element constructor functions

that yield element transformers. The implementation of these higher-order element

constructors is straightforward. Here is the implementation for the dl element (all

others are analogous).

dl :: AddTo s t => (ELT DL -> ELT t) -> ELT s -> ELT s

dl f elt = elt ‘add‘ f (make DL)

The first argument, f, of dl is a transformer for the newly created <dl> element. The

second argument, elt, is the element, in which the transformed <dl> element will

be inserted. The predicate AddTo s t originates from the use of the add function

and indicates that the result, t, of transforming the new <dl> element is suitable for

putting it into the enclosing elt of type ELT s.

The type of dl is a little bit more general than necessary because the transformer

function may change the type of the newly generated element from ELT DL to ELT

t. In most cases, the type parameter t will be equal to DL. Later, in section 6.1, we

exploit the extra generality.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

454 P. Thiemann

4.5 Relating elements with attributes

Not every attribute makes sense for a particular element. Analogously to the class

AddTo for elements, the type class AddAttr is used to restrict the polymorphic type

of add_attr.

class (TAG t, ATTRIBUTE a) => AddAttr t a

add_attr :: AddAttr t a => ELT t -> ATTR a -> ELT t

add_attr (ELT e_) (ATTR att) =

ELT (add_attr_ e_ att)

The function add_attr unwraps the element and the attribute instance, joins the new

attribute using add_attr_, and wraps the element back into its typed representation.

The instance declarations govern exactly which typed attribute is admissible for a

particular typed element.

For example, according to figure 1, the OL element can take three attributes, TYPE,

COMPACT, and START. Our library encodes this restriction with the following three

instance declarations.

instance AddAttr OL TYPE

instance AddAttr OL COMPACT

instance AddAttr OL START

Finally, for a smooth integration with element processing, we provide the attribute

functions in the form of element transformers. It is a straightforward combination

of add_attr and mkAttr.

attr :: (AttrValue a v, AddAttr t a) => a -> v -> ELT t -> ELT t

attr a v into = add_attr into (mkAttr a v)

4.6 Character data

Up to now, we assumed that all elements can be constructed from the element name

using the make function. The only exception is character data. The data type for

elements already provides a constructor cdata_ for it. It remains to define a function

that turns a string into a component of the right type. The type CDATA serves as a

pseudo tag type.

data CDATA = CDATA deriving Show

instance TAG CDATA

text :: (AddTo a CDATA) => String -> ELT a -> ELT a

text str elta = add elta (ELT (cdata_ str) :: ELT CDATA)

The function text takes a string, turns it into a value of type ELEMENT_, and then

wraps it into a value of type ELT CDATA using an explicit type annotation.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 455

4.7 Main document

The main document is constructed using the function

build_document :: (ELT HTML -> ELT HTML) -> ELT DOCUMENT

build_document contents =

make DOCUMENT # html contents

It transforms an empty HTML element using contents and applies the result to

the document constructed by make DOCUMENT. The latter just constructs a data

structure, which contains the document type information at the beginning of an

HTML document and adds the top-level HTML element. The # operator is just

reversed function application: a # f = f a.

The following definition introduces the type DOCUMENT as a tag type and defines

its constructor function by overloading make.

data DOCUMENT = DOCUMENT deriving Show

instance AddTo DOCUMENT HTML

instance TAG DOCUMENT where

make DOCUMENT =

ELT (doctype_

["HTML"

,"PUBLIC"

,"\"-//W3C//DTD HTML 4.01//EN\""

,"\"http://www.w3.org/TR/html4/strict.dtd\""]

[])

5 From HTML to XML

Since the DTD of HTML is fixed, we can perform the construction outlined in

the previous section once and for all by hand. In practice, it is more convenient to

automatize the construction. Hence, we have designed and implemented a translation

that converts a DTD to Haskell code. The generated Haskell library provides all the

datatype and instance declarations discussed in the previous section.

Figure 2 defines the translation distributed over a number of functions. All

functions yield top-level Haskell definitions:

• DT translates an item from a DTD;

• ET translates an element definition by generating a data type for the element

name, defining its interface function, and passing on to CT;

• CT generates the instance declaration for TAG (which depends on whether the

content is EMPTY) and definitions for the content part of an element;

• AT translates an attribute list definition by generating

— its data type,

— its instance declarations for ATTRIBUTE and AddAttr, and

— its value definitions using VT;

• VT generates the data types for attribute values (if necessary) and instance

declarations for class AttrValue.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

456 P. Thiemann

DTJ<!ELEMENT tag begin end content>K =

ET tag content

DTJ<!ATTLIST tag body>K =

AT tag JbodyK

ET tag content =

data UJtagK = UJtagK deriving Show

LJtagK f elt = elt ‘add‘ f (make UJtagK)
CT tag content

CT tag EMPTY =

instance TAG UJtagK where make = make empty

CT tag content =

instance TAG UJtagK
instance AddTo UJtagK UJchild-tagK for each child-tag ∈ content

AT tag J K =

-- nothing

AT tag Jname type default restK =

data UJnameK = UJnameK deriving Show

instance ATTRIBUTE UJnameK
instance AddAttr UJtagK UJnameK
VT name type

AT tag JrestK

VT name CDATA =

instance AttrValue UJnameK String

VT name ID =

instance AttrValue UJnameK String

VT name NUMBER =

instance AttrValue UJnameK Integer

VT name (val1|...|valn) =

data UJval1 K = UJval1 K deriving Show

instance AttrValue UJnameK UJval1 K
...

data UJvalnK = UJvalnK deriving Show

instance AttrValue UJnameK UJvalnK

Fig. 2. Translation from DTD to Haskell.

• U and L are name mangling functions that transform a name in a DTD

to a valid Haskell identifier, starting with an uppercase character or with a

lowercase one.

The definition of the translation glosses over the following problems, which are

addressed in the implementation.

• A DTD might use the same name for an element name, an attribute name,

and an attribute value from an enumerated type. For example, HTML 4.01

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 457

uses the names CITE, DIR, LINK, and TITLE as element names and also as

attribute names. The translation must only define a single data type for those

names.

• A name in a DTD may contain characters that are not allowed in Haskell

identifiers (for example, the attribute name HTTP-EQUIV in HTML 4.01). Hence

there must be a mapping to valid Haskell identifiers and a particular instance

of Show must be defined for these attribute names:

data HTTP_EQUIV = HTTP_EQUIV

instance Show HTTP_EQUIV where

show HTTP_EQUIV = "HTTP-EQUIV"

instance ATTRIBUTE HTTP_EQUIV

Translating the HTML 4.01 DTD (HTML 4.01, 1999) in this way yields 5220 lines

(roughly 148k) of Haskell code. Most of these lines (4850) are instance declarations.

There are 281 lines of data declarations and the remaining lines define the interface

functions.

6 Beyond weak validity

The typed encoding presented so far guarantees weak validity of the generated

HTML/XML documents. While our experience shows that weak validity works

well in practice, it is still interesting to see if Haskell’s type classes can deliver

stronger guarantees. This section shows that it is indeed possible.

6.1 Elementary validity

Consider again the content description for the dl element:

<!ELEMENT DL - - (DT | DD)+>

This definition requires that

1. the children of <dl> are either <dd> or <dt> elements, and

2. that at least one child is present.

However, the encoding introduced in sections 2–4 only enforced the first requirement,

thus tacitly changing the content description to (DT | DD)*.

How can we instruct Haskell’s type inference engine to enforce a content de-

scription more accurately? To see this, we first consider how a validating XML

processor performs this task. Such a processor builds a finite automaton from each

content description. Whenever it enters the list of children of a particular element,

the processor retrieves the appropriate automaton and checks that the sequence of

element names of the children is accepted by the automaton. The contents of the

children are checked recursively.

While a typical processor performs this task dynamically at run-time, we intend

to perform it statically at compile-time. To this end, we have to model the dynamic

processing engine at compile-time.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

458 P. Thiemann

6.1.1 Basic approach

The natural place for maintaining additional compile-time information is in the

phantom type for elements. The type of an element is now ELT (s, qs), where s is

a tag type and qs is a type that tracks the state of the automaton. This idea leads

to the following typing for the add function:

add :: (AddTo s t, FinalState’ t qt, NextState’ s qs t qs’)

=> ELT (s, qs) -> ELT (t, qt) -> ELT (s, qs’)

• The predicate AddTo s t relates element names to the names of child elements,

as before.

• The predicate FinalState’ t qt expresses that the parameter qt of the child

element must be a final state for the automaton of t. Otherwise, an incomplete

element (for example, an element <dl></dl> without contents) can sneak into

another element.

• The predicate NextState’ s qs t qs’ defines the state transition from state

qs to state qs’ on input t of the automaton that implements the content

description for s elements. As usual, t stands for the name of the child

element.

As an example, we consider the automaton for <dl>. It has two states, State0

and State1, where State0 is the initial state. Beyond the instance declarations for

AddTo, the following declarations are required to implement the finite automaton.

data State0 = State0

data State1 = State1

instance FinalState’ DL State1

instance NextState’ DL State0 DD State1

instance NextState’ DL State0 DT State1

instance NextState’ DL State1 DD State1

instance NextState’ DL State1 DT State1

The types State0, State1, and so on, are singleton types like the types for element

names and attribute names before. They can be shared among all automata.

The instance for FinalState’ indicates that a <dl> element can only be added

to another element if its state is State1. In this particular case, it means that there

must be at least one child.

The instances for NextState’ implement the transition function of the mini-

mal deterministic finite automaton for (DD | DT)+. The construction of the finite

automaton from a regular expression is standard (Hopcroft & Ullman, 1979).

The creation of new elements must correctly initialize the state part of the ELT

type. The automaton of each element must be set to its initial state:

make’ :: TAG t => t -> ELT (t, State0)

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 459

6.1.2 Refined approach

Unfortunately, the basic approach outlined in section 6.1.1 defers type errors to a

fairly late stage. Suppose that we have two elements dd :: ELT (DD, State0) and

dl :: ELT (DL, State0). Adding dd to dl gives rise to the typing

add dl dd ::

(AddTo DL DD, FinalState’ DD State0, NextState’ DL State0 DD qs’)

=> ELT (DL, qs’)

Since DD is an admissible child for DL, there is an instance AddTo DL DD. Further,

the automaton for DD has just one state State0, which is also the final state. Hence,

all but the NextState’ predicate can be reduced by the type checker.

add dl dd :: (NextState’ DL State0 DD qs’)

=> ELT (DL, qs’)

To add the element add dl dd into another element, the type checker has to show

that FinalState’ DL qs’ but all it has is NextState’ DL State0 DD qs’, which

cannot be reduced because qs’ is not instantiated. At the toplevel, the type checker

reports these remaining constraints as unresolved overloading.

Fortunately, it is possible to save the situation by providing additional information.

The key to the solution is the fact that NextState’ is not just a relation on types,

but also a function on types. Jones’s extension of Haskell’s type system by functional

dependencies (Jones, 2000) enables us to express this property as follows:

class NextState’ s qs t qs’ | s qs t -> qs’

The functional dependency | s qs t -> qs’ reads “where s, qs, and t determine

qs’ uniquely”. The type checker takes advantage of this information during simplifi-

cation of predicates. From the predicate NextState’ DL State0 DD qs’ it derives

that qs’ must be State1 and determines the typing of the example expression as

add dl dd :: ELT (DL, State1)

With this typing, we can easily insert the element add dl dd into another element.

Since the state is determined, the predicate FinalState’ DL State1 can always be

reduced.

6.1.3 Implementation

In the actual implementation, which is also generated automatically by translation

from the DTD, we perform a product construction. We merge the element name and

the state information into one type, so that each element name gives rise to as many

types as the finite automaton derived from its content description has states. This

way, we can collapse all three type classes, AddTo, NextState’, and FinalState’

into one class:

class NextState s t s’ | s t -> s’

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

460 P. Thiemann

If we regard the “new” tag types as pairs (s, qs) of “old” tag types and states, then

the connection is as follows: There is an instance NextState (s, qs) (t, qt) (s,

qs’) if and only if NextState’ s qs t qs’ and AddTo s t and FinalState’ t

qt. For example, here are the instances for the <dl> element:

instance NextState DL DD DL_1

instance NextState DL DT DL_1

instance NextState DL_1 DD DL_1

instance NextState DL_1 DT DL_1

where DL stands for (DL, State0), DL 1 stands for (DL, State1), DD for (DD,

State0), and DT for (DT, State0).

Initially, we expected a huge number of states in the automata derived from the

content descriptions. However, it turns out that the number of states is small. For

the majority of element names, the number of states is one because their content

description has the form (elt1 |...|eltn)*. Even the automaton for a complicated

element like TABLE has just seven different states.

6.2 Full validity

From elementary validity, there is only a small step to full validity where each

attribute occurs at most once and required attributes are guaranteed to be present.

The first requirement is expressed by the regular language

L = {w ∈ Σ∗ | each symbol of a ∈ Σ occurs at most once in w}
where Σ is the set of attribute names. If attribute a is required, then we must consider

the language L ∩ Ra where Ra = Σ∗aΣ∗. Clearly, Ra is regular and so is L ∩ Ra.

Hence, the task is again to recognize a regular language so that the automaton

approach demonstrated in the previous subsection is applicable, in principle. The

phantom variable of ELT can again keep track of the state of the attribute automaton.

As before, this constructs implicitly the product of the element automaton and the

attribute automaton for each element name.

Unfortunately, this approach is not practical because the automata recognizing L

have a huge number of states. Most elements take 16 or more attributes in arbitrary

order, and in a valid element each attribute may not occur more than once. A

deterministic automaton that checks this restriction has at least 216 states.

6.2.1 Vector of states

However, an alternative approach is possible, which is inspired by work on record

types (Rémy, 1992; Wand, 1989). The idea is to encode the state using one type

ATTRS with as many parameters as there are different attributes. Each of these type

parameters determines the presence or absence of a particular attribute.11 Hence,

they range over two one-element types:

11 In fact, this is yet another instance of the product construction: the type ATTRS models the combined
state space of the two-state automata for the attributes.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 461

<!ATTLIST FORM

action CDATA #REQUIRED -- server-side form handler --

method (GET|POST) GET -- HTTP method used to submit the form--

enctype CDATA "application/x-www-form-urlencoded"

>

Fig. 3. Attributes of FORM (excerpt).

data PRESENT = PRESENT

data ABSENT = ABSENT

data ATTRS action method enctype =

ATTRS action method enctype

(For illustration, the type ATTRS only considers some attributes of FORM, defined in

figure 3. HTML 4.01 defines 132 attributes in total, hence ATTRS has 132 parameters

in reality.) The element type ELT receives an additional (phantom) type parameter.

The make function creates an empty FORM element with all parameters of ATTRS set

to ABSENT, meaning that no attribute is present, yet.

make’ :: TAG t => t -> ELT (t, ATTRS ABSENT ABSENT ABSENT)

To keep track of the presence or absence of particular attributes, the functions

add and add_attr receive suitable types (their implementations remain the same as

before):

add_attr :: (AddAttr t a, AttrValid v a v’) =>

ELT (t, v) -> ATTR a -> ELT (t, v’)

add :: (AddTo s t, AttrFinal t v) =>

ELT (s, v’) -> ELT (t, v) -> ELT (s, v’)

The types mention two new type classes AttrValid and AttrFinal. The predicate

AttrValid v a v’ implements the transition function: If v (= ATTRS ...) is the

current attribute state and a is the name of an attribute to be added, then v’ is

the next attribute state. Clearly, AttrValid is a function because v’ depends on v

and a. This is specified using a functional dependency. The predicate AttrFinal t

v determines if the attribute state v is a final state for the element with name t.

Here are the class definitions and some illustrative instances.

class ATTRIBUTE a => AttrValid v a v’ | v a -> v’

class TAG t => AttrFinal t v

instance AttrValid (ATTRS ABSENT method enctype) ACTION

(ATTRS PRESENT method enctype)

instance AttrValid (ATTRS action ABSENT enctype) METHOD

(ATTRS action PRESENT enctype)

instance AttrValid (ATTRS action method ABSENT) ENCTYPE

(ATTRS action method PRESENT)

instance AttrFinal FORM (ATTRS PRESENT method enctype)

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

462 P. Thiemann

instance AttrFinal CDATA (ATTRS ABSENT ABSENT ABSENT)

instance AttrFinal BODY (ATTRS ABSENT ABSENT ABSENT)

The instance of AttrFinal for FORM states that an action attribute must be

present, the other attributes can be arbitrary. CDATA and BODY elements do not take

any of these attributes. Hence, their final attribute states contain ABSENT only. For

example:

Main> putStr $ show_document $ build_document (body (form empty))

ERROR - Unresolved overloading

*** Type : AttrFinal FORM (ATTRS ABSENT ABSENT ABSENT) => IO ()

*** Expression : putStr $ show_document $ build_document (body (form empty))

The term is rejected because there is no suitable instance of AttrFinal. If we

provide the required attribute, then the result is displayed.

Main> putStr $ show_document $

build_document (body (form (attr ACTION "mailto:alex")))

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html><body><form action="mailto:alex"></form>

</body>

</html>

Finally, if we provide the same attribute twice, a type error occurs, too:

Main> putStr $ show_document $ build_document

(body (form (attr ACTION "mailto:alex"

attr ACTION "mailto:alex")))

ERROR - Unresolved overloading

*** Type : (AttrValid (ATTRS PRESENT ABSENT ABSENT) ACTION a,

AttrFinal FORM a) => IO ()

*** Expression : putStr $ show_document $ build_document

(body (form (attr ACTION "mailto:alex"

attr ACTION "mailto:alex")))

6.2.2 More accurate type errors

It should be noted that these type errors are often deferred to a point where they

are difficult to comprehend. For example, the predicate AttrValid (ATTRS PRESENT

ABSENT ABSENT) ACTION a indicates an attempt to add the ACTION attribute to an

element that already has an ACTION attribute. Fortunately, it is possible to force

these errors to occur earlier by using functional dependencies, again.

While type classes are only good for encoding positive information, due to the

open-world assumption underlying their design, functional dependencies can supply

some negative information. In this case, the idea is to add another parameter to

AttrValid’ (and leaving AttrFinal as before):

class ATTRIBUTE a => AttrValid’ v a v’ r | v a -> v’ r

instance AttrValid’ (ATTRS action method enctype) ACTION

(ATTRS PRESENT method enctype) action

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 463

instance AttrValid’ (ATTRS action method enctype) METHOD

(ATTRS action PRESENT enctype) method

instance AttrValid’ (ATTRS action method enctype) ENCTYPE

(ATTRS action method PRESENT) enctype

The new parameter r is determined by v and a, as indicated by the functional

dependency, and records the state of the attribute before adding the new attribute

instance. The trick is now to change the type of the add_attr function.

add_attr :: (AddAttr t a, AttrValid’ v a v’ ABSENT) =>

ELT (t, v) -> ATTR a -> ELT (t, v’)

This type requires that, whenever we add an attribute named a to the element, then

it must have been ABSENT before. Now, the type error occurs as soon as the types

for v and a are known, that is, at the application of the add_attr function.

A similar improvement to error reporting is possible by changing the AttrFinal

class:

class TAG t => AttrFinal t v | t -> v

This is again based on the observation that AttrFinal is really a function.

6.2.3 Conditional content revisited

The more precise typing needed for full validity has some unpleasant consequences.

As an example, let us consider the topic of conditional content. Suppose we want

to write a function that conditionally adds the COMPACT attribute to an ordered list:

maybeCompact flag =

if flag then attr COMPACT COMPACT_compact

else empty

Given the typings for full validity, we find that

attr COMPACT COMPACT_compact ::

(AddAttr t COMPACT, AttrValid v COMPACT v’) =>

ELT (t, v) -> ELT (t, v’)

empty :: ELT (t, v) -> ELT (t, v)

Hence the typing for maybeCompact:

maybeCompact :: (AddAttr t COMPACT, AttrValid v COMPACT v)

=> Bool -> (ELT (t, v) -> ELT (t, v))

Clearly, the predicate AttrValid v COMPACT v is not satisfiable because there is no

instance of AttrValid where the state, v, before adding the attribute is identical to

the state, v, after adding the attribute. The source of the problem is the typing of

empty, which forces us to unify the two states. While it is possible to define empty’

with type ELT (t, v) -> ELT (t, v’), it is not appropriate to do so because one

conditional that uses empty’ in both branches completely defeats the purpose of

having the state variable v at all. Our conclusion is that restrictions on attribute

occurrences should better be checked dynamically using run-time tests.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

464 P. Thiemann

<!ELEMENT BODY O O (%flow;)* +(INS|DEL) -- document body -->

<!ELEMENT HEAD O O (%head.content;) +(SCRIPT|STYLE|META|LINK|OBJECT)

-- document head -->

<!ELEMENT A - - (%inline;)* -(A) -- anchor -->

<!ELEMENT FORM - - (%flow;)* -(FORM) -- interactive form -->

<!ELEMENT BUTTON - -

(%flow;)* -(A|%formctrl;|FORM|ISINDEX|FIELDSET|IFRAME)

-- push button -->

Fig. 4. Element declarations with inclusions and exceptions.

We have presently chosen not to implement full validity in the library because of

the above drawbacks. In addition, the last group of checks dealing with attributes

gives rise to another 1595 instance declarations (without the last two tricks from

section 6.2.2), which bumps the size of the library’s source code from 148k to 3.2M.

6.3 Exceptions and inclusions

Exceptions and inclusions pose problems that are specific to HTML and other

markup languages that are instances of SGML. Both concepts, exceptions and

inclusions, have been removed from XML.

An inclusion in an element declaration of a DTD indicates that, within the declared

element, certain elements are admissible regardless of the content description of their

immediate parent element. Dually, there are exceptions, which abolish the use of

some elements, regardless of the content description of their immediate parent

element.

For example, consider the element declarations in Fig. 4 extracted from the

HTML4.01 DTD.12 The first two element declarations, for <body> and <head>,

specify inclusions indicated by +: anywhere in the descendants of a <body> element

(not just the children!), it is legal to use <ins> and elements, regardless of

the current content description. Likewise, anywhere deep in a <head> element, one

of the SCRIPT, STYLE, META, LINK, or OBJECT elements may be used.

The remaining three element declarations contain exceptions indicated by -. The

first indicates that an <a> element may not appear nested inside an <a> element.

Likewise, <form> elements may not be nested, and neither <a>, <form>, <isindex>,

. . . may appear inside of <button> elements.

Interestingly, it seems possible to encode exceptions using a multi-parameter type

class, whereas the encoding of inclusions seems to require an extension of the type

class model. The key idea to encode negative information for exceptions comes again

from type systems for records, which express the absence of a particular field name

(Rémy, 1992; Wand, 1989). We demonstrate the approach using the example above.

In the absence of special row types, we define a data type ELEMS with as many

12 The entity references like %flow; and %inline; can be safely ignored in our discussion.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 465

type parameters as there are different element names. In our example, this amounts

to

data ELEMS a form button isindex =

ELEMS a form button isindex

The two types PRESENT and ABSENT are again used to signal the presence or absence

of particular elements using the ELEMS type.

The type ELT receives two additional parameters, an above parameter and a

below parameter. The below parameter reflects the use of element names below

the element, whereas the above parameter reflects the use of element names above

and among the siblings of the element. Both will be instantiated with a particular

instance of the ELEMS type. The type class EXCEPTION governs the propagation of

information between below and above through the type of the add function.

add :: (AddTo s t, EXCEPTION s above below) =>

ELT (s, above, below) -> ELT (t, below, oo) -> ELT (s, above, below)

class EXCEPTION tag above below | tag -> above below

instance EXCEPTION

A (ELEMS PRESENT form button isindex) (ELEMS ABSENT form button isindex)

instance EXCEPTION

FORM (ELEMS a PRESENT button isindex) (ELEMS a ABSENT button isindex)

instance EXCEPTION

BUTTON (ELEMS a form PRESENT isindex) (ELEMS ABSENT ABSENT ABSENT ABSENT)

instance EXCEPTION

ISINDEX (ELEMS a form button PRESENT) (ELEMS ABSENT ABSENT ABSENT ABSENT)

The instance declaration for A says that the elements below cannot contain an A. If

there were an A, then the type of the corresponding variable would be instantiated

to PRESENT, thus colliding with the type ABSENT required by the EXCEPTION class.

The remaining elements, FORM, BUTTON, and ISINDEX are “inherited”. The instance

declaration for FORM is similar.

The instance declaration for BUTTON says that there must not be an element with

name A, FORM, BUTTON, or ISINDEX nested within a BUTTON element. The instance

declaration for ISINDEX is similar.

For inclusions, the type of add is too restrictive. It is necessary to express the

following information:

• s and t are related by AddTo or t is allowed by an enclosing inclusion

declaration

• and t is not disallowed by an enclosing exception declaration.

While disallowance and allowance can be formalized using the EXCEPTION class

above and another type class (using two additional type variables), there remains the

problem of expressing the disjunction in the type class system. Presently implemented

type checkers can only deal with conjunctions of class predicates.

Progressing from HTML to XML (Bray et al., 1998) also solves the problem

because XML does not support exceptions, anymore. In fact, in XHTML (XHTML

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

466 P. Thiemann

1.0, 2000) the side conditions on <a> and <form> are only mentioned informally

because they are not expressible using an XML DTD.

The current library implements neither inclusions nor exceptions. First, they are

not necessary due to the imminent transition to XML and XHTML. And second,

they would render the library useless due to the enormous increase in size caused

by the instance declarations for a type with 89 parameters (the number of element

names used by HTML 4.01), as demonstrated with the attributes.

7 Conclusion

We have designed a family of embedded domain specific languages for meta pro-

gramming of web pages and web sites. Each of these languages is implemented as a

combinator library in Haskell. Haskell’s multi-parameter type classes with functional

dependencies were instrumental in the construction. We have introduced element-

transforming style as a means to concisely construct abstractions and fragments

of web pages. The resulting programming style is very natural and yields visually

appealing programs.

We found the library easy and intuitive to use. The possibility to abstract com-

monly used patterns pays off enormously, its benefits are already visible in the

examples shown in section 2. We also found type checking with weak validity

sufficient because it captures many common errors (using an element or attribute

in the wrong place). Initial experiments with the more elaborate static scheme for

elementary validity outlined in section 6.1 yield quite natural and precise typings,

too.

On the negative side, type errors are fairly hard on users who are not deeply into

Haskell. It would be nice if type errors could be filtered and translated so that they

are more informative to casual users of the library. These users might also appreciate

a syntax which is closer to HTML/XML. This is subject to further investigation.

Acknowledgements

Thanks to Simon Helsen, Matthias Neubauer, and Sebastian Schulz for comments

on this work and for using early versions of the library. Thanks are also due

to the reviewers. Their extensive comments helped to improve the presentation

considerably.

References

Atkinson, D., Ball, T., Benedikt, M., Bruns, G., Cox, K., Mataga, P. and Rehor, K. (1997)

Experience with a domain specific language for form-based services. Conference on Domain-

specific Languages. USENIX.

Brabrand, C., Møller, A. and Schwartzbach, M. I. (2001) Static validation of dynamically

generated HTML. In: Field, J. and Snelting, G., editors, Workshop on Program Analysis for

Software Tools and Engineering, PASTE’01, pp. 38–45. ACM.

Bray, T., Paoli, J. and Sperberg-MacQueen, C. M. (1998) Extensible markup language (XML)

1.0 (W3C Recommendation). http://www.w3.org/TR/REC-xml.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

Typed representation for HTML and XML 467

Brüggemann-Klein, A. and Wood, D. (1998) One-unambiguous regular languages. Infor. &

Computation, 140(2): 229–253; 142(2): 182–206.

Cabeza, D. and Hermenegildo, M. (1997) WWW programming using computational logic

systems (and the PiLLoW/CIAO library). http://www.clip.dia.fi.upm.es/Software/

pillow/pillow_www6/pillow_www6.h%tml.

Cluet, S., Delobel, C., Siméon, J. and Smaga, K. (1998) Your mediators need data conversion!

In: Haas, L. and Tiwary, A., editors, Proceedings 1998 ACM SIGMOD International Con-

ference on Management of Data, pp. 177–188. Seattle, WA. ACM Press. (SIGMOD Record

(ACM Special Interest Group on Management of Data), 27(2).)

Fernandez, M., Simèon, J. and Wadler, P. (2001) A semi-monad for semi-structured data.

ICDT.

Hanus, M. (2000) Server side Web scripting in Curry. Workshop on (Constraint) Logic

Programming and Software Engineering (LPSE2000).

Hanus, M. (2001) High-level server side Web scripting in Curry. Practical Aspects of Declara-

tive Languages: Proceedings 3rd International Workshop, PADL’01: Lecture Notes in Com-

puter Science. Springer-Verlag.

Haskell98 (1998) Haskell 98, a non-strict, purely functional language. http://www.haskell.

org/definition.

Hopcroft, J. E. and Ullman, J. D. (1979) Introduction to Automata Theory, Languages and

Computation. Addison-Wesley.

Hosoya, H. and Pierce, B. C. (2000) XDuce: A typed XML processing language. In: Suciu, D.

and Vossen, G., editors, The World Wide Web and Databases: 3rd International Workshop

WebDB2000: Lecture Notes in Computer Science 1997, pp. 226–244. Springer-Verlag.

Hosoya, H. and Pierce, B. C. (2001) Regular expression pattern matching for XML. In:

Nielson, H. R., editor, Proc. 28th Annual ACM Symposium on Principles of Programming

Languages. ACM Press.

Hosoya, H., Vouillon, J. and Pierce, B. C. (2000) Regular expression types for XML. In:

Wadler, P., editor, Proc. International Conference on Functional Programming, pp. 11–22.

ACM Press.

HTML 4.01 (1999) HTML 4.01 specification. http://www.w3.org/TR/html4/.

Hughes, J. (2000) Generalising monads to arrows. Sci. Comput. Programming, 37: 67–111.

Jones, M. P. (2000) Type classes with functional dependencies. In: Smolka, G., editor, Proc. 9th

European Symposium on Programming: Lecture Notes in Computer Science 1782. Springer-

Verlag.

Loke, S. W. and Davison, A. (1996) Logic programming with the World-Wide Web. Proceedings

7th ACM Conference on Hypertext, Hypertext ’96, pp. 235–245.

Meijer, E. (2000) Server-side web scripting with Haskell. J. Functional Programming, 10(1):

1–18.

Nielson, H. R. (ed) (2001) Proc. 28th Annual ACM Symposium on Principles of Programming

Languages. ACM Press.

Peyton Jones, S., Jones, M. and Meijer, E. (1997) Type classes: An exploration of the design

space. In: Launchbury, J., editor, Proc. of the Haskell Workshop. (Yale University Research

Report YALEU/DCS/RR-1075.)

Rémy, D. (1992) Typing record concatenation for free. Proc. 19th Annual ACM Symposium

on Principles of Programming Languages, pp. 166–176. ACM Press.

Sandholm, A. and Schwartzbach, M. I. (2000) A type system for dynamic web documents.

In: Reps, T., editor, Proc. 27th Annual ACM Symposium on Principles of Programming

Languages, pp. 290–301. ACM Press.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

468 P. Thiemann

Shields, M. and Meijer, E. (2001) Type-indexed rows. In: Nielson, H. R., editor, Proc. 28th

Annual ACM Symposium on Principles of Programming Languages. ACM Press.

Thiemann, P. (2000) Modeling HTML in Haskell. Practical Aspects of Declarative Languages:

Proceedings 2nd International Workshop, PADL’00: Lecture Notes in Computer Science 1753,

pp. 263–277.

Wallace, M. and Runciman, C. (1999) Haskell and XML: Generic combinators or type-based

translation? In: Lee, P., editor, Proc. International Conference on Functional Programming

1999, pp. 148–259. ACM Press.

Wand, M. (1989) Type inference for record concatenation and multiple inheritance. Proc. 4th

Annual Symposium on Logic in Computer Science, pp. 92–97. IEEE Press.

WASH (2001) Web authoring system in Haskell http://www.informatik.uni-freiburg.

de/~thiemann/haskell/WASH.

World-Wide Web Consortium (2000a) XML schema part 1: Structures, working draft. http:

//www.w3.org/TR/xmlschema-1.

World-Wide Web Consortium (2000b) XML schema part 2: Datatypes, working draft. http:

//www.w3.org/TR/xmlschema-2.

XHTML 1.0 (2000) XHTML 1.0: The extensible hypertext markup language. http://www.

w3.org/TR/xhtml1.

XML1.0 (2000) Extensible markup language (XML) 1.0 (second edition). http://www.w3.

org/TR/2000/REC-xml-20001006.

https://doi.org/10.1017/S0956796802004392 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004392

