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Direct numerical simulation of turbulent flow
and structures in a circular pipe subjected to
axial system rotation
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Turbulent circular pipe flows subjected to axial system rotation are studied using direct
numerical simulations (DNS) for a wide range of rotation numbers of Rob = 0–20 at
a fixed Reynolds number. To ensure that energetic turbulent eddy motions are captured
at high rotation numbers, long pipes up to Lz = 180πR are used in DNS. Two types of
energy-containing flow structures have been observed. The first type is hairpin structures
that are characteristic of the turbulent boundary layer developing over the pipe wall for
both non-rotating and axially rotating flows. The second type is Taylor columns forming
at moderate and high rotation numbers. Based on the study of two-point autocorrelation
coefficients, it is observed that Taylor columns exhibit quasi-periods in both axial and
azimuthal directions. According to the premultiplied spectra, Taylor columns feature one
single characteristic axial length scale at the moderate rotation numbers but two at high
rotation numbers. It is discovered that the axial system rotation suppresses the sweep
events systematically and impedes the formation of hairpin structures. As the rotation
number is increased, the turbulence kinetic energy held by Taylor columns enhances
rapidly associated with significant increases in their axial length scales.

Key words: pipe flow, rotating turbulence, turbulence simulation

1. Introduction

Turbulent flow within a circular pipe subjected to system rotation represents an interesting
topic with important applications in areas such as internal blade cooling of gas turbines
and rotary machines. The system rotation of the circular pipe may occur either radially
about a diameter of the pipe, or axially about the centreline of the pipe. In response
to either radial or axial system rotation, Coriolis force is induced which acts upon the
fluid flow to dramatically alter the turbulence statistics and coherent structures. As is

† Email address for correspondence: BingChen.Wang@Umanitoba.Ca

© The Author(s), 2024. Published by Cambridge University Press 1000 A1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

64
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:BingChen.Wang@Umanitoba.Ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.649&domain=pdf
https://doi.org/10.1017/jfm.2024.649


Z.-P. Zhang and B.-C. Wang

well known, turbulent flow through a stationary (non-rotating) circular pipe is a classical
research subject, which has been extensively studied using direct numerical simulations
(DNS) by Eggels et al. (1994), Wu & Moin (2008), Chin et al. (2010) and Wu, Baltzer &
Adrian (2012). By contrast, the number of DNS studies on either radially or axially rotating
circular pipe flows is still very limited in the literature. Recently, Zhang & Wang (2019)
carried out a DNS study of turbulent flow in a circular pipe subjected to radial system
rotation and observed secondary flows appearing as streamwise-elongated large-scale
counter-rotating vortices. Following our previous DNS study of radially rotating pipe flows
(Zhang & Wang 2019), here we extend the research to DNS of axially rotating pipe flows.
The physical mechanisms of circular pipe flows under the radial and axial system rotations
are drastically different due to the differences in the direction of the Coriolis force. In
the following, we concentrate on reviewing the literature of turbulent flows subjected to
streamwise (or axial) system rotation. To establish a broader understanding of the subject,
we begin with reviewing experimental and numerical studies of streamwise-rotating
plane-channel flows and rotating isotropic turbulence and, then, focus on reviewing
literature about axially rotating circular pipe flows.

1.1. Flow structures in streamwise-rotating channel and rotating isotropic turbulence
A streamwise-rotating plane-channel flow is similar to an axially rotating circular pipe
flow in the sense that the direction and effects of the Coriolis force induced by the system
rotation share certain common features, which are fundamentally different from those
of spanwise-rotating plane-channel flows (Kristoffersen & Andersson 1993; Pallares &
Davidson 2000; Wu & Kasagi 2004; Grundestam, Wallin & Johansson 2008; Wallin,
Grundestam & Johansson 2013; Xia, Shi & Chen 2016) and radially rotating duct or
circular pipe flows (Fang et al. 2017; Zhang & Wang 2019). Furthermore, compared
with an axially rotating circular pipe flow, a streamwise-rotating turbulent Poiseuille flow
confined in a plane channel is free from any domain curvature effects.

The effects of streamwise system rotation on turbulent plane-channel flow and structures
under different Reynolds numbers and rotation numbers were studied using DNS by Weller
& Oberlack (2006a,b). They observed that the mean spanwise velocity profile changes its
direction three times between the two planes, showing an interesting ‘(double) S-shaped
triple-zero-crossing pattern’ in the mean secondary flow in the cross-stream plane. These
research findings are further confirmed by Oberlack et al. (2006) through an analytical
study based on the group theory and by Recktenwald et al. (2007) and Recktenwald,
Alkishriwi & Schröder (2009) through a study based on both large-eddy simulations
(LES) and a particle image velocimetry (PIV) experiment. Based on their analytical and
DNS studies, Yang, Su & Wu (2010) investigated the characteristics of the flow field
of a streamwise-rotating plane-channel flow using a helical-wave decomposition method.
Through analyses of their DNS data, they observed inertial waves and large tilted coherent
structures along the streamwise direction.

Recently, Yang & Wang (2018) performed DNS to study streamwise-rotating channel
flow at high rotation numbers. In order to capture the streamwise-elongated turbulence
structures, a very long streamwise domain of 512πδ was used in their DNS, where δ is
the half-channel height. The influence of streamwise system rotation on the size, strength
and characteristic wavelength of the streamwise-elongated turbulence structures was later
refined by Yang et al. (2018) through a study of the modulating effects of streamwise
system rotation on both the amplitude and wavenumber of pressure fluctuations. To achieve
this goal, the pressure field was decomposed into a rotation-induced component and a
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convection-induced component. Yu et al. (2022) conducted DNS of streamwise-rotating
plane-channel flows and focused their study on turbulent transport of helicity under the
influence of Coriolis force in both physical and spectral spaces. They observed that in
contrast to the canonical test case of a stationary turbulent channel flow, the appearance of
high helicity in a streamwise-rotating plane-channel flow mainly originates from the mean
secondary flows, and it manifests as the mean spanwise velocity and streamwise vorticity.

The streamwise elongated turbulence structures observed in Yang & Wang (2018) can
be well explained by the classical Taylor–Proudman theorem of the inviscid flow theory
and relate to ‘Taylor columns’ that have been studied extensively in the literature of
rotating isotropic turbulence. According to the Taylor–Proudman theorem, the velocity
field of a rotating inviscid flow (at an angular speed Ωz) is invariant along the rotation
axis (z), i.e. ∂u/∂z = 0. This further facilitates the formation of Taylor columns, which
are two-dimensional (2-D) ‘cyclonic’ or ‘columnar’ flow structures along the rotating axis
(Bartello, Métais & Lesieur 1994; Yoshimatsu, Midorikawa & Kaneda 2011; Pestana &
Hickel 2020). The presence of Taylor columns has been widely observed in viscous flows
in Earth’s atmospheres and oceans, and in DNS studies of forced isotropic turbulence
(see, e.g., Smith & Waleffe 1999; Gallet 2015; Buzzicotti et al. 2018; van Kan & Alexakis
2020; Pestana & Hickel 2020) and decaying isotropic turbulence (see, e.g., Staplehurst &
Davidson 2008; Thiele & Müller 2009; Yoshimatsu et al. 2011). According to Bartello
et al. (1994) and van Kan & Alexakis (2020), in the context of isotropic turbulence, the
system rotation tends to suppress variations of the flow motion along the axis of rotation
which facilitates formation of quasi-2-D Taylor columns at high rotation numbers (or low
Rossby numbers).

1.2. Axially rotating pipe flows
In comparison with the streamwise-rotating plane-channel flows as reviewed previously,
the presence of circumferential curvature imposes additional complexity to the
secondary-flow structures in an axially rotating circular pipe flow. In their pioneering
work, Murakami & Kikuyama (1980) conducted an experiment to investigate the effects
of axial system rotation on a turbulent pipe flow and observed that turbulence level of
the flow was suppressed as the rotation number rose. Experimental measurements of
axially rotating pipe flows were also conducted using hotwires by Kikuyama, Murakami &
Nishibori (1983a), three-hole pressure probes by Reich & Beer (1989) and laser Doppler
velocimetry by Kikuyama et al. (1983b), Imao, Itoh & Harada (1996) and Facciolo et al.
(2007). It should be indicated that in these experiments, typically the pipe rotated while the
flow measurement sensors were kept still (relative to the inertial coordinate system fixed
to the ground). This treatment method for the system rotation does not explicitly show
the Coriolis effects, and is different from the approach based on a rotating coordinate
frame (an non-inertial coordinate system), in which Coriolis force appears explicitly in the
momentum equation. The latter method of having a Coriolis force term in the momentum
equation is often used in the areas of studies such as turbomachinery or meteorology.
To be clear, the observations based on the absolute and rotating frames (or inertial and
non-inertial frames, respectively) are equivalent, as both reflect the same physical process.
For the two velocity fields c and u observed with respect to the inertial and non-inertial
coordinate systems, respectively, they are related by c = u + Ω × r, where Ω is the
angular speed vector of system rotation and r is the position vector relative to the central
axis of rotation.

In addition to the experimental approaches, axially rotating pipe flow has also been
investigated numerically using Reynolds-averaged Navier–Stokes (RANS) approaches
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(Hirai, Takagi & Matsumoto 1988; Speziale, Younis & Berger 2000; Jakirlić, Hanjalić
& Tropea 2002), and using LES (Feiz, Ould-Rouis & Lauriat 2003). In these RANS
studies, the focus was on the test of turbulence models and analysis of the first- and
second-order statistical moments of the velocity field. For example, in the study of Speziale
et al. (2000), both linear and nonlinear explicit algebraic stress models and second-order
closure models were investigated in terms of their predictive performances in the context
of an axially rotating flow. In the LES study of Feiz et al. (2003), a relatively short
pipe length of Lz = 20R was used for testing axially rotating pipe flows at low rotation
numbers of Rob = 0–4, and the obtained LES data were used for studying secondary
turbulence structures based on the contours of the instantaneous axial velocity fluctuations
and axial vorticity field. Here, Rob = 2ΩzR/Ub, Ub is the bulk mean velocity defined as
Ub = ∫ 2π

0

∫ R
0 〈uz〉r dr dβ/(πR2), and R is the radius of the pipe. In the literature on rotating

plane-channel and pipe flows (see, e.g., Kristoffersen & Andersson 1993; Grundestam
et al. 2008; Zhang & Wang 2019), it is popular to use the rotation number to quantify the
non-dimensional angular speed of system rotation. However, in the literature on rotating
isotropic turbulence, it is popular to use Rossby number, which is simply an inverse of the
rotation number and can be defined as 1/Rob. Oberlack (1999) studied alternative scaling
laws of the mean velocity of an axially rotating pipe flow based on a Lie group theory (also
referred to as ‘symmetry analysis’) in contrast to the classical wall-friction-based scaling
laws. Their scaling law resulted from symmetry analysis has been validated using the DNS
data of Orlandi & Fatica (1997) in the context of axially rotating pipe flows.

In their pioneering DNS studies of axially rotating pipe flows, Orlandi & Fatica (1997),
Orlandi (1997) and Ebstein (1998) observed large-scale secondary vortical structures in the
pipe centre, which became increasingly elongated as the rotation number increased. The
bulk Reynolds number was maintained constant at Reb = 2UbR/ν = 4900 and rotation
number ranged from Rob = 0 to 20 in these earlier DNS studies. Here, ν is the kinematic
viscosity of the fluid. Orlandi (1997) performed DNS to compare axially rotating and
non-rotating pipe flows, and observed a correlation between the helicity density and the
turbulent kinetic energy (TKE) dissipation rate. In the PhD thesis of Ebstein (1998), the
statistical moments of the velocity field and budget balances of Reynolds stresses were
systematically examined. In their follow-up study, Orlandi & Ebstein (2000) examined the
impact of axial system rotation on the budget balances of TKE, Reynolds stresses and
enstrophy of the turbulent pipe flow using DNS.

1.3. Objectives
Based on a thorough literature review, we note that detailed DNS studies of the axially
rotating circular pipe flow are still very limited, and an in-depth understanding of the
Coriolis force effects on the flow physics and coherent structures needs to be developed.
In view of this, we aim to conduct a systematic DNS study of turbulent pipe flows subjected
to axial system rotation for a wide range of rotation numbers.

For a steady-state fully developed axially rotating pipe flow, it is driven by a mean
axial pressure gradient and Coriolis forces. Thus, it is anticipated that the energetic flow
structures include near-wall streaks and hairpins that are characteristics of a shear-driven
boundary layer (whether the flow is subjected to a system rotation or not), and Taylor
columns (appearing at moderate and high rotation numbers, as widely observed in
rotating isotropic turbulence). It is understood that if the pipe length used in DNS is
not long enough to capture the characteristic length scales of energy-containing eddies
(such as streaks and Taylor columns), the velocity spectra of the turbulence field at
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low wavenumbers would be either artificially distorted or bluntly chopped off. Among
the a few DNS studies available in the literature, the longest pipe was that used in
Ebstein (1998) and Orlandi & Ebstein (2000), who tested pipe lengths of Lz = 15R–25R
(or Lz = 4.775πR–7.958πR) for axially rotating flows of a fixed Reynolds number of
Reb = 4900 and varying rotation numbers of Rob = 0–20. Owing to the use of small pipe
lengths in the DNS studies of axially rotating pipe flows in the current literature, the actual
effects of axial system rotation on the characteristic axial length scale of energetic eddies
is still unknown. In view of this, as our first research objective, we aim to study flow
physics based on precise statistical moments and coherent structures obtained in DNS for
a wide range of rotation numbers varying from Rob = 0 to 20 at a fixed Reynolds number
of Reτ = 180 using much longer pipes than those in the literature. Here, Reτ = uτ R/ν

is the friction Reynolds number and uτ denotes the wall friction velocity. In order to
capture Taylor columns at high rotation numbers, eight DNS cases of very long pipes
are considered, which have pipe lengths of Lz = 30πR–180πR as the rotation number is
increased from Rob = 0 to 20.

To precisely demonstrate the impact of pipe lengths on the accuracy of DNS results,
DNS-based short pipe lengths needs to be conducted. It is anticipated that use of overly
short pipes to perform DNS can lead to spurious results of the statistical moments and
spectra of a velocity field. To prove the concept, a complementary comparative study of
the pipe length effects on the accuracy of DNS results is conducted, which encompasses
eight additional DNS cases of short pipe lengths at two rotation numbers Rob = 2 and
20. The short pipe lengths tested vary from Lz = πR to 7.958πR for Rob = 2 and from
Lz = πR to 80πR for Rob = 20. The DNS results obtained based on eight short pipes are
compared with the accurate results of the longest pipes to determine the minimum pipe
length that is required for performing physically accurate DNS of an axially rotating pipe
flow, and this constitutes the second objective of this research.

The remainder of this paper is organised as follows. In § 2, the test cases and numerical
algorithm are described. In § 3, the axial rotating impacts on the circular pipe flow
are analysed by examining the instantaneous and mean flow fields, Reynolds stresses,
two-point autocorrelation coefficients, premultiplied spectra of velocity fluctuations,
skewness and flatness factors, quadrant analysis of Reynolds stresses and coherent flow
structures. In § 4, major findings and conclusions of this research are summarised. Finally,
in Appendix A, the complementary comparative study of the pipe length effects on the
accuracy of DNS results is reported.

2. Test cases and numerical algorithm

Figure 1(a) illustrates schematically a circular pipe under axial system rotation at a
constant clockwise angular speed Ωz (about the z-direction). The radial, azimuthal and
axial coordinates of the cylindrical coordinate system are denoted using r, β and z,
and the corresponding velocity components are ur, uβ and uz, respectively. In order to
study the axially rotating effect, a wide range of rotation numbers varying from Rob = 0
(non-rotating case) to 20 are compared at a fixed Reynolds number of Reτ = 180. The
pipe flow is fully developed such that a periodic boundary condition is applied to the axial
direction. No-slip condition is imposed on the pipe surface.

Since the pioneering work of Jiménez & Moin (1991) on the ‘minimum domain’ for
DNS of a plane-channel flow, it has become well known that the results of DNS of a
wall-bounded flow can be physically incorrect if the computational domain is smaller
than the characteristic length scale of the most energetic eddies. Turbulence contains
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Lz = πR ∼ 180πR

y
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β z

Ωz ΩzFβ
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Flow

D
 =

 2
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(a) (b)

Figure 1. Schematic of turbulent pipe flow subjected to axial system rotation in a cylindrical coordinate
system: (a) computational domain and coordinates; (b) mesh in cross-sectional directions. The radial and
azimuthal Coriolis force components are Fr and Fβ , respectively. The cross-sectional mesh of the pipe consists
of 420 quadrilateral-structural elements based on a spectral-element method. Each element is refined using an
eighth-order Gauss–Lobatto–Legendre Lagrange polynomial.

a cascade of wavelengths. If the domain is smaller than the wavelengths of the most
energetic eddies, physical phenomena related to those most energetic eddy motions would
be missing in DNS, and consequently, a DNS does not reflect the physical reality (even
if it is carried out numerically with high-order discretisation schemes and with good
convergence). For a steady-state and axially fully developed turbulent pipe flow, the
statistical moments (denoted using φu) of the turbulent velocity field should be statistically
stationary, independent of time t, axial location z and pipe length Lz. Otherwise, if φu
depends on the pipe length (i.e. φu = f (Lz)), the DNS results are spurious and unphysical,
because the axially fully developed flow condition is violated, which demands ∂φu/∂z ≡ 0
and ∂φu/∂Lz ≡ 0. The goal here is to run high-fidelity DNS that is physically realistic
and mathematically accurate, such that the statistical moments of the velocity field are
independent of axial pipe length Lz. Because the flow structures (streaks and Taylor
columns) in an axially rotating pipe become increasingly elongated as the rotation number
Rob increases, the pipe length Lz needs to be increased accordingly.

This study includes 16 DNS tests cases listed in table 1 and table 2 of Appendix A, in
conformity with the two research objectives aforementioned in § 1.3. For the eight rotation
numbers tested, the statistical moments obtained from DNS runs based on the longest
pipes are all independent of Lz. The flow parameters of these eight longest-pipe cases
(for the eight rotation numbers tested) are summarised in table 1. Depending upon the
rotation number, the pipe length varies from Lz = 30πR to 180πR. The choice of these
pipe lengths is to ensure that energetic turbulent eddy motions (dominated by streaks at
low rotation numbers, and Taylor columns at moderate and high rotation numbers) are
reasonably captured in the axial direction at each rotation number. To achieve this goal,
even the shortest pipe length of Lz = 30πR is much longer than those used in the current
literature, that is, Lz = 25R or 7.958πR in Ebstein (1998) and Orlandi & Ebstein (2000).
In addition to the eight longer pipe flow cases summarised in table 1, a complementary
comparative study of the pipe length effects on the predictive accuracy of DNS is also
conducted in Appendix A, which includes 8 additional DNS cases of short pipes, that
is, cases 3A–3C at Rob = 2 and 8A–8E at Rob = 20, as summarised in table 2. Through
this complementary comparative study, it is proven that statistical moments obtained from
DNS runs based on short pipes can be sensitive to Lz, artificially violating the axially fully
developed flow assumption.
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Case # 1 2 3 4 5 6 7 8

Rob 0 1 2 4 6 10 14 20
RoA

b 0 0.92 1.83 3.67 5.53 9.82 14.77 22.97
RoA

τ 0 14.73 29.45 58.88 88.36 147.23 206.09 294.55
ReA

b 5262 5746 5805 5773 5749 5397 5022 4614
ReA

τ 179.96 179.94 179.97 180.03 179.95 179.99 180.02 179.94
Lz 30πR 30πR 30πR 60πR 60πR 90πR 120πR 180πR
Nz 3600 3600 3600 5400 5400 6000 6400 7200
Ntot 97 347 600 97 347 600 97 347 600 146 021 400 146 021 400 162 246 000 173 062 400 194 695 200
	z+ 4.712 4.712 4.712 6.283 6.283 8.482 10.603 14.137
(	r+)max 3.595
(	r+)min 0.123
(r	β+)max 5.133
(r	β+)min 0.813
(	/η)max 1.92 1.952 1.904 2.044 2.028 2.277 2.492 2.740

Table 1. Summary of eight test cases of the longest pipe at each rotation number.

The governing equations for an incompressible flow with respect to an axially rotating
reference frame are

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −Π êz − 1
ρ

∇p + ν∇2u + F , (2.2)

where u is the velocity, ρ is the density of the fluid and p = ps − ρΩ2
z r2/2 represents

the effective pressure that has absorbed both static pressure ps and the centrifugal force.
Here Π represents the constant mean axial pressure gradient and êz is the base unit vector
of the z-direction, with |êz| ≡ 1. In response to the axial rotation, two components of
the Coriolis force (F ) appear in the radial and azimuthal directions, i.e. Fr = 2Ωzuβ

and Fβ = −2Ωzur. Clearly, the instantaneous Coriolis force (Fr and Fβ , defined based
on the instantaneous velocities) impacts directly on the velocity field itself (ur and uβ ,
respectively) in a nonlinear manner through (2.2).

The simulations were performed with a spectral-element code ‘Semtex’ made available
by Blackburn & Sherwin (2004), which is highly accurate in algorithm suitable
for conducing DNS. The computer code was developed using C++ and FORTRAN
programming languages, and parallelised following the message passing interface (MPI)
standard. As shown in figure 1(b), a quadrilateral-element method was used to divide the
cross-section of the pipe into 420 finite elements with each element further discretised
spatially using an 8th-order Gauss–Lobatto–Legendre Lagrange (GLLL) polynomial.
Time integration is conducted through a three-step second-order time-splitting method
developed by Karniadakis, Israeli & Orszag (1991). More specifically, the convection and
body force terms (including the mean pressure gradient and Coriolis force) are integrated
in the first time substep to result in an intermediate velocity using a second-order backward
time-differencing scheme. Subsequently, the intermediate velocity is used in the second
time substep to determine the pressure field in order to satisfy the continuity equation. In
the last time substep, the viscous term of the momentum equation is implicitly integrated
with the prescribed boundary conditions. The last two time substeps rely on solving the
2-D Helmholtz equations in the spectral space based on a static condensation technique
introduced by Karniadakis & Sherwin (2005). So far, this code has been used by our group
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Figure 2. Contours of the ratio of the grid size to the Kolmogorov length scale 	/η. Given the axial symmetry
of the flow field, only a quarter cross-section of the pipe is plotted for each rotation number Rob = 0–20. Results
are based on test cases of the longest pipes at corresponding rotation numbers listed in table 1.

for conducting DNS studies of spanwise-rotating turbulent square duct flows and heat
transfer (Fang et al. 2017; Fang & Wang 2018), spanwise-rotating turbulent elliptical pipe
flows and heat transfer (Rosas, Zhang & Wang 2021; Rosas & Wang 2022), and radially
rotating turbulent circular pipe flows (Zhang & Wang 2019).

The pipe lengths and grid resolutions of the eight test cases of the longest pipes are
shown in table 1. All physical quantities are expanded into the spectral space using Fourier
series with 3600–7200 modes (Nz) in the z-direction for pipes of different lengths. As
indicated by table 1, the total number of nodes varies from Ntot = 97.3 to 194.7 million for
the 8 test cases. The calculation of Ntot is directly based on the number of Fourier modes
in the axial direction and the number of the eighth-order GLLL orthogonal polynomial
interpolants (within each of the 420 finite elements) in the cross-stream directions.
Both Fourier series and the GLLL orthogonal polynomial offer very high numerical
discretisation accuracies. In each test case, the grid spacing is uniform in the streamwise
direction with 	z+ = 4.712–14.137, and varies in the radial and azimuthal directions with
	r+ = 0.123–3.595 and r	β+ = 0.813–5.133. Here, superscript ‘+’ denotes the wall
coordinate calculated through non-dimensionalisation based on the kinematic viscosity
of the fluid ν and wall friction velocity uτ (defined as uτ = √−ΠR/2). To satisfy the
demanding requirement of DNS on grid resolution for capturing the smallest scale of
turbulence, the grid size needs to be kept at the same order as the Kolmogorov length scale,
i.e. O(	/η) ∼ O(1). Figure 2 shows the ratio 	/η for the eight test cases of the longest
pipes listed in table 1. The grid size is defined as 	 = [(	r) × (r	β) × (	z)]1/3 and the
Kolmogorov length scale is determined by η = (ν3/ε)1/4, where ε is the dissipation rate of
TKE. From the figure, it is clear that the strict grid resolution requirement of 	/η = O(1)

for accurately performing DNS is satisfied. The maximum value of 	/η of each of all 16
test cases is given in tables 1 and 2, which varies from 1.904 to 2.740.

The axial system rotation has a direct impact on the bulk mean velocity Ub such that
the actual calculated rotation number RoA

b deviates considerably from its nominal value
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Rob (see table 1). Here, superscript ‘A’ denotes the actual result calculated using the DNS
data. By contrast, the value of the wall friction velocity uτ is insensitive to the axial system
rotation. Consequently, the wall-friction-velocity-based rotation number Roτ = 2ΩzR/uτ

varies linearly with the angular speed Ωz and the value of the wall-friction-velocity-based
Reynolds number ReA

τ varies little from its nominal value of Reτ = 180. The values of
rotation numbers Rob, RoA

b and RoA
τ , and Reynolds numbers ReA

b and ReA
τ of the 16 test

cases associated with the two research objectives are given in tables 1 and 2.
We started simulations with a laminar solution added with arbitrary perturbations,

and statistics were collected after the pipe flow became statistically stationary. All DNS
calculations were conducted on the Alliance (Digital Research Alliance of Canada)
supercomputers. For the 8 test cases of the longest pipes listed in table 1, 300 instantaneous
snapshots of the flow field over 40 large-eddy turnover times (LETOTs, defined as R/uτ )
were collected for cases 1–7, whereas 600 instantaneous snapshots were collected over 80
LETOTs for case 8. For each simulated case, approximately 1.4–4.5 TB data are stored on
the server. However, for the cases of short pipe lengths (of Lz = πR–7.958πR) listed in
table 2, 900–1200 instantaneous snapshots of the flow fields over 122–163 LETOTs were
collected for computing the flow statistics.

In our analysis, an instantaneous turbulence variable φ is decomposed as φ = 〈φ〉 + φ′,
where 〈φ〉 is the temporally and spatially averaged component over the homogeneous
(β and z) directions, and φ′ represents the residual fluctuating component. To make
it convenient for studying the wall-scaling behaviour of the flow in a circular pipe in
analogous to a turbulent boundary-layer flow over a flat plate, a dimensionless coordinate

measured from the wall can be introduced, i.e. y def= 1 − r/R, and the corresponding wall

coordinate can be defined as y+ def= (R − r)uτ /ν (or, y+ def= yReτ ).

3. Results and discussion

This result analysis includes two parts to examine: (i) the impact of axial system rotation on
the velocity field of the pipe flow based on a comparative study of eight rotation numbers
of Rob = 0–20 (with the longest pipe at each rotation number) given in table 1; and (ii)
the impact of pipe length on the predictive accuracy of DNS based on 10 cases of varying
pipe lengths at 2 rotation numbers Rob = 2 and 20 given in table 2. Part (ii) represents
a complementary study for part (i) by establishing a knowledge foundation to ensure
that the DNS results of part (i) are physically accurate obtained using sufficiently long
pipes. In this section, the results of part (i) are analysed, whereas those of part (ii) are
presented in Appendix A. In the following, the characteristics of the instantaneous flow
are first discussed, followed by an analysis of statistical moments of the velocity field,
premultiplied energy spectra, high-order turbulence statistics and turbulence structures.

3.1. Instantaneous flow fields
Figure 3 shows contours of the instantaneous axial velocity u+

z (left half of each panel)
and instantaneous axial vorticity ω+

z (right half of each panel) in the cross-stream
plane of flows at different rotation numbers. Here, the axial vorticity is defined as
ωz = [∂(ruβ)/∂r − ∂ur/∂β]/r. All contours are depicted at the same axial streamwise
location of z/R = 20π and the same time instant of t = 20.38 LETOTs. As is clear from
the left half of figure 3(a), in a non-rotating pipe, the flow structures show ‘mushroom
patterns’ in the near-wall region where several pairs of small counter-rotating vortices
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Figure 3. (a)–(d) Cross-stream view of instantaneous axial velocity u+
z (left half of each panel) and

instantaneous axial vorticity ω+
z (right half of each panel) of the non-rotating (Rob = 0) and rotating (Rob = 4,

14 and 20) pipe flows, respectively. White arrows indicate the counterclockwise rotating direction of the
secondary flow. All contours are plotted at the same axial location (at z/R = 20π) and the same time instant
(at t = 20.38 LETOTs). The values of uz and ωz have been non-dimensionalised using uτ . Results are based on
test cases of the longest pipes at corresponding rotation numbers listed in table 1.

are observed. From figure 3(b), it is observed that because of the axial system rotation
imposed (at Rob = 4), a large counterclockwise-rotating secondary-flow structure appears
at the pipe centre, clearly indicated by the contours of positively valued ω+

z (shown in
red). As the rotation number continues to increase to Rob = 14 as shown in figure 3(c),
the secondary flow structures indicated by the positively valued ω+

z become the most
intense, significantly stretched in the azimuthal direction. The counterclockwise-rotating
secondary-flow structures observed at relatively high rotation numbers are the so-called
Taylor columns, which become increasingly elongated in the axial direction as the rotation
number is increased.

3.2. Mean flow fields
Figure 4 compares the cross-stream distributions of the mean axial velocity 〈uz〉+ and
TKE (k+ = 〈u′

iu
′
i〉/2) of four different rotation numbers. Given the axial symmetry of the

flow field, only a quarter of the domain is plotted for each rotation number to facilitate

1000 A1-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

64
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.649


Z.-P. Zhang and B.-C. Wang

1.0
(a) (b)

24

〈uz〉+

20
16
12
8
4
1

7.0

k+

6.0
5.0
3.6
2.8
2.0
1.0

0.5

Ro b 
= 

0 Ro
b  = 20

Ro
b  = 20Ro b 

= 
0

Rob  = 1 Ro b 
= 6

Ro b 
= 1

4Rob  = 1

0

0

r/R

r/R r/R

–0.5

–0.5 0.5
–1.0

–1.0 1.0 0–0.5 0.5–1.0 1.0

1.0

0.5

0

–0.5

–1.0

Figure 4. Cross-stream view of (a) mean axial velocity 〈uz〉+ and (b) TKE k+ at four different rotation
numbers for Rob = 0–20. The direction of the system rotation is clockwise, identical to that shown in figure 3.
In panel (a), the contours are superimposed with mean cross-stream velocity vectors indicated by black arrows.
The values of 〈uz〉+ and k+ have been non-dimensionalised based on uτ . Results are based on test cases of the
longest pipes at corresponding rotation numbers listed in table 1.

a direct comparison. In figure 4(a), the contours of 〈uz〉+ are superimposed with mean
cross-stream velocity vectors for Rob = 0, 1, 6 and 20. In figure 4(b), the contour plots of
k+ are based on rotation numbers Rob = 0, 1, 14 and 20. By comparing the mean flow
patterns at Rob = 0 and 1 shown in figure 4(a), it can be seen that as soon as the system
rotation is imposed, mean secondary-flow motion occurs, behaving as counterclockwise
rotations as indicated by the mean cross-stream velocity vectors. From figure 4(a), it is
observed that in general, the magnitude of 〈uz〉+ increases monotonically as the pipe centre
is approached for both rotating and non-rotating flow cases. The magnitude of 〈uz〉+ at the
pipe centre reaches its maximum at Rob = 6. However, as the rotation number further
increases from Rob = 6 to 20, the magnitude of 〈uz〉+ reduces. This non-monotonic trend
in the value of 〈uz〉+ with an increasing rotation number is interesting, and will be studied
further by examining the evolution of the bulk mean velocity U+

b with Rob. The variation
of the TKE distribution in response to an increasing rotation number also exhibits an
interesting trend. As shown in figure 4(b), for a non-rotating pipe flow (Rob = 0), the peak
value of k+ occurs in the buffer layer (at approximately y+ = 15). Clearly, as the value
of Rob increases, the magnitude of k+ increases in general and, furthermore, the radial
distribution of the k+ value varies. More specifically, as the rotation number is increased
to Rob = 14, the peak value of k+ shifts to the pipe centre, a pattern that is in sharp contrast
to that of the non-rotating flow (Rob = 0). As the rotation number continues to increase
from Rob = 14 to 20, the region of large k+ values expands slightly at the pipe centre.

Figure 5 compares the profiles of the mean axial velocity 〈uz〉+, mean swirl velocity
r〈uβ〉+/R and mean axial vorticity 〈ωz〉+ with respect to the non-dimensional wall-normal
distance (y) of the eight test cases of table 1. Given its axial symmetry, only one half
the profile of 〈uz〉+ is plotted in figure 5(a), which varies from the pipe wall to the
pipe centre (for y ∈ [0, 1]). From figure 5(a), it is evident that the magnitude of 〈uz〉+
varies non-monotonically with an increasing Rob value. At the pipe centre, the peak value
of 〈uz〉+ increases when the rotation number rises from Rob = 0 to 6, and reaches its
maximum at Rob = 6 with a magnitude that is 40.19 % higher than that of the non-rotating
pipe flow. As Rob continues to increase from 6 to 20, the peak value of 〈uz〉+ reduces,
which however is still larger than that of the non-rotating pipe flow (Rob = 0). These
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Figure 5. Profiles of (a) mean axial velocity 〈uz〉+, (b) mean swirl velocity r〈uβ 〉+/R and (c) mean axial
vorticity 〈ωz〉+ at eight rotation numbers for Rob = 0–20 based on test cases listed in table 1. In panel (b), the
profiles of 〈uβ 〉+ at different rotation numbers are displayed using a subpanel. In panels (b,c), the pink vertical
dash-dotted line demarcates the location of zero value of 〈ωz〉+ occurring at y = 0.4. All values have been
non-dimensionalised by uτ .

observations are qualitatively consistent with figure 4(a). From the subpanel of figure 5(b),
it is clear that the profile of 〈uβ〉+ is zero at both the pipe wall and pipe centre. In addition,
it is interesting to observe from figure 5(b,c) that both r〈uβ〉+/R and 〈ωz〉+ reach their
maxima at Rob = 10, and the peak of r〈uβ〉+/R is located at y ≈ 0.4 where the mean axial
vorticity 〈ωz〉+ is zero identically.

Figure 6 compares the bulk mean velocity U+
b and volume-averaged TKE k+

m at varying
rotation numbers based on the test cases listed in table 1. In figure 6(a), the profile of
U+

b peaks at Rob = 2 (or generally in the range of Rob ∈ [1, 6]), with a magnitude that is
10.33 % higher than that of the non-rotating pipe flow. As the rotation number is increased
beyond 6, the magnitude of U+

b decreases significantly. At the highest rotation number
Rob = 20, the value of U+

b is 12.32 % lower than that of the non-rotating flow. The
monotonic decreasing trend of U+

b with respect to an increasing value of Rob (at high
rotation numbers of Rob ≥ 6) is vividly demonstrated in figure 4(a), and is also consistent
with the trend of the mean axial velocity profiles of 〈uz〉+ shown in figure 5(a) and the
result of Orlandi & Ebstein (2000). From figure 6(b), the value of k+

m increases as the
rotation number increases in general, and reaches its maximum at Rob = 14. However,
as the rotation number is increased from Rob = 14 to 20, the value of k+

m varies little.
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Figure 6. Profiles of (a) bulk mean velocity U+
b and (b) volume-averaged TKE k+

m with respect to the rotation
number Rob. The values of U+

b and k+
m have been non-dimensionalised based on uτ . Results are based on test

cases of the longest pipes at corresponding rotation numbers listed in table 1.

We explain later that axial rotation enhances the magnitudes of 〈u′
ru′

r〉+ and 〈u′
βu′

β〉+,
which subsequently make a positive contribution to the value of k+

m .

3.3. Reynolds stresses
Figure 7 compares the profiles of six Reynolds stresses 〈u′

zu
′
z〉+, 〈u′

ru′
r〉+, 〈u′

βu′
β〉+,

〈u′
ru′

z〉+, 〈u′
ru′

β〉+ and 〈u′
βu′

z〉+ at eight rotation numbers of Rob = 0–20 based on test
cases of table 1. All these Reynolds stress profiles shown are axially symmetrical about
the pipe centre (located at y = 1.0). As shown in figure 7(a), the profile of 〈u′

zu
′
z〉+ peaks

at y = 0.083 (or y+ ≈ 15) in the near-wall region of the non-rotating pipe flow. As the
rotation number is increased, the magnitude of 〈u′

zu
′
z〉+ reduces monotonically in the

near-wall region of the pipe. Furthermore, the peak of 〈u′
zu

′
z〉+ moves towards the pipe

centre as Rob increases. The lowest and highest peak values occur at Rob = 4 and 14,
respectively, which are 15.01 % and 4.57 % lower than that of the non-rotating pipe flow
(Rob = 0). In addition, it is interesting to observe that the magnitude of 〈u′

zu
′
z〉+ increases

monotonically with an increasing rotation number at the pipe centre. At Rob = 20, the
magnitude of 〈u′

zu
′
z〉+ increases by more than fivefold in comparison with the non-rotating

flow (Rob = 0). The observations of the apparent migration of the peak of 〈u′
zu

′
z〉+ towards

the pipe centre at higher rotation numbers (for Rob ≥ 6) and the monotonic increasing
trend of the magnitude of 〈u′

zu
′
z〉+ with an increasing rotation number at the pipe centre

are the result of Taylor columns. The appearance of the Taylor columns at moderate and
high rotation numbers also significantly affects the physical features of the mean flow field,
e.g. the reduction of the bulk mean velocity U+

b with an increasing rotation number shown
previously in figure 6(a). The characteristics of these two types of coherent flow structures,
hairpins and Taylor columns, are studied in detail in both physical and spectral spaces in
§§ 3.4 and 3.6.

As is clear in figure 7(b,c), the magnitudes of 〈u′
ru′

r〉+ and 〈u′
βu′

β〉+ increase
monotonically in the pipe centre as the rotation number is increased. Furthermore, as
the rotation number rises, the profile of 〈u′

ru′
r〉+ evolves from a dual-peak pattern to a

single-peak pattern (over the entire radial direction along a diameter across the pipe),
but that of 〈u′

βu′
β〉+ turns into a triple-peak pattern over the full range of a diameter.
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Figure 7. Profiles of six Reynolds stresses (a) 〈u′
zu

′
z〉+, (b) 〈u′

ru′
r〉+, (c) 〈u′

βu′
β 〉+, (d) 〈u′

ru′
z〉+, (e) 〈u′

ru′
β 〉+ and

( f ) 〈u′
βu′

z〉+ at eight different rotation numbers for Rob = 0–20 based on test cases of table 1. Pink arrows point
to the direction of an increasing rotating effect. All values are non-dimensionalised by u2

τ .

In response to the system rotation imposed, secondary flows are induced, which tend
to enhance the general levels of 〈u′

zu
′
z〉+, 〈u′

ru
′
r〉+ and 〈u′

βu′
β〉+, especially in the central

region of the pipe. As a result, the level of the volume-averaged TKE k+
m , shown previously

in figure 6(b), enhances as the rotation number increases within the range of this study (for
Rob ∈ [0, 20]).

From figure 7(d), it is clear that the profile of 〈u′
ru

′
z〉+ is approximately linear and

symmetrical in the central region of the circular pipe for both non-rotating and rotating
flows. For the non-rotating flow case, the profile of 〈u′

ru
′
z〉+ peaks at y = 0.177 (or
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y+ ≈ 32). However, as the rotation number is increased, the peak position of 〈u′
ru

′
z〉+

shifts slightly towards the wall, with its profile being relatively insensitive to the rotation
number. For a non-rotating flow, it is well-known that 〈u′

ru′
β〉+ ≡ 0 and 〈u′

βu′
z〉+ ≡ 0

hold strictly due to the axial symmetry of the flow. However, this is not the case for an
axially rotating pipe flow. As is evident in figure 7(e, f ), both these Reynolds shear stress
components are non-trivial in an axially rotating pipe flow, albeit their magnitudes are one
order of magnitude smaller than those of the other four Reynolds normal and shear stress
components. Furthermore, as shown in figure 7(e), an approximately linear behaviour can
be observed in the profile of 〈u′

ru′
β〉+ as soon as the axial system rotation is imposed

(for Rob ≥ 1), which is a consequence of clockwise system rotation of the pipe. This
observation is consistent with the finding by Orlandi & Fatica (1997). Figure 7( f ) shows
the radial profile of 〈u′

βu′
z〉+. Clearly, the value of 〈u′

βu′
z〉+ is zero identically at the pipe

wall (y = 0) and at the pipe centre (y = 1.0), due to the no-slip and axial-symmetry flow
conditions, respectively. As the rotation number is increased, the amplitude of 〈u′

βu′
z〉+

increases monotonically. At high rotation numbers of Rob ≥ 14, it is interesting to observe
that the value of 〈u′

βu′
z〉+ changes sign three times within half a radial domain (for

y ∈ [0, 1]), such that there are five zero-crossing points along the entire radial direction
of a diameter.

The behaviours of the three components of Reynolds shear stresses associated with
figure 7(d–f ) can be further analysed through their corresponding shear stress balance
equations. Assuming that the flow is fully developed in the axial direction, and statistically
homogeneous in the axial and azimuthal directions, the following equations can be
obtained from the z-, β- and r-components of the momentum equation (2.2) after applying
turbulence decomposition (i.e. ui = 〈ui〉 + u′

i) to the velocity (Speziale et al. 2000)

ν

r
d
dr

(
r

d〈uz〉
dr

)
− 1

r
d

(
r〈u′

ru′
z〉

)
dr

= Π, (3.1)

ν
d
dr

[
1
r

d
(
r〈uβ〉)
dr

]
− 1

r

d
(

r〈u′
ru′

β〉
)

dr
−

〈u′
ru′

β〉
r

= 0, (3.2)

〈u′
βu′

β〉 − 〈u′
ru

′
r〉 = −〈uβ〉〈uβ〉 + r

(
1
ρ

d〈p〉
dr

+ d〈u′
ru′

r〉
dr

− 2Ωz〈uβ〉
)

. (3.3)

Note that in the derivation of (3.2) from the β-component of the momentum equation, the
mean azimuthal Coriolis force 〈Fβ〉 is zero identically because 〈ur〉 ≡ 0. Both viscous
shear and Reynolds shear stresses vanish from (3.3), the simplified r-component of
the momentum equation. From (3.3), it is clear that at pipe centre (where r = 0 or
y = 1.0), 〈u′

βu′
β〉 − 〈u′

ru′
r〉 = 0. This explains the observation in figure 7(b,c) that the

trends and magnitudes of 〈u′
βu′

β〉 and 〈u′
ru′

r〉 become increasingly similar as the pipe
centre is approached. In a fully developed pipe flow, τvis

βz = τvis
zβ ≡ 0. In (3.1) and (3.2),

the remaining two non-trivial mean viscous shear stresses are defined as (Reich & Beer
1989)

τvis
rz = ν

∂〈uz〉
∂r

and τvis
rβ = νr

∂

∂r

( 〈uβ〉
r

)
, (3.4a,b)

respectively. The total shear stresses balance as

τ tot
ri = τvis

ri − 〈u′
ru′

i〉, (3.5)
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Figure 8. Budget profiles of mean shear stress τ+
rz and τ+

rβ at two rotation numbers Rob = 2 and 20 based on
test cases of the longest pipes of table 1. All shear stress budget terms are non-dimensionalised by u2

τ . Panel
(a) shows radial–axial shear stress components (τ vis+

rz and −〈u′
ru′

z〉+). Panel (b) shows radial–azimuthal shear
stress components (τ vis+

rβ and −〈u′
ru′

β 〉+).

where i denotes z or β. The budget balance of total shear stresses in non-dimensional forms
(i.e. τ tot+

rz and τ tot+
rβ ) is displayed in figure 8. The linear behaviour of τ tot+

rz is evident from
(3.1), whose non-dimensional form may be expressed as

τ tot+
rz = τvis+

rz − 〈u′
ru′

z〉+ = y − 1, (3.6)

in the context of an axially rotating pipe flow. From figure 8(a), the profile of −〈u′
ru′

z〉+
changes slightly in its shape as the rotation number is increased from Rob = 2 to 20. The
reason the profile of −〈u′

ru
′
z〉+ is insensitive to Rob is that its value is linearly related to

the viscous shear stress such that the total shear stress varies as τ tot+
rz = y − 1 for both

rotating and non-rotating pipe flows. From (3.6), it is understood that at the wall (y = 0)
〈u′

ru′
z〉+|w ≡ 0, and so the non-dimensional wall-shear stress becomes τ+

w = τvis+
rz |w ≡

−1. Therefore, for axially rotating pipe flows of different rotation numbers, the wall
shear stress τw is expected to be constant, which is evidenced by the stable values of
the calculated wall friction number ReA

τ listed in table 1. Furthermore, because the wall
shear stress τw is constant, it is inferred that the skin friction coefficient, defined as
Cf = τw/(ρU2

b/2), is proportional to U−2
b with the value of Ub given in figure 6(a).

From figure 8(b), it is interesting to observe that the profile of τvis+
rβ is almost a mirror

reflection of that of Reynolds stress −〈u′
ru′

β〉+ such that the total shear stress is zero, i.e.
τ tot+

rβ = 0. This is an expected feature, which can be strictly proven as follows. Equation
(3.2) is derived from the β-component of the momentum equation, which can also be
written as ∇ · τ tot

rβ = 0, or

∂τ tot
rβ

∂r
+

2τ tot
rβ

r
= 0. (3.7)

The solution to the above equation is

τ tot
rβ = C

r2 , (3.8)
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Figure 9. Profiles of two-point autocorrelation coefficients (a) axial component Rzz, (b) radial component Rrr
and (c) azimuthal component Rββ for the eight test cases of different rotation numbers Rob, calculated along
the streamwise direction at wall-normal position y = 0.083 (or y+ ≈ 15). Pink arrows in the partially enlarged
panels (a,c) indicate the direction of an increasing rotation number. Results are based on test cases of the
longest pipes at corresponding rotation numbers listed in table 1.

where C is a constant. The regularity condition at the pipe centre requires that C ≡ 0. As
such,

τ tot
rβ ≡ 0 and τvis

rβ ≡ 〈u′
ru′

β〉, (3.9a,b)

hold rigorously in an axially rotating pipe flow. This is an interesting result, which indicates
that the total r–β shear stress is zero identically, such that the viscous shear stress is
always balanced by the turbulent shear stress (in an r–β plane) at all rotation numbers.
This mechanism gives an analytical explanation to the mirror effect between the profiles
of τvis+

rβ and −〈u′
ru′

β〉+ as observed in figure 8(b).

3.4. Two-point correlations and spectral analysis
Figure 9 compares the two-point autocorrelation coefficients of three velocity components
Rzz, Rrr and Rββ at different rotation numbers based on the eight test cases of table 1.
All coefficients are determined along the axial direction at wall-normal position y+ ≈ 15,
where Reynolds stress component 〈u′

zu
′
z〉+ peaks in the context of a non-rotating pipe flow.

The two-point autocorrelation coefficient is defined as

Rii(	z) = 〈u′
i(r, β, z, t)u′

i(r, β, z + 	z, t)〉
〈u′

i(r, β, z, t)u′
i(r, β, z, t)〉 , (3.10)

1000 A1-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

64
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.649


DNS of turbulent pipe flow subjected to axial rotation

where i indicates the three directions (i.e. r, β and z) of the cylindrical coordinate system,
and no summation convention is implied in this equation. In figure 9(a,c), a partially
enlarged panel is also displayed in a semi-logarithmic coordinate in order to clearly
display the variations of Rzz and Rββ for smaller two-point separations (	z/R). From
figure 9(b), it is apparent that the profiles of the radial two-point autocorrelation coefficient
Rrr at all rotation numbers approach zero rather rapidly as the two-point separation 	z/R
increases. By contrast, the axial and azimuthal two-point correlation coefficients Rzz and
Rββ shown in figure 9(a,c) are more sensitive to the rotation number, as their values
increase monotonically with an increasing value of Rob for small two-point separations.
Furthermore, it is very interesting to observe a quasi-periodical pattern in the profiles of
Rzz and Rββ in figures 9(a) and 9(c), respectively. The spatial periods become larger as
the rotation number Rob increases. It is evident that the axial scales of the most energetic
secondary flow structures (i.e. Taylor columns) induced by the Coriolis force increase
monotonically as the rotation number is increased. The quasi-periodical patterns in the
profiles of Rzz and Rββ are most apparent at high rotation numbers.

As mentioned earlier, there are two main types of flow structure in an axially rotating
pipe flow. The first type is streaky structures near the wall (or hairpins) that are typical of
the turbulent boundary layer of a pipe flow (rotating or not). The second type is Taylor
columns similar to those observed in rotating isotropic turbulence (see, e.g., Bartello
et al. 1994; Gallet 2015; van Kan & Alexakis 2020; Pestana & Hickel 2020). However,
compared with rotating isotropic turbulence, a turbulent pipe flow is bounded peripherally
by the pipe wall of curvature 1/R. From the profiles of Rzz and Rββ , it is inferred that the
Taylor columns in an axially rotating pipe flow exhibit a spiral pattern, which elongate in
the axial direction and spin in the azimuthal direction. In fact, the axial quasi-periodicity
of the two-point autocorrelation (Rββ) observed in figure 9(c) is a consequence of the
counterclockwise spinning motion of Taylor columns demonstrated previously in figures 3,
4(a) and 5(b). Furthermore, both axial and azimuthal motions of Taylor columns are
quasi-periodic in the axial direction, which are evident in figure 9(a,c). A vivid analogy
for describing the instantaneous shape of Taylor columns in an axially rotating pipe flow is
‘a bundle of hemp ropes’, twisted together with many smaller individual ropes of different
brand names (as such, each can have its own axial and azimuthal periods). As turbulence
structures, small Taylor columns can be destroyed by dissipation and transported by
diffusion and convection in a viscous flow.

The analysis of Taylor columns can be refined through a spectral analysis, which will
show that Taylor columns have two characteristic axial length scales. To demonstrate,
figure 10 compares the profiles of the premultiplied axial spectra of axial, radial and
azimuthal velocity fluctuations (i.e. k+

z Ẽ+
zz, k+

z Ẽ+
rr and k+

z Ẽ+
ββ , respectively) of the eight

test cases of the longest pipes of table 1. All profiles are calculated at wall-normal position
y+ ≈ 15, where the axial Reynolds normal stress peaks in the context of a non-rotating
pipe flow. The 1-D axial energy spectrum of velocity fluctuations is defined as

Ẽii(kz) = Re
{

û′
i
∗
û′

i

}
, (3.11)

where the index i denotes r, β or z of the cylindrical coordinate system, and no summation
convention is implied. An overbar represents temporal averaging. The operator Re{·} and
superscript * denote the real part and conjugate of a complex number, respectively. A hat
denotes Fourier transform in the axial direction of an arbitrary variable φ(r, β, kz, t), i.e.

φ̂(r, β, kz, t) = 1
Lz

∫ Lz

0
φ(r, β, z, t)e−i kzz dz, (3.12)
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Figure 10. Profiles of premultiplied (a) axial k+
z Ẽ+

zz , (b) radial k+
z Ẽ+

rr and (c) azimuthal k+
z Ẽ+

ββ velocity spectra
at eight different rotation numbers for Rob = 0–20, calculated along the streamwise direction at wall-normal
position y = 0.083 (or y+ ≈ 15). Pink arrow points to the direction of an increasing rotation number. For
clarity, the peaks of premultiplied spectra (I, II and III) are labelled only for the two highest rotation numbers
Rob = 14 and 20. Results are based on test cases of the longest pipes at corresponding rotation numbers listed
in table 1.

where i = √−1 is the imaginary unit and kz = nzk0z is the axial wavenumber, with
nz ∈ [−Nz/2, Nz/2 − 1] being an integer and kz0 = 2π/Lz being the smallest positive
wavenumber. The axial wavelength is defined as λz = 2π/kz, non-dimensionalised as
λ+z = λzuτ /ν.

For the premultiplied axial velocity spectrum k+
z Ẽ+

zz, it is evident in figure 10(a) that
the mode of its dome peak (corresponding to the characteristic length scale of the
most energetic eddies) of the non-rotating pipe flow (Rob = 0) is located within λ+z ∈
[530, 2450] at y+ ≈ 15 in the near-wall region, where axial Reynolds normal stress peaks.
This peak of k+

z Ẽ+
zz is a consequence of near-wall streaks of the boundary layer developing

over the pipe wall. The formation of this peak does not rely on axial system rotation, but
rather, it is a characteristic of a turbulent boundary layer commonly found in wall-bounded
flows over flat plates (see, e.g., Zhou et al. 1999; Adrian 2007; Wu & Moin 2009) or in
non-rotating pipe flows (see, e.g., Wu & Moin 2008; Wu et al. 2012; Baltzer, Adrian & Wu
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DNS of turbulent pipe flow subjected to axial rotation

2013). This peak of the premultiplied axial velocity spectrum k+
z Ẽ+

zz is denoted as peak ‘I’
hereafter, and for a specific rotation number (e.g. Rob = 14 or 20), it is indicated using
the rotation number as the subscript (as I14 or I20, respectively). As the rotation number
is increased from Rob = 0 to 20, the magnitude of the first peak (I) of k+

z Ẽ+
zz decreases

monotonically. Meanwhile, the mode of the first peak moves towards larger wavelengths,
leading to an increasingly broadband vortical scales in the axial direction as the rotation
number is increased. At the highest rotation number Rob = 20, the wavelengths of the first
peak range within λ+z ∈ [4840, 5660].

From figure 10(a), it is interesting to see that at high rotation numbers (for Rob ≥ 10),
there are two additional peaks (denoted as peaks ‘II’ and ‘III’) in addition to peak I
in the profiles of the premultiplied axial velocity spectrum k+

z Ẽ+
zz. Similarly, peaks of

different rotation numbers are differentiated symbolically by using rotation numbers as
the subscripts (e.g. II20 or III20 for the case of Rob = 20). The appearance of peaks II and
III in the profiles of k+

z Ẽ+
zz is due to the presence of Taylor columns, which are elongated in

the axial direction and spin in the azimuthal direction, as discussed previously through the
analysis of two-point autocorrelation coefficients Rzz and Rββ associated with figures 9(a)
and 9(c), respectively. Using the examples of Rob = 14 and 20, the peak magnitudes follow
an ascending order, i.e. ‘I14 < II14 < III14’ and ‘I20 < II20 < III20.’ This indicates that at
high rotation numbers, the share of TKE held by Taylor columns associated with peaks II
and III (and especially with peak III) is much larger than that held by streaks at this radial
position. Within the range of the rotation numbers tested here, all three peaks of k+

z Ẽ+
zz have

been well captured. The premultiplied energy spectrum loss (in terms of the percentage
of its peak value) is less than 20 % at their cutoff wavelengths. It is also interesting
to observe that there is no apparent distinction between the second and third peaks at
moderate rotation numbers of Rob = 4 and 6, as the two types (axial and azimuthal) of
structures of Taylor columns are still evolving temporally and spatially. This indicates that
Taylor columns start to occur at moderate rotation numbers with similar characteristic
axial wavelengths. However, as the rotation number continues to increase, Taylor columns
evolve spatially to feature two distinct axial characteristic wavelengths, corresponding
to modal values of peaks II and III of k+

z Ẽ+
zz. Furthermore, both characteristic axial

wavelengths of Taylor columns increase as the rotation number is increased.
Given that the characteristic axial length scale of energetic eddy motions grows with

an increasing rotation number, the pipe length is extended from Lz = 30πR to 180πR as
rotation number increases from Rob = 0 to 20 (see table 1). As shown in figure 10(a),
the cutoff wavelength varies from (λ+z )CF = 16964.6 at Rob = 0 to (λ+z )CF = 101787.6
at Rob = 20. At the cutoff wavelength, the premultiplied energy spectrum loss varies
from 10.33 % at Rob = 4 to 19.81 % at Rob = 1. Clearly, if the short pipe of Lz = 25R (or
7.958πR) is used (as in Orlandi & Ebstein 2000), the prediction of the largest peak III20
of k+

z Ẽ+
zz that is characteristic of Taylor columns would be missed entirely. It should be

indicated that it is neither necessary nor realistic to fully prevent premultiplied energy
spectrum loss at the cutoff wavelength in either a DNS or an experiment, as it implies
usage of a pipe of infinite length. Furthermore, flow structures of large wavelengths far
beyond the mode of the premultiplied spectrum typically possess very low TKE. However,
it is important to ensure that all dominant modes of premultiplied spectra are captured in
a DNS, LES or physical experiment, which correspond to the characteristic length scales
of the most energetic eddy motions. In practice, for example, the premultiplied energy
spectrum loss at the cutoff wavelength is often kept lower than 5/8 or 3/8 of its modal value
(i.e. 0.625 max(k+

z Ẽ+
ii ) or 0.375 max(k+

z Ẽ+
ii ) for moderate and relatively high-precision
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requirements, respectively) in DNS studies of turbulent plane-channel flows (Hoyas &
Jiménez 2006; Avsarkisov et al. 2014; Yang & Wang 2018; Bagheri, Wang & Yang 2020).

In contrast to the general trend of the premultiplied axial velocity spectrum k+
z Ẽ+

zz
shown in figure 10(a), the magnitude of the premultiplied radial velocity spectrum k+

z Ẽ+
rr

increases monotonically as the rotation number is increased, a pattern that is apparent in
figure 10(b). The presence of the dominant peak of k+

z Ẽ+
rr at this near-wall position of

approximately y+ = 15 results from the streaky structures. As shown in figure 10(b), the
modal position of k+

z Ẽ+
rr is relatively stable at all eight rotation numbers tested. A careful

perusal of the figure indicates that the characteristic axial length scale of the most energetic
radial eddy motions as indicated by the mode of k+

z Ẽ+
rr increases from λ+z = 282.74 to

568.65 as the rotation number is increased from Rob = 0 to 20.
Figure 10(c) compares the premultiplied azimuthal velocity spectrum k+

z Ẽ+
ββ at eight

rotation numbers. Similar to figure 10(a), the number of peaks in the profile of k+
z Ẽ+

ββ

varies with the rotation number. At low rotation numbers Rob = 0 and 1, the profile of
k+

z Ẽ+
ββ shows only one dominant peak (denoted as I0 and I1, respectively, not labelled

in the figure) within the range of λ+z ∈ [220, 600], which is a signature of near-wall
streaks, shown also at higher rotation numbers at slightly larger wavelengths. However,
at moderately high rotation numbers of Rob = 4 and 6 as shown in figure 10(c), a second
sharp peak (denoted as II4 and II6, respectively, not labelled in the figure) appears around
λ+z = 4241 and 4847, which is an indication of the occurrence of Taylor columns. As the
rotation number continues to increase, Taylor columns further develop in both axial and
azimuthal directions leading to two characteristic axial wavelengths. At higher rotation
numbers for Rob ≥ 10, two dominant peaks (II and III) of Taylor columns (besides the
existing reduced peak I of the streaks) are identified. At the two highest rotation numbers
tested, these two characteristic peaks of Taylor columns are labelled as II14 and III14 (at
Rob = 14) and II20 and III20 (at Rob = 20) in figure 10(c). By comparing figures 10(a)
and 10(c), it is clear that the pipe flow motion is dominated by streaks (or hairpins,
signified by peak I) at low rotation numbers for Rob ∈ [0, 2], Taylor columns of one
single characteristic wavelength (signified by peak II) at moderate rotation numbers for
Rob ∈ [4, 6] and Taylor columns of two characteristic wavelengths (signified by peaks II
and III) at high rotation numbers for Rob ∈ [10, 20]. The two peaks (II and III) of k+

z Ẽ+
zz

and k+
z Ẽ+

ββ observed at the high rotation numbers for Rob ≥ 10 are consistent with the
quasi-periodic behaviours of Rzz and Rββ observed previously in figure 9(a,c).

Thus far, the analysis of the axial premultiplied velocity spectra has been conducted at
y = 0.083 (or y+ ≈ 15) in the near-wall region of the pipe in figure 10. From the previous
analysis of figure 7(a), it was observed that the value of 〈u′

zu
′
z〉+ peaks at this wall-normal

position at Rob = 0, but at y = 0.566 (or y+ ≈ 102) at Rob = 20. It would be interesting
to further examine the behaviours of the three components of the axial premultiplied
velocity spectra at this special wall-normal position of y = 0.566, which is demonstrated
in figure 11. From this figure, it is seen that all dominant peaks of the axial premultiplied
velocity spectra (e.g. peaks I14, II14 and III14 for Rob = 14, peaks I20, II20 and III20 for
Rob = 20) have been well captured based on the eight test cases of the longest pipes listed
in table 1. As shown in figure 11(a), the largest premultiplied energy spectrum loss is about
21.37 % (in terms of the percentage of its peak value) at Rob = 1 at the cutoff wavelength.

By comparing figure 11 with figure 10, it is clear that the profile patterns of all
three components of the axial premultiplied velocity spectra change considerably as the
elevation increases from y = 0.083 to 0.566. As shown in figure 11(a), the magnitudes
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Figure 11. Profiles of premultiplied (a) axial k+
z Ẽ+

zz , (b) radial k+
z Ẽ+

rr and (c) azimuthal k+
z Ẽ+

ββ velocity spectra
at eight different rotation numbers for Rob = 0–20, calculated along the streamwise direction at wall-normal
position y = 0.566 (or y+ ≈ 102). For clarity, the peaks of premultiplied spectra (I, II and III) are labelled only
for the two highest rotation numbers Rob = 14 and 20. Results are based on test cases of the longest pipes at
corresponding rotation numbers listed in table 1.

of peaks II and III of k+
z Ẽ+

zz are significantly larger than that of peak I at higher rotation
numbers of Rob ≥ 10. This indicates that Taylor columns become increasingly energetic
as the distance from the pipe wall increases. Such trend of Taylor columns is more clearly
reflected in the profiles of all three axial premultiplied spectra. As shown in figure 10(b),
the profile of k+

z Ẽ+
rr has only one dominant peak in the near-wall region (at y = 0.083),

which is peak I resulted from near-wall streaks of the boundary layer developing over the
pipe wall. By contrast, as is evident in figure 11(b), the profile of k+

z Ẽ+
rr is dominated by

peaks II and III of Taylor columns at moderate and high rotation numbers of Rob ≥ 4 at a
higher elevation of y = 0.566. In comparison with the profiles of k+

z Ẽ+
ββ in the near-wall

region shown in figure 10(c), those shown in figure 11(c) indicate that the magnitudes of
peaks II and III reduce relative to that of peak I as the elevation increases from y = 0.083
to 0.566.

Figure 12 shows the profiles of the three components of the axial premultiplied velocity
spectra at the pipe centre (y = 1.0) where the mean axial velocity value reaches the
maximum and the magnitudes of Reynolds normal stresses 〈u′

ru′
r〉 and 〈u′

βu′
β〉 are the
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Figure 12. Profiles of premultiplied (a) axial k+
z Ẽ+

zz , (b) radial k+
z Ẽ+

rr and (c) azimuthal k+
z Ẽ+

ββ velocity spectra
at eight different rotation numbers for Rob = 0–20, calculated along the streamwise direction at the pipe centre
y = 1.0. For clarity, the peaks of premultiplied spectra (I, II and III) are labelled only for the two highest
rotation numbers Rob = 14 and 20. Results are based on test cases of the longest pipes at corresponding rotation
numbers listed in table 1.

maximum. At the pipe centre, k+
z Ẽ+

rr ≡ k+
z Ẽ+

ββ . Clearly, all dominant peaks of k+
z Ẽ+

zz,
k+

z Ẽ+
rr and k+

z Ẽ+
ββ have been well captured at eight rotation numbers based on test cases

of the longest pipes listed in table 1. In comparison with figures 10 and 11, it is clear that
the peak magnitude of k+

z Ẽ+
zz shown in figure 12 drops as the elevation increases from y =

0.083 to 1.0. Furthermore, it is clear that the profile of k+
z Ẽ+

ββ features peak I of hairpins in
non-rotating or slowly rotating pipe flows (of low rotation numbers Rob = 0–2). However,
as the rotation number increases, the profile of k+

z Ẽ+
ββ begins to signify Taylor columns,

featuring one single dominant peak II at moderate rotation numbers (of Rob = 4–6) but
two dominant peaks II and III at high rotation numbers (of Rob ≥ 10).

Figure 13 compares the contour patterns of the non-dimensionalised premultiplied
1-D spectrum of axial velocity fluctuations k+

z Ẽ+
zz as a function of λ+z and y+ at two

rotation numbers Rob = 0 and 20 based on the longest-pipe cases of table 1. The
effects of axial system rotation on the generation of Taylor columns are evident by
directly contrasting figures 13(a) against 13(b). For the non-rotating pipe flow, there is
only one mode located at (λ+z , y+) = (997.4, 12.9), which corresponds to peak I0. This
peak is a consequence of near-wall streaks. However, at the highest rotation number
Rob = 20 as shown in figure 13(b), the presence of all three peaks (I20, II20 and III20)
are evident, located at (λ+z , y+) = (7268.5, 63.8), (12719.9, 114.3) and (33919.8, 97.6),
respectively. In figure 13(a), three regions of high-, intermediate- and low-intensity cores
are distinguished by different colours enclosed within three isopleths, corresponding to
0.875 max(k+

z Ẽ+
zz), 0.625 max(k+

z Ẽ+
zz) and 0.375 max(k+

z Ẽ+
zz) (or 7/8, 5/8 and 3/8 of the

peak value of k+
z Ẽ+

zz, respectively). The high-intensity core within the innermost isopleth of
0.875 max(k+

z Ẽ+
zz) are associated with the most energetic eddies of the turbulent flow field.

Although the low-intensity core enclosed by the outermost isopleth of 0.375 max(k+
z Ẽ+

zz)

corresponds to less-dominant energetic eddies consisting of a wide range wavelengths, it
still makes a considerable contribution to the total TKE. Because the TKE is mostly held
by Taylor columns at the high rotation number Rob = 20, the magnitude of peak I20 is
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Figure 13. Isopleths of premultiplied axial velocity spectra k+
z Ẽ+

zz with respect to wall-normal coordinate y+
and wavelength λ+z for the (a) non-rotating (Rob = 0) and (b) axially rotating (Rob = 20) pipe flows. The cross
symbols ‘×’ demarcate the locations of the three peaks I, II and III. The three energy levels are distinguished by
the innermost, intermediate and outermost isopleths of 87.5 %, 62.5 % and 37.5 % of the peak value max(k+

z Ẽ+
zz)

in panel (a), and 87.5 %, 37.5 % and 18.0 % of the peak value max(k+
z Ẽ+

zz) in panel (b), respectively.

much less than those of peaks II20 and III20. Therefore, the value of the outermost isopleth
is reduced to 0.18 max(k+

z Ẽ+
zz) in order to have a clear view of the location of peak I20.

By comparing figures 13(a) and 13(b), it is also seen that the modal position of all three
peaks (I20, II20 and III20) are near the pipe centre. At the rotation number is increased from
Rob = 0 to 20, the modal position of peak I increases from y+ = 12.9 to 63.8.

Figure 14 compares the profiles of k+
z Ẽ+

zz of Rob = 20 at five wall-normal distances
ranging from y = 0.083 (near the wall) to y = 1.0 (at the pipe centre). The results are
based on the case of the longest pipe Lz = 180πR. At this high rotation number, it is
clear that turbulent flow structures of an axially rotating pipe flow feature predominantly
Taylor columns (as indicated by peaks II20 and III20). From the previous analysis of
figures 10–12, it is understood that the modal wavelengths corresponding to peaks I, II
and III of profiles of k+

z Ẽ+
zz, k+

z Ẽ+
rr and k+

z Ẽ+
ββ may vary with wall-normal distance y. As is

evident in figure 14(a–c), the characteristic wavelength corresponding to peak II20 is rather
stable (with λ+z ≈ 12723) as the elevation (y value) varies. However, the characteristic
wavelengths of peaks I20 and III20 range slightly, which are indicated by a pair of dashed
lines and arrows in figure 14(a–c). A careful perusal of figure 14(a,c) indicates that the
magnitudes of k+

z Ẽ+
zz and k+

z Ẽ+
ββ are the largest and the smallest, respectively, at y = 0.566,

which are consistent with the previous observations of a local maximum value of 〈u′
zu

′
z〉+

and a local minimum value of 〈u′
βu′

β〉+ in figure 7(a,c) at a similar wall-normal position,
respectively. In figure 14(b), it is shown that the magnitude of k+

z Ẽ+
rr increases as y

increases. Such general monotonic trend is consistent with that of 〈u′
ru

′
r〉+ observed in

figure 7(b). This is an expected feature, simply because the Reynolds stresses relate directly
to their premultiplied spectra kzẼij through integration 〈u′

iu
′
j〉 = 2

∫ ∞
0 kzẼij d(ln kz).

3.5. Higher-order turbulence statistics
So far, the influence of the Coriolis force on an axially rotating pipe flow has been
studied thoroughly through investigations into the mean flow and second-order turbulence
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Figure 14. Profiles of premultiplied (a) axial k+
z Ẽ+

zz , (b) radial k+
z Ẽ+

rr and (c) azimuthal k+
z Ẽ+

ββ velocity spectra
at the highest rotation number Rob = 20, calculated along the streamwise direction at different wall-normal (y)
positions, based on the test case of the longest pipe Lz = 180πR.

statistics. In order to develop a deeper insight into the flow, the third- and fourth-order
statistical moments can be further examined. Figure 15 shows the radial profiles of the
skewness and flatness factors of three velocity fluctuations, defined as

S(u′
i) = 〈u′

i
3〉

〈u′
i
2〉3/2 and F(u′

i) = 〈u′
i
4〉

〈u′
i
2〉2 , (3.13a,b)

respectively. Here, indices i = 1, 2 and 3, correspond to cylindrical coordinates r, β and
z, respectively, and no summation convention is implied. To study the ejection and sweep
events in a circular pipe flow, it is convenient to consider the analogy of a boundary-layer
flow developing over a flat plate. Thus, the negative of instantaneous radial velocity
fluctuation (−u′

r) is used in the calculation of the radial skewness factor S(−u′
r). This

greatly facilitates an intuitive near-wall analysis of physical phenomena associated with
the skewness factor based on the non-dimensional wall coordinate y.

Figure 15(a) compares the profiles of the axial skewness factor S(u′
z) at different

rotation numbers. Clearly, the value of S(u′
z) drops rapidly in the near-wall region. For a

non-rotating pipe flow, the axial skewness factor has a zero-crossing point at y = 0.068
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DNS of turbulent pipe flow subjected to axial rotation

1.6

Rob

Rob

Rob

0.8

0

S 
(u

′ z)
S 

(–
u′ r)

S 
(u

′ β
)

F 
(u

′ z)
F 

(u
′ r)

F 
(u

′ β
)

–0.8

–1.6

1.2

0.6

0

–0.6

–1.2

0.8

0.4

0

–0.4

–0.8

15.0

10.0

05.0

90

60

30

6.0

4.0

3.0

1.5

00 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

00 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

00 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.050.030.01

50

25

0

Rob = 0
Rob = 1
Rob = 2
Rob = 4
Rob = 6
Rob = 10
Rob = 14
Rob = 20

y y

(a) (b)

(c) (d )

(e) ( f )

Figure 15. Profiles of skewness (a,c,e) and flatness factors (b,d, f ) of three velocity fluctuations at various
rotation numbers of Rob = 0–20: (a) S(u′

z); (b) F(u′
z); (c) S(−u′

r); (d) F(u′
r); (e) S(u′

β); ( f ) F(u′
β). The pink

dash-dotted line indicates the theoretical values of an ideal Gaussian distribution, which are 0 and 3 for
skewness and flatness, respectively. The pink arrow shows a local trend of an increasing rotation number Rob.
Results are based on test cases of the longest pipes at corresponding rotation numbers listed in table 1.

(in the near-wall region of the pipe), and then holds its magnitude almost constant
with S(u′

z) > −0.6 as the wall-normal distance increases, which is consistent with the
observation of Eggels et al. (1994) on non-rotating pipe flows. As soon as the axial rotation
is imposed, this pattern of S(u′

z) is broken and the zero-crossing position is shifted towards
the pipe centre. At Rob = 20, the S(u′

z) profile crosses zero at a much high elevation (of
y = 0.422) from the wall. In figure 15, although a strict general monotonic trend in the
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profiles of skewness and flatness factors with respect to a varying rotation number is not
observed, arrows are still plotted wherever a clear local monotonic trend can be identified
in the profiles. As is evident in figure 15(c), the radial skewness factor S(−u′

r) has two
zero-crossing points at y = 0.023 and y = 0.203 in the near-wall region. A negative peak
value can be observed at y = 0.078 with S(−u′

r) = −0.386 at Rob = 0. However, as
the rotating effect intensifies, the negative peak of S(−u′

r) transitions progressively to
become a positive peak. At Rob = 10, the radial skewness factor reaches its maximum
of S(−u′

r) = 1.066 at y = 0.093, and the two zero-crossing points occur at y = 0.003 and
y = 0.468. At the highest rotation number Rob = 20, the profile of S(−u′

r) crosses zero
at y = 0.005 and the profile of S(−u′

r) maintains positively valued in most of the regions.
From figure 15(e), it is evident that the azimuthal skewness factor basically follows the
ideal Gaussian distribution of S(u′

β) = 0 in the non-rotating pipe flow. However, as soon
as the system rotation is imposed, this behaviour of S(u′

β) is broken, exhibiting a complex
profile pattern in the radial direction.

Figure 15(b,d, f ) compare the flatness factors of three velocity components at different
rotation numbers. Apparently, all three flatness factors peak at the wall for both
non-rotating and rotating pipe flows. As shown in figure 15(b), the profile of the axial
flatness factor F(u′

z) has two zero-crossing points in the near-wall region of the pipe
(such that it changes sign five times along a diameter). The two zero-crossing points
are located at y = 0.033 and y = 0.221, respectively, for the non-rotating flow. As the
rotation number is increased, the profile of F(u′

z) deviates more apparently from the ideal
Gaussian distribution showing an enhanced level of turbulence intermittency. Moreover,
the two zero-crossing points tend to shift towards the pipe centre as the rotation number is
increased. At the highest rotation number Rob = 20, the zero-crossing points are located
at y = 0.399 and at y = 0.667. From figure 15(d), it is seen that the value of F(u′

r) reaches
its maximum at the wall at Rob = 2, which is almost threefold of that at Rob = 0. It is
evident that the profile of F(u′

r) approaches the theoretical value of 3 of an ideal Gaussian
distribution rapidly as the distance from the wall increases. As is evident from figure 15( f ),
the wall value of F(u′

β) is the highest in the non-rotating flow case (Rob = 0), which drops
rather rapidly as the rotation number is increased. At the two highest rotation numbers
tested (Rob = 14 and 20), the profile of F(u′

β) shows a complex pattern and deviates
significantly from a Gaussian distribution at radial positions slightly off the pipe centre
(0.5 < y < 0.9).

In the analysis of the skewness factor associated with figure 15, attention has been paid to
the locations of its zero-crossing points. This is because of the sign of the skewness factor
is critical in defining near-wall sweep and ejection events. In the context of a circular pipe
flow, the ejection events feature S(u′

z) < 0 and S(−u′
r) > 0, whereas the sweep events are

characterised by S(u′
z) > 0 and S(−u′

r) < 0. The ejection and sweep events correspond to
the Q2 (featuring u′

z < 0 and −u′
r > 0) and Q4 (featuring u′

z > 0 and −u′
r < 0) events in

the quadrant analysis of the radial-axial Reynolds shear stress, respectively.
Figure 16 compares the ejection and sweep events of the non-rotating (Rob = 0) and

rotating (Rob = 20) pipe flows based on the skewness factors of u′
z and −u′

r. The intervals
corresponding to the ejection and sweep events are labelled in blue and red colours,
respectively. These intervals are identified based on the zero-crossing points of S(u′

z) and
S(−u′

r). To ensure a clear view of the events, all profiles are plotted semi-logarithmically
in the radial direction with respect to the wall coordinate y+. For the non-rotating case
shown in figure 16(a), the ejection events occur at y+ ∈ [36.885, 180] (or, y ∈ [0.205, 1])
in the log-law region, whereas the sweep events are observed at y+ ∈ [4.101, 12.203] (or,
y ∈ [0.023, 0.068]) in the viscous sublayer. From figure 16(b), it is seen that as the rotation
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Figure 16. Profiles of skewness factors of u′
z and −u′

r of the (a) non-rotating (Rob = 0) and (b) axially rotating
(Rob = 20) pipe flow cases. Pink horizontal dash-dotted line indicates the zero value of an ideal Gaussian
distribution. The intervals corresponding to ejection and sweep events are labelledin blue and red colours,
respectively. Results are based on test cases of the longest pipes at corresponding rotation numbers listed in
table 1.
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Figure 17. Contours of j.p.d.f. P(u′
z, −u′

r) at wall-normal position y+ ≈ 15 of the pipe for the (a) non-rotating
(Rob = 0) and (b) axially rotating (Rob = 20) pipe flows. All contours have been split into four quadrants
(Q1–4) by black solid lines. Results are based on test cases of the longest pipes at corresponding rotation
numbers listed in table 1.

number reaches Rob = 20, the ejection interval is shrunk by 27.30 % and shifts towards
the pipe centre with y+ ∈ [75.96, 180] (or, y ∈ [0.422, 1]). In contrast to the non-rotating
pipe flow, the disappearance of the sweep interval in the near-wall region of the pipe
indicates that the axial system rotation impedes the formation of the near-wall turbulence
structures by suppressing the sweep events. The analysis of sweep and ejection events is
conducted solely based on the sign of the skewness factors, S(u′

z) and S(−u′
r), which can

only provide a partial explanation of the axially rotating effects on these two events. To
refine the research, the joint probability density function (j.p.d.f.) can be further employed
to perform a quadrant analysis of sweep and ejection events, and near-wall turbulence
structures.

Figure 17 compares the contours of j.p.d.f. of u′
z and −u′

r, i.e. P(u′
z, −u′

r), at the
wall-normal position y+ ≈ 15 of the pipe for the non-rotating (Rob = 0) and rotating
(Rob = 20) pipe flows. This particular near-wall position is selected because the Reynolds
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Figure 18. Contours of instantaneous axial velocity fluctuations (u′
z
+) in the β–z plane at wall-normal position

y+ ≈ 15 for the (a) non-rotating (Rob = 0) and (b–d) axially rotating (Rob = 1, 2 and 20) flows. The axial
domain is arbitrarily extracted within range z/R ∈ [0, 10]. Results are based on test cases of the longest pipes
at corresponding rotation numbers listed in table 1.

stress component 〈u′
zu

′
z〉+ reaches its maximum value at this radial position. From

figure 17(a,b), it is evident that the Q2 and Q4 events are preferred, corresponding to
the ejection and sweep events, respectively. However, as the rotation number is increased
from Rob = 0 to 20, the Q2 events tend to produce high intensities with a low probability,
whereas the Q4 events show an opposite trend.

3.6. Turbulent flow structures
Figure 18 compares instantaneous axial turbulence structures (visualised using the
contours of u′

z
+) in the β–z plane at the wall-normal position y+ ≈ 15 for the non-rotating

(Rob = 0) and rotating (Rob = 1, 2 and 20) pipe flows. The axial domain is arbitrarily
selected within the range of z/R ∈ [0, 10]. At Rob = 0 as shown in figure 18(a), the axial
turbulence structures are purely streaks, visualised using contours of positively (indicated
by red) and negatively valued (indicated by blue) instantaneous axial velocity fluctuations
u′

z
+, which alternate in the azimuthal direction in the non-rotating pipe flow. At low

rotation numbers Rob = 1 and 2 shown in figure 18(b,c), it is interesting to see that the
streaky structures in the near-wall region tilt slightly, a physical feature that relates to the
secondary flows shown previously in figure 3(b). At Rob = 20 as shown in figure 18(d), the
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Figure 19. Contours of instantaneous axial vorticity fluctuations (ω′
z
+) in the β–z plane at wall-normal

position y+ ≈ 15 for the (a) non-rotating (Rob = 0) and (b–d) axially rotating (Rob = 1, 2 and 20) pipe flows.
The axial domain is arbitrarily extracted within range z/R ∈ [0, 10]. Results are based on test cases of the
longest pipes at corresponding rotation numbers listed in table 1.

patterns of axial turbulence structures are qualitatively different from those at zero or very
low rotation numbers shown in figure 18(a–c) in the sense that they are now mixed with
streaks and Taylor columns (at this high rotation number). Clearly, the axial turbulence
structures are more intensified and their azimuthal period becomes greater at Rob = 20.
From the previous discussion of figure 10, it is further understood that peak magnitudes of
II20 and III20 are larger than that of I20, indicating that turbulence structures are dominated
by Taylor columns (over the streaks) at the near-wall position of y+ = 15 at the highest
rotation number tested (Rob = 20).

Figure 19 compares instantaneous axial vorticity fluctuation (ω′
z
+) patterns in the

β–z plane at y+ ≈ 15 for the non-rotating (Rob = 0) and rotating (Rob = 1, 2 and 20)
pipe flows. For the non-rotating pipe flow shown in figure 19(a), numerous near-wall
small-scale vortical structures are seen in the β–z plane. However, in response to the axial
system rotation, these small-scale structures tend to stretch along the axial direction and
tilt slightly along the azimuthal direction at Rob = 1 and 2, a pattern that is consistent
with the observation of figure 18(b,c). At the highest rotation number Rob = 20 as shown
figure 19(d), the vortical structures become greatly stretched in the axial direction. The
instantaneous vortical structures at zero or very low rotation numbers (Rob = 0–2) mainly
reflect the characteristics of the turbulent boundary layer of a viscous flow. However, at
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Figure 20. Contours of vortical structures of the (a) non-rotating (Rob = 0) and (b–d) axially rotating
(Rob = 2, 6 and 14) flows. For clarity, only one half of the azimuthal domain is displayed. The axial
domain (iso-surfaces are plotted with λci = 1.1) is arbitrarily extracted within range z/R ∈ [0, 15]. All
contours are coloured by non-dimensionalised instantaneous axial vorticity ω+

z . The blue (representing
negatively valued ω+

z ) and red (representing positively valued ω+
z ) flow structures correspond to the clockwise

and counterclockwise spiral motions, respectively. Results are based on test cases of the longest pipes at
corresponding rotation numbers listed in table 1.

the highest rotation number Rob = 20, Taylor columns become dominant, a mechanism
that is described by the Taylor–Proudman theorem of the inviscid flow theory and is
fundamentally different from that of a boundary layer.

Figure 20 compares the coherent structures of the non-rotating (Rob = 0) and rotating
(Rob = 2, 6 and 14) pipe flows. To visualise the coherent structures, the swirling strength
(λci) criterion of Zhou et al. (1999) is used, which is defined as the imaginary part of the
complex eigenvalue of the velocity gradient tensor. The iso-surfaces of the flow structures
are further coloured by non-dimensionalised instantaneous axial vorticity ω+

z . Therefore,
the blue (representing negatively valued ω+

z ) and red (representing positively valued ω+
z )

flow structures correspond to the clockwise and counterclockwise spiral motions with
respect to the axial direction, respectively. Furthermore, in order to provide a clear view
of the hairpin structures at zero or low rotation numbers and Taylor columns at high
rotation numbers (see also figure 3), only one half of the azimuthal domain is displayed,
arbitrarily extracted within the axial range of z/R ∈ [0, 15]. In figure 20(a), the hairpin
structures are clearly observed in the non-rotating pipe flow, which are qualitatively similar
to those reported in Wu et al. (2015). In the literature, the discussion of hairpin structures
is often made based on turbulent boundary-layer flows developing over flat plates, and the
formation of a standard complete hairpin structure model of a ‘head–neck–legs’ pattern
is often attributed to near-wall bursting events, spreading to the outer region through the
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Q2 and Q4 events (Robinson 1991; Adrian 2007). The presence of hairpin structures is
also evident at Rob = 2 shown in figure 20(b). It is seen that in response to the system
rotation imposed (at Rob = 2), a number of counterclockwise vortical structures (aligned
in the z-direction, corresponding to positively valued ω+

z ) begin to become populated at
the pipe centre, whereas some clockwise vortical structures (corresponding to negatively
valued ω+

z ) are shifted away from the pipe centre. Because of the low axial system
rotating speed at Rob = 2, the secondary flows are not strong enough to result in any
significant migration of the flow structures. However, as the rotation number continues to
increase to Rob = 6 and 14, such spatial evolution of the flow structures becomes apparent.
The effects of rotation number on the instantaneous flow structures observed here are
consistent with the profile trend of the mean axial vorticity 〈ωz〉+ demonstrated previously
in figure 5(c), which clearly shows that as Rob increases, the value of 〈ωz〉+ becomes
increasingly negative (corresponding to local clockwise rotation) in the near-wall region
(for 0 ≤ y < 0.4) and positive (corresponding to local counterclockwise rotation) in the
pipe centre (for 0.4 < y ≤ 1.0).

From figure 20(c), it is seen that as the rotation number is increased to Rob = 6, stabler
and stronger large-scale secondary motion occurs at the pipe centre, as a result of the
occurrence of Taylor columns. Meanwhile, hairpin structures are considerably destructed
by the axial system rotation. As the rotation number further increases to Rob = 14 as
shown in figure 20(d), it is seen that the vortical flow structures corresponding to positively
and negatively valued ω+

z become visibly separated as most of the structures of positively
valued ω+

z cluster together at the pipe centre to form very long secondary vortical
structures of Taylor columns which spin counterclockwise (see also figure 3).

4. Conclusions

Turbulent flow confined within a circular pipe subjected to axial system rotation has been
studied using DNS for a wide range of rotation numbers varying from Rob = 0 to 20. To
ensure that energetic turbulent eddy motions in form of hairpins and Taylor columns are
reasonably captured at different rotation numbers, pipes of length up to Lz = 180πR are
used in DNS.

The bulk mean velocity U+
b increases as soon as the axial system rotation is imposed,

and reaches its maximum at Rob = 2. However, at higher rotation numbers for Rob ≥ 6,
the value of U+

b decreases significantly. It is interesting to observe that the peak position
of the mean swirl (azimuthal) velocity r〈uβ〉+/R is independent of Rob, which occurs
at y ≈ 0.4 where the mean axial vorticity 〈ωz〉+ is zero identically. For a non-rotating
pipe flow, 〈u′

ru′
β〉+ ≡ 0 and 〈u′

βu′
z〉+ ≡ 0. By contrast, in response to the axial system

rotation imposed, all six Reynolds stress components are non-trivial. Under an axial system
rotation, secondary flows are induced, which tend to suppress 〈u′

zu
′
z〉+ in the near-wall

region but enhance the magnitudes of 〈u′
ru′

r〉+ and 〈u′
βu′

β〉+ in most pipe regions. This
leads to a significant increase in the TKE level as the rotation number is increased.
However, as the rotation number further increases from Rob = 14 to 20, the TKE value
becomes stable. In the context of an axially rotating pipe flow, the total shear stress τ tot+

rz
in the r–z plane exhibits a linear profile in the radial direction. By contrast, it is proven that
the total shear stress τ tot+

rβ in the r–β plane is zero identically such that the profiles of τvis
rβ

and −〈u′
ru′

β〉 are mirror reflections of each other.
As the rotation number is increased, the profile of flatness factor F(u′

z) deviates
apparently from the ideal Gaussian distribution showing an enhanced level of turbulence
intermittency. It is observed that the azimuthal skewness factor generally follows the ideal
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Gaussian distribution of S(u′
β) = 0 in the non-rotating pipe flow. However, as soon as the

system rotation is imposed, this behaviour of S(u′
β) is broken, exhibiting a complex profile

pattern in the radial direction. Furthermore, based on the analysis of the signs of S(u′
z)

and S(−u′
r), it is observed that the axial system rotation tends to impede the formation of

hairpin structures by suppressing the sweep events.
There are two types of energetic axial flow structures in an axially rotating pipe flow.

The first type is hairpin structures (associated with streaks in the near-wall region), typical
of a turbulent boundary layer over a solid wall. The second type is the Taylor columns,
which spin in the azimuthal direction and elongate in the axial direction at moderate and
high rotation numbers. The streaks and Taylor columns are distinctively different in terms
of their characteristic wavelengths corresponding to the peaks (I for hairpin and streaks,
and peaks II and III for Taylor columns) of the premultiplied spectra kzẼii. It is interesting
to observe that Taylor columns feature one single dominant peak II at moderate rotation
numbers, but two dominant peaks II and III at high rotation numbers. It is also observed
that as the rotation number is increased, Taylor columns become increasingly populated
in the central regions of the pipe, and furthermore, turbulence kinetic energy held by
Taylor columns enhances rapidly associated with significant increases in their axial length
scales. As such, both the magnitude and characteristic wavelength of peak III increases
drastically as the rotation number is increased. In view of this, a rather long pipe is needed
for performing DNS of an axially rotating pipe flow at high rotation numbers in order
to capture Taylor columns. Through a complementary comparative study of test cases of
different pipe lengths, it is observed that use of short pipes can lead to physically inaccurate
flow statistics and velocity spectra at high rotation numbers.

Although a very long pipe of Lz = 180πR has been used for conducting DNS at the
highest rotation number Rob = 20 in this study, a longer pipe would be needed if a higher
rotation number was further pursued. It is also recognised that our comparative study of
eight rotation numbers has been conducted based on a fixed low Reynolds number. The
combined effects of both Reynolds and rotation numbers on axially rotating turbulent pipe
flow and structures are still unknown, which need to be explored in future studies.
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Appendix A. Effects of pipe length on the accuracy of DNS results

A turbulence field consists of eddies of different temporal and spatial scales. Thus, in
a high-fidelity numerical or experimental study of a transient turbulent flow problem,
the frequency and wavelength ranges of energetic eddy motions need to be carefully
considered. Since the pioneering work of Jiménez & Moin (1991), it has become
understood that a minimum computational domain is needed in DNS in order to capture
major physical processes associated with large energetic turbulence structures such as
near-wall hairpins and streaks in a plane-channel flow. In the context of an axially rotating
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Figure 21. Profiles of the mean axial velocity 〈uz〉+ computed based on varying pipe lengths Lz at two rotation
numbers (a) Rob = 2 and (b) Rob = 20, based on test cases listed in table 2. For the purpose of comparison,
the DNS results of Orlandi & Fatica (1997, labelled as ‘OF-1997’) and Ebstein (1998, labelled as ‘E-1998’) are
displayed. The pink arrow points in the direction of increasing pipe length.

turbulent pipe flow, the axial turbulent motions are dominated by streaks at low rotation
numbers, and by Taylor columns at moderate and high rotation numbers. Because the
characteristic length scales of both streaks and Taylor columns increase as the rotation
number Rob is increased, the pipe length Lz needs to be increased accordingly in DNS.
Previous studies of the domain size effects on the accuracy of the DNS results have focused
primarily on boundary-layer flows over flat plates. In this appendix, we study the effects
of pipe length on the accuracy of DNS results in the context of an axially rotating pipe
flow. A comparative study of 10 DNS cases of varying pipe lengths has been conducted
at low and high rotation numbers (Rob = 2 and 20). The pipe lengths, Reynolds numbers
and grid resolutions of the 10 DNS test cases are summarised in table 2, in which the pipe
length varies drastically from Lz = πR to 180πR.

A.1. Impact on the mean velocity
Figure 21 compares the mean axial velocity 〈uz〉+ computed based on a variety of pipe
lengths at two rotation numbers Rob = 2 and 20. For the purpose of comparison, the DNS
data of Orlandi & Fatica (1997, based on a pipe length of Lz = 10R (or 3.183πR)) and
Ebstein (1998, based on a pipe length of Lz = 25R (or 7.958πR)) at a similar Reynolds
number of Reb = 4900 are also displayed in the figures. In addition, the classical law of
the wall for a non-rotating turbulent circular pipe flow based on von Kármán’s two-layer
boundary-layer model (i.e. 〈uz〉+ = y+ for y+ ≤ 10.8 and 〈uz〉+ = 2.5 ln y+ + 5.5 for
y+ > 10.8) is shown to highlight the influence of axial system rotation on the mean axial
velocity profile. By comparing figures 21(a) and 21(b), it is clear that the values of 〈uz〉+ of
test cases of different pipe lengths agree better at the lower rotation number Rob = 2 than
at the higher rotation number Rob = 20. In other words, the effect of pipe length on the
prediction of 〈uz〉+ manifests as the rotation number is increased. At the highest rotation
number shown in figure 21(b), it is clear that the profiles of 〈uz〉+ of all seven cases become
increasingly different in values as the pipe centre is approached. The results from the short
pipes (of Lz = πR–7.958πR) based on either our simulations or those of Ebstein (1998) all
deviate considerably from those of longer pipes (of Lz = 30πR–180πR). The pipe length
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Figure 22. Profiles of non-dimensionalised (a,b) axial turbulence intensity u′+
z,rms and (c,d) Reynolds shear

stress 〈u′
ru′

z〉+ for different pipe lengths (Lz) at two rotation numbers (a,c) Rob = 2 and (b,d) Rob = 20 (based
on the test cases of table 2). The DNS results of Orlandi & Fatica (1997, labelled as ‘OF-1997’) and Ebstein
(1998, labelled as ‘E-1998’) are displayed for the purpose of comparison.

effect is evident in terms of the calculation of the mean axial velocity 〈uz〉+, and will
be further demonstrated based on the calculations of root-mean-square (r.m.s.) velocities,
Reynolds shear stresses, two-point autocorrelation coefficients and premultiplied spectra
of velocity fluctuations.

A.2. Impact on the second-order statistical moments
Figure 22 compares the profiles of the second-order statistical moments of Rob = 2 and
20 obtained based on test cases of varying pipe lengths described in table 2. For the
purpose of comparison, the DNS data of Orlandi & Fatica (1997) and Ebstein (1998) are
also displayed in the figure. The second-order statistical moments of the velocity field are
non-dimensionalised using the mean axial velocity at the pipe centreline 〈UCL〉 in Orlandi
& Fatica (1997) and are presented in a dimensional form in Orlandi & Ebstein (2000).
The Reynolds stresses and r.m.s. velocities non-dimensionalised using the wall friction
velocity uτ are available in Ebstein (1998).

From figure 22(a,c), it is clear that predictions of u′+
z,rms and 〈u′

ru′
z〉+ based on cases

of different pipe lengths are generally similar at the lower rotation number Rob = 2,
although the value of u′+

z,rms obtained using the shortest pipe length (Lz = πR) is slightly
over-predicted in comparison with those obtained using longer pipes. However, as the
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Figure 23. Influence of pipe length on the predictive accuracy of DNS with respect to the (a,b) axial two-point
autocorrelation coefficient Rzz and (c,d) premultiplied axial velocity spectra k+

z Ẽ+
zz at two rotation numbers (a,c)

Rob = 2 and (b,d) Rob = 20, based on test cases of different pipe lengths listed in table 2. The values of Rzz
and k+

z Ẽ+
zz are calculated along the streamwise direction at wall-normal position y = 0.083 (or y+ ≈ 15).

rotation number is increased to Rob = 20, it shows clearly in figure 22(b,d) that the
DNS results of both u′+

z,rms and 〈u′
ru′

z〉+ based on the three shortest pipe lengths (of Lz =
πR–7.958R) of either our current study or those of Ebstein (1998) deviate from those of
longer pipes (of Lz = 30πR–180πR). From figure 22(b,d), it is seen that the performance
of the shortest-pipe-length case of Lz = πR is the least satisfactory. Furthermore, the
impact of pipe length on the calculation of the second-order statistical moments is the
most apparent with respect to the profiles of u′+

z,rms at Rob = 20 shown in figure 22(b).
Clearly, in order to calculate the values of u′+

z,rms and 〈u′
ru

′
z〉+ accurately at the highest

rotation number Rob = 20, the minimum pipe length needs to be kept at Lz = 30πR.

A.3. Impact on the two-point correlations and energy spectra
The pipe length effects on the predictive accuracy of DNS with respect to the value of
the axial two-point correlation Rzz and that of the non-dimensionalised premultiplied 1-D
spectrum of axial velocity fluctuations k+

z Ẽ+
zz are demonstrated in figure 23. As indicated

by table 2, the largest pipe length is Lz = 30πR and 180πR at Rob = 2 and 20, respectively,
which ensure the value of Rzz approaches zero and that of k+

z Ẽ+
zz is sufficiently low at

the cutoff wavelength. From figure 23(a,b), it is clear that the profile Rzz truncates at
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a high level if short pipes are used for Lz ≤ 2πR (at Rob = 2) and for Lz ≤ 7.958πR
(at Rob = 20). In these short-pipe-length cases, the value of Rzz is considerably above
zero and, therefore, they are incapable of capturing the signature point of the maximum
negative correlation that corresponds to the characteristic length scale of the energetic
flow structures. A similar situation holds in the profiles of k+

z Ẽ+
zz shown in figure 23(c,d).

From figure 23(c), it is seen that the two short-pipe-length cases of Lz ≤ 2πR are unable to
capture the full dome peak (i.e. peak I2) of k+

z Ẽ+
zz at Rob = 2. At the high rotation number

of Rob = 20, the two short-pipe-length cases of Lz ≤ 2πR completely miss the prediction
of all three peaks (i.e. peak I20, II20 and III20) of k+

z Ẽ+
zz. Although the case of Lz = 30πR

is able to capture peak I20, it misses peaks II20 and III20 in its prediction. Even in the
case of a larger pipe length Lz = 80πR, peak III20 is still missed in the DNS prediction.
Therefore, in order to capture the energetic eddy motions of Taylor columns (as indicated
by its two signature modal wavelengths of peaks II20 and III20), the pipe length needs to
be kept at Lz = 180πR (which has a relatively small premultiplied energy spectrum loss
that is 14.32 % of its peak value at its cutoff wavelength).

A.4. Impact on the ratio of axial integral scale over pipe length
From the comparative study based on cases of different pipe lengths of table 2, it is clear
that an overly short pipe can give spurious calculations of the first- and second-order flow
statistics, and the values of the axial two-point correlation Rzz and premultiplied spectrum
of axial velocity fluctuations k+

z Ẽ+
zz in DNS. To further demonstrate, the values of the zero

mode of k+
z Ẽ+

zz calculated based on test cases of different pipe lengths can be compared.
At a fixed radial position r, Ẽzz(r, kz) varies with kz only and, therefore, can be denoted
using Ẽzz(kz) for simplicity. At the zero mode (kz = 0), the axial velocity spectrum relates
to the axial Reynolds normal stress as

Ẽzz(0) = lint,z

Lz
〈u′

zu
′
z〉, (A1)

where lint,z = ∫ Lz
0 Rzz dz is the integral length scale of the axial (z) direction. We can

rearrange this equation to obtain

Ẽzz(0)

〈u′
zu′

z〉
= lint,z

Lz
, (A2)

which has clear physical meaning that at the zero mode, the axial velocity spectra Ẽzz(0)

non-dimensionalised by 〈u′
zu

′
z〉 is the ratio of the axial integral length lint,z over the pipe

length Lz. The value of lint,z/Lz would approach zero, if the pipe length is significantly
larger than the axial integral length scale. Figure 24 shows the value of lint,z/Lz computed
based on test cases of varying pipe lengths listed in table 2. From figure 24, it is clear
that the axial integral length is much larger at Rob = 20 than at Rob = 2. This is expected,
because both streaky structures and Taylor columns become increasingly elongated as the
rotation number is increased. The percentage value of lint,z/Lz is 59.3 % and 36.9 % for
the shortest pipe lengths of Lz = πR and 2πR at Rob = 2. Both these percentage values
are too large to be acceptable in DNS, because they indicate that the axial integral length
scale are of the same order of the pipe length (as such, there is insufficient room for large
turbulence structures to move and develop axially). At the high rotation number Rob = 20,
the percentage value of lint,z/Lz is as high as 83.7 % in the shortest-pipe-length case of
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Figure 24. Influence of the pipe length on DNS prediction of the axial velocity spectra Ẽzz
(non-dimensionalised by 〈u′

zu
′
z〉) at zero mode (kz = 0) with respect to axial pipe length Lz/R at two rotation

numbers Rob = 2 and 20, calculated along the streamwise direction at wall-normal position y = 0.083 (or
y+ ≈ 15). The calculations are based on test cases listed in table 2. Pink arrow points to the direction of an
increasing rotation number.

Lz = πR, a scenario that is also physically unacceptable for DNS. By contrast, in the two
longest-pipe cases of Lz = 80πR and 180πR for Rob = 20, the percentage value of lint,z/Lz
drops to 4.3 % and 2.4 %, respectively, indicating the pipes are sufficiently long to allow
large eddy motions (of integral length scales) to develop spatially.
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