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Genotype × Environment Interaction in Psychiatric
Genetics: Deep Truth or Thin Ice?
Lindon Eaves
Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA

Background: There continues to be significant investment in the detection of genotype × environment
interaction (G × E) in psychiatric genetics. The implications of the method of assessment for the genetic
analysis of psychiatric disorders are examined for simulated twin data on symptom scores and environ-
mental covariates. Methods: Additive and independent genetic and environmental risks were simulated
for 10,000 monozygotic (MZ) and 10,000 dizygotic (DZ) twin pairs and the ‘subjects’ administered typical
simulated checklists of clinical symptoms and environmental factors. A variety of standard tests for G × E
were applied to the simulated additive risk scores, sum scores derived from the checklists and transformed
sum scores. Results: All analyses revealed no evidence for G × E for latent risk but marked evidence for G ×
E and other effects of modulation in the sum scores. These effects were all removed by transformation. An
integrated genetic and psychometric model, accounting for both the causes of latent liability and a theory
of measurement, was fitted to a sample of the simulated sum-score data and showed that there was no
significant modulation of the parameters of the genetic model by environmental covariates (i.e., no G × E).
Conclusions: Claims to detect G × E based on analytical methods that ignore the theory of measurement
must be subjected to greater scrutiny prior to publication.

� Keywords: psychiatric genetics, G × E interaction, twins, psychometrics

The last two decades have witnessed many research ini-
tiatives and claims to demonstrate the importance of
genotype × environment interaction (G × E) for hu-
man behavior and its disorders. The intimate connection
between statistical demonstrations of G × E and the in-
struments employed to measure behavior has received
less attention. This ambiguity has long been recognized
by plant and animal geneticists (see, e.g., Mather & Jinks,
1982), but its implications for the substantive significance
of claims to detect G × E for human behavior have been
virtually ignored.

With the aid of simulated data, this article shows that the
problem of inferring G × E is acute for the types of data
(symptom counts and checklists) that form the mainstay
of most psychiatric genetic epidemiology, to the point that
claims to find G × E for psychiatric outcomes must seri-
ously be questioned in the absence of any deeper analysis of
the underlying biology or the relationship between behav-
ioral dimensions and the instruments used to assess them.

Outline of Approach
(1) Simulated twin data are generated for a continuous
latent behavioral trait and a continuous correlated index

of environmental risk on the assumption that a measured
environmental covariate does not modulate any contribu-
tions of genes, shared family environment, or individual
specific environment to differences in the simulated be-
havioral trait. (2) The latent trait and environmental index
are ‘scored’ using a simple test procedure simulating those
frequently used in behavioral measurement to generate
symptom counts and environmental checklist scores with
properties similar to those often found in psychiatric
genetic epidemiology. (3) A series of statistical tests and
analyses are performed on the simulated liabilities, derived
test scores and transformed test scores to detect and esti-
mate the main effects of genes, measured and unmeasured
environment and the apparent modulation (‘interaction’)
of genetic and environmental contributions by the envi-
ronmental covariate. (4) An integrated model is developed
and tested that recovers both the parameters of the genetic
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TABLE 1
Expected Covariance Matrices for Simulated Environmental Risk and Liability to
Behavioral Outcome in MZ and DZ Twins

Monozygotic pairs Dizygotic pairs

Environment (E) Outcome (P) Environment Outcome

Twin 1 Twin 2 Twin 1 Twin 2 Twin 1 Twin 2 Twin 1 Twin 2

E Twin 1 1.0000 0.7500 0.5000 0.3750 1.0000 0.7500 0.5000 0.3750
Twin 2 0.7500 1.0000 0.3750 0.5000 0.7500 1.0000 0.3750 0.5000

P Twin 1 0.5000 0.3750 1.0000 0.6875 0.5000 0.3750 1.0000 0.4375
Twin 2 0.3750 0.5000 0.6875 1.0000 0.3750 0.5000 0.4375 1.0000

FIGURE 1
Linear additive model for effects of genes, measured, and resid-
ual environment used to generate simulated twin data. Note:
Subscripts 1 and 2 refer to first and second twins. Measured vari-
ables (represented by squares) are the measured environment (E)
and the outcome phenotype (P). Latent random variables are ad-
ditive genetic effects (G), shared environmental effects (C), and
residual, unmeasured, environmental influences (E′ and E′′) on the
measured environment and outcomes respectively. The standard-
ized path coefficients are those used to simulate the data (see
Table 1).

model, allowing for any ‘true’ G × E on the underlying
liability, and the parameters of a typical measurement
model relating the responses of subjects to survey items to
differences in the underlying variables they are designed to
assess.

Data Simulation
Simulated pairwise data vectors were generated for envi-
ronmental covariates and continuous outcomes for each
of 10,000 monozygotic (MZ) and 10,000 dizygotic (DZ)
twin pairs frommultivariate normal distributions with zero
mean vectors and covariance matrices shown in Table 1.
The underlying ‘true’ model assumes that there is a main
effect of the covariate on outcome but no modulation of
the contributions of genes and environment by the covari-
ate. The expected covariance matrices correspond to a path
model (Figure 1) in which the environmental covariate is

equally correlated between MZ and DZ twins (i.e., there
is no within-person, genotype–environment correlation for
the covariate) and explains all of the shared environmental
component in the outcome. The model allows genetic and
residual environmental effects on the outcome but nomod-
ulation of the genetic and environmental path coefficients
by the environmental covariate (i.e., no G × E interaction
or other modulation).

In practice, researchers do not have direct access to
the ‘true’ dimensions of liability but attempt to measure
them with plausible ‘instruments’. In psychiatric genetic
epidemiology, the instruments typically comprise checklists
of symptoms and/or risk factors such as life events or fea-
tures of the social environment. For the purposes of this
study, we assume that the ‘environment’ is assessed by a
checklist of 10 dichotomous items and that behavior is as-
sessed by a list of 25 dichotomous symptoms. These num-
bers were chosen to correspond to some in one of our
own studies. Responses to multi-item checklists of covari-
ates and symptoms were simulated for each twin on the
assumption that the probability of a subject endorsing the
kth item is a monotonic function of increasing subject li-
ability, θ. In our case θ corresponds to the subject’s sim-
ulated ‘true’ covariate or outcome value. The probability
that the ith subject endorses the kth item is thus assumed
to be:

Pik = �[sk(θi − bk)] (c.f . Lord&Novick, 1968),

where �(θ) is the standardized cumulative normal p.d.f.
(normal ogive), bk is the value of θ at which �(θ) changes
most rapidly (also referred to as the ‘item difficulty’ or
‘threshold’) and sk is the rate of change of � at bk (also re-
ferred to as the ‘sensitivity’ or ‘discriminating power’ of the
item).

The simulation assumed that the item parameters were
the same for all items in a checklist. Thus, for the environ-
mental checklist, it was assumed that bk = 1.3 and sk = 1
for all k. Similarly, all the items in the simulated behavioral
inventory were assumed to be equivalent in difficulty and
sensitivity with bk= 1.5 and sk = 1 for all k. The itemparam-
eters were selected to generate sum score values with distri-
butions resembling those in some of our own data. Ideally,
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2c. Environmental trait                                                                    2d. Environmental score. 
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FIGURE 2
Histograms of simulated latent trait and checklist sum scores for outcome behavior environmental covariate (N = 20,000).

the items should be selected to represent different thresh-
olds across the entire practical range of the latent trait (see,
e.g., Lord & Novick, 1968). In practice, however, this is sel-
dom possible for relatively infrequent symptoms of abnor-
mal behavior and environmental indicators (see, e.g., Eaves
et al., 2005).

The simulated 0/1 item responses for the environmental
covariate and behavioral checklist were added to generate
a sum score for the environment and symptom count for
each subject. Figure 2a–d shows the distributions of the la-

tent trait scores and checklist sum scores for the behavioral
and environmental checklists. The reversed J-shaped dis-
tribution is typical of many clinical measures derived from
symptom counts.

The matrices of twin correlations for the latent traits and
checklist scores are given in Table 2. The correlations for the
square roots of the sum scores for the symptoms and envi-
ronmental items are also included because scale transfor-
mation is a typical precursor to statistical analysis in which
the effects of ignoring heteroscedasticity are expected to

TWIN RESEARCH AND HUMAN GENETICS 189

https://doi.org/10.1017/thg.2017.19 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2017.19


Lindon Eaves

TABLE 2
Summary of Simulated Data for Outcome Phenotype (P) and Environmental Covariate (E) in 10,000 MZ and 10,000 DZ Twin
Pairs

Correlation (× 1,000 MZ upper triangle, DZ lower triangle)

Raw Sum Root (Sum)

Twin 1 (T1) Twin 2 (T2) Twin 1 (T1) Twin 2 (T2) Twin 1 (T1) Twin 2 (T2)

Score E P E P E P E P E P E P

Raw T1 E 495 748 375 799 435 598 336 823 454 616 343
P 509 372 687 393 888 289 608 406 922 304 627

T2 E 744 380 499 590 329 801 441 608 343 826 454
P 373 444 501 295 614 395 890 305 632 410 921

Sum T1 E 804 406 601 299 373 558 281 942 369 534 278
P 455 889 334 386 394 271 598 372 946 278 578

T2 E 594 293 803 393 564 275 379 535 274 941 368
P 326 393 440 890 269 363 375 282 577 379 947

Root T1 E 826 413 616 307 941 386 536 268 380 535 285
P 473 922 348 403 387 946 274 362 392 287 586

T2 E 608 303 826 410 537 274 942 378 536 280 377
P 343 408 462 922 275 358 369 946 281 372 382

Mean −0.017 −0.012 −0.017 −0.008 1.760 5.950 1.753 5.921 0.945 1.999 0.940 1.994
Median −0.009 −0.011 −0.021 −0.010 1.000 4.000 1.000 4.000 1.000 2.000 1.000 2.000
SD 0.994 1.004 0.993 0.993 2.267 6.149 2.271 6.136 0.931 1.399 0.932 1.395

Note: Twin correlations for outcome phenotype and environmental covariate shown in bold.

generate apparent interactions. The choice of square-root
transformation (see Bartlett, 1947) for this application is
suggested by the scoring of items showing relatively infre-
quent endorsement (e.g., Eaves & Eysenck, 1977). Other
scales suggest other transformations (see, e.g., Eaves et al.,
1989) but, ultimately, the best approach is to integrate the
genetic model for the latent trait and covariate(s) with
the psychometric model for how these are projected onto
the items chosen to measure them (see below). The twin
correlations for the derived scores are lower than those for
the latent traits because of the inherent stochastic error at-
tached to each item response.

Analysis of Simulated Data to Detect G ×
E Interaction
Regression of Intra-Pair Outcome Variance on Pair
Mean Outcome for MZ and DZ Twins

A seminal paper by Jinks and Fulker (1970) pointed out
that the expected means of separated MZ twin pairs were
estimates of genetic effects and the absolute intra-pair dif-
ferences were estimates of the effects of random environ-
mental effects. If sensitivity to the environment, measured
by intra-pair variability was a function of average genetic
deviation of the pair, Jinks and Fulker predicted a signifi-
cant regression of absolute intra-pair difference (or intra-
pair variance) on pair means for separated twins. In princi-
ple, the regression of variance onmean need not be linear or
monotonic. The same basic approach, usedwith other types
of relative pairs (e.g., MZ and DZ twins reared together),
would reveal other kinds of interaction involving the mod-
ulation of intra-pair differences by sources of between pair
variation (e.g., Eaves & Eysenck, 1976). Figure 3a–c shows
the (linear) regression of intra-pair variances on pair means

for the behavioral outcome inMZ andDZ twins: latent trait
(Figure 3a), sum scores (Figure 3b), and square-root trans-
formed sum scores (Figure 3c).

As expected, Figure 3a shows little evidence that intra-
pair variance changes with pair mean for the simulated la-
tent trait scores, although the regression line for DZ twins
is significantly more elevated than that forMZs due the seg-
regation of genetic differences within pairs of DZ twins. In-
deed, twice the difference between the elevations of the line
forDZs andMZs is an estimate of the genetic variance in the
measured trait. By contrast, the sum scores show amarkedly
different picture with a very steep regression of intra-pair
variance on mean for MZ pairs, indicating that the appar-
ent effects of the individual twins’ environments are mod-
ulated by the sources of differences between pairs, includ-
ing G × E interaction if the differences between pairs are
partly genetic. The slope for DZs is much steeper than that
for MZs, reflecting the apparent increase in the importance
of genetic factors as a function of differences between fami-
lies. Without a deeper examination, it might be tempting to
infer that G × E interaction is responsible for the increase
in genetic variance as a function of increasing ‘dose’ of the
environmental covariate. The difference between the appar-
ent absence of interaction in Figure 2a and the very marked
interaction in Figure 2b says nothing about biological pro-
cess but depends entirely on the characteristics of the spe-
cific behavioral items chosen to measure it. Other items or
other ways of scaling could produce entirely different pat-
terns of interaction. Thus, patterns of interaction may lead
no deeper than the theory of measurement, if indeed there
is one. The point is emphasized by the fact that a square-
root transformation (e.g., Bartlett, 1947) of the sum scores
derived from basic statistical considerations removes much
of the apparent support for non-additivity (Figure 3c).
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FIGURE 3
Regression of with twin pair variances for latent trait on pair means for trait in MZ and DZ pairs. Note: The top 5% of intrapair differences
are omitted from the diagrams (but not from the regressions) to improve scaling of the ordinate.

Regression of Intra-Pair Outcome Variance on Pair
Mean Environmental Covariate for MZ and DZ Twins

The above analysis does not specify any specific environ-
mental covariate. The simulated data include a ‘measured’
environmental covariate that is highly correlated between
twin pairs and has a substantial linear relationship with the
underlying behavioral trait. Figure 4a–c shows the regres-
sion of intra-pair outcome variances on pair mean environ-
ment for MZ and DZ pairs when behavior and outcome are
both assessed by latent trait (Figure 4a), sum score (Figure
4b), and square root transformed sum score (Figure 4c.).
The graphs now illustrate themodulation of genetic and en-
vironmental within-pair variance of MZ and DZ twins by
the shared environmental covariate.

The regressions on pair mean environmental covariate
resemble those in Figure 3 for the regression on mean
phenotype score. There is little or no evidence of any slope
in Figure 4a; the lines are flat, with that for DZs being more
elevated than that for MZs as a function of the genetic
contribution to the outcome. Analysis of sum scores from
the behavioral and environmental checklists yields striking
support for the increase in genetic contribution as a func-
tion of the environmental covariate (G × E, Figure 4b).
The same pattern is to be expected with any covariate that
has a linear relationship to the latent trait when checklist
scores are employed to summarize the behavior of interest.
As before, the square-root transformation removes much
of the evidence for environmental modulation of genetic
and environmental components of variance with twin pairs
(Figure 4c).

Fitting Structural Models Allowing for the Environmen-
tal Modulation of Genetic and Environmental Path Co-
efficients

The above analyses are instructive and require nothing
more than twin data and the most basic resources for data

summary and graphical display. Such basic considerations
are often overlooked, given the availability of efficient soft-
ware for structural modeling of family resemblance such as
Mx (Neale et al., 2006) and openMx (Boker et al., 2011).
However, the availability of ready-built code for a variety of
models allows the investigator to demonstrate relative so-
phistication without ever looking critically at how the as-
sumptions of a specific model map onto those used to gen-
erate the data to which it is applied.

The dependence between scale of measurement and the
results of genetic modeling is revealed by fitting a variety
of models to the simulated outcome measures of behav-
ior, scored as a latent trait, checklist sum score, and square-
root transformed sum score allowing for the fixed main ef-
fect, β, of the measured environmental covariate on out-
come, the random effects of genes (a), residual shared en-
vironment (c), and individual unique environment (e), and
the modulation of a, c, and e by the fixed environmental
covariate (parameters γ, η, and δ, respectively). This ap-
proach is a similar to that proposed by Purcell (2002), treat-
ing the covariate as a fixed effect in a manner comparable
to those used in the analysis of G × E in other species (see,
e.g., Bucio-Alanis & Hill, 1966; Perkins & Jinks, 1973; and
references).

Four models were fitted to each of the three assess-
ments of outcome by full informationmaximum likelihood
(FIML) in openMx (Boker et al., 2011). (1) Estimating the
mean,μ, and paths from genes (a), shared environment (c),
and unique environment (e) to outcomewithout any regres-
sion of outcome on measured environment (β) or modula-
tion of a, c, and e by the measured environment (i.e., no
interaction). (2) Estimating all the parameters of model 1
plus the main effect of the environmental covariate on out-
come (β). (3) Estimating the parameters of model 2 plus
the modulation (γ) of the genetic path a by the environ-
ment (G × E interaction). (4) A ‘full’ model including the
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FIGURE 4
Regression of with twin pair variances for outcome on pair means for environmental risk trait in MZ and DZ pairs. Note: The top 5% of
intrapair differences are omitted from the diagrams (but not from the regressions) to improve scaling of the ordinate.

parameters of model 3 plus the addition modulation of c
and e by the measured environment (i.e., adding interac-
tion between the measured environment and the random
effects of the shared and unique environment).

Results of fitting the four models to the three pairs of
simulated outcomes and environments are summarized in
Table 3.

All three measurement scales show strong support for
the main effects of genes, environment and covariate on
outcome. The estimates of β are all highly significant and
the improvement in fit over the model that excludes any
effect of covariate is substantial. These are very large sam-
ples for a twin study, but even a study one-tenth of the size
(1,000 of bothMZ and DZ pairs) is expected to yield highly
significant main effects of the shared environment. As with
the simple variance-mean regressions (see Figure 4), sup-
port for environmental modulation of random genetic and
environmental effects is contingent on the units chosen to
measure behavior. When the latent outcome and environ-
ment are both measured directly there is absolutely no gain
in support from adding G × E (χ2(1) = 0.3) or modula-
tion of the shared and unique environment (χ2(2) = 2.4).
The picture is sharply different when analysis is based on
checklist sum scores. There is now highly significant G ×
E (χ2(1) = 977.6) and strong additional support for mod-
ulation of c and e (χ2(2) = 362.6). The evidence for in-
teraction is likely to remain even in samples one-tenth as
large or smaller with these effect sizes. Square-root trans-
formation removes all significant support for modulation
of genetic and environmental effects by the measured envi-
ronment. Thus, all evidence for interaction between genes,
environment, and an environmental covariate is generated
by summarizing behavior by adding responses to checklists
of items.

Integrating Models for the Causes of Variation With
Theories of Measurement

The above analyses confirm the intimate connection be-
tween the model for the effects of genes and environment
and the instrument used to assess behavior and its covari-
ates. The conclusions of a genetic analysis are acutely sensi-
tive to the units ofmeasurement when it comes to interpret-
ing G × E interaction and other kinds of non-additivity at
anything other than themost superficial level in the absence
of any theory about how individual differences in liability
translate into the measures used for analysis.

Such results, long familiar to statistical geneticists, re-
quire that claims to detect G × E for human behavior need
to be viewed far more critically than is typical in the current
climate. At the very least it is incumbent on those work-
ing in the area take the time to evaluate the scientific sig-
nificance of their findings more carefully by taking into ac-
count the theory of measurement that is typically ignored
in psychiatric genetics. As a final step, the first 2,500 MZ
and DZ pairs (5,000 pairs, in total) of the 200,000 simu-
lated pairs above were employed to demonstrate the kind
of approach that investigators could employ to deepen theo-
retical and substantive understanding of the processes they
profess to study. The reduction in sample size significantly
reduces computation time without undermining the basic
conclusion.

The model comprises two elements: ‘genetic’ and ‘psy-
chometric’. The genetic model comprises the parameters
that characterize the additive and non-additive effects of
genes and environment on variation in the latent trait (θ)
such as that employed above in Table 3. The psychometric
model comprises the function that maps onto θ the scores
or responses used for assessment. In our example, where the
simulated checklist items are all assumed to have the same
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TABLE 3
Effects of Scale of Measurement on Tests for Modulation of Genetic Effects by Measured Environment
(G × E)

Model

Score No covariate Main E effect E + G × E Full interaction

‘True’ df μ −0.0095 (0.0062) − 0.0014 (0.0053) − 0.0014 (0.0053) −0.0014 (0.0053)
a 0.6961 (0.0124) 0.6923(0.0106) 0.6922(0.0107) 0.6896(0.0101)
c 0.4475 (0.0177) 0.1240 (0.0523) 0.1245 (0.0529) 0.1346 (0.0452)
e 0.5590 (0.0039) 0.5020 (0.0035) 0.5020 (0.0037) 0.5018 (0.0035)
β – 0.5018 (0.0047) 0.5018 (0.0047) 0.5018 (0.0047)
γ – – 0.0021 (0.0041) 0.0103(0.0074)
η – – – −0.0368 (0.0266)
δ – – – −0.0022 (0.0036)
−2ln(l) 104,838.3 94,812.5 94,812.2 94,810.6
χ2 _ 10,025.8 0.3 2.4

Sum μ 5.9378 (0.0372) 4.3023(0.0411) 4.2482 (0.0372) 4.2327 (0.0376)
a 4.2930 (0.0573) 4.1645 (0.1390) 3.2990 (0.0500) 3.6805 (0.0913)
c 2.1580 (0.1305) 0.6971 (0.7295) 1.0795 (0.0905) 0.8494 (0.1040)
e 3.8896 (0.0266) 3.8073 (0.0297) 3.7703 (0.0244) 3.3260 (0.0296)
β – 0.9308 (0.0130) 0.9391 (0.0151) 0.9583 (0.0152)
γ – – 0.4153 (0.0147) 0.2224 (0.0213)
η – – – 0.0227 (0.0531)
δ – – – 0.2682 (0.0152)
−2ln(l) 252,904.3 248,084.1 247,106.5 246,743.9
χ2 – 4,820.2 977.6 362.6

Sqrt (Sum) μ 1.9969 (0.0085) 1.5176 (0.0102) 1.5179 (0.0101) 1.5173 (0.0101)
a 0.9100 (0.0215) 0.8946 (0.0215) 0.8782 (0.0219) 0.8597 (0.0254)
c 0.5592 (0.0305) 0.2792 (0.0590) 0.2803 (0.0553) 0.3064 (0.0606)
e 0.8994 (0.0062) 0.8882 (0.0062) 0.8881 (0.0061) 0.9003 (0.0091)
β – 0.5083 (0.0072) 0.5069 (0.0072) 0.5071 (0.0072)
γ – – 0.0172 (0.0073) 0.0365 (0.0161)
η – – – −0.0276 (0.0421)
δ – – – −0.0137 (0.0073)
–2ln(l) 134,536.8 129,854.7 129,849.2 129,845.7
χ2 4,682.1 5.5 3.5

Note: See Table 4 for definition of symbols. Path coefficients are not standardized to facilitate comparison of estimated
effects as a function of adding interactions to model.

endorsement probability, p(θ), the log-likelihood that a sub-
ject with trait value θ endorses r out of N items is given by
the binomial theorem:

L(r,N, θ) = r ln[p(θ)] + (N − r) ln[(1 − p(θ)] +C,

and the unconditional likelihood of a specific outcome
score, r, is the integral

L (r,N) =
∞∫

−∞
L(r,N, θ)dθ.

The analytical task devolves upon estimating the parame-
ters relating p(θ) to θ, that is, the parameters of the psycho-
metric model and those of the ‘genetic’ model accounting
for the variation in the latent trait θ: the additive genetic and
environmental paths, a, c, and e, including the regression of
liability on the covariate and the coefficientsmodulating the
main effects of genes and environment, γ, η, and δ.The as-
sumption of equivalent items requires only the estimation
of one free parameter of the psychometric model: the item
difficulty (threshold), b. The sensitivity, s, is fixed at 1, al-
lowing the paths a, c and e to set the scale of variance in the
latent trait.

The model for the trait in the jth twin of the ith pair is
thus:

θi, j = βXi, j + (a + γXi, j )Ai, j + (c + ηXi, j )Ci, j

+ (e + δXi, j )Ei, j,

where Xi,j is the corresponding covariate value. In this ap-
plication, the latent trait covariate score, not the environ-
mental checklist score, was used to simplify the model. Ai,j,
Ci,j, and Ei,j are the random additive genetic, shared envi-
ronmental and unique environmental effects standardized
to zero mean and unit variance. The correlation between
the genetic effects is assumed to be 1 for MZ pairs and ½
for DZs. The correlation between the shared environmen-
tal effects of twins is 1 and that for the unique environments
is 0.

Estimates of the model parameters may be obtained in a
variety of ways.We employed aMarkov ChainMonte Carlo
approach (MCMC) using the Gibbs sampler (see, e.g., Gilks
et al., 1996) implemented in BUGS (Bayesian analysis us-
ing Gibbs sampling; Lunn et al., 2012). Elsewhere we have
used this approach to estimate parameters of models com-
bining elements of genetic and item-response theory (Eaves
et al., 2005) in twin data and for models involving G × E
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TABLE 4
MCC Estimates of Parameter (θ) in Equivalent Items IRT Model for Main Effects and Modulation of Genes and
Environment on Sum Scores

Parameter Statistic

θ Description Mean SD Accuracy 2.5% CI Median 97.5% CI

a Item difficulty (‘threshold’) 1.067 0.012 0.0005 1.043 1.067 1.091
b Item discriminating power (fixed scale factor) 1.000 – – – – –
a Main genetic path 0.732 0.018 0.0014 0.691 0.733 0.764
c Unmeasured shared environmental path 0.018 0.122 0.0133 − 0.221 0.026 0.236
e Residual (non-shared) environmental path 0.533 0.012 0.0004 0.510 0.533 0.556
β Regression of latent trait on measured environment 0.521 0.012 0.0003 0.499 0.521 0.544
γ Modulation of genetic effect (‘G × E’) − 0.017 0.016 0.0009 − 0.050 − 0.018 0.015
η Modulation of shared environmental effect (C × E) − 0.005 0.058 0.0056 − 0.112 − 0.004 0.111
δ Modulation of unique environmental effect (E × E) − 0.038 0.012 0.0004 − 0.062 − 0.038 − 0.013
rDZ MZ twin correlation in median measured environment 0.339 0.012 0.0009 0.319 0.337 0.368

interaction and correlation (Coventry et al., 2010; Eaves
et al., 2003; Wray et al., 2008). The MCMC approach is
especially convenient for fitting models that require large
amounts of numerical integration to compute likelihoods
and has the added flexibility of yielding estimates of the
standard errors and confidence intervals of parameters at
little additional computational cost.

Results of fitting the full combined psychometric and
non-additive genetic model are summarized in Table 4. Es-
timates are obtained from every fifth MCMC sample from
30,000 iterations (N = 6,000) after a 20,000 iteration ‘burn
in’. Computations required approximately six hours on a
MacBook Pro laptop computer.

The results are striking.Once the theory ofmeasurement
is integrated with the genetic model there is absolutely no
evidence of G × E interaction or of any modulation of the
shared and unique environmental parameters by the envi-
ronmental covariate. The 95% confidence intervals of γ,η,
and δ all lie either side of zero, and the median estimates
of the modulation parameters are all close to zero. Further-
more, the estimates of the main genetic and environmental
parameters and the regression of latent trait on measured
environment are all close to those used in simulating the
original data. In particular, after the effect of the measured
environment is extracted, there is no residual contribution
of the shared environment to outcome liability (-0.221 < c
< 0.236) and the estimated residual correlation ofMZ twins
(0.660) is close to twice that estimated for DZs (0.339), as
expected when only additive genetic effects contribute to
residual twin resemblance.

Discussion
The psychometric model assumed in the simulation and
MCMC analysis is simpler than might apply in practice.
Items may not be equivalent and the detailed implications
of different methods of environmental assessment have still
to be explored. Nevertheless, our simulation captures the
essence of the problem and it is unlikely that elaboration of

the measurement model with different item difficulties and
sensitivities will substantially change our conclusions here.

Geneticists have long recognized that phenotypic dis-
tributions depend on parameters of the underlying ge-
netic model for individual differences. Thus, the moments
of distributions in kinship data are well known to de-
pend on factors as diverse as the number of loci affect-
ing a complex trait (e.g., Carmelli et al., 1979; Karlin et al.,
1981), their dominant and epistatic interactions (e.g., Fisher
et al., 1932), and G × E interactions (e.g. Jinks and Fulker,
1970). On the whole, geneticists have been far more cau-
tious about the using the properties of observed phenotypic
distributions in kinships to infer subtleties of the genetic
architecture of complex traits because a variety of more or
less arbitrary factors, having little or nothing to do with
genetics, can affect the more subtle features of trait distri-
butions. Paramount among such factors are those arising
from the fact that the scales used to measure variation have
an ill-defined relationship to underlying biological differ-
ences such that changes in the units or method of mea-
surement can lead to drastically different conclusions about
the genetic architecture of the underlying biological system.
Mather and Jinks (1982) offer a classical statement of the in-
terdependence of measurement and genetic inference:

The scale on which the measurements are expressed
for the purposes of genetical analysis must therefore
be reached by empirical means. Obviously it should
be one which facilitates both the analysis of the data
and the interpretation and use of the resulting statis-
tics. The scale should preferably be one on which … the
interactions among the genes and between genotype and
environment are absent, or at any rate as small as they
can reasonably be made. (p. 64, italics added)

Lack of attention to this goal leaves in question the
heuristic value of claims to find G × E in psychiatric data.

Mather and Jinks (1982) recommend that ‘so far as pos-
sible the non-allelic genes and non-heritable agents should
all be additive in action’ but also caution that such scales
may be hard to find since ‘each gene and each non-heritable
agent may be acting on its own scale’ and the elegance of a
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parsimonious additive model may be elusive. The problem
is that psychiatric geneticists seldom bother to look. We are
not blessed with decisions as simple as whether to measure
body weight in kilograms or log-kilograms, though even
here the choice of scale will not be neutral with respect to
conclusions about the contributions of additive and non-
additive effects.

With respect to behavior, the issue often comes down
to decisions about which constellations of items, combined
in which way, best characterize the salient latent behavioral
outcomes and psychosocial risk factors of interest. The re-
lationship between the numbers generated by a test and the
way genes and environment work is tenuous and theory-
dependent. There is an intimate connection between the
choice ofmeasure, and conclusions drawn about the relative
importance of genes, environment and the various possible
interactions between them. Elegant pictures of the role of
G × E interaction, such as those in Figures 3 and 4, may be
no more robust than the items selected to measure the hy-
pothesized latent variable, the rule used to combine them,
or how the scores are scaled after they have been combined.
It has long been recognized that as simple a step as taking
the square root or arcsine of a personality test score can re-
move otherwise striking evidence of G × E and sex differ-
ences in genetic effects in twin data (e.g., Eaves & Eysenck,
1977; Eaves et al., 1989) and yield a far more parsimonious
and heuristically powerful, additive genetic, and environ-
mental model. Indeed, it has been shown that analysis of
psychological test scores that ignore the relationship be-
tween test and the underlying trait can even simulate the
segregation of a single gene of large effect in kinship data
(Eaves, 1983).

The recent emphasis on the importance of G× E in psy-
chiatric genetics necessitates a cautionary re-examination
of the relationship betweenmeasurement andG× E for the
benefit of researchers, editors, and others whomake critical
decisions about the seriousness with which findings about
G × E are to be received (see also Duncan & Keller, 2011).

The current academic and funding environment creates
pressure to publish novel and more subtle findings. Yet,
there may be nowhere where the risks of perpetuating and
funding replicable artifact are greater than in attempts to
demonstrate G × E for psychiatric phenotypes and risk
factors assessed by checklists of items. The above analyses
counsel the exercise of greater thoroughness before publish-
ing claims to detect G × E interaction for psychiatric out-
comes. Otherwise, statistically significant findings may re-
veal less about the biology of behavior than they do about
cultural incentives to premature publication.
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