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Atom probe tomography (APT) promises atom-by-atom material analysis with spatial resolution and 

chemical sensitivity that no other technique can achieve [1,2]. It is increasingly used in research as well 

as in industry to explore 3D chemistry of engineering materials, semiconductors, and even organic 

samples at the nanoscale [3]. Technological advances in ion imaging, particle detectors, and fast laser 

pulsing over the past decade have positioned APT on par with other high-resolution imaging techniques 

in terms of ease of specimen preparation and size of the volume analyzed.  

 

While the promise of full chemical information and outstanding spatial resolution have given APT the 

role of a transformative characterization tool, only moderate advances have been achieved in the 

processing of APT measurement data. The simplistic algorithm to generate reconstructions of a 3D 

volume from an analyzed specimen has not changed much since originally proposed, although it is 

known to produce a long list of known artifacts in the reconstructed model [4]. Even by virtue of other 

complementary techniques, e.g. correlative TEM microscopy, the continuous observation of the 

evolving sample shape under field evaporation is only possible to a limited extent, especially at close to 

atomic resolution, which is probably necessary to fill in the so far missing information needed for 

accurate subsequent reconstruction.  

 

In order to fill this void left by experimental limitations, complementary modeling techniques of field 

evaporation have been developed by us and others to address fundamental questions. The most 

impactful methods here are based on forward simulation, where atoms are computationally evaporated 

from a virtual sample in a simulated field and propagated to a virtual screen. If all the evaporation and 

ion-flight physics are treated sufficiently well, such simulations provide realistic detector signals as well 

as realistic tip-shape evolution without simplifying assumptions. Foundation for that is the numeric 

solution for the field enabled by finite elements (FEM). The first highly simplified APT simulation 

approach along these lines was introduced about 20 years ago [5]. Despite its simplicity, the emitter 

structure was modeled on a regular mesh of fairly limited size and with “cubic” atoms, it showed to be 

surprisingly successful. For instance, artifacts due to local magnification effects in the APT analysis of 

heterogeneous emitter structures (e.g. interfaces or precipitates) could be well explained. Motivated by 

this success, several other approaches have been developed subsequently that removed existing 

restrictions of earlier predecessors. Current state-of-the-art simulations [4] are (virtually) meshless and 

can handle significantly larger emitter samples of arbitrary lattice structure, e.g. of 20 nm in diameter, 

100 nm in length with overall one million atoms, close to the dimensions of small experimental samples.  

 

In addition to the increased flexibility, a number of improvements were made with respect to the physics 

involved and thus towards more realistic simulations, e.g. by including the statistical effects from finite 

temperature [6] or site-specific evaporation fields [7]. Our recent work has targeted to remove the last 

major and rather significant restriction of atoms being fixed to their position and allows now the atoms 
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in the sample to relax when atoms are evaporated. To this end, the regular electrostatic solver is 

combined with molecular dynamics (MD) [8] [9] and the mechanical response of the emitter structure 

due to field induced forces is calculated (Fig. 1). Results from this approach include new insights into 

the origin of unexpected solute clustering around certain poles in experiments (e.g. for Cu or Si in Al), 

which we can show to be due to significant solute migration from athermal relaxation. Also, our results 

show that the applied load onto the surface atoms by the so-called Maxwell stresses is on the order of 

several 100 MPa and thus cannot be neglected as it is responsible for notable strain at the surface and 

within the emitter already before the onset of field evaporation. While such a sophisticated combined 

MD-FEM approach is computationally demanding, our results suggest it is an important key in the APT 

simulation toolbox that will allow for a significantly better understanding of the fundamentals of field 

evaporation on the atomistic level and paves the way to include field dependent parameterizations based 

on functional theory (DFT) in the future. 
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Figure 1.  Slice through an APT tip from LAMMPS [10] MD simulations with added field-induced 

forces: The overlay in the background shows the field solution obtained from the FEM mesh in the 

foreground. Spheres depict atoms of the emitter tip (blue bulk, red surface). (a) At very low field the 

resulting atomic positions are still coincident with the surrounding mesh. (b) At elevated field the 

emitter lattice is severely strained and atoms desorb from the surface. 
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