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ON RINGS WITH A CERTAIN TYPE 
OF FACTORIZATION AND COMPACT 

RIEMANN SURFACES 

PASCUAL CUTILLAS RIPOLL 

ABSTRACT. Let V be a compact Riemann surface, V be the com­
plement of a nonvoid finite subset of *]/ and A(V) be the ring of finite 
sums of meromorphic functions in V with finite divisor. In this paper it 
is proved that every nonzero/ GA(^ ' ) can be decomposed as a product 
a(3, where a is either a unit or a product of powers of irreducible elements 
of A(V), uniquely determined by / up to multiplication by units, and (3 
is a product of functions of the type e^ — 1, with <p holomorphic and 
nonconstant in V. Furthermore, a similar result is obtained for a certain 
class of subrings of A{V'). 

1. Introduction and notations. Let V be a compact Riemann surface and 
V ' be the complementary of a nonempty finite subset of V. It is a clear con­
sequence of Weierstrass theorem, on the existence of functions with prescribed 
divisor, that the only irreducible elements in the ring 0(V) of holomorphic 
functions on V are the functions which have a simple zero at a unique point 
of V and no other zero in V. Therefore, it is evident that every function in 
0{*W) which has an infinite divisor can not be expressed as a finite product of 
irreducible functions. 

Our aim in this paper is to show that the behaviour of the ring A(V), gener­
ated by all meromorphic functions with finite divisor on V ', with respect to the 
existence of irreducible functions and to the existence of factorizations, is very 
different from that of OiV). In fact, we shall prove that every non-identically-
zero function/ in A(l/') is, roughly speaking, a product of irreducible functions 
uniquely determined by / up to multiplication by units, and of functions of the 
type e^ — 1, with (̂  G 0 ( ^ ' ) - C As a consequence we shall deduce that 
there are nontrivial discrete valuations of the field of fractions K(V) of A(1/f) 
which assign the value zero to every function with finite divisor. Moreover, we 
shall extend these results to certain subrings of A(1/f), including, for instance, 
the ring generated over the field M (1/) of meromorphic functions in V by 
the so-called Baker-Akhiezer functions in V, or also the ring generated over 
M {V) by the meromorphic functions with finite divisor in the complementary 
of a non-Weierstrass fixed point of V, and whose logarithmic differential has 
at this point an order not less than — g — 1, where g is the genus of V ; this last 
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ring being actually shown to be factorial, as well as every ring corresponding 
in the analogous way to a minimal W-field in V (see Cutillas [2]). 

In Section 2 we shall construct an associated sequence of factorial rings whose 
union is A(V). This sequence will be used in Section 3, after defining a class 
of rings, which we shall call 'semifactorial" because there exists in them a 
certain type of factorization which generalize that of factorial rings, in order 
to prove the existence of such a factorization for functions in A(V). Finally, 
in Section 4 we shall determine all functions which have no irreducible divisor 
in A{V) (here, of course, the word "divisor" means a function that divides a 
given one; and, there will be no risk of confusion on using also this other sense 
of it), whereupon we shall be able to obtain the final form of the factorization 
theorem. 

The following notations will be utilized throughout this paper. 
For every connected open subset U of V, 9d (U) will be the field of mero-

morphic functions on U, M *(U) the multiplicative group formed by the mero-
morphic functions on U which are not identically zero, O(U) the ring of holo-
morphic functions on U and E(U) = {eh : h G O (£/)}• 

V, A(V) and K(<V") will be as in the Introduction and G(V) will be the 
multiplicative group formed by the functions in M (V) which have a finite 
divisor. For every subfield k of M(V), we shall set G(k) = kr\G(V), E(k) = 
kCiEW) and A(K) = knA{V). 

For every function/ E G(V'),f will denote the class of/ in the quotient 
group G(1/f)/M*(l/) (i.e. the image of/ by the quotient mapping). 

We finish this introductory section with the statement of a theorem which will 
be useful later. 

THEOREM 1.1. Iff,...,/« are functions in G(1/') such that / + • • • +fn — 0, 
every sum of all functions in the set {/ , . . . , fn} having the same class in the 
quotient G ( ^ / ) / ^ ' * ( ^ ) is also null 

A proof of this theorem can be found in Cutillas [2]. 

2. An associated sequence of factorial rings. The fundamental idea of the 
proofs of our factorization theorems for functions in A(V) is to relate this ring 
with certain rings of polynomials. We shall do this after recalling a concept 
which was introduced in Cutillas [2]. 

Definition 2.1. We shall say that a subfield k of M (V) verifies the Weier-
strass property (or, for short, that it is a W-field) in V, if k contains %{(!/) 
and if 6 being an arbitrary finite divisor on V, there is a function in k whose 
divisor is 8. 

It was also proved in Cutillas [2] the following: 
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THEOREM 2.2. There exist minimal W-fields in V.Ifk is such a field, then 
E(k) = C* and G(k)/iM*(fU) is a divisible group. 

From now on, throughout this section, ko will be a fixed minimal W-field 
in V. It is, of course, a consequence of its minimality that ko is generated by 
functions with finite divisor. 

The following theorem will permit us to select a useful system of generators 
of the group GiV^jU^iV). 

THEOREM 2.3. For every function f G GC^') there exist f\ G G(ko) and fz G 
ECV'\ uniquely determined up to multiplicative constants, such that f =f\f2-

Proof. Let f\ be a function in G(ko) such that Res(d log/i, p) — 
Res(d log / , p) (we are using here the standard notation denoting residues) for 
every p G V, and such that the integrals of d log f\ and d log / along suitable 
closed curves defining a canonical system of generators of the first fundamental 
group of V coincide (see Theorem 8.4 in Cutillas [2]). Then, the integral of 
dlogifff1) along any closed curve in V is null, and so jfffx G E(1/'). The 
uniqueness of f is a consequence of Theorem 2.2. 

Let H be a (fixed from now on) vector subspace of O (V ') such that O(V ') = 
H 0 C, and eH — {eh : h G H}. Then, Theorem 2.3 implies that for every 
/ G G(V) there exist f G G(ko) and/2 € eH, uniquely determined b y / , such 
that/ — f\fi- Therefore, there is a set {/}/e/ of functions in G(V) such that 
{/}/<=/ is a basis of G(fP,f)/0\f*(fU), considered as a g-vector space (bear in 
mind that G(V)/^M*{V) is a divisible group without torsion), and such that it 
is the union of subsets {/}/e/s and {/}/£/", verifying that {/}/e/s and {/}/<=/" 
are bases (in the same sense) of G(ko)/M*CV) and eH respectively. Consider 
now for every / G / and n G N, functions/,„ G G ( ^ ; ) and h^ G Af*(^), 
such that / = f?nhi,n, taking in particular/i = / for every / G / and h^n = 1 
for every / E /", n 6 N; and let An be, for every n G N, the subring of A(1/') 
generated by the functions {/>}/<=/> and their inverses, over the field 9rf (1/). 
Then, it is clear that An C Am, if n divides m, and that A(^ r ) = U^li ^w 

Let now # be the localization of the ring of polynomials in the set of inde­
pendent variables {^}/e/ (with subindices in the same above considered set / ) , 
with coefficients in 9d(1?), with respect to the multiplicative system formed by 
the products of powers of the variables {//}/<£/. Then, B is a factorial ring, since 
every ring of polynomials with coefficients in a field is factorial and localization 
preserves factoriality (see, for instance, Bourbaki [1], chapter 7). Moreover, we 
have: 

THEOREM 2.4. For every n G N, An and B are isomorphic rings. 

Proof. It will suffice to see that, for every n G N, {/,n}/G/ is a transcendence 
basis of the field of fractions Kn of An over M (V ). Since every function in Kn 
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is a quotient of polynomials in the {fi,n}iei w i t n coefficients in 9v( (1/), it is 
also sufficient to show that {fi,n}ia is an algebraically independent set; but this 
is a consequence of Theorem 1.1. 

Thus, we have proved that A(V) coincides with the union of the factorial 
rings of the associated sequence (An). However, without more information, we 
can by no means deduce that A(1/') is factorial (which is false) or that there 
exists any sort of factorization for the elements of A(1/f). In the remaining 
sections we shall obtain sufficient supplementary information for proving the 
existence of the desired factorizations. For the moment, we finish this section 
with two basic results. The first of them relates the irreducibility of a function 
in A(l/f) with the irreducibility of this function in the different rings An. We do 
not detail its proof which is quite easy. 

THEOREM 2.5. The following conditions on a function f GA( t" ) are equiva­
lent: 

1) f is irreducible in A(V). 
2) f is irreducible in every ring An which contains it. 
3) There exists n G N such that f G An and such that for every multiple 

m G N of ny f is irreducible in Am. 

It is clear that if/ is a function in G(l/ '),f is invertible in A{V '). Furthermore, 
it is also easy to prove: 

THEOREM 2.6. A function f in Ai*]/') is invertible if and only if it belongs to 
G(1/'). 

Proof If / is invertible in A(1/'), it can not have infinitely many zeroes in 
1/'. 

Remark. For every n G N and every multiple m G N of n, different from n, 
there exist elements of An which are irreducible in An and factorize nontrivially 
in Am. In fact, if P(t\,..., tr) is an irreducible polynomial in r independent 
variables with coefficients in fW(l^), 3.nd fiumi... 1 firim G {fi,m}iei (notations 
as before Theorem 2.4), and if e is a primitive ^-th root of unity, the product of 
all functions of the type P(ePxfium,..., ePrfir,m) (with p\,... ,/?r G N) which are 
essentially different (i.e. no quotient of two of them is a root of unity), is of the 
tyPe Q(fi\,n, > •-, ftr,n)i wherein Q(fi,...,f r) is also an irreducible polynomial, 
and so this product is an irreducible element of An. 

3. Semifactorial rings. We shall prove in this section the existence of a first 
kind of factorization for functions in A(l/f), in which irreducible functions occur, 
as well as functions of another type which will be completely characterized later, 
in Section 4. 
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In order to simplify the exposition which follows, it will be useful to introduce 
the following terminology. 

Definition 3.1. Let A be a commutative integral domain. We shall say that 
an element of A is infinitely decomposable, if it is not a unit and no irreducible 
element of A divides it. 

The obvious justification of this terminology is that if / G A is infinitely 
decomposable, there exist, for every «GN, noninvertible elements/, . . . , / „ of 
A such that/ = / i . . . / „ . 

Definition 3.2. Let A be a commutative integral domain. We shall say that A 
is semifactorial if every nonzero element / of A can be expressed as a product 
a/3, where a is either a unit or a product of irreducible elements of A, uniquely 
determined by / up to multiplication by units, and ft is either 1 or an infinitely 
decomposable element of A. 

It is evident that a semifactorial ring is factorial if and only if it contains no 
infinitely decomposable element. 

Before stating the first factorization theorem, we prove an auxiliary result. 

LEMMA 3.3. Let f be a function in A(l/f) which is irreducible in some An 

and let m G N be a multiple of n. Then, the irreducible divisors off in Am are 
all irreducible in A(1/') or all factorizable in A^V'). 

Proof It will suffice to prove that if P(fi , . . . , tr) is an irreducible polyno­
mial in r independent variables with coefficients in fW" (1/ ) and if P(*Ç, ...,*?) 
is not irreducible for some p G N, then between every two irreducible divi­
sors A(t\,..., tr), B(t\,..., tr) of P(/Ç, ...,*?) there is a relation of the type 
B(t\,..., tr) — hA(e\t\,..., ertr) for some h G 9A.{V) and some p-th roots of 
unity € i , . . . , er. But, this is an easy consequence of the fact that if e'1?..., e'r 

are any p-th roots of unity, A(c\t\,..., ertr) is also a divisor of P{fXl ...,*£) and 
that the product of all the essentially different (in the same sense of the remark 
in Section 2) polynomials of the form A(e\t\,..., e'rtr) is also a polynomial in 
tx , . . . , tr . 

The author discovered the following theorem while investigating the discrete 
valuations of K(V) (see Corollary 3.6). 

THEOREM 3.4. A(V') is a semifactorial ring. 

Proof L e t / be any non-identically-zero function in A(V) and let n G N 
be such that / G An. Le t / = / i .. .fr be a decomposition of/ as a product of 
irreducible elements of An. Then, it is clear that for any function/ (i = 1, . . . , r) 
one of the following two possibilities holds: 

1. There exists a multiple mo G N of n such that for every multiple m G N 
of mo, no irreducible divisor of/ in Amo factorizes nontrivially in Am. 
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2. For every multiple n' G N of n, there exists a multiple n" G N of nf, such 
that some irreducible divisor of/ in An> factorizes in An». 

Now, it is a consequence of Theorem 2.5 that if/ verifies the first possibility, 
it is a product of irreducible elements of A{V), and it is a consequence of the 
same theorem and of Lemma 3.3 that if/ verifies the second possibility, it is 
infinitely decomposable. Since the irreducible divisors of/ in A{V) are also 
irreducible divisors of/ in some ring Am, we deduce from Definition 3.1 and 
from the above reasoning that these divisors are uniquely determined by / save 
for multiplication by invertible functions, whereupon the theorem is proved. 

As we have remarked in the introduction to this paper, Weierstrass theorem 
clearly implies that 0(V) is not semifactorial. However, it is easy now to prove 
the following: 

COROLLARY 3.5. 0 ( t " ) n A ( t " ) w semifactorial. 

Proof. It is a consequence of Theorems 2.6 and 3.4. 

It is well known (see, for instance, Kra [5]) that every discrete valuation of 
M (V) is equivalent to a valuation of the type vp, with vp(f) — ordp(f) for 
some/? G V' and every/ G CM(V) (standard notation), whereas it was proved 
in Cutillas [3] that there exist discrete valuations of K(V) which are not of 
the analogous type. This last assertion is also an evident consequence of the 
following: 

COROLLARY 3.6. For every irreducible f G A(V) there exists a unique "f-
adic" valuation of K(V); that is, a unique discrete valuation Vf of KCV'') 
which assigns to every non-identically-zero g G A(l/f) the multiplicity off in 
any factorization of g as in Definition 3.2 (and so, it assigns in particular the 
value zero to every function with finite divisor). 

4. The infinitely decomposable elements of A(V'\ Throughout this sec­
tion, we shall again consider the set of functions {/}/e/ introduced in Section 
2 and use the allied notation also explained there. In particular, we shall fix, 
for every / G / and n G N, functions/^ G G(V) and h^n G M(1/) such that 

fi = f"nKn- W e s h a 1 1 a l s ° P u t h,n,m = fi,nfi~Z € CM {V ) SO that / l I > ? m COITe-

sponds to the function/„ and to the number m G N in the same way that h^m 

t o / and m. Note that ht^m is a n-th root of hi^nmhjl for every / G /, n, m G N. 
From now on, unless otherwise stated, all polynomials considered will have 

their coefficients in CM {V); and we shall say that a polynomial is "nontrivial" 
if it does not reduce to its independent term and is not a monomial. t\,..., tr 

will be r independent variables over 9\^{V); and we shall sometimes use the 
brief notation P(t) or P(^, tr) for a polynomial P(t\,..., tr), where of course 
t* denotes the r — 1 variables t\,..., tr~\. Given a polynomial P(t\,..., tr) and 
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m G N, P( f f , . . . , f?) will be represented in an abridged form by Pm(t); and, 

if a — ( / i , . . . , i r ) € Ir, n e N, P(hiumt™,... ,hir,mt™) will be represented as 

Pa'm(t), and P{hium,nt
n
x,..., hir^nt

n
r) as Pa^n(t). Finally, en will be a primitive 

n-th root of unity for every « Ç N . 

One of the fundamental ideas in what follows is to show that if the number 

of irreducible factors of P(f[,..., f}) increases with n G N, in a certain sense, 

for some nontrivial polynomial P(t), then it must be essentially a binomial with 

coefficients in C. Indeed, we shall prove a certain sort of generalization of this, 

by considering the powers t\,...,tn
r multiplied by the terms of sequences of the 

type of the {h^n) mentioned above. 

LEMMA 4.1. If P(x) is an irreducible polynomial in one variable such that 

P(xn) factorizes for some n > 1, then there exists a divisor d > 1 of n such 

that P(xn) = hUj=i Q(4x), where h G M(V) and Q(x) is an irreducible 

polynomial (which is also a polynomial in (xx'd). Consequently, if f3 is a root 

ofP(x), the field M(l/)(f3) contains a d-th root of /?. 

Proof Consider a decomposition of P(x) as a product of irreducible polyno­

mials. 

LEMMA 4.2. If n\,...,nr G N, r ^ 2, and A G C*, then the polynomial 

f\ . . . t"r — A is irreducible over <M. (<V ) if and only if n\,...,nr are relatively 

prime. 

Proof If A(t) is an irreducible divisor of f\l . . . tn
r
r — A, then this last polyno­

mial must coincide, up to multiplication by some element of fW*(1^), with 

the product of all different polynomials of the type A(el\t\1...,e
J
n

r
rtr), with 

Jii-'-Jr £ N. Therefore, the number of factors in this product is a common 

divisor of n\,..., nr. 

LEMMA 4.3. Let P(t\,.. .,tr) be an irreducible polynomial, and a = (i\,..., 

ir) G V. Then, the following conditions on P(t) are equivalent: 

1) P(ft],...,/;) is infinitely decomposable in A(V). 

2) For every n G N and every irreducible divisor Q(t) of Pa,n(t), there exists 

l G N such that Qa^l(t) is not irreducible. 

3) For every n G N there exists a multiple m G N of n such that the number 

of irreducible factors of Pa'm{t) is larger than that of Pa,n(t). 

Proof. It is a consequence of the algebraic independence of f { , . . . , fr over 

M{V), and of Theorem 2.5, that 1) and 2) are equivalent. To prove that 2) 

=> 3), note that if m G N is a multiple of n, Q(t) is an irreducible divisor 

of Pa*(f\ and / = mn~\ then the equality Pa'm(f) = Pa'n(hiun/V... ,hiritl/r) 

implies that every divisor of Qa^l(t) is also a divisor of Pa'm(t). Finally, 3) => 

2) is a consequence of the fact that between every two irreducible divisors Q\(t), 
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Q2(t) of Pa 'n0) there must be a relation of the type Q2(t) = hQ\(ePn
x tx,..., ep

n
rtr) 

for some h G fW (1^) andpi, . . . , /? r G N. 

The following definitions will be convenient for stating and proving some 
other auxiliary results. 

Definition 4.4. Given a polynomial P(t\,..., tr), and m G N, a factorization 
of Pm(0 will be called simple if it is of the form g YIJL\ Mt*, eÏA)> f° r some 
g G W(V} and some irreducible polynomial A{t). 

Note that if Pm(0 has a simple factorization (with P(t) and m as in Definition 
4.4), P(t) is irreducible. 

Definition 4.5. We shall say that a polynomial P(t\,...,tr) is projectively 
irreducible with respect to t\,..., tr-\ \iP(f\,... ,tn

r_x,tr)\s irreducible for every 

We now summarize some useful (for this paper) properties of polynomials. 

LEMMA 4.6. Let P{t\,. ..,tr) be a polynomial with degree ^ 1 with respect 
to tr. Then 

1) If Pit) is irreducibley there exists q G N such that every irreducible divisor 
of P(t\, ...,*•?_!,*/-) is projectively irreducible with respect to t\,..., tr-\. 

2) If P(t) is projectively irreducible with respect to t\,...,tr-\ and m G N is 
minimal such that Pm(t) factorizes, this factorization is simple. 

3) If P(t) is as in 2) and Pm(t) has a simple factorization for some m G N, 
every irreducible divisor of Pm(t) is projectively irreducible with respect to 
t\,. . . , f r _ i . 

4) If for some m, n G N and some irreducible divisor Q(t) of Pm{t), the 
factorizations of Pm(t) and Qn{t) are simple, the same is true for Pmn(t). 

Proof 1) If the conclusion were false, the number of irreducible factors of 
P(tf,..., tq

r_x, tr) should be larger than the degree of P(t) with respect to tr for 
an adequate election of q G N, which is impossible. 

2) Let A(t) be an irreducible factor of Pm(t), and / G N be minimal 
verifying that A(t) — A(^,6^ r). Then, it follows from the hypothesis that 
Pm(t) = hl^J.=lA(t,,eJ

mtr) for some h G fW(^). Since this implies that A(t) 
remains invariant if we replace in it el

mts by ts for s = 1, . . . , r (and so, A(t) is 
a polynomial in tfl,..., t™l% one easily deduces that m — I. 

3) Consider an arbitrary n G N and a simple factorization h\^^\ B(tf,£J
mtr) 

of Pm{t). Then, Pw(*?,...,/?_„f r) = ^ n " i ^ - , t i ^ W ; and since 
P ( ^ m , . . . , fj^j, tr) is irreducible, one deduces that so is B(tf,..., fr_x, tr). 

4) Easy. 
Let P(fi, . . . ,f r) be a nontrivial polynomial, and l e t / i , . . . , / r G E(V) be 

independent over C* (i.e. such that no product/"1 .. .f"r belongs to C*, with 
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« i , . . . , n r G Z not all zero). Then, since the set {fi}ia could have been sup­

posed to contain these functions, one deduces from Lemma 4.3 that P ( / i , . . . , / r ) 

is infinitely decomposable in A(V) if and only if P(f) fulfils the condition (in­

dependent of the considered set {/i , . . . , fr}), which appears in the following: 

Definition 4.7. A polynomial P(t\, ...,tr) will be said to be p.i.d. (abbrevi­

ation of "projectively infinitely decomposable") if for every n e N and every 

irreducible divisor Q(f) of Pn(t) there exists m G N such that Qm{t) factorizes. 

Note that if P(tu...,tr) is p.i.d., then so is P(tf\...,f?r) for every 

m i , . . . jjnr G N . 

LEMMA 4.8. Let P(t\,... ,tr) be a p.i.d. polynomial with degree ^ 1 with 

respect to tr and projectively irreducible with respect to t\,..., tr-\. Then, there 

are arbitrarily large numbers n G N such that Pn(t) has a simple factorization. 

Proof. It is a consequence of parts (2), (3) and (4) of Lemma 4.6. 

Our next lemma shows, in particular, that the p.i.d. polynomials are of a very 

special type as was remarked in the observation prior to the lemmas. 

LEMMA 4.9. A nontrivial irreducible polynomial P(t\,..., tr) is p.i.d. if and 

only if it is of the form h(tn
a\X)... tn

a\s) - \f£+X)... tnJ(r)), where h G M \<V ) , 

À G C*, a is a permutation of the set { 1 , . . . , r}, and n\,..., nr are relatively 

prime. Consequently, every p.i.d. polynomial has, after multiplying it if necessary 

by some element of %f*(lS), its coefficients in C. 

Proof. The latter assertion is a clear consequence of the former. In this, the 

sufficiency part is easy, and we shall prove the necessity one by induction on r. 

For r — 1, if f3 is any root of the polynomial P(t\), Lemma 4.1 implies that 

the field !M (1/)(f3) must contain infinitely many roots of (3 of different orders, 

which is impossible unless /? G C (take into account, for instance, that M {V )(/3) 

is isomorphic to the field of meromorphic functions on some compact Riemann 

surface), whereupon one obtains the desired conclusion. 

Assume now that the condition of the statement is necessary for polynomi­

als in r — 1 variables, and suppose that P(f) is independent of none of the 

variables t\,...,tr. By replacing, if necessary, P(f) by an irreducible divisor 

of P(t\,... ,tq
r_x,tr), with q as in Lemma 4.6, we can also suppose that P(t) 

is projectively irreducible with respect to f i , . . . , f r _ i . Let now // be the de­

gree of P(t) with respect to u, for / = l , . . . , r . Then, by Lemma 4.8 there 

exists n > lxlr + max{ / b . . . , / r } such that P{tn
x,... ,tn

r) = h]^Zo &(?,£&) 

for some h G M*(V) and some irreducible polynomial R(t), whence one 

deduces that'/Êfa, ...,f/_i,enf/, f/+i,. . . , f r ) = e%Rtf,eqitr) for some p/, qt G 

{ 0 , 1 , . . . , n — 1} and so, if we call aSu_,Sr the coefficient of fx ... fr
r in R(t), 

then aSl Sr ^ 0 implies that st — pi — qisr must be a multiple of n for ev-

https://doi.org/10.4153/CJM-1990-055-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-055-7


1050 PASCUAL CUTILLAS RIPOLL 

ery / = l , . . . , r — 1. Hence, as is not difficult to see, R(t) must be of the 
form Y^=o £r=o bjsfx

x'jn ...fr
rz\'jn{t\x ...%rl\tr)s for some nonnegative inte­

gers k1mo,...,mk and some bjs G M{V)\ but then the assumption on n and 
the fact that U is also the degree of R(t) with respect to th imply that R{t) = 
Mo(t')+M\(t,)tr+' • •+Mir(t')t

l; where Mj(f) is a monomial for every j = 0 , . . . , /r. 
Let us now write / instead of lr and let dj be the exponent of t\ in Mj(t'). Then, 
one obtains easily from R(enti^t2,..., tr) = ep

n
xR(l!, eq

n
xtr) that /?i = d0 and that 

dj—do = qij—kjH for some £/ G Z, and7 = 1 , . . . , /; from which we deduce that 
di-d0 + kin di-do + kin 

qx — ^ an (j substituting, that d,—do = ; J—kjn lor every 

j = 1 , . . . , /. Finally, from the hypothesis on n, it follows that dj—do = ;— j', 

and so, that — = = - for every j — 1 , . . . , / and some rela-
j I b 

tively prime a G Z, b G N. Thus there exists a polynomial in r — 1 variables 
A(x\,...,xr-\) such that P(£) = ff°A(f2,.. •, fr-1, *f *?)> and we can apply the in­
duction hypothesis in order to conclude (see the observation prior to Definition 
4.7). 

THEOREM 4.10. Let P(t\,..., tr) be an irreducible polynomial independent of 
none of the variables t\,..., tr. If for some a = (i 'i , . . . , ir) G V', P(f],..., fr) 
is infinitely decomposable in A(l/f), then f x , . . . , fr G E(1/f) and P(t) is p.i.d. 

Proof By induction on r. For r — 1, one proves as in Lemma 4.9 that 
P(t\) = /i(rt - /3) for some h G M *(*)/) and /3 G C; and this together with the 
infinite decomposability of P(fx) implies that/, G E(1/'). 

Suppose now that the theorem is proved for polynomials in r — 1 variables, 
and let P(f) = Po(^) + * • m+Pitf)tl

r t>e the expression of P(f) as a polynomial in tr 

with coefficients in fW ( ^ )[/]. By Lemma 4.3 there are infinitely many numbers 
« G N such that Pa*{t) has a factorization of the type hn Y\ Qn(t

Jn *i, • •., e^r), 
with /in G fW*(^), 2n(0 irreducible, (71,...,yV) varying in a certain finite 
subset of Nr (of course, the product having one factor for each element of this 
set), and with a number pn of factors which increases with n. Let Qn(t) = 
Qn$(t') + • • • + Qn,kjj}fy be the expression of Q(t) analogous to that of above 
for P(t). Then, one deduces: 

1) Po(hiuntn^ . . . , V , y ? - l ) = A » I I Gn,0(ejf l , . • . , 4r-ltr-\). 

where sn G N and the number of factors is the same as above. Hence, as 
is not difficult to see (for instance, by Theorem 3.4) FoC/i, 7 • • • ? /!;_,) and 
Pt(fix,..., ftr_x) must be infinitely decomposable in Ail/') and so, by the in­
duction hypothesis, those functions in the set {/},,..., //r_,} with degree ^ 1 
in them, belong to E(V\ and PQC) . Pi(t) are p.i.d. (as well as g„j0(^) and 

https://doi.org/10.4153/CJM-1990-055-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-055-7


COMPACT RIEMANN SURFACES 1051 

Qn1kn{t') for every n as above). Therefore, Lemma 4.9 implies that there exist 
g\, g2 G 96 *(1/ ) such that giPoit*) and g2Pi(tf) have their coefficients in C (and 
that the similar assertion is true for (2„,o(^) an(* Gn,^(^))- But then, equality (1) 
shows that hng\ has a /?„-th root in 96 (1/ ), and it results from (2) that the same 
is true for A/^gf1^1 . Thus, y^gf1^1 has a p„-th root in G(1/'); and being 
this true for every « of the said type, one concludes that/ r G E(1/'). Finally, it 
is clear that the same reasoning is valid for / , , . . . , fr_x and so, that P(t) must 
be p.i.d. 

The foregoing results already allows us to state and prove easily the following 
characterization of infinitely decomposable functions. 

THEOREM 4.11. A function f G A(1/') is infinitely decomposable if and 
only if there exist g G G(1/') and <p\,...,<pn G 0(1/') — C such that 
f = g(e^-l)...(ev«-l). 

Proof First, we show that e^ — 1 is infinitely decomposable for every ip G 
0(1/') - C. With the notation of Section 2, there exist i i , . . . , i* G I" such 
that e^ — f™\ .. .f™\ for some / G N, and some mi , . . . , m* which, replacing if 
necessary some of the functions / , , . . . , /^ by their inverses, can be supposed 
to belong to N; and, since q G N divides mi , . . . , m* if and only if e ^ G A/, 
one deduces from Lemma 4.2 that a decomposition of e^ — 1 as a product of 
irreducible elements of A/ is ^ - 1 = ( e ^ - l)(é?^ - ep) . . . ( e ^ - e^1) 
where p is the greatest common divisor of mi, . . . ,m*. Hence, as this is valid 
for every / G N such that e^ G A/, we obtain the desired conclusion. 

Consider now an infinitely decomposable function/ G A(^7)- For the sake 
of simplicity we can also suppose without loss of generality that/ eA\. Hence, 
there exist go G G(1/')9 i\,...,ir G /, and a polynomial A(*i,..., tr) such that 
/ = goA(/, , . . . , fir)\ and applying to each irreducible factor of A(t), Lemma 
4.9 and Theorem 4.10, one easily deduces that/ must be as in the statement. 

As an immediate consequence of Theorems 3.4 and 4.11 we obtain now the 
final form of the factorization theorem for functions in A(1/'). 

THEOREM 4.12. Every non-identically-zero f G A(1/') can be decomposed 
as a product f\ fi, where f\ is either a function in G(1/') or a product of 
irreducible functions uniquely determined by f up to multiplication by functions 
in G(1/'), andfi is either I or a product of the type (e^1 — 1). . . (e^n — 1), with 
<Pu...,<pneO(V')-C. 

The terminology introduced in the following definition will be useful in order 
to extend this theorem to a special class of subrings of M (1/'). 

Definition 4.13. We shall say that a subring A of M(1/') is regular if it 
contains 96(1/\ is generated over this field by functions with finite divisor, 
and if the quotient group G(1/')nA/M*(V) is divisible. 
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It is obvious that every regular subring of M(V) is contained in A(l/f). A 

first nontrivial example of regular subring of fftf W) is A(V) itself; and, other 

remarkable examples are, A(k) for every minimal <W -field k'mV (by Theorem 

2.2), and the ring BiV ') generated over fW ( ^ ) by the so-called Baker-Akhiezer 

functions in V ', of frequent appearance in modern mathematical literature, prin­

cipally in relation with the theory of certain partial differential equations (see 

Dubrovin [4]). This last ring coincides with the ring of sums of functions in 

(M(V) with exponential singularities of finite degree at the points of V — V 

in the sense of Cutillas [2]. 

Regular subrings of f W ( ^ ; ) have many similar properties to those of A(V). 

For instance, Theorem 4.12 can be generalized for them. 

THEOREM 4.14. Every regular subring A of M (V) is semifactorial. The in­

finitely decomposable elements of A are the products of the type g(f[ — l)...(fn — 

1), where g G G(l/f)r\A andf\,..., fn are noneonstantfunctions in E(V)C\A. 

Proof Consider functions in G(V)nA whose classes in G ( r ^ , ) n A / M * ( ^ ) 

form a suitable basis of this quotient group, considered as a Q-vector space, and 

repeat the arguments used in the proof of the analogous theorem for A{V) (or 

extend the considered basis to a suitable basis of G ( V ) / M * ( ^ ) and use what 

we have already proved). 

The first assertion of the following corollary is a consequence of Theorem 

2.2 and Theorem 4.14. 

COROLLARY 4.15. 1) For every minimal W-field k in V, the ring A(k) is 

factorial. In particular, if oo is a non-Weierstras s point ofV, the ring of sums 

of functions in !M (1/ — {oo}) with exponential singularity at oo of degree less 

than or equal to the genus of V, is factorial. 

2) The ring B(V) (above defined) is semifactorial and its infinitely de­

composable elements are the products of the type g (f\ — 1 ) . . . (fn — 1), where 

g G G(1/')nB(V) andf\,...,/« are exponentials of nonconstant functions in 

M(V)no(V). 
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