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Abstract

A method is developed for obtaining compact, easily computed and statistically interpretable
expressions for the generalized fc-statistics associated with multiply-indexed arrays of random
variables such as those which arise in variance component analysis. These expressions will be
used in the next paper in this series to give formulae for variances and covariances of estimates
of components of variance.
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1. Introduction

In previous papers in this series, Speed (1986a,b), hereafter referred to as II, III,
we gave definitions of cumulants and fc-statistics for singly and multiply indexed
arrays generalizing the classical expressions with these names, and showed how
they were useful in a number of ways including proving the a.s. convergence of
standard variance component estimates to their expectations under quite gen-
eral conditions. The original aim in developing this machinery was to give an
account of the theory of variances and covariances of estimates of components
of variance under the widest assumptions possible, including the classical linear
models with independent normal effects on one hand, and the randomization
models of Kempthorne (1952), his co-workers and students, on the other. We
refer to the introduction of III for further background comments. In this and the
next paper in the series we hope to show that the above aim can be achieved in
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172 T. P. Speed and H. L. Silcock [2]

a very satisfactory way, thereby, we hope, completing a chapter in this theory
which began as far back as the mid-1950s in the work of Kempthorne, Tukey
and their successors.

The present paper plays a crucial technical role in the fulfilment of our original
aim, for we need compact and readily computed expressions for our generalized
fc-statistics; these are derived below. In one sense this paper is a technical
interlude before we get down to the real business of computing variances and
covariances of mean squares, but in another sense the results reported below
lie right at the heart of the matter. Without the simplifications that are found
below the general approach adopted in this series of papers would be of only
limited use in achieving the original aim; with them, we have some very useful
computing formulae which we hope will lead to a greater understanding of the
assumptions underlying standard variance component models. In this sense we
feel that the results given below are of independent interest, although further
development is still necessary.

2. The problem

Why is there a problem at all in computing generalized fc-statistics? To see
this we should begin with a statement of why we should want to compute gener-
alized fc-statistics. When the order m = 2 this is quite clear, for we have shown
in III that under an additive model, generalized fc-statistics are the symmetric
(and minimum variance) quadratic unbiassed estimators of the associated vari-
ance component parameters. Indeed we have also seen in this context that for
order m > 2, they correspond to best estimators of the skewness, kurtosis, etc.
parameters of the component random effects. If we want to estimate these pa-
rameters, for example, the kurtosis of the within class effect associated with an
additive model in the simple nested case, we will need to evaluate a fourth order
fc-statistic. Thus the need to do these evaluations is evident.

The problems associated with these evaluations are best illustrated by an ex-
ample. Suppose that our underlying poset is the 2-element chain corresponding
to a simple nesting of one index in another. Referring to the end of Section 2
in III we find that the generalized fc-statistic fc(123,123) in this context is de-
fined as an alternating sum of twelve normalised monomial symmetric functions
(n)~1a(^>), <p 6 Hom(P, P(3)), see the Appendix below. If the numbers of levels
of the two factors are n\ = m and n2 = n, and m < n, then each of these
monomial symmetric functions is a sum, with inequality constraints on the six
indices, of up to O{nz) terms. Because of these constraints we would prefer not
to compute the sums directly, but rather express them in terms of the power
sum symmetric functions, also called unrestricted sums by Carney (1968). Each
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of these functions involves up to O(n3) t e rms (without inequality constraints)

and u p to twelve are included in the expression for each monomial symmetric

function. Summarising this line of reasoning, we conclude tha t Ar(123,123) is

expressible as a sum of u p to 144 terms, each of which in tu rn is a sum of u p to

O(n3) terms. If our interest was in fc(1234,1234), we would be considering the

possibility of up to 3600 terms, each of which is a sum of up to O{nz) terms,

already a formidable computing problem. Note t ha t this is exactly how Kendall

and Stuar t (1969) go about an identical task: see Exercise 12.11 on page 304.

Similarly Kaplan (1952) expresses fc-statistics in te rms of power sum symmetric

functions.

Is all this necessary? In III, Section 2 we found t ha t the answer was no, for

there we gave an expression for fc(123,123) involving sums over i and j once

only, tha t is, mn terms. Of course, the terms in this expression are not as sim-

ple as those involved in the power sum symmetric functions, bu t they have the

gread advantage of being easily computed, and more importantly, interpretable

statistically. Indeed, if we were to consider actual numbers ra ther t han abstract

symbols, in the context of an analysis of variance, then the components in the

simple expression for fc(123,123), would usually be available. In any event the

expression for &(123,123) given in III Section 2 is a simple form, which is readily

interpreted statistically, and it is the main purpose of this paper to obtain anal-

ogous expressions for all generalized fc-statistics. We remark in passing tha t the

simplifying which can be done quite readily by hand for fc(123,123) is already

very difficult to do this way for &(1234,1234), although the final expression for

fc(1234,1234) involves a t most four sums each of mn terms, ra ther than the 3600

mentioned above. Our expressions are na tura l generalizations of expressions for

fc-statistics in terms of centred moments , see Kendall and Stuar t (1969, page

281).

Two further points are worth making concerning our formulae. Firstly we

remark tha t although they are almost certainly not the best expressions for

computing with real numbers, our formulae are certainly be t te r t han the ones

given in terms of a large number of al ternat ing sums. The si tuation is completely

analogous to (and indeed generalizes) the computat ion of k(2) = n " 1 Yl%xi ~

[n(n — I ) ] " 1 ^2 J2i^j xixj- One method expresses this as the difference J ^ x\ —

n~1(J2i xi)2 between two sums which may be very close together whilst the other

writes it as a sum of squares of n differences computed first: (n — I ) " 1 Y^i(x* —

x)2. It is well known tha t the second method is far be t te r than the first for

computation al though other recursive methods have proved even more stable.

Whilst such methods are no doubt available for our more general expressions,

we have not pursued this aspect any further.

The second point we wish to make relates to the s ta tement on III, page 169

tha t "No general theory of such simplifications exists". The simplifications in
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question are those we are talking about, that is, the reduction of large numbers
of alternating sums to much more compact expressions involving rather different
terms. As far as we are aware, this statement is still true, although some of
the simplifications which we have found by using a computer to manipulate the
formulae are sufficiently dramatic that one might feel there is still hope of some
general theory giving the results directly. Some further remarks are made about
this point at the appropriate place below.

In closing these remarks about the problem addressed in this paper we com-
ment that it was almost certainly this problem which prevented Carney (1965)
from pushing his general theory, which was similar to but not quite the same as
ours, though to a satisfactory solution of the problem of computing a wide range
of variances and covariances of mean squares. A considerable proportion of his
thesis was devoted to the very computational issues which we are able to circum-
vent as a result of the theory given below. In the last section (Section 9) of his
paper on what are essentially our generalized ^-statistics (his bipolykays) when
P is the poset consisting of two incomparable elements, Hooke (1956) comments
on the problem of computing bipolykays of degree 4. He hoped that a better
procedure than his would be found and (without having seen his) we hope that
is what we are presenting.

3. The tensors T(<p)

We are concerned with generalized symmetric functions involving indeter-
minates Xj , i 2 . . . , j / i , i 2 . . . , etc. with suffixes from a multi-indexed set / =
n { n p : p e P} whose factors are labelled by a partially-ordered set (poset)
P describing the nesting relationships on the subscripts 11,12, Here n p =
{ 1 , . . . , np} where n p is a natural number for each p 6 F . In particular we want
to look at functions built up from expressions in which some of t'i,ia, • •. are re-
placed by dots, indicating an average over the corresponding index set. As in III,
whose notation and results we make use of below, we work with tensors, which
can be regarded as coefficients of the symmetric functions of interest, rather than
directly with expressions involving I ' S , y's, etc.

If we take the power sum symmetric functions R^, defined in the Appendix
for <p € Hom(P, P(m)), and examine the expressions that result when some of
the ip are replaced by dots, we find that every one that is invariant under the
relevant permutation group, namely GW{I), can be expressed as a multiple of
a power sum symmetric function R(tp A 7S), where the 7S are certain elements
of Hom(P, P(m)). These -ys are labelled by elements s belonging to the poset
Hom(P, S(m)) of order-preserving maps from P into the power set B(m) (all
subsets of m, regarded as a poset under inclusion).
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For fixed ip, t he elements p A 7 8 form a poset under the ordering induced

from t h a t of Hom(P , P(m)). We use Mobius inversion wi th respect to this in-

duced ordering to define a new class of tensors (symmetric functions) T(ip),

ip € Hom(P , P{m)), wi th the proper ty t h a t , for each <p, the normalized sym-

metric function R(tp) = (n'p)~1Rv is the sum of all t he tensors T(ip A 7S) cor-

responding to the distinct elements of the form <p A 7 S . We then derive some

alternative, more explicit, expressions for the T(<p) and in the next section relate

them to the generalized ^-stat ist ics F(<p), t he main object of our interest. We

turn now to the formal definitions and proofs.

In III the tensors A(tp) and R(<p) were defined in te rms of the elements h =

6hW ® • • • <g> 0*(m) where h: m - f\ % and 6* = ® { # : p e P } , t he <5*p being

elements of the canonical basis {6*,..., 6p" } of Rn" ,p€ P. T h u s we are working

in the space ( ® { R " " : p G P } ) ® m and in wha t follows it will be convenient to

change the ordering of tensoring, wri t ing h = ® <S>{̂ > • P € P,l € m } so t h a t

we are in effect working in V = ( 3 ) { ( R " p ) ® m : p € P}- Obviously the principal

effect of this change is notat ional .

Wi th these changes we may define

(3-1) R(<p)= £ 0 0 #<'>'

and, as already noted, wri te R((p) — (n'p)~1R((p), <p e H o m ( P , P{va)). As now

defined the space V has a basis consisting of all elements

(3.2) Q9($ p l ® • • • ® ̂ ppm) (ivi € np, / € m, p € P).
P€P

For each p € P, we write 6j = n~1(Sp + • • • + 6p"). If s(p) is a subset of m, for

each p € P , we define the averaging operator 6S to be the linear transformation

on V which takes the basis elements (3.2) to the elements obtained by replacing

Sppt in (3.2) by 6'p whenever I £ s(p), and leaving all other factors 6ppl unchanged.

For example, if P = {1,2} with 1 < 2,m = 2, s(l) = {1}, s(2) = {1,2} and

we write i,j,i',j' instead of t 'u,t2i etc., then $„ sends 6{ <g> £}' ® 6% <8> 6% t o

DEFINITION 3 .1 . Let s e Hom(P, B (m)). For every peP define the element

7s € Hom(P, P(m)) by taking 7«(p) to be the partition of m whose blocks are

the set s(p) (if non-empty), and the singleton set {/}, for each / G m\s(p).

[It is easy to see that p —> 7s(p) is order-preserving since we have assumed

that p —> s(p) is.]

LEMMA 3.1 . Letipe Hom(P, P(m)) and s E Hom(P, S(m)) be given. Then

(3.3) R{<p)e> =R{<p Als).
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PROOF. We show first tha t it is enough to prove this for the special case
where \P\ = 1.

Let us write Vp = ( R n " ) ® m , for each p , so tha t the space V in which ~R{<p)
lies in expressible as a tensor product

Each Vp is itself the space of tensors associated with P (m) and the single-element
indexing poset {p}. Identifying the components <p{p) and s(p) in the natural
way with elements of Hom({p}, P{ra)) and Hom({p},B(m)) , respectively, we
may associate with each value of p a tensor R((p(p)) and an averaging operator
08(p) appropriate to the space Vp. The reduction to the case | P | = 1 amounts
to showing tha t the Lemma is t rue for R(<p) and 9S when it is true for R(<p(p))

9s(p), for every p.
Now the definition of R shows immediately that

and we obtain the analogous equation for R as soon as we observe that the nor-
malizing factor l/nT for R(ip) is the product of the normalizing factors l/np^
for the R(<p(p)).

Next recall tha t the definition of 9S specified its action on V by stipulating
tha t certain of the terms 6* appearing in (3.2) were to be replaced by terms 6p.
For a given p, the choice of the terms to be replaced depended only on s(p) and
not on the sets s(q) for q^p. Thus applying 0a to the element (3.2) is the same
as applying 0S(P) to the factor 6p

pl <g> • • • ® 8p
vm for each p, and consequently

R{<PY- = ® {R(<p(p)r-w • p e p}.

Hence we are now reduced to proving that

R(<P(P))0'(P) = R((<P A 1S)(P)) = R(<P(P) A 7 a ( p ) )

for every p, which is the required reduction to the case \P\ = 1.
From now on we may accordingly omit any reference to components or the

set P, and assume that <p € P(ro) and s Cm.
First we obtain an expression for the RHS of (3.3). The definition of 7S implies

that the blocks of ip A 78 are the blocks of <p n s, together with a singleton block
{/} for each / in s' = m\s. It follows, firstly, that

(3.4) b(<pAia) = b{<pns) + \s'\,

and, secondly, that we can enumerate all possible maps ft: m —m with ker/i >
<p A7s by first enumerating their restrictions ftjis-m, which are all possible
maps with ker fti > <p D s, and independently enumerating the ways of assigning
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one of the n possible images to each of the singleton blocks {/}, for I € s'. Hence

in the expression denning R(<p A 7 S) , namely

h

where the sum is over all t he h: m —• n whose enumerat ion we have jus t dis-

cussed, we can replace the summation over h by one over all hi: s —* n with

kerfti > <p D s, together with summations over indices t ' i , . . . , t r , say, where

r = \s'\. T h a t is,

hi ti ir J€s

Now (3.4) shows that

so the multiplier outside the summations contains a factor 1/n for each of the
summations over i\,..., ir. Since

we can rewrite the last expression for i?(^ A 7S) to give

(3.5)

where there are r factors 5', and hi satisfies the conditions specified above.
Next we expand the LHS of (3.3). The definitions of R~((p) and 0S show that

(3.6)
h lea

where there are again r factors <$', corresponding to elements of s', but the
summation is now over all maps h: m —*• n with kerft > <p. Since the value of
each summand in (3.6) depends only on the values of h on s, the summands in
(3.6) are the same as those in (3.5), but each one in (3.5) will appear in (3.6) as
many times as there are different maps l i : m - » n whose restriction to s agrees
with a given hi. Now given any such h, we obtain all other maps with the same
restriction by redefining h on those blocks of <p that do not intersect with s, in
all possible ways. The number of such blocks is b(<p) — b(ipC\s), so each summand
in (3.5) appears nlp/ntpna times in (3.6). But this last number is precisely the
ratio of the multipliers in (3.5) and (3.6), so these expressions have the same
value and the proof is complete.

This lemma shows the importance of the elements 7S, and in particular
of the elements <p A 7« associated with a given <p G Hom(P, P(m)) and s E
Hom(P, B(m)). Note that we can have <p A 7Si = <p A ^B2 with si ^ 8%. We
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define a new partial order <* on Hom(P, P(m)) by writing tj) <* ip if and only
ifip = <pA*ia for some s € Hom(P, B(m)). Letting /i* and f* denote the Mobius
and zeta functions of (Hom(P, P(m)), <*) (see the Appendix), we can now define
the main objects of interest in this section.

(3.7)
V-

By Mobius inversion we immediately have

(3.8)

Here it is implicit that the sums are over all tp G Hom(P, P(m)).
We now turn to alternative formulae for the tensors T(<p), the last one being

the most recognizable and most useful one.
For <p e Hom(P, P{m)) define Lv € Hom(P, B(m)) by / € Lv[p) if and only

if {/} is not a block of <p{p), that is, Lv(p) is the union of the non-singleton
blocks of <p{p). Also let Sp be the subset of Hom(P, B(m)) of all elements s
which satisfy \J{Lv(q): 1 < P} Q s{p) Q Lv(p) for all p € P. In the lemma
below /x denotes the Mobius function of the poset Hom(P, B(m)).

LEMMA 3.2. The following are alternative expressions for T(cp):

where the sum is over all s € Hom(P, B(m)).
(ii) T(<p) = £ a 6 S

where dv{s) = Y.V\L

PROOF. By the definition of T((p), it is enough to show that

J2a denoting the sum over all s with (pA^s = t/>- To do this, we form the product
of the RHS with f*(x,^), sum over all V e Hom(P,P(m)), and find that the
result is £(x, <p) = 1 if x = ¥>, ajl^ z e r o otherwise. Indeed we have

L P )
 : f A ^ - x^

where the last sum is over s with tp A 7S = ip. Now it follows immediately from
the definitions that for any s, x we have ^a > x iff s > Lx. The LHS of the
last equation is clearly zero unless x < V, so the condition ip A 7S > x maY be
replaced by s > Lx. Also we have fi(s,Lp) = 0 whenever s ^ Z,^, so we can
rewrite the above sum as
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which is equal to 6(\, <p) by elementary propert ies of the Mobius function. This

proves (i).

Turning now to the proof of (ii), we observe t h a t it is enough to show t h a t

0 otherwise.

Using the formula in Speed (1984) for the Mobius function of a Hom poset , we

have

q>p )

and the second product is zero unless s(q) > Lv,(p) whenever q < p, that is,

unless a(p) 2 \J{Ltp(q): q < p} for every p in P. Furthermore, by the well-

known formula for the Mobius function of B(m), we have

i f 8 ( p ) ^ L ^ ( p ) '

wwrti o t h e r w i s e .
From this the result follows immediately.

Our final expressions for T(ip) include one which can be related to the de-

composition of a GW(I)- invar iant array into its orthogonal projections onto the

irreducible invariant subspaces of the na tura l pe rmuta t ion representat ion of the

group GW(T). We give the details in the next section.

For ip G Hom(P , P ( m ) ) and / G m write a¥,(Z) for the set of p G P for which

{1} is not a block of <p(p). Recalling the definition of L^ (p ) given jus t before the

last lemma, we note t h a t p € a^{l) if and only if I € L^(p). As a further piece

of notat ion write a£,(/) for the minimal elements of a,p(l) (as a sub poset of P)

and L*p(p) = Lv(p)\ U { M < ? ) = 9 < P>-

LEMMA 3 .3 . (i) In the notation of the present section, n^T^) may be writ-

ten as the sum over all h: m —* I~I{np: P ^ -f} such that <ph >_ <p of the terms

J€L»,(p)\LJ>(p) leL'^ip)

(ii) Moreover, if we rearrange the order of tensoring to that used in III, cf. the

remark at the beginning of this section, then riPTifp) can be written as the sum

over all h with <ph > <p of the terms

J€m

PROOF. The equivalent of the two formulae is immediate , for we have already

observed tha t p G a<p{l) if and only if / G Lv{p), and it is easy to see t h a t
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p € oj,(/) if and only if I € L*v(p). To derive (i) we expand the expression in
braces, obtaining

where s(p) ranges over all subsets of m with \J{Lp(q): q < p} C s(p) C Lp(p).
But this last condition is precisely that occurring in the definition of Sp, so that,
if we multiply the sum under discussion by (n^)"1, we can write the resulting
expression as

w1 E E
J€s(p) J^s(p)

by definition

= V^ (—l)d*5^s^i2(v? A 7s) by Lemma 3.1

= T(ip) by Lemma 3.2.

4. Statistical interpretation of the

The tensors T(<p) have an important statistical interpretation which is not
immediately evident from what we have given so far. In order to obtain this in-
terpretation and to see why the associated symmetric functions t(ip) — [T(<p)\X]
will be readily computed in a statistical context we reexamine the previous
discussion in the special case m = 2 and relate this to the material in III,
Section 6.

Let us begin by noting that when m = 2 the partial orders < and <*
coincide. This is an immediate consequence of the fact that every element
<p E Hom(F, P(2)) has the form 7S for a suitable s G Hom(P,S(2)). Indeed
s = Lv will do, for it is easily checked from the definitions that Ltp(p) = {1,2}
if and only if <p(p) = 12 (the larger element of P{2)). Further, it can be seen
that when m = 2 the sets ap(l) and a^(2) must coincide, equalling â , = {p €
P: ip(p) = 12}, say. In fact, the mapping <p —* ap is an isomorphism between
Hom(P, P{2)) and the poset F(P) of all filters on P (that is, subsets a C P with
the property that p Ga and q > p implies q € a). It follows from these remarks
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that any discussion of the tensors T(<p) when m = 2 can be expressed equally
well in terms of elements <p 6 Hom(P, P(2)) or filters o € F(P).

In III, Section 6 we took the opportunity of regarding our tensors as n x n
matrices when m = 2 (where n = |I|) and it is convenient to do so here as
well. Formula (6.1) of III defined certain symmetric idempotent matrices {Sa}
in terms of the underlying associated matrices {Ap} and certain structural con-
stants (qpc). The S& are called the stratum projectors and they play a key role in
the analysis of variance, see Speed (1985,1986c) and Bailey et al. (forthcoming),
and they will turn out to be the same as the T-tensors when m = 2. Further-
more, we will see that in a sense the general T-tensors are polynomials intimately
related to those of order 2. For the next result we suppose that m = 2 and write
our tensors as matrices. In this case the expressions equivalent to those derived
in the previous section may be rederived using different methods.

PROPOSITION 4 . 1 . For alia € Hom(P, />(2)) we have

In particular, T{o~) = n~1S(T.

(ii) So = nZJ-V^R*
where the sum is only over those ir for which D(ir,a) = {p € P: n(p) =
l|2,<r(p) = 12} has only pairwise incomparable elements, andd(ir,a) = \D(w,a)\.

(iii) With its rows and columns suitably ordered, the following is an expression
for S*:

\a'{<r) p€a*(<r) p£a(<r)

where a(o~) = {p € P: a{p) = 12}, a*{a) is the set of minimal elements of a{o~),
Inp and Jnp are the np x np identity matrix and matrix of all Is, respectively.

PROOF, (i) If we take equation (6.1) of III defining S^, use the representation
of Ap in terms of the relationship matrices {Rr}, and the equation from Speed
and Bailey (1982) expressing (qpa) in terms similar to that of 111(6.4), we find

summing out p and forcing T = TT. But n~1nvRn = nR* as defined earlier, and
so (i) is proved. Note that the RHS is just the definition of T{a) given in the
previous section, for we have already noted that < and <* coincide when m = 2.
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(ii) This expression follows readily from (i) using the formula given in Speed
(1984) for the Mobius function // of Hom(P, P(2)). It is the version of Lemma
3.2(ii) appropriate in this case. Lemma 3.2(i) is really nothing more than (i)
above partially expressed in terms of the filters, and we remark that both (i)
and (ii) could be re-expressed wholly in terms of the lattice F(P) of all filters of
P.

(iii) This formula is the analogue of Lemma 3.3(ii) and it is proved in a manner
identical to that of Lemma 3»3(i). We omit the details.

With this proposition proved we can begin to make the connection between
the symmetric functions defined by the tensors T((p) and those of order 2. The
key result is embodied in the following Corollary to Proposition 4.1 where we use
notation for the symmetric functions introduced in II, Section 2 and III, Section
2.

COROLLARY. For any array x = (i*: i G I) of indeterminates, a G

Hom(P, P(2)) and element i = [ip: p G P) G I = Y\{np '• P € p) we have

6P" <8> ( g ) (<5*P - <5p) <g> ( g ) 6'p

p€o(ar)\o"(CT) p6a*(cr) p$a(<r)

PROOF. This is immediate from expression (iii) of the proposition. Compar-
ing this expression with Lemma 3.3(ii) gives us the result we have been working
towards.

THEOREM 4 . 1 . For any array x = (xi(l): I G m , i G I) viewed as an I-
indexed array of m-tuples of indeterminates or as m arrays of indeterminates
indexed by I, and for all <p G Hom(P, -P(m)) we have

(4.1)
h:

(Here we use the isomorphism between Hom(P, P(2)) and F(P) mentioned above
to label Sav(i) by the filter av,(/), rather than by the element o/Hom(F, P{2)) to
which it corresponds.)

Thus the symmetric functions defined by the tensors T(ip) are essentially
polynomials of degree m in the expressions in the stratum projections Sax(l),
a G F(P), I G m, of the arrays x(l).

EXAMPLES. Expressions for the T((p) are most readily given via equation
(4.1). One uses the definition of a^(l) for each / G m and assigns equality or
inequality of multi-indices {h(l): I G m } on the basis of ip. Note that the £'s are
properly normalized.
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(a) We begin with some examples in which P has only a single element, 1 say.

Putting i'i = i, rii = n and writing Wi,Xi,Yi and Z* instead of Xi(l),Xi(2),

Xi(3) and X,-(4) we obtain the following expressions.

For order m = 2 we have

] - W.)(Xt - X.),

t(l|2) = W.X..

For order m = 3 we have

t(123) = n"1 £(W- - W.)(Xi - X.)(Yi - Y.),
i

*(12|3) = n"1 J3(Wi - ^-)(^i " ^O^- and t w o similar, and

«(1|2|3) = W.X.Y..

Finally, for order m = 4 we have

4(1234) = n"1 2 W - W.){Xi - X.){Yi - Y.){Zt - Z.),
i

<(123|4) = n"1 J2(Wi - W.){Xi - X.)(Yi - Y.)Z. and three similar,
i

t(12|34) = n"2 J2 J2(Wi ~ W')(X* ~ x-)(Yi' ~ Y')(zi' - z-) &ad t w 0 similar,
t t'

«(12|3|4) = n"1 Y,(W* ~ w-)(xi ~ X.)Y.Z. and five similar, and

*(1|2|3|4) = W.X.Y.Z..

(b) Turning now to the case where P has two comparable elements 1 nesting
2, we use i and j instead of i\ and ii, and m = n\, n — ri2-

m = 2.

t(12,12) = m-'n-
» i

((12,1|2) = m"1 ^{Wi. - W..){Xi. - X..),
i

t(l\2,l\2) = W..X...
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m = 3: selected examples.

*(123,123) = m-1n~1

i

«(123,12|3) = m-1n~1

* 3

£(123 1|2|3) = m~1 \ ^(W-. — W-)(X-. — X..)Y-. — Y.A
i

t(12\3,12|3) = m~lrrl E E
« 3

= m-1

m = 4: selected examples.

«(1234,1234) = m"1!!-1 ^
* 3

«(1234,12|34) = m - ^ " 2

«(1234,12|3|4) = m^n'1 E E ^ « ~ W*)(Xv ~ xi-)(Yi- ~ Y-)(zi- ~ Z").
* 3

t(1234,1|2|3|4) = m"1 ̂ ( IV, , - W..)(Xi. - X..)(Yi. - Y..){Zi. - Z..),
i

t(123|4,12|3|4) = m-1n-1

* 3

(c) Finally, we consider briefly the case where P has two incomparable ele-
ments 1 and 2 and again we use i,j,m and n instead of t'i,t*2,ni and ri2-

m = 3: selected examples.

* 3

x {Yij - Yi. - Y, + Y..),

J,13|2) = m" 1 n- 1

m = 4: on example.

t(12|3|4,13|2|4) = m " ^ - 1
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REMARK. Although it is the generalized ^-statistics F{ip) and their asso-
ciated functions k(<p) = [F(<p)\X] and f(<p) = E{k(<p)} which have the more
fundamental statistical importance, it is quite clear that the expressions t((p)
are statistically meaningful. For example, it is obvious that £(123,123) and
<(1234,1234) in (b) above relate to within class (cross) skewness or, following
Tukey, skewmulance, whilst £(1234,1234) is clearly connected with within class
kurtosis. Similarly t(123,1|2|3) and i(1234,l|2|3|4) (not given) would relate
to between class skewness and kurtosis, respectively. Perhaps more interest-
ingly, <(12|3,13|2) in (c) above—whose resemblance to Tukey's one degree of
freedom for non-additivity can hardly be missed—is closely connected with non-
additivity. It is a key component in fc(12|3,13|2) which estimates a non-additivity
measure /(12|3,13|2) in two-way structures. The details of this connection will
be explained elsewhere, although that use of fc's, / ' s and Vs to measure non-
additivity (and inhomogeneity) will be discussed further in paper VI in this
series.

5. Formulae for generalized ^-statistics: theory

Having introduced the tensors T{tp) it now remains to give the formulae ex-
pressing the generalized fc-statistics F((p) in terms of them. Our main result
is trivial to prove; what is incredible is the way the double sum collapses to a
modest number of terms in all cases of interest.

PROPOSITION 5.1. The transition matrix M(F, T) expressing generalized k-
statistics F in terms of tensors T{<p) has entries

(5.1) M(F,T)^ =

PROOF. This is an immediate consequence of Proposition 2.1 of III, which
gives M(F,R) (actually found in II) and the formula for M(R,T) derived in
Section 3 above.

In general (5.1) does not simplify directly unless m = 2; there the explicit
formula for fj. and the fact that f * = f combine to give the expression of Propo-
sition 6.1 of III. In all other cases the evaluation of (5.1) seems to be a lengthy
task and even for the simplest posets P we have had to resort to a computer.
The expressions (5.1) seem to have the unusual property of simplifying incredi-
bly, given how complicated they could be, but not sufficiently so that one feels
simple formulae exist which could be derived without the use of a computer.
This will become clear when we give some of our results in the next section.

Before turning to the examples, we present one further useful result.
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PROPOSITION 5.2. If M denotes the transition matrix M(F,T) correspond-
ing to the poset P consisting of a single element, then the transition matrix
M(F,T) corresponding to the poset consisting of two (or more, pairwise) incom-
parable elements is the tensor product of two (or more) copies of M.

PROOF. This follows directly from (5.1) as soon as we realize that for a poset
of two (or more, pairwise) incomparable elements, all of the expressions ri^, (n)T,
(i and f * and the elements r, x of the Horn sets, factor into products of the terms
corresponding to the single element poset.

6. Formulae for generalized ^-statistics: examples with m < 4

In what follows "term +k sim." denotes the sum of all k+1 terms based upon
similar partitions. We resume the abbreviation (ip) for tensor F(<p) adopted in
III and similarly abbreviate T(ip) by {<p}. Brackets to play the role of separators
are denoted [ ]. All of the expressions given will be used or referred to in the
next paper in this series.

6.1. A single index. We begin with the poset P consisting of a single element
1 with n — rt\.

m = 2.

n2

ii.

m = 3.

(123) =

iii. (1|S|3) = {1|2|3} - (^[{1|2|3> + 2 Sim.]

m = 4.

(1234) = ^ ± ^ { 1 2 3 4 } - 2 ! £ f i ) [{i2|34) + 2 sim.
(n)4 (n)4
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ii. (123|4) = - n ( . n , + 1){1234} + n ( . n ~ 1 } [{12|34} + 2 sim.]
(nj4 (n)4

n 3

iii. (12|34) = " ( " ^{1234} + ^[{12134} + 2 sim.]
(n)4 (n)4
n3

2n2 n2

iv. (12|3|4) = 7- r{1234} - 7-T-[{12|34} + 2 sim.]
(n)4 (n)4

" 2 -{12|34} - T ^ - [ { 1 2 3 | 4 } + {124|3}]wi { 1 2 | 3 4 } w;

(1|2|3|4) = - (^{1234} + ^[{12134} + 2 sim.]

(nh
5sim.]

6.2. Two crossed indices. We can obtain the corresponding results for the
simple crossed structure, that is, P consisting of two incomparable elements, by
making use of the rule of Proposition 5.2. For example, if n\ = m and n-i = n,
we can use the results of (6.1) above to calculate

m2n2

'123} + M^{ 1 2 3 ' 1 2 3 } -

6.3. Two nested indices. Our next example gives results for the case where
P is the two-element chain corresponding to two indices, one nested within the
other. Let ni = m and n2 = n.
m = 2.
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m = 3. Note that | Hom(P, P{3))\ = 12 when P is the two-element chain.

(123,123) =

ii. (123,12|3) = -7^-{123,123} + "ff {123,12j3>.

iii. (123,1|2|3) = ^ { 1 2 3 , 1 2 3 } - ^ L - [ { 1 2 3 , 12|3> + 2 sim.

m3

Ms

>12l3) = -7^r7^{1 23,12|3}
mn2 ,.„„ „,_, n2

(1213'1|2|3) = ( ^ k { 1 2 3 ' 1 2 | 3 } "
^ { 1 2 , 3 1 2 1 3 } + ^{12,3,1213} +^-{1213,11213}.^{12,3,1213} + ^

vi. (1|2|3,1|2|3) = (^{123,1|2|3} - ̂ [{12|3,1|2|3} + 2 sim.

m = 4. Note that | Hom(P, P(4))\ = 60 when P is the two-element chain.

( " + 1 ^ n (i. (1234,1234) = " ( " . + 1^{1234,1234} - n ( " 1)[{1234,12|34} + 2 sim.].
(n)4 (n)4

ii. (1234,123|4) = - " ^ , + 1^{1234,1234}
(n)4

+ n (
/
n~1)[{1234,12)34} + 2 sim.]

(nj4
2 3

"?? {1234,123|4>.+ , ? ? ,(m)2(n)3

iii. (1234,12|34) = - n ^ ~ ^ {1234,1234}
(nj4

^ {1234,12|34}
(")i (")3j

" ', 12|34} + 2 sim.] - ™ " 2{12[34,12|34}.^
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2n2

iv. (1234,12|3|4) = -r-r-{1234,1234}
(n)4

,2

{1234,12|34}

^-[{1234,12134} + 2 sim.]
(n)4

2 2

-[{1234,123|4} + {1234,124|3}]
m 2 n 2

m3n2 , .„,„,,, m2n3

m3n2

(m)3(n):

: (n»)a(n)g

•{12|34,12|3|4}

{12|34,12|34}

v. (1234,1|2|3|4) = - ^ - { 1 2 3 4 , 1 2 3 4 }
(n)4

m3n
-[{1234,12|3|4} + 5sim.]

r[{12|34,12|34} + 2sim.]
m2n2

i3n

- m3[^)4
1)[{12|34,1|2|3|4} + 2 sim/

TYIYL

vi. (12|34,12|34) = - _ _ { 1 2 3 4 , 1 2 | 3 4 }

6.4. T/iree indices with the first nesting the second, which nests the third. We
give a small selection of results when m = 4. Note that |Hom(P, P(4))| = 154
when P is the three-element chain. We assume ni = m, n^ = n and n3 = p.
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i. (1234,1234,1234) = P ^ ^{1234,1234,1234}
(PI*

P ^ " ^ [ { 1 2 3 4 , 1 2 3 4 , 1 2 | 3 4 } + 2 sim.].

ii. (1234,1234,12314) = - P ,.+ 1^{1234,1234,1234}
(P)i

+ P ^""^[{1234,1234,12|34} + 2 sim.]
(PJ4
2 3

+ " P {1234,1234,123|4}.
(nh(Ph

Hi. (1234,1234,12|34) = - P ^. ^{1234,1234,1234}
(P)4

D2

V , 1234,12|34} + 2 sim.

J - ^ {1234,12|34,12|34}.

iv. (1234,1234,12|3|4) = ^-{1234,1234,1234}

»,2

-[{1234,1234,12|34} + 2 sim.]
(P)4

\ \ ' 1 2 3 4 'Oa(p)2 (Ph.

-f^-[{1234,1234,123|4} + {1234,1234,124|3}]

P {1234,1234,12|3|4}
("MP

3 2
^-{1234,12134,121314}.
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v. (1234,1234,1 |2 |3 |4)= - ^ - { 1 2 3 4 , 1 2 3 4 , 1 2 3 4 }
IP) 4

2n 2 p

n3p

n3(n-

- ~ [{1234,1234,12|34} + 2 si

-[{1234,1234,123|4} + 3 sim.]

!
-[{1234,1234,12|3|4} + 5 sim.]

(n) 4

-{1234,1234,1|2|3|4}

^[{1234,12|34,12|34} + 2 sim.]

n 3 ( n -
(n)4

-[{1234,12|34,12|3|4} + 5 sim.]

-[{1234,12(34,1|2|3|4} + 2 sim.].

vi. (1234,12|34,12|34) = - np {1234,1234,12|34}

m n'
(m)a " (n)aJ {p)\

r{1234,12|34,12|34}

^ { 1 2 | 3 4 , 1 2 | 3 4 , 1 2 | 3 4 } .

vii. (1234,12|34,12|3|4) = {1234,1234,12|34}

n2p2

(«)3(P)2

t +

{1234,1234,12|3|4}

m

(n)3

r{1234,12|34,12|34}

_2

{1234,12|34,12|3|4}

m2n2p2

(m)2(n)2(p):

(P)2

, 12|34,12|34}

-{12|34,12|34,12|3|4}.
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vm.
(1234,12|34,1|2|3|4)= - np*

r{1234,1234,12|34}

n2p

n2(n-l)
(n)4

-[{1234,1234,12|3|4} + {1234,1234,1|2|34}]

{1234,1234,1|2|3|4}

m . n2 1 p2

L(m)9 (n)2

n2 n2

{1234,12|34,12|34}

K-), ' (n)3
+ T - ^ + , ? " , I T^-[{1234, 12|34,12|3|4}4

{1234,12|34,1|2|34}]

n"
(n).

•[{1234,12|34,1|2|3|4} + 2 sim.]

m n '

m2p2

m2n2p2

{1234,12|34,1|2|3|4}
(nh

,12|34,12|34}

-[{12|34,12|34,12|3|4}

{12|34,12|34,1|2|34}]

^^{12 ,34 ,12 |34 ,1 |2 |3 |4> .

IX. (12)34,12|34,12|34) = - mp* -2-{1234,12|34,12|34}

2 4
,12|34,12|34}.

x. (12|34,12|34,12|3|4) =
mp3

{m)2{p)
2-{1234,12|34,12|34}

mn2p2

(m)2(n)2(p)2
{1234,12|34,12|3|4}

(n»)a(p)
m2n2p2

(m)2(n)2(p)2

T{12|34,12|34,12|34}

{12|34,12|34,12|3|4}.
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2

xi. (12|34,12|34,1|2|3|4) = - " P ,2{1234,12|34,12|34}

mn2

+ {1234,12|34,1|2|34}]

(^ ,{1234,12 |34 ,1 |2 |3 |4}

^,{12134,12134,12134}

+ {12|34,12|34,1|2|34}]

m2n4

r{12|34,12|34,l|2|3|4}.

Appendix. Summary of definitions and notation
used in this paper and its sequel

Throughout m = {1 , . . . , m} and np = {1 , . . . , np} denote the sets consisting
of the integers 1 to m > 1 and 1 to np > 2, respectively. P always denotes
the partially-ordered set, with elements p,q,r etc., which defines the nesting
relations on multiple indices i = (ip: p G P), where for each p € P we have
iv € np.

Considerable use is made of arrays (x,), (j/j) etc. indexed by elements i =
(ip: p € P) of the index set I = I]{np: P e *̂}> a n ^ when |P| is 1,2 or 3 we
usually denote the multiple indices ix, (*i,»2) or (»i,t2,»3) by i,ij or ijk in the
usual way.

Some use is made of the standard inner product defined as follows: if x = (XJ),
V = (Vi), \Av\ = Hi ^2/i. t n e s u m b e i n g o v e r al1 * G I.

Little explicit mention will be made in this paper of the generalised wreath
product group GW(I) acting upon the elements of I so we will not repeat its
definition here; see III and the references therein for futher details.

The lattice of all (set) partitions of the set m is denoted throughout by P(m)
with elements being written (m = 4) 1|2|3|4,12|3|4,123|4 etc. The lattice of all
order-preserving maps from the partially-ordered set P into P(m) is denoted by
Hom(/>, ^(m)) with typical elements being written abstractly as ip = (<p(p): p €
P) and concretely (m = 2) as (12|34,12|3|4) etc.

A number of functions and tensors are used in these papers which are labelled
by elements ip e Hom(P, P{m)). These include the generalised powers and
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incomplete factorials

and

(«)<P = ll(np)Mp),A{v(9): 9>P»'
P€P

where

p, T € (np), this sum being over all TT € .P(np), and the Mobius and zeta functions
H and f being those of the lattice P(np). Here rip is just the integer np raised
to the power b(w), where b(w) denotes the number of blocks of the partition TT.

The Mobius and zeta functions fit, and ft, of any finite lattice (indeed any
locally finite partially ordered set) L are defined as follows:

i f o < 6 ,

0 otherwise;

and /i£,(a, a) = 1, //z,(a, C) = 0 if a J£ C, whilst for a < c we have

r
I.

fJ.L(a,c) = - ^2 nL(a,b).
a<b<c

It is not hard to show that £ 6 ft, (a, &)//.£, (6, c) = X)t A4*-(a> %£ (&>c) = 6L(O,,C)

which equals 1 if a = c, and equals 0 otherwise, the sums being over all 6 € L.
This is the principal property of /i/, used in the papers.

With this background we can recall Lemma 2.3 of III which states that nv

and (n)p are Mobius inverses of one another: •nf = Z)?(v>^)(n)i/M and (n)^ =
^T,n(<p, i))^, both sums being over all V € Hom(P, P(m)).

We turn now to the tensors labelled by elements of Hom(P, P(m)), repeating
definitions from III. Denote by 6lp the np x 1 vector (that is, element of Rn»)
with values {6lp)jp — 1 if ip — j p , — 0 otherwise, ip,jp € np. In terms of these
vectors we then define the basis vectors {6': i 6 1} by 6l = ®Pep<Stp, ip e np,
p € P. We also need to define the elements iph € Hom(P, P{m)) derived from
maps h: m —* I = n ( n p : P € P) in terms of the kernels ker hp of the coordinate
maps hp: m —> np by <ph(p) = f\{kerhq: q > p}. Here ker/ip is the partition of
m which has l\ and li in the same block if and only if hp(\,\) = hpfo). With
these preliminaries we define the tensor

for any h: m —»I, and then for <p G Hom(P, P(m)) we write

~h
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and

These tensors are abbreviated to (n)¥,(y?) and [ip], and are called the as-

sociation and relationship tensor, respectively. The corresponding generalised

fc-statistic tensor is Fv = X)^, M^S V H 7 ' 1 ) ^ 1 A/>, abbreviated (p). Transition ma-

trices relating these three classes of tensors are given in Proposition 2.1 of III,

the formulae being identical to those in Proposition 2.1 of III.

In order to define the generalised symmetric functions associated with the

above tensors and labelled by elements ip E Hom(P, P{tn)) we need to refer to

an array x — {xi(l): l € m , t ' e l ) of indeterminates. We can also view x as an

array x — (z*: i € I) of m-tuple indeterminates labelled by I, or as an array

( x ( l ) , . . . , x (m) ) of Ylp€pnp-tuples (indexed lexicographically) labelled by m .

We temporarily adopt this second view and write x = z ( l ) ® - • (g»z(m). Wi th this

notation, and an extension of the inner product [-, •] to tensor products via the

formula [a <8> 0\a <8> b] — [a|a][/?|6], we define the generalised symmetric functions

av = [A^,|z], s^ = [i2^,|x] and kv = [F^\x]. At times we also wri te k(ip), a(<p)

or fcm,...,n,(v)> e t c - where in the last mentioned example, the partially-ordered

set P is denoted by { 1 , . . . , s } .

Finally, we recall t ha t if x now denotes an array of random variables whose

joint distribution is invariant under the group GW(T), then the generalised cu-

mulants f(ip) labelled by ip £ Hoxa(P, P(m)) are defined by f(ip) = E{k(ip)},

where E denotes the expectation operator.
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