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Abstract

Random vectors in the positive orthant whose distributions possess hidden regular
variation are a subclass of those whose distributions are multivariate regularly varying
with asymptotic independence. The concept is an elaboration of the coefficient of tail
dependence of Ledford and Tawn. We show that the rank transform that brings unequal
marginals to the standard case also preserves the hidden regular variation. We discuss
applications of the results to two examples, one involving flood risk and the other Internet
data.
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1. Introduction

A refinement of the class of multivariate regularly varying distributions, which we call
those with hidden regular variation, is a semiparametric subfamily of the full family of
distributions possessing multivariate regular variation and asymptotic independence. Various
cases of hidden regular variation have recently received considerable attention as part of the
program to distinguish statistically asymptotic independence from dependence; see Campos et
al. (2005), Coles et al. (1999), de Haan and de Ronde (1998), Draisma et al. (2004), Heffernan
(2000), Ledford and Tawn (1996), (1997), Maulik and Resnick (2005), Peng (1999), Poon et
al. (2003), Resnick (2004), and Starici (1999). In particular, hidden regular variation is based
on Ledford and Tawn’s (1996), (1997) analysis of the coefficient of tail dependence.

Treatments of hidden regular variation, placing it in relation to the concepts of asymptotic
independence and second-order regular variation, and giving characterizations and examples,
were given in Resnick (2002) and Maulik and Resnick (2005). Here we discuss how the rank
transformation yielding standard-form regular variation preserves the hidden regular variation.

1.1. Outline

In the rest of this section, we review notation (Section 1.2) and the polar coordinate transfor-
mation (Section 1.3). In Section 2, we define multivariate regular variation and hidden regular
variation for heavy-tailed vectors without distributionally equal components. We review the
rank method for estimating the spectral measure in Section 3, and show that the rank transform
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can also be used to estimate the hidden spectral measure. In Section 4, we give some remarks
on the estimation of the hidden spectral measure since the limit result of Section 3 involves a
function that, typically, will not be known. In Sections 4.3 and 5, we also give a high-level
view of several problems in which the existence of hidden regular variation allows for improved
accuracy when estimating probabilities of extreme events. Two examples are given in Section 6,
one requiring estimation of the risk of flooding and a second in which the problem is to ascertain
whether the response size and transfer rate of Internet traffic exhibit asymptotic independence.

1.2. Notation

For simplicity, we will generally assume that random vectors have nonnegative components.
Set
E = [0, 0]’ \ {0}

so that the origin is excluded from E. Compact subsets of E are compact sets of [0, oo]? that
do not intersect the origin; see the discussion in Resnick (2002). In some applications, for
instance in finance, it is natural to consider the cone [—o0, oo]d \ {0}. We leave it to the reader
to make the modest changes necessary to generalize to this case by considering the orthants

individually.
Vectors are denoted by bold letters; capitals for random vectors and lower-case letters for
nonrandom vectors. For example: x = (x(V, ..., x@)) e R, Operations between vectors

should be interpreted componentwise so that, for two vectors x and z,

x < zmeans x < z(i), i=1,...,d, X §zmeansx(i) < z(i), i=1,...,d,
x = z means x) = z(i), i=1,...,d, x = (z(l)x(l), ...,z(d)x(d)),
(D (d)
_ (D y O @\ i L r
xVvz=x"V vz, .., xY VvV, z_<z(1)““’z(d) ,
and so on. Also define 0 = (0, ..., 0), the d-dimensional zero vector. For a real number ¢, we
write cx = (exD, ..., ex@), asusual. We denote rectangles (or higher-dimensional intervals)
by

[a,b]={x e E:a <x < b}.

Higher-dimensional rectangles with one or both endpoints open are defined analogously; for
example
(a,b]={x €eE: a <x < b}.

Complements are taken with respect to E, so that, for x > 0,

d G)
[0,x1° = E\ [0, x] = {yeE: \/)% > 1}.

i=1

Fori = 1,...,d, we define the basis vectors ¢;, = (0,...,0,1,0,...,0) so that the axes
originating at 0 are given by I; := {te;,t > 0},i =1, ..., d. We then define the cone
d

Eo=E\ | JLi ={s € E: forsome 1 <i < j<d,s® ns? >0).

i=1

If d = 2, we have Eg = (0, oo]?. The cone E consists of those points of E such that at most
d — 2 coordinates are 0.
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1.3. The polar coordinate transformation

It is sometimes illuminating to consider multivariate regular variation for the distribution of
a random vector after a polar coordinate transformation. Suppose that || - || : RY — [0, 00) is
a norm on RY. The most useful norms for us are the usual Euclidean Lj-norm, the L ,-norm
for p > 0, and the Loo-norm: |x|| =\/7_, |x@]. Assume that the norm has been scaled so
that ||e;|| = 1 fori =1, ..., d. Given a chosen norm | - ||, the points at unit distance from the
origin 0 are
R:={xekE: |x| =1}

For the purpose of hidden regular variation, we need to look at the subcone Eg of E and the
restriction of N to Eg, denoted by 8 = X N Eq. Recall that norms on R are all topologically
equivalent, in that convergence in one norm implies convergence in another.

For a fixed norm, define the polar coordinate transformation 7 : [0, 00)?\ {0} — (0, 00) x N
by

X
T(x) = <|le|, —) =: (r,a),

llx]

and the inverse transformation 7< : (0, 00) x 8 — [0, c0)? \ {0} by
T (r,a) =ra.

We think of @ € R as defining a direction and r as telling us how far in direction a to proceed.
Since we exclude 0 from the domain of 7', both T and T < are continuous bijections.

When d = 2, it is customary, but not obligatory, to write T (x) = (r,6), where x =
(rcosf,rsinf),with) <6 < %7‘[, rather than the more consistent notation

T(x) = (r, (cos @, sinh)).
For a random vector X in R?, we sometimes write 7(X) = (Rx, ®x). When there is no risk
of confusion, we suppress the subscript.
2. Multivariate regular variation and hidden regular variation
We start with the definition of regular variation with unequal components.

2.1. Regular variation on E

Suppose that Z is a d-dimensional random vector in [0, co)?. The distribution of Z is
regularly varying (with unequal components) if there exist functions /) (r) 1 oo, as t — oo,
such that, for a Radon measure v on E, we have the vague convergence

z@ Z v
P((M,]Zl,,d>€)=lp(me>—)v (1)

on E (cf. de Haan and Omey (1984) and Greenwood and Resnick (1979)). We assume that the
marginal convergences satisfy

zW 9)
tP(b(j—)(t) > x> — vy (x,00] i=x"%,

where ¢/) > 0,j=1,...,d. Then bY)(t) € RV, Jath the class of regularly varying functions
of index 1 /a(f ), and we can and do assume thap each b) () is both continuous and strictly
increasing, and denote the inverse function by b <_(t).
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2.2. Standard form of regular variation

By a change of variables, regular variation with unequal components can be converted into
regular variation for which the marginal distributions of each Z/) are tail equivalent. The
relation (1) is equivalent to (cf., for example, Resnick (1987, p. 277))

b (ZD)
IP((%s‘j = l,...,d) € > 5 Vstandard (*) @

on [E, where vgndarg satisfies the homogeneity condition

-1
Vstandard (£-) = ¢~ Vstandard () 3)

on E. Relation (2) is the standard form of regular variation, where each component of the
random vector is normalized by the same function. The measures vgindard and v are related by

v([0, x]C) = Vstandard ([0, xa]C)’ xeckE, “@
where we extend our vector conventions such that
x® = (D @y,

After transforming to polar coordinates, the homogeneity property (3) becomes
g —1
Vstandard | 1X € E: [[x]| > r, m € - =cr S(),
where ¢ > 0 and S is a probability measure on Borel subsets of X.

2.3. Hidden regular variation

We say that the distribution of Z has hidden regular variation if, in addition to (1) or (2), we
have the following property after transforming to the standard case. There must exist a function
bo(t) € RV1/4 with by(¢) 1 oo, ap > 1, and

t

lim —— = oo, Q)
t—00 by (t)
such that, on Eg, -
pN Tz v
tP —,j:l,...,d)e->—>u0 (6)
(( bo(1)
for some Radon measure vy on Eg. Note that (6) is equivalent to
P ALy 1 d 50 (7)
—_—,j=1,..., -] >
b (bo()) ’
on [Eg, where v and vy are related by
Vo ((x, 00]) = vo((x*, 00]), x € Eo. ®)

The measure vy is also homogeneous on Ey, i.e.

vo(t) =1t~ “vg(-),

https://doi.org/10.1239/aap/1118858631 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1118858631

Hidden regular variation 397

but vy can be either finite or infinite on Eq (Maulik and Resnick (2005), Resnick (2002)) and,
when we transform vg to polar coordinates, we obtain

vo({x eEo: x| > r, ”;C—” € }) =r"%8y(),

where Sy is a Radon measure on Borel subsets of
Ro = RN Eoy.

Since the region

d
Ninpy 1= {x eEy: /\x(j) > 1}

j=1

is a compact subset of [y and, hence, will always have finite hidden measure, we can (and do)
always choose b (#) so that

vo(Riny) = 1.

Recall that the presence of hidden regular variation implies that the vector Z possesses
asymptotic independence (Resnick (2002)), which, in our case, is equivalent to

Vstandard (o) = 0.

This means that the probability of two components of the vector being simultaneously large
is negligible compared to the probability of only one component being large. The motivation
(Ledford and Tawn (1996), (1997)) behind the concept of hidden regular variation is to create a
tractable subclass of the distributions possessing asymptotic independence, which would allow
for statistical analysis.

2.4. Comparison with Ledford and Tawn

Ledford and Tawn (1996) proposed the following model for the asymptotic behaviour of the
joint survivor function of standardized variables (Z(1), Z @).

PZV > Zz® > p) ~ L,C(r)r_l/’7 asr — oo.

This holds for a wide range of bivariate distributions with standard Pareto margins. Here,
L is a slowly varying function, i.e. L(tr)/L(r) — 1 as r — oo for all fixed r > 0. The
parameter 1 € [0, 1] was termed the coefficient of tail dependence by Ledford and Tawn, as it
controls the rate of decay of P(Z() > r, Z® > r) asr — oo. If we have positively associated
variables, then % <n < 1; when Z and Z® are independent, = %; andif 0 < 5 < % then
the variables are negatively dependent. The variables are termed asymptotically dependent if
n=1and L(r) / 0asr — 0o, and asymptotically independent otherwise.

In a later paper, Ledford and Tawn (1997) refined this joint tail assumption in order to model
behaviour off the diagonal. They assumed, for z; and z simultaneously large, that

P(ZO > 21, ZP > 1) ~ L£1(z1, 2202, V55 2 + La(z1, 22)7] TN TR Lo 9)

where ¢; + ¢ = 1/n,dj > 0, £(z1, z2) are bivariate slowly varying functions with limit
functions g;, and £3(tz1,1z2) = o(L1(tz1,122)) ast — oo if dj = d» = 0. Since
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gjlcz1,cz2) = gj(z1,z2) forall ¢ > 0 and (z1,22) € R?, Ledford and Tawn defined the
ray dependence function

) . ) 21 —
w) = = gi(Z1,22).
g+ (w) 8x (Zl+22) gj(z1,22)

(Note that the map

< 21 2 )

ZH> s

21+22 21+ 22

corresponds to our polar coordinate transform using the Li-norm.) This function provides an
alternative diagnostic to Sp for the strength of the dependence between Z(1) and Z® within the
class of distributions with a given value of 1. Ledford and Tawn (1997) derived the connections
between their ray dependence function g.(w) := gfkl) and the hidden spectral measure Sp.
For (Z(V, Z?)) as above, with g, (w) differentiable for all w € (0, 1) and a sequence bo(n)
satisfying nL1(bo(n), bo(n)) ~ bo(n) 1/n 1 edford and Tawn defined the inhomogeneous point
process

PO = ((Z2P /bo(n), ZP Jbo(n)), i =1, ..., n},

where (Zl.(l), Zl.(z)), 1 < i < n, are independent, identically distributed (i.i.d.) copies of
(ZzMW, z@). Theorem 1 of Ledford and Tawn (1997) states that JPn(l) — 2 weakly as
n — oo on Eg, where £ is an inhomogeneous Poisson process with point intensity

A(r, w) = Ag(w)r~ UM
in polar coordinates, corresponding to radial and angular components
R=ZY +2z2®)/bo(n) and W =2zD;z" 4+ z?),
where

creagx(w) + w(l — w)gl(w)2w — 1 + ¢ — ¢2) — gl (w)w?(1 — w)?

)\O(w) = w1+cl (1 _ w)H'CZ

(10)

Thus stated, A is the point intensity associated with our spectral measure Sy, and our parameter
o corresponds to 1/7. The Ledford and Tawn Poisson convergence would be a consequence
of Proposition 3.21 of Resnick (1987, p. 154), if (9) were interpreted as vague convergence of
measures.

A recent consideration of the coefficient of tail dependence in the context of elliptical
distributions was given by Hult and Lindskog (2002).

3. Rank methods for estimating the spectral and hidden spectral measures

We now review and extend a method, based on ranks and discussed by Huang (1992), for
estimating the spectral measure S. This rank method overcomes the statistical problems inherent

in multivariate methods that first require one to estimate tail indices alh, j=1,...,d. Assume
that we wish to estimate the spectral measure S and the hidden spectral measure Sp on the basis
of asample Z1, ..., Z, of size n.
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3.1. Review of diagnostics, based on ranks, for estimating the spectral measure S

We continue to suppose that we have multivariate regular variation (without tail-equivalent
marginal distributions) given by (1). It follows from Resnick (1986) (see also Resnick (1987,
Exercise 3.5.7, p. 161)) that the empirical measures converge, i.e.

1 P
vﬂ(') = % Zg(zi(l)/b(l)(n/k) ’’’’’ Z;d)/b(d)(n/k))(.) g V() (1 1)
i=1

in M4 (E), the space of Radon measures on E. Here, k = k(n) is a function of n satisfying
k(n) — ocobut k/n — 0, so that k/n is a vanishing proportion of the sample size, and Lo
denotes convergence in probability. Furthermore, ¢, is the probability measure that puts all
mass at x, i.e.

1 ifxeA,
ex(A) = .
0 ifx ¢ A.
For the sample (Z ij ), e, Z,gj ) ) of jth components, let

) )
Zyz 22w

be the order statistics in decreasing order, starting with the largest. Taking the marginal

convergences in (11) and inverting yields, foreach j =1, ...,d,
)]
Z(rkt(m) r (t(j))—l/a(j)
b (n/k)

in D(0, oo], the space of right-continuous functions on (0, oo] with finite left-hand limits. By
[-] we denote the integer-part function. Since convergence is to a constant limit, we may append
this to (11) to obtain (Billingsley (1968, p. 27))

Z70) ’ _
<vn(-), (#}% j=1, d)) =, (Ve =1 ) (12)

in M4 (E) x D(0, o0] x --- x D(0, c0].
Recalling (4), we use continuous mapping (Billingsley (1968, p. 30)) to convert (12) into

20 |
(vn([O, x1%), (M j=1, ...,d)) = ([0, xI), (¢ i =1, ),

bDm/k)y "
(13)
and then apply the almost surely continuous map
([0, x1%), 8) = v([0, 1%
to (13), to obtain
)
Z . c
(ke . —1/aqc
vn<|:0, <—b(f)(n/k)’1 =1,. ..,d>:| ) = v([0, ¢ 19). (14)
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Unpacking the left-hand side of (14), we have

@))
o (Za sy g\ 1
Vn s b(J)(n/k),] =1,..., Z Z(/)/b<1)(n/k)<Z(j) o )/b(/)(}’l/k)j 1,...d)

Z l{z”) () =1,..d)c" (15)

P wm)

For j =1, ..., d, define the antiranks

n
Jj) _ Zl . )
- {ZI(J)ZZi(J)}

to be the number of jth components greater than or equal to Z l.(j ). We can rephrase the final
expression in (15) as

l n

- E 1, o0 ¢

k {r; =kt j=1,....d}
i=1

and then make the change of variable s — ¢! to obtain

1 ¢ 1
k Zl{r,-(j)Zk(s<-">)“,j=1,-..»d}C = v(10.5"1%)
i=1

or
1 n
1
k Zl{k/r(1)<(s(j)) j=1,..., dye = V([O s /Ol] )
i=1

or

]A)standard,n = Z & (k /r(]) ] :> Vstandard (16)

in M, (), where we have used (8). A polar coordinate transformation of the points

k
—,,j:l,...,d),i:l’.“’n}
{<ri(])
()

allows us to estimate the spectral measure S. Suppose that the polar coordinates of (1/r;”", j =
1, ,d) are (R;, ©;). Then the empirical measure of ®s corresponding to exceedances in the
R variable, that is

Yo kriz1y €0 _ izt Lrizk) =S (17
Yoo Lkri=1y Yt Yrzk1y ’

is a consistent estimator of S.
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3.2. Finding the hidden spectral measure with the rank transform

Now suppose that both regular variation, represented by (1), and hidden regular variation,
represented by (6), hold. How can we use the rank transform to estimate the hidden measure Sy?
To find the hidden angular measure, we expect to have to use points

k
> jzl,...,d),i:l,...,n}
(6

1

with a threshold at a lower level than in (17). Since bo(z)/t — 0 (see (5)), it seems plausible

to use the points
k/r(j)
i . .
{(—,J =1,...,d),l =1,...,n}
bo(n/k)/(n/k)

wr? |
={< : s]=1,...,d>,l=1,...,n}.
bo(n/k)

This scheme yields the hidden measure.

Proposition 1. Assume that Z1, . .., Z, is an i.i.d. sample from a distribution on [0, oo)d that
possesses both regular and hidden regular variation, so that (1) and (6) hold. Then we have

1 n
k > E(/r) o/, j=1,.d) V0 (18)
i=1

in My (Eg), where vy is as given in (6).

Proof. The proof mimics the scheme followed when using ranks to estimate v or S. Observe,
for x € Eg, that

1 n
= T 1 ) i ) i
| ) ) ) = .
k; {Z;”/b (bo(n/k))zz((n(x(J)bo(n/k))—1])/b (bo(n/k)),j=1,..., d}

We claim (see below for the proof) that, foreach j =1, ...,d,
AL
(fn(x(”bo(n/k))_ID i) (x(j))l/a(j) (19)
bW (bo(n/k)) '

Using this to scale the convergence in (7), we obtain
n
128 : ([x. 00]) = To([x"/*, c0]) = wo([x, 00])
k& (/r)/bon/K),j=1,d) 0 » 20l = PO, B2,
1=

where we have used (8) in the last equality. This suffices to prove the result, given the claim.
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Lemma 1. Assume that Zy, ..., Z, is an i.i.d. sample from a distribution on [0, oo)d that
possesses both regular and hidden regular variation, so that (1) and (6) hold. Then (19) holds
in D[0, 00) foreach j =1,...,d.

Proof. We have, foreach j =1,...,d,
bo(n/k)

Zez(“/bwwbo(n/k)) = Vo
in M4 (0, oo], using Resnick (1986) or Resnick (1987, Exercise 3.5.7, p. 161). In particular,

bo(n/k)

N0

ZSZ(])/b(/)(bo(n/k))(( s OO]) =X

in D[0, co). This is a sequence of nondecreasing functions converging to a continuous limit
and, so, the inverse functions converge as well. This yields the statement of the lemma.

If we convert (18) to polar coordinates in order to estlmate So, we obtain the analogue of (17).
Asin (17) let ®; be the polar angular coordinate of (1/ r , 1 < j <d) andlet R; be the norm
of (1/ r , 1 < j <d). Then, assuming that Sy is ﬁnlte (0therw1se one has to restrict @; to a
compact subset of Ry), we have

2imt Lirizn—1bo(n/ 1)) €0

= S (20)

it Lirizn b9/ 1)
in M4 (Ep). Since bo(n/k) is unknown for statistical purposes, it must be estimated before we
can regard (20) as a suitable estimate of Sp.

4. Why estimation of the hidden measure matters

Hidden regular variation is designed to produce a model subclass of the multivariate regularly
varying distributions possessing asymptotic independence. This model subclass is better suited
to estimating the very small probabilities of the random vector falling in jointly remote regions
well beyond the range of the observed data; see de Haan and de Ronde (1998) and Ledford and
Tawn (1996), (1997). In this section, we review how hidden regular variation can help in the
estimation of small probabilities.

For example, consider the following problems.

4.1. Estimate the probability of noncompliance

Suppose that the vector Z = (Z(, ..., Z@) represents concentrations of a specific pol-
lutant at d locations. (Alternatively, Z could represent concentrations of different pollu-
tants at a single sne) Environmental agencies set standards by insisting that critical levels
th = (t0 ), .. t(gd ) not be exceeded at any of the d sites; that is, that Z < #;. Noncompliance
is represented by the event

d
{noncompliance} = {Z < £y}° = U{Z(j) > 157},
j=1

Noncompliance results in a fine or withdrawal of government support; it has various economic
and political implications, none of which is desirable. How do we estimate the probability of
noncompliance?
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We assume only that (1) and (6) hold and, for simplicity, that d = 2. We observe that the
probability of noncompliance is

d 2
P(U{Z(j) > té”}) =Y Pz > i)y —PzW > P 2% > ). @
j=1

j=1

Assuming that only asymptotic independence holds, we would be inclined (if unacquainted with
the work of Ledford and Tawn (1996), (1997)) to neglect the joint probability on the right-hand
side since it is negligible compared to the univariate probabilities. However, as the following
outline shows, the assumption of hidden regular variation allows for reasonable estimation of
the joint probability.

Assume that we have an i.i.d. random sample Zy, ..., Z,. For the univariate probabilities,
we have

7() )
<b<f>(n/k) b(ikn/k))
2l (i )
bDm/k)” b (n/k)
D —a® Pe)
T 0
=)+ (i)

(1) (2)
)
n\\ 6D (n/k) b (n/k)

A0 ()
b (n/k) = Z(]).

the kth largest of the jth components of the data, and &/’ is an estimate of (/) obtained from
the one-dimensional sample of jth components. For example, @/) could be the Hill estimator
or the maximum likelihood estimator.

For the multivariate tail probability on the right-hand side of (21), we estimate

|I
I Mm

2
> Pz > )
j=1

_a®

I?v :|» -

)
)

—aM —6@

where

PzV >V, z? > 1) (22)

7 (/)
— _ =1,2
<b<f>(bo<n/k>) Do) )
' L @)
~ K ((( 0 , 0 ), :|> (from (7))
n "\ \\ 6D o/ 0)” 5@ o/ k)) )™

k (D a® ) o)
= —0 S
=((Gogarn)  Gotary) )]) @om®

M @ &@
o) (=) )= e
n b o by(n/ k) b@ o by(n/k)

Vo = k 2; 8((1/r,-('/))/m<k>q15«/5‘1)’ -
i

&M

Here,
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where m ) is defined as follows: set

4
/\—) i=1,...,n, (25)
and suppose that
may = meoy > - > M) (26)
is the ordering of my, ..., m,, with the largest first. We will relate Dy to vy in Proposition 2,

below. For our estimate of () o bo(n/k), j = 1, 2, we use

—_ )]
bW o bo(l’l/k) Z([l/m(k)]) 7

This choice is justified in Section 4.3, below.

Although the rank method of estimating vy obviates the need to compute the «s, the «
estimates are needed for estimating probabilities of remote events.

The calculation leading to (23) will be used in Section 6.2 to assess the risk of flooding. The
data analysed there are precipitation in successive hours. For these bivariate data, simultaneous
exceedance of a threshold represents the greatest risk of flooding due to rainfall.

4.2. Estimate the probability of a failure region

In certain water resource problems a failure region of the form
={zeE: f(z,10) > 0}

is determined by a function f and is required to estimate P(Z € A) (Bruun and Tawn (1998),
de Haan and de Ronde (1998)). For example, the failure probability could be of the form

P(a(l)z(l) +a(2)z(2) > t())s

where Z( represents still water level, Z @ represents wave height, and a¥) > 0, j=172.
As before, assume that the estimation of the failure probability is based on an i.i.d. sample
Z,7,,...,7Z, and that there is hidden regular variation. Then,

P@Vz® +aPz? > 1) = P@@PVzW +aPz? > 1, Z € Ey)
+P@Pz® +4@z® > 1, Z € E\ Ey).
The second probability on the right-hand side is approximately

2 ) 2 —a)
EZP<aU) 4 ! N ) ~ EZ(— 10 )
n ot bDwm/k)y ~ bDn/k) n = alDbD(n/k)

Nsz:< o )_&m
n aizW '

The probability on Eq is approximately
k 2
—f)o{z eEo: Y _a"'b P (bo(n/k))z" > to}
n o

3 QA% (0]
" {Z € Bo: Za Pz (T/mepns™ = [0}’

EI?V‘
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where \:Jo(x, o] = ﬁo(x&, o0], using the estimator in (27). Recall that Dy is given in (24) (it
is also used in (29)) and that & = (&1, @) can be estimated using the Hill estimator or the
maximum likelihood estimator applied to the marginal one-dimensional samples.

4.3. Justification of the estimate of b'Y) o by (n k)
()

In Section 4.1, (27) suggests that we estimate b/) o bg(n/k) by Z(fl/m(kﬂ)' To see why this
is an appropriate estimator of the composition, note that, from (30) (below, with s = 1) and
(19), we have

7 . . _
(””(Xb()(n/k)) 1 , m(k) i) (xl/ol(-/)’ 1) (28)
b (bo(n/k)) ~ bo(n/k)
in D(0, 00) x [0, 00). Therefore, by scaling using the map (x(-), t) — x(¢-), we find from (28)
that

) )
(n(me /bon/boa/ )~ _ “(/mw]) v
b (bo(n/k)) b (bo(n/k))

Hence, we make the choice shown in (27).

5. Estimation of the hidden measure

For this section, recall that we write

d
Riny 1= {x e Ep: /\x(j) > 1}

j=1

for the set of vectors all of whose components are at least 1. We continue to use the notation
of (25) and (26). We have the following result.

Proposition 2. Assume that Z1, ..., Z, is an i.i.d. sample from a distribution on [0, oo)d that
possesses both regular and hidden regular variation, so that (1) and (6) hold, and continue to
assume that vo(Riny) = 1. Then we have

. 1 &
Vo= ; Sy mpa=j=ay = V0 (29)

in My (Ep).
Thus, we have removed the unknown bg(n/ k) and replaced it by a random variable.

Proof of Proposition 2. In D[0, co) we have, from Proposition 1 and continuous mapping,
that

k
1 Z —1
r}l’l([) = Z g(n/b()(l’l/k)) /\?:l ]/r[(J) (([ ) OO])
i=1

d
= vo({x: /\ x> t_1}> = 1Yy (Rijpy) = 1% =: 1o ().
j=1

Therefore, in D[0, 00), we also find that the inverse processes converge:

e (s) = ng(s) = s/,
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Unpack the left-hand side. We have

n, () =inf{u: n,u) > s}

n
= inf{u: Zen/bo(n/k)mi((u_lv oo]) = ks}

i=1

n -1
(SUP{UI Zen/bo(n/k)mi((vs oo]) > kS})

i=1

_ bo(n/k) - -
= " (sup{w. ZSM[((w, o)) > ks})

i=1

_ b/

L ks

Therefore, we see that

n ] —1/ap 30
bo(n/k)mqm) = (30)

in D(0, oo].
The rest is a scaling argument: we couple (30) with (18) and compose to obtain

1 « ‘ n
k ; E/r o/, j=1d \ | oy iy O

,,,,,

in D(Ep), as required.

This suggests a way to circumvent the problem of the unknown function by(n/k) in (20):
we replace n~1bg (n/k) by my. We can then write the analogue of (20). If vy is infinite, let
Ro(K) be a convenient compact subset of R8y. For d = 2, where X can be parametrized as
8 = [0, 1] and Ko = (0, 17), we can set 8o(K) = [8, 37 — 8] for some small § > 0. Then,
from Proposition 2, we have

n
Zi:l I{RiZm(k),(')fENo(K)} €0;
n
2 imt LiRizmy. 0, e80(K))

= So(- N R(K)).
If v is finite, we can replace 8o (K) with R, as was done in (20).
Thus, to summarize, we proceed as follows when estimating Sp.

1. Replace the heavy-tailed multivariate sample Z1, ..., Z, by the n vectors rq, ..., r, of
antiranks, where, recall,

n
D D R e R A
=1

2. Compute the normalizing factors m; = /\‘;=1 1/ rl.(J ), i = 1,...,n, and their order
statistics
may = - = M.

https://doi.org/10.1239/aap/1118858631 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1118858631

Hidden regular variation 407

3. Compute the polar coordinates {(R;, ®;),i = 1,...,n} of {(l/rl.(j),j =1,...,d),
i=1,...,n}

4. Estimate Sy using the ©; corresponding to R; > m ).

Thus, we have a simple method of estimating Sp. Alternatively, we can construct kernel
density estimates corresponding to Sp, using the points ®; identified in step 4 above. This is
the technique used in Section 6.

Ledford and Tawn (1997) gave an empirical estimator for their ray dependence function
g«(w). However, constructing estimates of the hidden spectral density using this estimator
and (10) involves an extra smoothing step, as this requires knowledge of g, (w) and g/ (w).
Empirical estimates of g.(w) will not provide information about its derivatives without some
assumptions concerning the smoothness of the function.

Our results offer some advice on how to pick thresholds to estimate both S and Sp, but of
course we must still choose k. The Stérica scaling device (Resnick (2003), Stiricd (1999))
seems to offer some guidance, although the authors believe that nothing is presently known
about its theoretical properties.

6. Two examples

This section illustrates the usefulness of our theoretical results in two contexts: Internet
traffic studies and flood risk analysis.

6.1. Internet Hypertext Transfer Protocol (HTTP) response data

In our first example, we analyse HTTP response data describing Internet transmissions
observed during a four-hour period from 1p.m. to Sp.m. on 26 April 2001 at the University of
North Carolina at Chapel Hill. The datasets were obtained from the Department of Computer
Science’s Distributed and Real-Time Systems Group under the direction of Don Smith and
Kevin Jeffay. Interest in this subject was stimulated by Steve Marron in his Mary Upson
lectures at Cornell University in autumn 2001.

Internet file transfers are subject to delays and although one expects larger file transfers to
encounter more delays, this is overly simplistic (Campos et al. (2005)). Large file transfers,
while comparatively rare, comprise a significant fraction of all the bytes transferred on the In-
ternet and, hence, are important in understanding the impact on end-user performance measures
of diverse networking technologies such as routeing, congestion control, and server design. For
HTTP (web browsing) responses, the joint behaviour of large values of three variables — size
of response, time duration of response, and throughput (or, synonymously, rate = size/time)
— can be considered. All three quantities are typically heavy tailed, but size and rate tend to be
asymptotically independent; see Maulik ef al. (2002) and Resnick (2003). Here, we consider
the existence of hidden regular variation for the pair of variables (size, throughput).

The dataset consists of responses (bytes), in the stated time period, whose size is in excess of
100 000 bytes, coupled with the time required for transmission (seconds). There were 21 829
such transmissions. As opposed to the next example, on flood risk, our interest here is not
specifically in estimating probabilities of rare events, such as joint threshold exceedance, but
rather in understanding the underlying structure of the transmission process. This is intended
to aid network engineers in their development of realistic models of Internet traffic processes,
with which they simulate network behaviour. To this end, we focus on the establishment of
asymptotic independence and hidden regular variation between transmission size and through-
put, and then on obtaining an estimate of the hidden spectral measure characterizing the joint
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FiGuURe 1: Hill plots on two scales for estimating the coefficient of tail dependence 5. The left-hand

plot is a Hill plot for g = 1/7, showing the Hill estimate of o9 versus the number of order statistics.

The right-hand plot is an altHill plot for e, showing the Hill estimate of cg based on [#?] upper order
statistics, 0 < 6 < 1.

tail of the distribution of these variables. This would suggest that a suitable model for (size,
throughput) could be obtained from a mixture model, as in Maulik and Resnick (2005).

Although estimation of the marginal distributions is not required in the examination of the
dependence structure, we first estimate the marginal tail parameters to establish the heavy-tailed
behaviour of the transmission rate and size variables. We use Hill plots and alternative Hill
(altHill) plots (not shown) to choose values of k = 150 and k = 250 for the size and rate
variables, respectively. Estimates of tail indices for size and rate are relatively stable around the
values of ¢V = 1.8 and «® = 2.1 in the ranges [50, 3000] and [50, 400] for these variables,
respectively.

The next stage is to establish whether these Internet data exhibit asymptotic independence.
We calculate the coefficient of tail dependence 1 of Ledford and Tawn (1996), (1997) using the
Hill estimator for the shape parameter of the distribution of componentwise minima taken after
rank transformation to standard Pareto margins. (See also Beirlant and Vandewalle (2002),
Drees et al. (2004), and Peng (1999).) The Hill and altHill plots used to inform our choice of k
for this estimation are shown in Figure 1. These plots show estimates of «g = 1/n constructed
using different numbers of order statistics. The plots show the estimated value of 7 to be stable
ataround 0.6 for k in the range [50, 400]. This value is consistent with asymptotic independence
and weak dependence between transmission size and rate at finite levels.

Another visual confirmation of asymptotic independence is to calculate the empirical mea-
sure (17) for different values of k. Figure 2 shows kernel density estimates corresponding to
these estimates for k = 300, 600, 900, 1200. These plots clearly show the concentration of
mass towards the endpoints of the interval [0, 1] as we use fewer and fewer order statistics.
This gives further compelling evidence of asymptotic independence.

Having established that our variables are both heavy tailed and asymptotically independent
variables, we can now employ steps 1-4 given at the end of Section 5 to estimate the hidden
measure. Implementation of these steps involves a choice of k, and we use the Staricd scaling
device (Resnick (2003), Staricd (1999)) to aid us in making this choice. This tool is motivated
by the homogeneity property (3) of the spectral measure Vggandara. Recall, from (16), that
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FIGURE 2: Density estimates of the spectral measure S for the Internet transmission size and rate data.
The plots show spectral density estimate versus angle for norm r greater than the 300th largest norm (fop
left), r greater than the 600th largest norm (top right), r greater than the 900th largest norm (bottom left),
and r greater than the 1200th largest norm (bottom right). (The norm is for the rank-transformed data.)

DUstandard,n 18 the empirical estimate of Vsandara and contains the parameter k that must be
selected. Since Vgandara 1S homogeneous, Stiricd argued that a good choice of & is that
for which the following approximation is true, where u is in a neighbourhood of 1 and
A={xeE: x| > 1}

f)standard,n wA) ~u~ ! ﬁstandard,n (A).
For the Internet data, the value of k for which the scaling ratio

ﬁstandard,n(UA)/u_l ‘A)standard,n(A) (31)

is most stable around the value 1, for u in the interval [0.5, 1.5], is k = 1112. The resulting
value of m 1112y corresponds to the 0.45 quantile of the radial components. Figure 3 shows this
scaling ratio, calculated using k = 1112 for u between 0 and 10.

Following this suggestion for the choice of k, we plot the estimated hidden measure for
k = 1000, 1150, 1200, 1250 in Figure 4. These plots show stability of the estimated measure
for these values of k. Again, since the measure may be infinite, the interval on which we
estimate the measure has been bounded away from 0 and 1, and we show the kernel density
estimate only on the interval [0.1, 0.9]. An edge correction has been applied so that the density
integrates to 1 on this interval. All plots show the hidden measure to be bimodal with peaks
around 0.2 and 0.85.
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FIGURE 3: Stidricd scaling plot for the Internet transmission size and rate data, showing the scaling ratio (31)
versus the scaling constant u, for k = 1112.
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FIGURE 4: Density estimates of the hidden spectral measure Sp for the rank-transformed Internet
transmission size and rate data. The plots show density versus angle forr > m000) (fop left), r > m(1150)
(top right), r > m1200) (bottom left), and r > m(1250) (bottom right).
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FIGURE 5: Scatter plot of one-hour rainfall measurements (in units of 0.1 mm) from Eskdalemuir, 1970—
1986, showing Z® versus Z(1). The lines show the exceedance thresholds l(g]) = 152) =70, which are

not jointly exceeded by any pair in the dataset.

The dependence between variables is summarized by the coefficient of tail dependence,
which was estimated to be approximately n = 0.6. The hidden spectral measure refines the
characterization of extreme dependence by revealing the finer structure of the joint tail within
the class of distributions having n &~ 0.6. Figure 4 shows the Internet response data to exhibit
weak dependence within this class, as the measure places more mass towards the ends of the
interval than in the centre.

This estimate of the hidden spectral measure, in combination with the estimated coefficient
of tail dependence, provides network engineers with a model of the joint tail of the response
distribution, from which they could construct importance samples. Simulation of data from
this region may prove to be another technique useful in studying such data.

6.2. Risk from flooding in Eskdalemuir

For our next example, we illustrate the estimation of risk from flooding using hourly rainfall
measurements (in units of 0.1 mm) from Eskdalemuir in the south-west of Scotland, during the
years 1970-1986 inclusive. This dataset was previously considered in Nadarajah et al. (1998).
The rainfall process exhibits both serial dependence and diurnal cycles. To avoid complications
arising from these features we focus on consecutive pairs of hourly observations taken from
11:00 to 12:00 and from 12:00 to 13:00 daily. The choice of these particular pairs of consecutive
hours is arbitrary but does not materially affect our analysis. This gives us a series of 6209 daily
observations of consecutive hours represented by the random pair Z = (Z(), Z®), which we
assume to be i.i.d. Around 80% of the observations are 0, corresponding to dry hours. The data
are plotted in Figure 5.

Interest in extreme rainfall is generally motivated by a desire to understand and protect
against rainfall that could result in flooding. Four factors contribute to the likelihood of flooding
following a rain event: rainfall intensity and duration (meteorological), and ground saturation
and rainfall-catchment response (hydrological). We focus on the meteorological factors. A
historical study of extreme rainfall events in the UK (Hand (2002)) clearly shows that the
rainfall events with the highest hourly precipitation rates in the UK are the shortest events,
typically lasting less than one hour and exclusively resulting from convective rain. This type
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FIGURE 6: Density estimate of the hidden spectral measure Sp, showing density versus angle for
R > m0).

of precipitation is typically intense, of short duration, and is often accompanied by thunder
and lightning. This finding suggests that rainfall amounts may be asymptotically independent
from one hour to the next, as the intensity of such precipitation events is rarely sustained for
long enough to make the rainfall counts extreme in both hours. Our aim in this example is to
estimate the probability of flooding, i.e. rainfall in excess of a threshold #( in consecutive hours,
for large values of #j.

Diagnostic plots (not shown) such as the Hill, altHill, and quantile—quantile (QQ) plots
(Beirlant ef al. (1996), Drees et al. (2000), Kratz and Resnick (1996), Resnick (2003), Resnick
and Staricd (1997)) suggest that k = 300 is appropriate for estimation of the marginal parameters
oM and @@ . These are estimated, using the Hill estimator, to be 1.66 and 1.57 for the periods
11:00-12:00 and 12:00-13:00, respectively. We checked for asymptotic independence by
estimating S, using the estimator in (17), for a variety of values of k. Plots of this empirical
measure (not shown) show the movement of the mass to the endpoints of its support as k
decreases. We confirmed this finding by estimating the coefficient of tail dependence of Ledford
and Tawn (1996), (1997) using the Hill estimator for the shape parameter of the distribution of
componentwise minima taken after rank transformation. The estimated value of this parameter
is stable at around 0.83 for & in the range [10, 500]. This value is consistent with asymptotic
independence, but with reasonably strong dependence at finite levels.

We choose the value of k to use for the dependence estimation (29) using the Stiricd scaling
plot (Resnick (2003), Staricd (1999)). This device suggests a value of k = 210 for this pair
of variables. Using the above values of (@1, &®) = (1.66, 1.57) and k = 210, we find the
estimates of the probability of joint exceedance of t(()l) = t(()Z) = 40, 50, 60, 70 tobe 6.0 x 107,
3.2x1073,2.2x 1075, and 1.6 x 1079, respectively. For such values of t(gl) and t(gZ), empirical
exceedance rates using the observed counts of joint exceedances are based on too few data to be
reliable. In particular, for t(g]) = t(gz) = 70 (indicated by the lines plotted in Figure 5), there are
no observed joint exceedances of this threshold. Our estimate of Dy uses a greater proportion
of the data and then scales by k/n, according to (23).

An additional benefit of our proposed estimation scheme is the ability to visualize the hidden
spectral measure So. We again follow steps 1-4, given at the end of Section 5, to construct
points that we treat as a sample from the hidden angular distribution. Figure 6 shows the
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kernel density estimate of the angular components constructed using the L-norm, and radial
components above m210). Since the hidden spectral measure may be infinite, we have bounded
the support of our estimate away from the ends of the interval [0, 1], and show the density
estimate only on the interval [0.1, 0.9]. An edge correction has been applied to ensure that the
density integrates to 1 on this interval. This density estimate is relatively stable for k in the
range [100, 300]. Note that m 10, corresponds to the 0.84 quantile of the distribution of radial
components.

In contrast to the estimated measure shown in Figure 4, Figure 6 shows the hidden spectral
measure for the rainfall data to be roughly unimodal and approximately symmetric. This
indicates a relatively strong degree of dependence between the variables, within the class of
distributions having n ~ 0.8. This, taken with the greater value of the coefficient of tail depen-
dence than that estimated in the Internet response example, shows the rainfall data to exhibit
materially stronger dependence, although both datasets exhibit asymptotic independence.
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