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The 2-adic eigencurve at the boundary of weight space

Kevin Buzzard and L. J. P. Kilford

Abstract

We prove that, near the boundary of weight space, the 2-adic eigencurve of tame level 1
can be written as an infinite disjoint union of ‘evenly spaced’ annuli, and on each annulus
the slopes of the corresponding overconvergent eigenforms tend to zero.

1. Introduction

Coleman and Mazur constructed in [CM98] fundamental objects called eigencurves, parametrising
finite slope overconvergent normalised p-adic eigenforms. In [CM98] many open questions are raised,
one of which is whether the slopes on every component of the eigencurve tend to zero as one
approaches the boundary of weight space. The object of this paper is to prove this assertion for E , the
2-adic eigencurve of tame level 1 (this notation will not be ambiguous because we shall not consider
any other eigencurves in any detail in this paper). In fact we prove much more, explicitly computing
the rigid space underlying E near the boundary of weight space. Note that strictly speaking this
eigencurve was not constructed in [CM98], because of the running assumption p > 2, but see [Buz05]
for a construction of the eigencurve in this case (using Hecke algebras; the construction using
deformation theory has not been written down for p = 2, as far as we are aware).

The first author has in recent years been making an explicit analysis of various aspects of E , on
the basis that it should serve as a guide as to what to expect for eigencurves in general. The explicit
questions about slopes in [Buz04] (which were not specific to the p = 2 case) were initially motivated
by many computations of classical modular forms of level 1, and the action of the operator T2

on these forms; these computations gave explicit information about E . Answers to the questions
in [Buz04] would give information about E and other eigencurves near the centre of weight space,
where the combinatorics of the slopes involved seems very complicated (although very little is known
about the geometry of the abstract rigid space underlying an eigencurve, which might turn out to
be very simple). Herrick (Northwestern University) in a forthcoming PhD thesis seems to have made
more conceptual and slightly more general conjectures about slopes in the central region, but the
only theorem of which the authors are aware that computes all slopes at a point of weight space
in this central region is the main result of the accompanying article [BC05], where the slopes in
weight 0 are explicitly computed for E .

It was the second author in his thesis [Kil02] who proved the first results indicating that nearer
the boundary of weight space the story seemed much simpler. More precisely, he proved [Kil02,
Theorem 3.2], that the sequence of slopes of the 2-adic overconvergent eigenforms of level 4 and
odd integer weight k ∈ Z was just the arithmetic progression 0, 2, 4, . . . , independent of k. He also
obtained results about eigenforms of level 8, and later on dealt with some higher levels. These results
led to the general belief that E may even be isomorphic to a disjoint union of copies of weight space,
near the boundary of weight space. It is this result which we prove here.
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We now set up some notation and state our main theorem precisely, and note a corollary. Let K
denote any complete extension of Q2 (that is, K is a field complete with respect to a nonarchimedean
valuation, containing a copy of Q2 and such that the norm on K induces the standard 2-adic norm
on Q2). Let W denote the open disc over K with centre 0 and radius 1. We make a slightly
nonstandard definition: we define a weight to be a continuous group homomorphism κ : Z×

2 → K×

such that κ(−1) = 1. The condition κ(−1) = 1 is there because throughout this paper we are
working in tame level 1, and hence there are no nonzero overconvergent modular forms of weight κ
if κ(−1) = −1. If we identify a K-point w ∈ W with the unique weight κ : Z×

2 → K× such that
κ(5) = w + 1 then this gives a bijection between the K-points of W and the set of all weights.
Note that the space we are calling W is the one denoted W+ in [CM98], because of our condition
on κ(−1).

Note that if k = 2� is an even integer then the function Z×
2 → K× defined by x �→ xk is a

weight, and this weight is denoted k throughout this paper. More generally, if χ : (Z/NZ)× → K×

is a Dirichlet character of 2-power conductor N , and k is an integer satisfying (−1)k = χ(−1), then
classical modular forms of level N , weight k and character χ are, in this optic, modular forms of
weight κ where κ(x) = xkχ(x).

Let E denote the 2-adic eigencurve of tame level 1 as before. Then E is equipped with two
canonical maps, a ‘weight’ map π : E → W and a map U2 : E → Gm, sending a point e ∈ E to the
U2-eigenvalue of the corresponding finite slope eigenform. Let s : E(K) → R (s for slope) denote
the composite of U2 with the valuation map v : K× → R (normalised so that v(2) = 1).

Let W1 denote the open annulus {1/8 < |w| < 1} of W and let E1 denote π−1(W1).

Theorem A. The rigid space E1 can be written as a countably infinite disjoint union E1 =
⋃∞

i=0 Xi,
and the Xi have the following properties:

(i) π : Xi → W1 is an isomorphism for all i, and

(ii) if one identifies Xi with W1 via (i) above, then the induced map s : W1(K) ∼= Xi(K) → R is
the map sending w to iv(w).

We remark that the naive generalisation of Theorem A to the annulus {1/8 � |w| < 1} is false;
for example v(510 − 1) = 3 but there is a classical cuspidal eigenform q + 16q2 − 156q3 + 256q4 + · · ·
of level 2, weight 10 and slope 4, and hence the slopes are not all integer multiples of 3.

An elementary consequence of Theorem A is the following result.

Theorem B. If κ is a weight such that |κ(5) − 1| > 1/8, then the slopes of the overconvergent
modular forms of weight κ are {0, t, 2t, 3t, . . . }, where t = v(κ(5) − 1), and each slope occurs with
multiplicity 1.

Note that Theorem A trivially implies Theorem B. In fact the majority of this paper is a proof
of Theorem B, and in the last section we show how to deduce Theorem A from Theorem B.

Theorem B has consequences in the classical theory of modular forms. Let k � 2 be an integer
(even or odd) and let χ be a Dirichlet character of conductor N , where N � 4 is a power of 2.
Assume furthermore that (−1)k = χ(−1). Let Mk(N,χ) denote the space of classical modular forms
of weight k, level N and character χ, let Sk(N,χ) denote the subspace of cusp forms, and let U2

denote the classical Hecke operator on these spaces. One easily checks using Theorem 1 of [CO77]
that dimMk(N,χ) = 2 + dim Sk(N,χ) = 1

8(k − 1)N + 1. Furthermore, the classical construction
of Eisenstein series (see for example [Miy89, Theorems 7.1.3 and 7.2.12], and a consideration of
how the Diamond operators act on the Eisenstein series constructed there) shows that the space
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of Eisenstein series in Mk(N,χ) is two-dimensional and has a basis consisting of the eigenforms

L(1 − k, χ)
2

+
∑
n�1

(∑
d|n

χ(d)dk−1

)
qn

and ∑
n�1

(∑
d|n

dk−1χ(n/d)
)

qn.

By the slope of an eigenform we mean the 2-adic valuation of its U2-eigenvalue. The two Eisenstein
series above have slopes 0 and k − 1 respectively.

Corollary of Theorem B. (i) Fix an isomorphism C ∼= C2. Then the 2-adic valuations of
the eigenvalues of U2 on Mk(N,χ) are given by the set {0, t, 2t, 3t, . . . , (k − 1)} where t = 8/N .
Each valuation occurs with multiplicity one.

(ii) There are 1
8(k − 1)N +1 normalised eigenvectors in Mk(N,χ) and, when regarded as modular

forms with 2-adic coefficients, each of these eigenvectors has q-expansion in Q2(χ)[[q]].

Remark. The case N = 4 of this result is Theorem 1.1 of [Kil02].

Proof of Corollary. (i) Set K = C2. Because χ is primitive, we know that χ(5) is a primitive (N/4)th
root of unity. It follows that the corresponding point w = 5kχ(5) − 1 of weight space satisfies
|w| = 2−8/N and hence 1 > |w| � 1/4 > 1/8, so we may apply Theorem B to deduce that the slopes
of the overconvergent forms of weight k and character χ are {0, t, 2t, 3t, . . . }, each with multiplicity
one. The values 0 and k − 1 correspond to the two Eisenstein series above, the slopes which are
greater than k − 1 cannot be classical (see for example the proof of Theorem 4.6.17(1) of [Miy89],
especially equation (4.6.30)), and there are only (k−1)/t−1 slopes left, namely {t, 2t, . . . , k−1−t};
each of these must hence be the slope of a classical cuspidal eigenform (note that this argument
gives an alternative proof of the main theorem of [Col97] for p = 2 and κ as above).

(ii) There is a basis of Mk(Γ1(N)) consisting of modular forms whose q-expansions have rational
coefficients. By elementary group theory one deduces that Mk(N,χ) has a basis consisting of forms
whose q-expansions have coefficients in Q(χ). Hence the characteristic polynomial of U2 on Mk(N,χ)
has coefficients in Q(χ). Regarded as a polynomial in Q2(χ) one sees from part (i) that the valuations
of the roots are all distinct. Hence all the roots must have degree 1 over Q2(χ), because conjugates
all have the same valuation. So the characteristic polynomial of U2 factors into distinct linear factors
and the corresponding one-dimensional subspaces of Mk(N,χ) must hence be Hecke equivariant and
spanned by eigenforms.

We also note that our result implies that for χ a Dirichlet character of 2-power conductor N � 4,
there are no cusp forms of level N , weight 1 and character χ, because any such form would have
slope at most 1 − 1 = 0, so the eigenvalue of U2 would be a 2-adic unit and our result implies that
the only unit eigenvalues come from the Eisenstein family. On the other hand, this argument could
already be extracted from Emerton’s thesis [Eme98].

We finish this introduction with a brief sketch of the strategy of the proof of Theorem B.
As Smithline [Smi00] observed, it is possible to ‘explicitly’ write down the matrix coefficients
(mi,j)i,j�0 of the U operator on certain (low tame level) spaces of overconvergent modular forms of
weight κ, with respect to a cleverly chosen basis; the trick is that the power series

∑
i,j mi,jX

iY j

is the product of a relatively simple rational function of X and Y and a power series in X only
(see Lemma 11 for an explicit form of this result in our case). This latter power series depends
on κ and in our situation its coefficients are essentially those of the expansion of the overconver-
gent modular function Eκ/V (Eκ) (with Eκ an appropriate Eisenstein series) as a power series with
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respect to a certain parameter y on X0(4). The reason for the appearance of the function Eκ/V (Eκ)
is that it appears in ‘Coleman’s trick’ for moving from forms of weight 0 to forms of weight κ.
Sections 2–6 of this paper produce bounds for these power series coefficients (see in particular
Lemma 10, part (i)), for κ near the boundary of weight space. We remark that, almost paradoxically,
these bounds are proved by a careful analysis of Eκ/V (Eκ) for κ near the centre of weight space
(see Theorem 7 and its proof, which perhaps forms the technical heart of the paper). Once one
has these bounds one deduces certain upper and lower bounds for the valuations of the mi,j.
The miracle is that, for κ near the boundary of weight space, these bounds are enough to tell
us precise valuations for the coefficients of the characteristic power series of U (Proposition 15).
This happens because our bounds are enough to ensure that in the infinite sums giving rise to each
coefficient, one term has valuation strictly smaller than all of the others.

2. The coefficients of the power series defining certain modular functions
We start with some notation. All our rings are commutative and have a 1. If R is a ring, then we
define two R-module homomorphisms U and V : R[[q]] → R[[q]] thus:

U

( ∑
n�0

rnqn

)
=

∑
n�0

r2nqn,

and

V

(∑
n�0

rnqn

)
=

∑
n�0

rnq2n.

It is an easy exercise to check that V is a ring homomorphism and furthermore that U(gV (h)) =
hU(g) for g, h ∈ R[[q]]. The most common application of the latter results in this paper is the fact
that if h ∈ R[[q]]× then V (h) is too, and U(g/V (h)) = U(g)/h.

We now assign notation to some standard modular forms and functions that will play a key role
in what follows.

If k � 2 is an even integer, then the function

Ek := 1 +
2

(1 − 2k−1)ζ(1 − k)

∑
n�1

( ∑
0<d|n,d odd

dk−1

)
qn

(where ζ(s) is the Riemann zeta function) is a modular form of level 2 and weight k. Note that
U(Ek) = Ek and that if k � 4 then Ek is just the 2-stabilised ordinary oldform associated to the
standard Eisenstein series of weight k and level 1. (Note however that we have dropped an Euler
factor: Ek is not the standard level-1 Eisenstein series.)

The function

∆(q) = q
∏
n�1

(1 − qn)24 = q − 24q2 + 252q3 − 1472q4 + · · ·

is a modular form of level 1 and weight 12; set

f = ∆(q2)/∆(q) = q + 24q2 + 300q3 + 2624q4 + 18126q5 + · · · ,

a modular function of level 2 giving an isomorphism X0(2) → P1 (this can be verified by observing
that f : X0(2) → P1 has a simple zero at the cusp ∞ and no other zeros). We will make heavy
use of f as a parameter in §§ 2–5 to measure how far various modular functions, and families of
modular functions, overconverge.

Define

y =
(E2/V (E2)) − 1

24
= q − 20q3 + 462q5 − 10696q7 + · · · ,
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a modular function of level 4 giving an isomorphism X0(4) → P1 (this can be seen for example by
noting (Lemma 2, part (iii)) that f = (y + 8y2)/(1 − 8y)2 and hence y : X0(4) → P1 must have
degree 1). We will make heavy use of y as a parameter in §§ 6–8 when discussing explicit formulae
for entries of matrices representing the U operator on spaces of modular forms.

Finally, define

G4 = 1 + 240
∑
n�1

σ3(n)qn,

the Eisenstein series of level 1 and weight 4.
A general convention in this paper is that if F = aq + · · · ∈ R[[q]] then R[[F ]] will be considered

as a subring of R[[q]] in the obvious way. Of course if a is a unit in R then R[[F ]] = R[[q]]; for
example, because y = q + · · · ∈ Z[[q]] we see that R[[q]] = R[[y]] for any ring R. Another fact that
we use over and over again is the following power series identity.

Lemma 1. The formal binomial expansion of (1 + 2s)� is in 1 + 2�sZ2[[�, s]].

Proof. This follows easily from the binomial theorem and the fact that v(n!) � n − 1 for n ∈ Z�1,
where v denotes the 2-adic valuation.

When we say that a result follows ‘from the binomial theorem’, we typically mean that it is a
consequence of this lemma.

We now collect a few facts about the modular forms above.

Lemma 2.

(i) U(y) = 0 and U(y2) = (y + 8y2)/(1 + 24y)2.
(ii) For m ∈ Z�0 we have U(y2m+1) = 0 and U(y2m) = ((y + 8y2)/(1 + 24y)2)m.

(iii) f = (y + 8y2)/(1 − 8y)2, U(f) = 24f + 2048f2, V (f) = y2/(1 − 64y2).
(iv) G4/E

2
2 = (1 + 256f)/(1 + 64f) and V (G4)/E2

2 = (1 + 16f)/(1 + 64f).

Proof. (i) We have 24y = (E2/V (E2)) − 1, and hence 24U(y) = (E2/E2) − 1 = 0. The fact that
U(y2) = (y + 8y2)/(1 + 24y)2 could be proved theoretically by an analysis of the zeros and poles
of U(y2), but nowadays a much simpler proof is just to observe that U(y2) and (y +8y2)/(1+24y)2

are both meromorphic functions on X0(4) with at worst four poles (counting multiplicities) and
hence they will be equal if their q-expansions agree for the first few terms; on the other hand,
checking that the first 100 terms of the q-expansions agree takes well under a second on a computer.

(ii) The fact that U(y) = 0 implies that y = qF (q2) for some F ∈ Z[[q]]. In particular, y is an odd
function of q and hence so is y2m+1, so U(y2m+1) = 0. On the other hand, U(y2) = U(q2F (q2)2) =
qF (q)2, and so U(y2m) = U(q2mF (q2)2m) = qmF (q)2m = U(y2)m and the result follows.

(iii), (iv) As in (i) these follow either by a brute force calculation of q-expansions, easily checked
by a machine computation, or by a careful analysis of zeros and poles analogous to Lemma 2.2
of [Eme98].

We deduce some explicit results about how U and V affect overconvergence of modular functions
(cf. [Eme98, Lemma 3.1]).

Corollary 3. Let R be a commutative ring, and let R[[2y]] and so on denote the obvious subrings
of R[[q]]. Let r be 1, 2, 4, or 8. Then

(i) R[[rf ]] = R[[ry]] and rfR[[rf ]] = ryR[[ry]],
(ii) V (R[[r2f ]]) = R[[r2y2]] ⊆ R[[rf ]] and V (r2fR[[r2f ]]) ⊆ rfR[[rf ]],
(iii) U(R[[rf ]]) ⊆ R[[r2f ]] and U(rfR[[rf ]]) ⊆ r2fR[[r2f ]].
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Remark. It is well known (see Proposition 1 of the appendix of [BC05] and the remarks that follow)
that f can be used as a ‘measure of supersingularity’ in a neighbourhood of the ordinary locus
of X0(1), and part (i) of this corollary shows that y can too. Part (ii) (respectively (iii)) translates
into well-known properties of V (respectively U), namely that it decreases (respectively increases)
overconvergence by a factor of 2 near the ordinary locus.

Proof of Corollary 3. (i) This follows easily from Lemma 2, part (iii), which shows that 8f =
8y + · · · ∈ 8yZ2[[8y]] and hence that rf = ry + · · · ∈ ryZ2[[ry]].

(ii) We have that V is an R-algebra homomorphism, continuous with respect to the q-adic
topology, so by Lemma 2, part (iii) we have V (R[[r2f ]]) = R[[V (r2f)]] = R[[r2y2]]. Now R[[r2y2]] ⊂
R[[ry]] = R[[rf ]] and the last part comes from observing that, if a power series G has no constant
term, then neither does V (G).

(iii) Note that R[[rf ]] = R[[ry]] = R[[r2y2]] ⊕ ryR[[r2y2]]. If g ∈ R[[rf ]] then write g = ge + go

with ge ∈ R[[r2y2]] and go ∈ ryR[[r2y2]]. By Lemma 2, part (ii) we see that U(go) = 0. By part
(ii) above we can write ge = V (h) with h ∈ R[[r2f ]]. Hence U(g) = U(ge) = U(V (h)) = h and
everything now follows easily.

3. Lemmas on powers of E2

Here we prove a few results about the formal power series (E2)� ∈ Z2[[�, q]]. Before we introduce
this power series, let us say a little more about weight space.

We have already introduced weight space W, the open unit disc; let w be the usual parameter on
this disc. We regard elements of Z2[[w]] as functions on W. We are also interested in some slightly
bigger rings, corresponding to smaller discs in W: by the binomial theorem we have 5k = (1+4)k =
1+4k+8k(k−1)+ · · · ∈ Z2[[k]] and furthermore that 5k−1 = 2(2k+4k(k−1)+ · · · ) is in 4kZ2[[2k]],
and in particular in the maximal ideal of Z2[[k]]. This gives us a natural inclusion Z2[[w]] → Z2[[k]],
sending w to 5k −1, and we shall henceforth regard Z2[[w]] as a subring of Z2[[k]] in this way. In fact
one checks easily that the map Z2[[w]] → Z2[[k]] factors as

Z2[[w]] ⊂ Z2[[w/2]] → Z2[[2k]] ⊂ Z2[[k]],

where the outer inclusions are the natural ones and the inner map is an isomorphism, corresponding
geometrically to the isomorphism of discs {k ∈ K : |k| < 2} → {w ∈ K : |w| < 1/2} sending k
to w = 5k − 1. The inverse of this isomorphism is the map Z2[[2k]] → Z2[[w/2]] sending 2k to
2 log(1 + w)/log(5).

We will be working with powers of E2 so will be mostly concerned in the next couple of sections
with even weight only. We introduce a new variable � defined by 2� = k, and we regard Z2[[k]] =
Z2[[2�]] as a subring of Z2[[�]]. Note that the induced ring homomorphism Z2[[w]] → Z2[[�]] factors
as

Z2[[w]] ⊂ Z2[[w/8]] → Z2[[�]],
where here the inclusion is the natural one and the map on the right is the isomorphism sending
w/8 to (52� − 1)/8 ∈ �Z2[[�]].

Our general convention will be to use italics to denote modular forms of fixed weight, and
bold face to denote families of modular forms. We introduce our first family here: recall that
E2 = 1 + 24q + · · · ∈ 1 + 24qZ[[q]] is the Eisenstein series of weight 2 and level 2 defined above.
Define

T = (E2)�,
that is, T is the element (E2)� of 1+8�qZ2[[�, q]] ⊆ Z2[[�, q]]×. One constructs T explicitly using the
binomial theorem. If one evaluates T at � = �0 ∈ Z�1 one gets the classical modular form (E2)�0 of
weight 2�0.
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Lemma 4.

(i) E2/V (E2) ∈ 1 + 8fZ2[[8f ]].

(ii) T/V (T) ∈ 1 + 8�fZ2[[�, 4f ]].

(iii) U(T)/T ∈ 1 + 32�fZ2[[�, 16f ]].

(iv) Let σ denote the Z2[[�]]-algebra automorphism of Z2[[�, q]] sending q to −q. Then we have
σ(T)/T ∈ 1 + 16�fZ2[[�, 8f ]].

(v) V U(T)/T ∈ 1 + 8�fZ2[[�, 8f ]].

(vi) U(T)/V U(T) ∈ 1 + 8�fZ2[[�, 8f ]].

Proof. (i) We have E2/V (E2) = 1 + 24y, and 24y ∈ 8fZ2[[8f ]] by Corollary 3, part (i).

(ii) This follows immediately from the binomial theorem and part (i).

(iii) This follows by applying U to part (ii), and then using Corollary 3, part (iii).

(iv) Note first that σ fixes Im(V ), and hence σ(T)/T = [σ(T/V (T))]/[T/V (T)]. Next recall that
T/V (T) = (1 + 24y)�. Furthermore, by Lemma 2, part (i) we have U(y) = 0 and hence
σ(y) = −y, and so σ(T/V (T)) = (1 − 24y)�. It suffices, therefore, to prove that

((1 − 24y)/(1 + 24y))� ∈ 1 + 16�fZ2[[�, 8f ]] = 1 + 16�yZ2[[�, 8y]],

and this follows from the binomial theorem as the left-hand side is (1 − 2(24y/(1 + 24y)))�.

(v) A formal q-expansion calculation shows that 2V U(T) = T + σ(T), so

2V U(T)/T ∈ 2 + 16�fZ2[[�, 8f ]]

by part (iv) and the result follows.

(vi) This follows from parts (iii) and (v).

4. Eisenstein series of fixed weight

In this section we analyse the growth of the Eisenstein series E4t, for t ∈ Z�1. This analysis will be
used in the next section to deduce corresponding bounds on the growth of the full Eisenstein family.

Lemma 5.

(i) There exists a positive integer constant c = c(t) such that cE4t/(E2)2t ∈ c + 16fZ2[[16f ]].

(ii) For any such c, we also have cE4t/U((E2)2t) ∈ c + 16fZ2[[16f ]].

Proof. (i) Firstly recall that there exists an invertible sheaf ω4 of degree 1 on the modular curve
X0(2), such that the sections of (ω4)⊗t are modular forms of weight 4t. Recall that G4 = 1 +
240

∑
n σ3(n)qn ∈ Z[[q]] is an Eisenstein series of level 1 and weight 4; because the space of modular

forms of level 2 and weight 4 is two-dimensional, a basis for this space must be G4 and V (G4).
Because X0(2) has genus 0 we deduce that every modular form of level 2 and weight 4t must
be expressible as a homogeneous polynomial in G4 and V (G4) of degree t. In particular Ek0 can
be written as a polynomial in G4 and V (G4) of degree t. All of these forms are defined over
Q, and the argument above makes sense over Q, and hence the polynomial has coefficients in Q.
Choose a positive integer c such that cEk0 is a polynomial in G4 and V (G4) with integral coefficients.
By Lemma 2, part (iv), both G4/(E2)2 and V (G4)/(E2)2 are in Z2[[16f ]], and hence cEk0/(E2)2t ∈
Z2[[16f ]]. Now comparing constant terms gives the result.

(ii) By specialising Lemma 4, part (iii) to � = 2t, we see that U((E2)2t)/(E2)2t ∈ 1+16fZ2[[16f ]]
and the result follows from this and part (i).
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We can do better than this however; we can eliminate the constant c. Keeping the above notation,
set h = U((E2)2t)/V U((E2)2t) and define an endomorphism Ũ of Z2[[q]] by Ũ(g) = U(gh).

Lemma 6. If t ∈ Z�1 then E4t/U((E2)2t) ∈ 1 + 128fZ2[[64f ]], and furthermore E4t/U((E2)2t) is
the unique element of 1 + 8fZ2[[8f ]] fixed by the operator Ũ .

Proof. We consider Ũ as an endomorphism of Z2[[q]] = Z2[[f ]]. Set N+ = 8fZ2[[8f ]] and note
that (N+)2 ⊆ N+ and that h ∈ 1 + 2N+ by Lemma 4, part (vi) specialised to � = 2t. In par-
ticular multiplication by h induces an isomorphism N+ → N+. We see from Corollary 3, part
(iii) that Ũ(N+) = U(N+) ⊆ 64fZ2[[64f ]] ⊂ 8N+. Furthermore, Ũ(1) = U(h) ∈ 1 + 2U(N+) ⊆
1 + 128fZ2[[64f ]] ⊆ 1 + 16N+. Now if one defines g1 = 1 and gn+1 = Ũ(gn) for n � 1, then
g2 − g1 ∈ 16N+ ⊂ 8N+, and applying Ũn−1 we deduce that gn+1 − gn ∈ 8nN+. We deduce that
g = limn gn exists in 1 + 16N+ and satisfies Ũ(g) = g. Now g′ := cE4t/U((E2)2t) ∈ c + N+

(notation as in the previous lemma) is easily checked to satisfy Ũ(g′) = g′, and hence if one sets
g′′ := g′−cg ∈ N+ then g′′ = Ũ(g′′), and by repeatedly applying Ũ we deduce g′′ ∈ 8nN+ for all n � 1
and hence g′′ = 0. So E4t/U((E2)2t) = g′/c = g ∈ 1+16N+. One final application of Ũ gets us a little
more: we see E4t/U((E2)2t) = g = Ũ(g) = U(gh) ∈ U(1+2N+) = 1+2U(N+) ⊆ 1+128fZ2[[64f ]].

Finally, if e is any element of 1 + N+ such that Ũ(e) = e then g − e ∈ 8nN+ for all n � 1 and
hence e = g = E4t/U((E2)2t).

5. Families of Eisenstein series
In this section we use Lemma 6 to deduce an analogous result about the 2-adic family of Eisenstein
series. We firstly recall the definition of the Eisenstein family.

By Theorem 7.10 and the remarks following Theorem 5.11 in [Was97], there is a unique mero-
morphic function ζ2 on W with the property that, if k � 2 is an even integer, then ζ2(5(1−k) − 1) =
(1−2k−1)ζ(1−k). By Lemma 7.12 and the remarks following Proposition 7.9 in [Was97], we deduce
that 2/ζ2 ∈ Z2[[w]] (our w is Washington’s T ). We define a meromorphic function ζ∗ on W by
ζ∗(w) = ζ2(5/(1 + w) − 1), and observe that ζ∗(5k − 1) = (1 − 2k−1)ζ(1 − k) for k � 2 an even
integer, and 2/ζ∗ ∈ wZ2[[w]].

If κ : Z×
2 → K× is a weight, then the formal power series

Eκ := 1 +
2

ζ∗(κ)

∑
n�1

( ∑
0<d|n,d odd

κ(d)/d
)

qn

is an overconvergent 2-adic Eisenstein series of weight κ (essentially by definition: see [CM98, § 2.4]).
If we fix d ∈ Z×

2 then the function on W defined by κ �→ κ(d) is of the form w �→ (1 + w)u for some
u ∈ Z2, and hence is an element of Z2[[w]], and one deduces from this that there is a power series
E ∈ 1 + wqZ2[[w, q]] such that for any κ ∈ W the specialisation of E to κ is Eκ.

The fact that E ∈ 1 + wqZ2[[w, q]] implies that E ∈ Z2[[w, q]]×, and hence V (E) ∈ Z2[[w, q]]×.
Furthermore, because y = q + · · · ∈ Z[[q]] we can regard E/V (E) as an element of Z2[[w, y]]. Write

E/V (E) =
∑
i,j

ai,jw
iyj

with ai,j ∈ Z2. The result that the previous three sections have been building up to is the following
theorem.

Theorem 7. If j � i � 0 then 8j−i|ai,j .

The proof is given at the end of this section.
Remark. Results of a similar nature to the proposition were obtained by Emerton in [Eme98], and
anyone who is familiar with this work will clearly see the debt which we owe it. Perhaps the idea
that enables us to get a little further than Emerton’s thesis is that we use E/U(T) rather than E/T
for our intermediary calculations; the point is that E/U(T) overconverges further than E/T.

612

https://doi.org/10.1112/S0010437X05001314 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001314


The 2-adic eigencurve at the boundary of weight space

We remark also that Theorem 7 gives information on how far the function Eκ/V (Eκ) overcon-
verges for a given value of κ. This information will be crucial to us later.

The key intermediate step that we need to prove the theorem is the following proposition (cf.
[Eme98, Proposition 3.12]). Regard E as an element of Z2[[�, q]] = Z2[[�, f ]], the ring where T lives.

Proposition 8. We have that E/U(T) ∈ 1 + 64�fZ2[[�, 64f ]].

Proof. Let N+ denote the subset 8�fZ2[[�, 8f ]] of Z2[[�, f ]], and note that (N+)2 ⊂ N+. Set H =
U(T)/V U(T). Then H ∈ 1 + N+ by Lemma 4, part (vi), and hence multiplication by H induces
an isomorphism N+ → N+. Define an endomorphism U of Z2[[�, f ]] by U(G) := U(GH). Then

U(N+) = U(N+) = �U(8fZ2[[�, 8f ]]) ⊆ 64�fZ2[[�, 64f ]]

by Corollary 3, part (iii). In particular U(N+) = U(N+) ⊂ 8N+. Also U(1) ∈ U(1+N+) ⊆ 1+8N+.
This is enough to prove, via a Hensel-like argument as in Lemma 6, that there is an element
G ∈ 1 + 8N+ such that U(G) = G. Indeed, if we set G1 = 1 and Gn+1 = U(Gn) for n � 1 then
G2 − G1 ∈ 8N+ and hence Gn+1 − Gn ∈ 8nN+. So G = limn Gn exists in 1 + 8N+ and satisfies
U(G) = G. Moreover we have G = U(G) = U(GH) ∈ U(1+N+) = 1+U(N+) ⊆ 1+64�fZ2[[�, 64f ]].
Hence it suffices to prove that E/U(T) = G, which we do by checking that their specialisations to
weight k agree for infinitely many classical weights.

So now let k0 = 2�0 = 4t ∈ Z�1 be a multiple of 4. Specialising to � = �0 gives an element
G(�0) ∈ 1 + 8fZ2[[8f ]] fixed by the endomorphism Ũ of Lemma 6. Hence by Lemma 6 we have
G(�0) = E2�0/U((E2)�0), the specialisation of E/U(T) to weight k0, and because there are infinitely
many choices for t � 1 we deduce G = E/U(T). In particular, we deduce that E/U(T) ∈ 1 +
64�fZ2[[�, 64f ]].

Corollary 9.

(i) E/V U(T) ∈ 1 + 8�fZ2[[�, 8f ]].

(ii) V (E)/V U(T) ∈ 1 + 8�fZ2[[�, 8f ]].

(iii) E/V (E) ∈ 1 + 8�fZ2[[�, 8f ]].

Proof. (i) This follows from Proposition 8 and Lemma 4, part (vi).

(ii) This follows from Proposition 8 and Corollary 3, part (ii).

(iii) This follows from parts (i) and (ii).

Proof of Theorem 7. We know by Corollary 9 and Corollary 3, part (i) that

E/V (E) ∈ Z2[[�, 8f ]] = Z2[[w/8, 8f ]] = Z2[[w/8, 8y]].

We also know that E/V (E) ∈ Z2[[w, q]] = Z2[[w, y]]. Hence if we write E/V (E) =
∑

ai,jw
iyj =∑

bi,j(w/8)i(8y)j then ai,j , bi,j ∈ Z2. But bi,j = 8i−jai,j and the result follows.

6. The Eisenstein family near the boundary of weight space

Having established the bounds on the coefficients of the Eisenstein family we require, we no longer
need the family T or the uniformiser f , and now we concentrate more on the family E and the
uniformiser y. We also return to our complete extension K of Q2. Let O denote the integers of K
and let F denote the residue field. As before, write E/V (E) =

∑
i,j ai,jw

iyj . Now specialise to some
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weight w0 ∈ O satisfying 1/8 < |w0| < 1, and let κ denote the corresponding character. We deduce
that Eκ/V (Eκ) ∈ O[[w0y]]. Write Eκ/V (Eκ) = gκ(w0y) with gκ ∈ O[[X]]. Let gκ ∈ F[[X]] denote
the reduction of gκ modulo the maximal ideal of O.

Lemma 10.

(i) We have gκ =
∑

i�0 X2i−1. In particular, gκ is independent of κ (for κ corresponding to w0 ∈ W
with 1/8 < |w0| < 1).

(ii) If n ∈ Z�0 then an,n ∈ Z×
2 if and only if n + 1 is a power of 2.

Proof. Fix κ and say gκ =
∑

cnXn, with cn = cn(κ) ∈ O. Specialising E/V (E) =
∑

i,j ai,jw
iyj to

weight w0 we see that we have cjw
j
0 =

∑
i ai,jw

i
0 and hence

cj =
∑

i

ai,jw
i−j
0 .

Now ai,jw
i−j
0 is in the maximal ideal of O if j > i, by Theorem 7 and the fact that |w0| > 1/8. Also

ai,jw
i−j is in the maximal ideal of O if j < i, because ai,j ∈ Z2. Hence

cn = an,n ∈ F,

where here of course the bars denote reduction modulo the maximal ideal of O. In particular, cn

is independent of the choice of κ, so gκ is independent of κ. Moreover, this shows that parts (i)
and (ii) of the lemma are equivalent. To finish the proof of the lemma, we only have to verify that
gκ =

∑
i X2i−1 for one particular choice of κ. We make the choice κ = κ0 corresponding to w0 = 4,

that is to modular forms of level 4, weight 1 and nontrivial character. The corresponding Eisenstein
series is

Eκ0 =
∑

a,b∈Z
qa2+b2 ,

and the corresponding ratio

f0 := Eκ0/V (Eκ0) = 1 + 4q − 16q3 + 56q5 − · · ·
is a function on X0(8) which can be checked to satisfy 4yf2

0 −(1+8y)f0+(1+8y) = 0. We consider f0

as an element of Z2[[y]]; then this last equation is an identity in Z2[[y]], and setting X = 4y = w0y,
we deduce that the equation

Xgκ0(X)2 − (1 + 2X)gκ0(X) + 1 + 2X = 0

must be an identity in O[[X]]. Reducing modulo the maximal ideal of O we deduce

Xgκ0
(X)2 + gκ0

(X) + 1 = 0

in F[[X]]. This quadratic equation is easily seen to have only one root in F[[X]], namely
∑

i�0 X2i−1,
which is what we needed to prove.

7. The U-operator near the boundary of weight space
In this section we prove some results about the characteristic power series of U acting on overcon-
vergent forms of weight κ, where κ corresponds to a point w0 in weight space with 1/8 < |w0| < 1.

We briefly recall the definition of the spaces of overconvergent modular forms that interest us.
It is well known (see [CM98, Proposition 2.2.7]) that V (Eκ) is an overconvergent modular form of
weight κ. One checks easily that if c ∈ K with 1 > |c| > 1/8 then the region of the K-rigid space
X0(4) defined by |cy| � 1 is isomorphic to the region of X0(2) defined by |cf | � 1 and hence powers
of cy can be thought of as a Banach basis of a 2-adic Banach space M0 of overconvergent modular
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forms of weight 0 (this space depends on the choice of c, but we shall suppress the choice of c from
the notation). For c sufficiently close to 1, the space V (Eκ)M0 of overconvergent modular forms of
weight κ will be closed under the action of the standard Hecke operators, and the operator U will
be compact. This space has a Banach basis {V (Eκ)(cy)n : n = 0, 1, 2, . . . } and we shall analyse the
characteristic power series of U on this space by proving facts about the matrix representing U with
respect to this basis. So define mi,j ∈ K, i, j � 0, by

U(V (Eκ)(cy)j) = V (Eκ)
∑

i

mi,j(cy)i.

This identity can be thought of as taking place in K[[q]] or in K[[y]]. We analyse this matrix using
the techniques of [Smi00] and [Kil02]. Recall that gκ ∈ O[[X]] is defined by gκ(w0y) = Eκ/V (Eκ).

Lemma 11. The formal sum ∑
i,j�0

mi,jX
iY j

is equal to

gκ((w0/c)X)(1 + (24/c)X)2

(1 + (24/c)X)2 − Y 2(cX + 8X2)
.

Proof. We have ∑
i

mi,j(cy)i = (Eκ/V (Eκ))U((cy)j).

Recall from Lemma 3 that U(yj) = 0 if j is odd, and hence mi,j = 0 if j is odd. For j = 2t even we
have U(yj) = ((y + 8y2)/(1 + 24y)2)t and hence∑

i

mi,j(cy)i = gκ(w0y)(c2(y + 8y2)/(1 + 24y)2)t.

This is an identity in K[[y]] so substituting X for cy gives, for j = 2t,∑
i

mi,jX
i = gκ(w0X/c)((cX + 8X2)/(1 + 24X/c)2)t.

Multiplying by Y j and summing over j gives∑
i,j

mi,jX
iY j = gκ(w0X/c)

∑
t�0

((cX + 8X2)Y 2/(1 + 24X/c)2)t

and summing the geometric progression on the right-hand side gives the result.

Recall that the mi,j are the matrix coefficients of U acting on overconvergent modular forms of
weight κ0, with κ0 corresponding to w0 ∈ W. It is well known that the matrix (mi,j) is compact
for |c| < 1 sufficiently close to 1, and in fact if |c| > |w0| then this can now be read off from the
above lemma, using the fact that the coefficients of gκ are integral, and w0/c, 8/c and c all have
norm less than 1.

8. The characteristic power series of U near the boundary of weight space
Fix w0 with 1/8 < |w0| < 1 as in the previous section, and let κ be the corresponding weight.
We wish to analyse the characteristic power series of the matrix (mi,j)i,j�0 defined in the previous
section, and we do this via Lemma 11 and the following three elementary but messy lemmas.

Fix s a positive integer, and 0 	= d ∈ O. Let N = (ni,j)0�i,j�2s−1 be a 2s by 2s matrix with the
property that ni,j ∈ djO for all 0 � i, j � 2s − 1 (note that we index our matrices starting from
(0, 0)). Assume that ni,j = 0 if j is odd. Let P (T ) = det(1 − TN) = 1 + · · · =

∑
α�0 aαTα ∈ O[T ]
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denote the ‘characteristic power series’ (although of course it is a polynomial) of N . For 0 � β � s
let Tβ denote the β by β matrix whose (i, j)th entry, 0 � i, j < β, is n2i,2j/d

2j ∈ O.

Lemma 12. We have aα/dα(α−1) ∈ O, and furthermore for α � s we have aα/dα(α−1) ∈ O× if and
only if det(Tα) ∈ O×.

Proof. By definition of det(1 − TN), we see that (−1)αaα is the sum over S of dS , where S ranges
over the subsets of {0, 1, 2, . . . , 2s − 1} of size α, and

dS =
∑

σ:S→S

sgn(σ)
∏
s∈S

ns,σ(s).

Note first that dS = 0 if S contains any odd element of {0, 1, 2, . . . , 2s−1} and in particular aα = 0 if
α > s. If S contains only even elements then we see that d

∑
s∈S s divides dS and

∑
s∈S s � α(α− 1),

with equality if and only if S = S0 := {0, 2, 4, . . . , 2α − 2}. Hence aα is a sum of multiples of
dα(α−1), all but one of which are multiples of dα(α−1)+1. We deduce aα/dα(α−1) ∈ O and furthermore
aα/dα(α−1) ∈ O× if and only if dS0/d

α(α−1) ∈ O×. But it is an easy consequence of the definitions
that dS0/d

α(α−1) = det(Tα).

Our second lemma shows how to get a handle on the matrix Tα above.

Lemma 13. Define si,j ∈ F2, 0 � i, j < ∞, by

∑
0�i,j

si,jX
iY j =

∑
m�0 X2m−1

1 + XY 2
,

the equality taking place in F2[[X,Y ]]. Define ti,j = s2i,2j for 0 � i, j. Then

∑
0�i,j

ti,jX
iY j =

1 + XY
∑

m�0 X2m−1

1 + XY 2
.

Proof. Define power series A(X,Y ), B(X,Y ) in F2[[X,Y ]] by

A(X,Y ) =
( ∑

m�0

X2m−1

)/
(1 + XY 2)

and

B(X,Y ) =
(

1 + XY
∑
m�0

X2m−1

)/
(1 + XY 2).

Note that A is a function of X and Y 2 and so the lemma will follow if one can show that X(A(X,Y )−
B(X2, Y 2)) is in F2[[X2, Y 2]], and this follows from an explicit calculation; we see that

X(A(X,Y ) − B(X2, Y 2)) =
(

X2Y 2 +
∑
m�0

(X2)2
m

)/
(1 + X2Y 4).

Our final lemma will be used later on to verify an instance of the condition det(Tα) ∈ O×

appearing in Lemma 12. The proof uses an idea explained to us by Robin Chapman.

Lemma 14. Fix an integer α � 0, and let Tα be the α by α matrix (ti,j)0�i,j<α with entries in F2

defined via the following identity:

∑
i,j

ti,jX
iY j =

1 + XY (
∑

m�0 X2m−1)
1 + XY 2

,

the equality taking place in F2[X,Y ]/(Xα, Y α). Then det(Tα) = 1.
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Proof. Write
∑

i,j ti,jX
iY j =

∑
j fj(X)Y j, with fj(X) ∈ V := F2[X]/(Xα). It suffices to prove

that the fj(X), 0 � j < α, span V as an F2-vector space. Write r =
∑

m�0 X2m ∈ V . Then
∑

j

fj(X)Y j = (1 + Y r)(1 + XY 2 + X2Y 4 + X3Y 6 + · · · )

and one deduces, by comparing coefficients of powers of Y , that f2t(X) = Xt and f2t+1(X) = Xtr.
Because r2 − r = X we see that f2t(X) = (r2 − r)t and that f2t+1(X) = r(r2 − r)t, and hence that
as polynomials in r we have deg(fn) = n. Hence the span of the fj contains the image of F2[r] in V .
This is enough as r = X + · · · so this image is F2[X].

We are now ready to prove the main result of this section. As usual let κ be a weight such
that the corresponding w0 satisfies 1/8 < |w0| < 1, and let (mi,j) be the matrix representing U in
weight κ as before.

Proposition 15. If Pκ(T ) =
∑

α�0 bαTα denotes the characteristic power series of U in weight κ,

then |bα| = |w0|α(α−1)/2.

Proof. If β � 0 and Mβ denotes the truncated matrix (mi,j)0�i,j<β, and if Pβ(T ) = det(1 −
TMβ) is the characteristic power series of Mβ , then the Pβ(T ) tend to Pκ(T ), in the sense that if
Pβ(T ) =

∑
α bα,βTα then limβ→∞ bα,β = bα. Hence it suffices to prove that |bα,β| = |w0|α(α−1)/2 for

β > 2α and furthermore we may assume β = 2s − 1 is odd. Let Nβ be the matrix with elements
(ni,j)0�i,j<β where ni,j = mi,j(c/w0)i−j. Then Nβ is easily checked to be a conjugate of Mβ , so
Pβ(T ) = det(1 − TNβ). Furthermore one easily checks that Lemma 11 implies (substituting X for
w0/cX and Y for c/w0Y )

F (X,Y ) :=
∑

0�i,j<β

ni,jX
iY j =

gκ(X)(1 + 24X/w0)2

(1 + 24X/w0)2 − Y 2(w0X + 8X2)
.

Note that F (X,Y ) ∈ O[X,Y ]/(Xβ , Y β). Extending K if necessary, we may assume that there exists
d ∈ K with d2 = w0. The fact that G(X,Y ) := F (X,Y/d) satisfies

G(X,Y ) =
gκ(X)(1 + 24X/w0)2

(1 + 24X/w0)2 − Y 2(X + 8X2/w0)
∈ O[X,Y ]/(Xβ , Y β)

shows us that ni,j/d
j ∈ O for all i, j, and the fact that F (X,Y ) is a function of X and Y 2 implies

that ni,j = 0 if j is odd. We are hence in a position to apply Lemma 12 to deduce that |bα,β| �
|d|α(α−1) = |w0|α(α−1)/2, with equality if and only if the matrix (n2i,2j/d

2j)0�i,j<α has determinant
a unit. Let Tα denote this matrix, and let Tα denote its reduction modulo the maximal ideal of O.

Reducing G(X,Y ) modulo the maximal ideal of O, it becomes

G(X,Y ) =
gκ(X)

1 + XY 2
∈ F[X,Y ]/(Xβ , Y β),

and by Lemmas 10 and 13 we deduce that Tα = (ti,j)0�i,j<α with

∑
0�i,j<α

ti,j =
1 + XY

∑
m X2m−1

1 + XY 2
,

the equality taking place in F [[X,Y ]]/(Xα, Y α). Now Lemma 14 implies that det(Tα) = 1 and
hence det(Tα) ∈ O×. This is what we wanted.

We now have enough to prove Theorem B, which we restate below.
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Theorem B (restated). If κ is a weight corresponding to w0 ∈ W with 1/8 < |w0| < 1, and
if v = v(w0), then the slopes of U acting on overconvergent modular forms of weight κ are the
arithmetic progression 0, v, 2v, 3v, 4v, . . . , each appearing with multiplicity 1.

Proof. This follows immediately from Proposition 15 and the theory of the Newton polygon.

9. The eigencurve near the boundary of weight space

Theorem B is already enough to deduce the results about classical forms in the Corollary
of Theorem B of § 1, so the reader who is only interested in these does not need to read this
part of the paper. In this final section we deduce Theorem A from Theorem B.

Let A be a reduced affinoid algebra over K, and equip A with the supremum norm. Let P (T ) =∑
n�0 anT n be a power series with the property that |an|ρn tends to zero for all ρ ∈ R>0. In particular

P (a) converges for all a ∈ A. Assume furthermore that a0 = 1, and that for all x ∈ Sp(A) we have
1 = |a1(x)| > |a2(x)| > |a3(x)| > · · · .
Lemma 16. One can factorise P (X) as

P (T ) = (1 − vT )Q(T )

with v ∈ A×, |v| = |v−1| = 1, and Q(T ) =
∑

n�0 bnT n, b0 = 1, and |bn(x)| = |an+1(x)| for all n � 0
and all x ∈ Sp(A).

Proof. After replacing K with a finite extension if necessary, we may choose ρ ∈ K with |a2| �
|ρ| < 1. Set u0 = −1/a1 and for n � 0 define un+1 = un − P (un)/P ′(un). One proves by induction
on n, using the fact that if u, h ∈ A and |u|, |h| � 1 then P (u + h) = P (u) + hP ′(u) + h2a for some
a ∈ A with |a| � 1, that |P (un)| � |ρ|2n

, |P ′(un)| = 1, and |un+1 −un| � |ρ|2n
. Let u be the limit of

the un; then P (u) = 0, and the fact that |u + 1/a1| < 1 shows that |u(x)| = 1 for all x ∈ Sp(A). Set
v = 1/u and define P (T )(1 + vT + v2T 2 + · · · ) =: Q(T ) =:

∑
bnT n. The fact that P (u) = 0 implies

that |1 + a1u(x) + a2u
2(x) + · · · + anun(x)| = |an+1(x)| for all x ∈ Sp(A) and one easily deduces

from this that |bn(x)| = |an+1(x)| for all n � 0 and for all x ∈ Sp(A).

Corollary 17. If X = Sp(A) is an affinoid subdomain of W1, with β : X → W1 the inclusion,
and PX (T ) ∈ A[[T ]] denotes the characteristic power series of U on overconvergent modular forms
of weight X , then P (T ) =

∏
n�0(1 − λnT ) with λn ∈ A and v(λn(x)) = nv(β(x)).

Proof. We repeatedly apply the lemma and then substitute P (T ) for Q(T/W ), where W ∈ A is
the pullback of the parameter w on W1. Proposition 15, and the fact that taking characteristic
power series commutes with specialisation (see for example [Buz05, Corollary 2.9]) ensures that the
conditions of the lemma are always satisfied.

Proof of Theorem A. The zero locus of PX (T ) is, by Corollary 17, a disjoint union of copies of X ,
and letting X increase shows that the spectral curve corresponding to U is isomorphic to a disjoint
union of annuli over weight space and that their valuations are as predicted in Theorem A. It remains
to show that the eigencurve is isomorphic to the spectral curve over W1, but this follows from the
fact that the fibres of the spectral curve are reduced and hence that any overconvergent eigenform of
weight in W1 is determined by its weight and its U2-eigenvalue (see [CM98, Proposition 6.3.2]).
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