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Abstract

We prove that for every m ≥ 0 there exists an ε = ε(m) > 0 such that if 0 < λ < ε and x is sufficiently large
in terms of m and λ, then

|{n ≤ x : |[n, n + λ log n] ∩ P| = m}| �m,λ x.

The value of ε(m) and the dependence of the implicit constant on λ and m may be made explicit. This is
an improvement of the author’s previous result. Moreover, we will show that a careful investigation of the
proof, apart from some slight changes, can lead to analogous estimates when allowing the parameters m
and λ to vary as functions of x or replacing the set P of all primes by primes belonging to certain specific
subsets.
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1. Introduction

Let P denote the set of prime numbers and fix λ > 0 a real number and m a nonnegative
integer. The author [2] has recently proved that the proportion of short intervals of the
form [n, n + λ log n], for n ≤ x, containing exactly m primes can be bounded below by
1/ log x if we choose λ sufficiently small. More precisely, it was shown that

dλ,m(x) :=
|{n ≤ x : |[n, n + λ log n] ∩ P| = m}|

x
�m,λ

1
log x

, (1.1)

whenever 0 < λ < ε for a certain ε = ε(m) > 0 and x large enough in terms of m and
λ. (Note that the dependences on λ of the implied constant and of x were not stated
explicitly in [2].) Under these circumstances, it is a considerable improvement of
a result of Freiberg [1], who gave the lower bound dλ,m(x) � x−ε

′(x), with ε′(x) =

(log log log log x)2/(log log log x), true for any choice of the parameters λ and m.
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[2] Short intervals with a prescribed number of primes 379

The idea behind both those results is that we can make use of Maynard’s sieve
method [3] to find clusters of consecutive primes inside particular sets and then
construct short intervals of a specific form around them. Indeed, Maynard’s sieve
method allows us to show that any subset of the primes, which is well distributed in
arithmetic progressions, contains many elements that are close together. The work
of Freiberg showed that the subset of primes which belongs to the image of certain
admissible sets of linear functions is well distributed in arithmetic progressions and is
suitable for the application of Maynard’s results. A combinatorial process is then used
to detect a fixed number among them that are contained in our selected set of intervals.

The major difference between the work of Freiberg and that of the author is in the
way the admissible set of linear forms is generated. In the former case, an Erdős–
Rankin-type construction [1, Lemma 3.3] was considered, providing a lower bound
for the density related to each choice of λ and m. However, this freedom inevitably
forces us to lose precision and obtain weak estimates. In the latter case, the set of
linear forms was chosen implicitly by means of Maynard’s sieve, producing better
information on the density, but only for very small values of λ.

The aim of the present note is to improve the author’s previous work, showing that
a better exploration of the approach generates a positive proportion of short intervals
containing a prescribed number of primes. The key idea is that at the start of the
process we need to select clusters of primes in which the elements are also well spaced.

From now on, m denotes a nonnegative integer and k = C exp(49m/C′), for certain
suitable constants C,C′ > 0, and λ denotes a positive real number smaller than
ε = ε(k) := k−4(log k)−2. The result is the following theorem.

Theorem 1.1. We have
dλ,m(x)� λk+1e−Dk4 log k, (1.2)

for a certain absolute constant D > 0, if x is sufficiently large in terms of m and λ.

It is interesting to note that, from a heuristic point of view, we expect a positive
proportion result for all short intervals of the form [n, n + λ log n] (and for all
nonnegative integers m). More precisely, we conjecture that

dλ,m(x) ∼
λme−λ

m!
as x→∞

for every λ and m. (See the expository article [5] by Soundararajan for further
discussions.)

The strength of Maynard’s sieve is its flexibility, making it applicable to counting
primes in sparser subsets as well. In fact, the same proof that leads to Theorem 1.1 can
be adapted to study a variety of different situations, in which for instance we restrict
the primes to lie on an arithmetic progression or allow for uniformity of the parameters
λ and m. This gives the following results.
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Theorem 1.2. Let x be sufficiently large in terms of m and λ. Suppose that q ≤ f (x)
is a positive integer with (log x)/ f (x)→∞ as x→∞. Take 0 ≤ a < q with (a, q) = 1.
Then

da,q
λ,m(x)�

λk+1e−Dk4 log k

qk+1 , (1.3)

for a certain D > 0, where da,q
λ,m(x) is defined as in (1.1) but with P replaced by Pa,q, the

intersection of P with a (mod q).

Theorem 1.3. Fix a small parameter ε1 > 0 and 0 < ε2 < 1. Let x ≥ x0(ε1, ε2),
m ≤ ε1 log log x and λ ≥ (log x)ε2−1, satisfying k4(log k)2λ ≤ 1 and λ > k log k(log x)−1.
Then the estimate (1.2) continues to hold.

Theorem 1.4. Let K/Q be a Galois extension of Q with discriminant ∆K. There
exist constants CK,C′K > 0 depending only on K such that the following holds. Let
C ⊂ Gal(K/Q) be a conjugacy class in the Galois group of K/Q and let

P =

{
p prime : p - ∆K,

[
K/Q

p

]
= C

}
,

where
[K/Q
·

]
denotes the Artin symbol. Let m ∈ N, k = C′K exp(CKm) and λ < ε. Then

dKλ,m(x)� λk+1e−Dk4 log k,

provided x ≥ x0(K, λ,m), where dKλ,m(x) is defined as in (1.1) except that P is replaced
by P.

If we consider values of λ slightly bigger than k−4(log k)−2, a small variation of the
sieve method used to prove Theorem 1.1 leads to the following improvement on the
Freiberg bound in [1].

Theorem 1.5. For every nonnegative integer m and positive real number λ smaller
than k−1(log k)−1, with k = C exp(49m/C′) for suitable constants C,C′ > 0,

dλ,m(x)�
λe−Dk4 log k

(log x)k ,

for a certain D > 0, if x is sufficiently large in terms of m and λ.

2. Notation

Throughout, P denotes the set of all primes, 1S : N→ {0, 1} the indicator function
of a set S ⊂ N and p a prime. As usual, ϕ will denote the Euler totient function and
(m, n) the greatest common divisor of integers n and m. We will always denote by x a
sufficiently large real number. By o(1) we mean a quantity that tends to 0 as x tends
to infinity. The expressions A = O(B), A� B and B� A mean |A| ≤ c|B|, where c is
some positive (absolute, unless stated otherwise) constant.

In the following, we will always consider admissible k-tuples of linear forms
{gn + h1, . . . , gn + hk}, where 0 ≤ h1 < h2 < · · · < hk < λ log x, k a sufficiently large
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integer and g a positive integer which is coprime with B, squarefree and such that
log x < g ≤ 2 log x. Here, B = 1 or B is a prime with log log xη � B� x2η, where we
put η := c/500k2 with 0 < c < 1. A finite set L := {L1, . . . , Lk} of linear functions is
admissible if the set of solutions modulo p to L1(n) · · · Lk(n) ≡ 0 (mod p) does not
form a complete residue system modulo p for any prime p. In our case, in which
Li(n) = gn + hi for every i = 1, . . . , k, the set {L1, . . . , Lk} is admissible if and only if
the setH := {h1, . . . , hk} is admissible, in the sense that the elements h1, . . . , hk do not
cover all the residue classes modulo p for any prime p.

The proof of Theorem 1.1 (and of its variations, Theorems 1.2–1.5) follows by
mimicking [2], taking into account a new crucial assumption on the set of linear forms.
We will briefly rewrite the main estimates and passages already contained in the proof
in [2], highlighting the main differences and the new computations. In particular,
several types of notation will not be introduced here because they are not essential for
the general understanding of the argument or already present in [2].

3. Application of Maynard’s sieve

As at the start of [2, Section 3], and following the notation there introduced, we
define the double sum

S =

∗∑
H

∑
x<n≤2x

S (H , n), (3.1)

where

S (H , n) =

( k∑
i=1

1P(gn + hi) − m − k
k∑

i=1

∑
p|gn+hi

p≤xρ,p-B

1 − k
∑

h≤5λ log x
(h,g)=1

h<H

1S (ρ,B)(gn + h)
)
wn(H).

(3.2)
In (3.1), Σ∗

H
means that the sum is taken over all the admissible sets H such that

0 ≤ h1 < h2 < · · · < hk < λ log x and |hi − h j| > C−1
0 λ log x, for 1 ≤ i , j ≤ k, where

C0 will be chosen later. Note that, unlike the corresponding definition in [2], in the
innermost sum in (3.1) we now have m instead of m − 1.

Following closely the discussion at the beginning of [2, Section 3], we deduce that

S � k(log x)2k exp(O(k/ρ))|I(x)|, (3.3)

where now the set I(x) contains intervals of the form [gn,gn + 5λ log x], for x < n ≤ 2x,
with the property that |[gn, gn + 5λ log x] ∩ P| = |{gn + h1, . . . , gn + hk} ∩ P| ≥ m + 1
for a unique admissible set H such that 0 ≤ h1 < · · · < hk < λ log x and also
|hi − h j| > C−1

0 λ log x for 1 ≤ i , j ≤ k. We recall that the intervals in I(x) are pairwise
disjoint if for instance λ < 1/5.
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We also need a lower bound for S . Using [2, Propositions 2.1–2.5],

S ≥
∗∑
H

[
(1 + o(1))

Bk−1

ϕ(B)k−1SB(H)(log R)k+1Jk

k∑
i=1

ϕ(g)
g

∑
x<n≤2x

1P(gn + hi)

−m(1 + o(1))
Bk

ϕ(B)kSB(H)x(log R)kIk

+ O
(
ρ2k6(log k)2 Bk

ϕ(B)kSB(H)x(log R)kIk

)
+ O

(
k

Bk

ϕ(B)kSB(H)x(log R)k−1Ik

)
+ O

( k
ρ

Bk+1

ϕ(B)k+1SB(H)x(log R)k−1Ik

∑
h≤5λ log x

(h,g)=1
h<H

∆L

ϕ(∆L)

)]
. (3.4)

By the inequality [2, (2.7)],

ϕ(B)
B

ϕ(g)
g

k∑
i=1

∑
x<n≤2x

1P(gn + hi) >
kx

2 log x
.

Note that the hypotheses of [2, Theorem 2.2] are satisfied. Using this estimate together
with [2, Lemma 3.1], and choosing ρ := k−3(log k)−1, we find that

S ≥
∗∑
H

Bk

ϕ(B)kSB(H)x(log R)k
[
(1 + o(1))kJk

log R
2 log x

− mIk(1 + o(1)) + O(Ik)

+ O(kIk(log R)−1) + O(k4(log k)Ik(log R)−1λ log x log k)
]
. (3.5)

We remark here that the aforementioned Theorem 2.2 and Lemma 3.1 need x to be
large enough with respect to k and λ. Now, by [2, Propositions 2.1 and 2.6], we
know that Jk ≥ C′k−1 log kIk for a certain C′ > 0. We should consider k sufficiently
large in terms of m. For example, we may take k := C exp(49m/C′) with C > 0.
Choosing λ ≤ ε, with ε = ε(k) := k−4(log k)−2, and taking x and C suitably large, we
may conclude that

S �
∗∑
H

Bk

ϕ(B)kSB(H)x(log R)kIk. (3.6)

By the estimates [2, Propositions 2.1 and 2.6], we know that Ik � (2k log k)−k and
SB(H)� exp(−C1k) for a certain C1 > 0. Remember also that R = x1/24. Finally, we
may certainly use Bk/ϕ(B)k ≥ 1. Inserting all of these in (3.6),

S � x(log x)ke−C2k2
∗∑
H

1 (3.7)

for a suitable constant C2 > 0. Thus, we are left with obtaining a lower bound for the
sum in (3.7). We greedily sieve the interval [0, λ log x] by removing for each prime
p ≤ k in turn any elements from the residue class modulo p which contains the fewest
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elements. The resulting setA, say, has size

|A| ≥ λ log x
∏
p≤k

(
1 −

1
p

)
≥ c′

λ log x
log k

,

by Mertens’s theorem, with c′ > 0.
Any choice of k distinct hi from A will be an admissible set H = {h1, . . . , hk} such

that 0 ≤ h1 < h2 < · · · < hk < λ log x. Now, we count how many of them have the
property that |hi − h j| > C−1

0 λ log x for 1 ≤ i , j ≤ k. Certainly, we can choose h1 in
|A| ways. Let us writeA1 :=A and define

A2 :=A1 \ A1 ∩ [h1 − bλ log x/C0c, h1 + bλ log x/C0c].

We will pick h2 ∈ A2, having then |A2| ≥ |A1| − 2bλ log x/C0c possibilities. Iterating
this process, we can count the number of admissible choices for any hi up to hk, which
will be an element in

Ak :=Ak−1 \ Ak−1 ∩ [hk−1 − bλ log x/C0c, hk−1 + bλ log x/C0c]

and which will have cardinality |Ak| ≥ |A1| − 2(k − 1)bλ log x/C0c.
In conclusion, for our particular choice of admissible sets we have at least a number

of possibilities equal to

1
k!

k∏
i=1

|Ai| ≥
1
kk

k∏
i=1

(|A1| − 2(i − 1)bλ log x/C0c) ≥
1
kk

(
c′
λ log x
log k

− 2k
λ log x

C0

)k
. (3.8)

Take C0 = C0(k) := 4k(log k)/c′. We immediately see that the right-hand side of
(3.8) is� λke−C3k2

(log x)k, which leads to S � λke−C4k2
x(log x)2k for certain constants

C3,C4 > 0. Finally, by combining (3.3) with the above information on S ,

|I(x)| � λke−C5k4 log k x (3.9)

with an absolute constant C5 > 0.

4. Modification of the combinatorial process
Consider an interval I ∈ I(x). There exist an integer n with x < n ≤ 2x and an

admissible set H , with 0 ≤ h1 < h2 < · · · < hk < λ log x and |hi − h j| > λ log x/C0 for
1 ≤ i , j ≤ k, such that I = [gn, gn + 5λ log x] and

|[gn, gn + 5λ log x] ∩ P| = |{gn + h1, . . . , gn + hk} ∩ P| ≥ m + 1.

In order to avoid having a trivial gap between the elements of H , we ask for x to be
sufficiently large with respect to λ and k. Let us define

I j = [N j,N j + λ log N j], N j = gn + j,

for j = 0, . . . , bλ log N0c. We recall here the following properties of the intervals I j that
are stated and proved in detail in [2]:

(1) I j ⊆ I for any such j;
(2) I j ∩ {gn + h1, . . . , gn + hk} = {gn + h1, . . . , gn + hk} for the choice j = h1;
(3) I j ∩ {gn + h1, . . . , gn + hk} = ∅ for the value j = bλ log N0c;
(4) if |I j ∩ P| < |I j+1 ∩ P| for a certain j, then |I j+1 ∩ P| = |I j ∩ P| + 1.
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Now, let us define

j̃ := max{0 ≤ j ≤ bλ log N0c : |I j ∩ P| ≥ m + 1}.

Note that necessarily N j̃ = gn + j̃ is prime. Consequently, |I j̃+1 ∩ P| = m. But from our
assumption onH ,

|I j̃+l ∩ P| = m for any l with 1 ≤ l ≤ bλ log x/C0c.

This means that we have found bλ log x/C0c different intervals [N, N + λ log N]
containing exactly m primes, with N < 5x log x, if x is sufficiently large. Together
with the lower bound (3.9), we have shown that for every m ≥ 0 and for each λ ≤ ε,

|{N ≤ 5x log x : |[N,N + λ log N] ∩ P| = m}| �
λk+1

k log k
e−C5k4 log k x log x,

which is equivalent to

|{N ≤ X : |[N,N + λ log N] ∩ P| = m}| � λk+1e−C6k4 log kX, (4.1)

when X is large enough in terms of λ and k, for a certain constant C6 > 0, which proves
Theorem 1.1.

5. Concluding remarks

5.1. Explicit constants. Since we let k = C exp(49m/C′), with C,C′ as above, note
that we can rewrite the final estimate using only the relationship between λ and m.
Remembering the choice of ε(m), we see immediately that the connection between λ
and m is given by

λ(49m + c1)2 exp(196c2m)� 1 (5.1)

for certain constants c1, c2 > 0.

Remark 5.1. Notice that, if we could take k = m + 1 and if we were able to improve
the constants in k in the sieve method, then we would end up with an explicit constant
in (4.1) that almost matches the expected one for values of λ close to 0.

5.2. The case of primes in arithmetic progressions. Suppose that q is a squarefree
positive integer coprime with B and q ≤ f (x) with (log x)/ f (x)→∞ as x→∞. Take
0 ≤ a < q with (a, q) = 1. In order to extend the result of Theorem 1.1 to this situation,
we go over its proof again. In particular, in (3.1) we now average over admissible sets
H = {h1, . . . , hk} such that 0 ≤ h1 := a + qb1 < h2 := a + qb2 < · · · < hk := a + qbk <
λ log x and |bi − b j| > C−1

0 q−1λ log x for 1 ≤ i , j ≤ k. Moreover, we need to take g
as a squarefree multiple of q coprime with B and such that log x < g ≤ 2 log x. Such
a set of linear functions satisfies the hypotheses of [2, Proposition 2.1 and Theorem
2.2] and the images of all its elements lie on the arithmetic progression a (mod q). In
particular, as in Section 3,

|I(x)| �
λke−C8k4 log k

qk x,

if x is sufficiently large in terms of λ and k, for a suitable constant C8 > 0.
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Using the notation Pa,q to indicate the primes in the arithmetic progression a
(mod q), the set I(x) contains intervals of the form [gn, gn + 5λ log x], for x < n ≤ 2x,
with g ≡ 0 (mod q) and |[gn, gn + 5λ log x] ∩ P| = |{gn + h1, . . . , gn + hk} ∩ Pa,q| ≥

m + 1 for a unique admissible setH = {h1, . . . , hk} such that 0 ≤ h1 := a + qb1 < h2 :=
a + qb2 < · · · < hk := a + qbk < λ log x and |bi − b j| > C−1

0 q−1λ log x for 1 ≤ i , j ≤ k.
Following the computations in Section 4,

|{N ≤ X : |[N,N + λ log N] ∩ Pa,q| = m}| �
λk+1e−C9k4 log k

qk+1 X,

when X is sufficiently large in terms of λ and k, for a suitable absolute constant C9 > 0,
which proves Theorem 1.2. The restriction on q to be squarefree and coprime with
B can be removed at the cost of slightly modifying the proof of [2, Theorem 2.2]. In
particular, at the start of its proof we need to replace B with the largest prime factor of
l̃ coprime with g, with l̃ being the modulus of a possible exceptional character among
all the primitive Dirichlet characters χ mod l with moduli l ≤ x2η.

5.3. The case of uniform parameters. In Section 3, we applied [2, Proposition 2.1],
which is a specific case of [3, Proposition 6.1], in which a uniformity in k ≤ (log x)1/5,
say, is allowed. A careful examination of [2, Theorem 2.2] and of the computations
in Sections 3 and 4 in the present paper and in [2] shows that the estimate (1.2)
continues to hold when m ≤ ε1 log log x and λ ≥ (log x)ε2−1 satisfy (5.1) together with
λ > k log k(log x)−1. Here, ε1 is a fixed sufficiently small constant (for example, smaller
than C′/294) and 0 < ε2 < 1.

Remark 5.2. Notice that, in the case in which λ goes to 0 together with x and m and
λ varies in the range defined above, the Cramér model used in [5] still gives us an
expected asymptotic value for dλ,m, which now takes the form

dλ,m(x) ∼
λm

m!
as x→∞.

Obviously, since the constant in m in the lower bound (1.2) is not optimal, the value of
dλ,m(x) now will be far away from what the model suggests.

5.4. The case of primes in Chebotarev sets. As already mentioned, so far we have
only used a very special case of [3, Proposition 6.1]. In particular, we can replace
the set of all the primes with a smaller one, as long as it satisfies a suitable variant
of [2, Theorem 2.2]. More specifically, we would like to concentrate on the so-called
primes in Chebotarev sets.

Let K/Q be a Galois extension of Q with discriminant ∆K. Let C ⊂ Gal(K/Q) be a
conjugacy class in the Galois group of K/Q and let

P =

{
p prime : p - ∆K,

[
K/Q

p

]
= C

}
,

where
[K/Q
·

]
denotes the Artin symbol. Fix m ∈ N, k = C′K exp(CKm), for suitable

CK,C′K > 0, and λ < ε. Finally, let log x < g ≤ 2 log x be a squarefree number with
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(g,∆K) = 1, bearing in mind that now B = ∆K, and consider admissible sets H of the
usual form.

Murty and Murty proved in their main theorem in [4] that the primes in P are well
distributed among arithmetic progressions of moduli q ≤ xθ, with θ < min(1/2, 2/|G|),
and such that K ∩ Q(ζq) = Q. An adaptation of the argument in the proof of
[2, Theorem 2.2] leads to the second estimate stated there, where P is replaced by
P and the sum over q is over all the moduli q ≤ xθ/4 satisfying the algebraic condition
described above. Regarding the first estimate in [2, Theorem 2.2],

1
k

B
ϕ(B)

ϕ(g)
g

k∑
i=1

∑
x<n≤2x

1P(gn + hi) ≥ (1 + o(1))
∆K

ϕ(∆K)
|C|

|G|
x

log x
,

which essentially follows from the Chebotarev density theorem. Working as in
Section 3, we find that

|I(x)| � λke−C10k4 log k x,

if x ≥ x0(K, λ,m), for a suitable constant C10 > 0. Here, the set I(x) contains
intervals of the form [gn, gn + 5λ log x], for x < n ≤ 2x and log x < g ≤ 2 log x,
having the property that |[gn, gn + 5λ log x] ∩ P| = |{gn + h1, . . . , gn + hk} ∩ P| ≥ m + 1
for a unique admissible set H such that 0 ≤ h1 < h2 < · · · < hk < λ log x and also
|hi − h j| > C−1

0 λ log x for 1 ≤ i , j ≤ k. Following the computations in Section 4,

|{N ≤ X : |[N,N + λ log N] ∩ P| = m}| � λk+1e−C11k4 log kX,

when X ≥ X0(K, λ, m), for a suitable absolute constant C11 > 0, which proves
Theorem 1.4.

5.5. The case of slightly bigger values of λ. Let us fix an admissible k-tuple of
linear functions L = {gn + h1, . . . , gn + hk} with the usual form. We replace the last
sum in parenthesis in (3.2) with ∑

h≤5λ log x
(h,g)=1

h<H

1S (1/80,1)(gn + h)

and we remove the average over H in (3.1). With these variations in mind, we see
immediately that (3.3) still continues to hold, but now we can only say that for every
interval I ∈ I(x) there exists an integer x < n ≤ 2x such that I = [gn, gn + 5λ log x] and

|[gn, gn + 5λ log x] ∩ P| = |{gn + h1, . . . , gn + hk} ∩ P| ≥ m + 1.

Arguing as in Section 3 with the appropriate variations, but essentially carrying over
all the computations, we deduce that

S � x(log x)ke−C12k2
, |I(x)| � e−C13k4 log k x

(log x)k (5.2)
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for suitable C12,C13 > 0. The only key difference in proving (5.2) is that the last big-O
in (3.4) now assumes the shape

O
(
80k

Bk

ϕ(B)kSB(H)x(log R)k−1Ik

∑
h≤5λ log x

(h,g)=1
h<H

∆L

ϕ(∆L)

)
.

Consequently, this also modifies the last big-O in (3.5), which will be

O(k(log k)Ik(log R)−1λ log x) = O(Ik) if λ <
1

k log k
.

The rest of the argument goes through as before and we conclude that

|{N ≤ X : |[N,N + λ log N] ∩ P| = m}| � λe−C14k4 log k X
(log X)k ,

when X is large enough in terms of λ and k, for a certain C14 > 0, which proves
Theorem 1.5.

Remark 5.3. We would like to observe that many of the variables and parameters have
not been chosen in the best possible way, since finding their precise range of definition
is not in the spirit of the paper and does not significantly improve the final results. We
refer to [6] for several arithmetic consequences of finding primes of a given splitting
type and note that they may be translated into our context. Finally, we would like
to point out that we are able to combine the results presented in this section, paying
attention to the possible relations between the different parameters.
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