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Abstract

The Myrtaceae is the ninth largest angiosperm family with c. 6000 species, and it diverged from
its closest relative the Vochysiaceae c. 100 Ma in southern Gondwana before the final separation
of South America and Australia from Antarctica. The family has trees and shrubs and a few viny
epiphytes but no herbs and mainly occurs in the tropics and in temperate regions with a
Mediterranean climate. Numerous fleshy-fruited species and dry-fruited species have evolved
in moist and seasonally dry (fire-prone) regions, respectively. Five kinds of fully developed
embryos are found in Myrtaceae seeds, and at maturity seeds are either nondormant (ND)
or have physiological dormancy, regardless of embryo morphology, kind of fruit produced,
life form, habitat/vegetation region or tribe. Dormant seeds of fleshy-fruited species in wet habi-
tats become ND and germinate at high temperatures. Dormant seeds of dry-fruited species in
seasonally dry habitats become ND during the hot, dry season and germinate with the onset of
the wet season; seeds germinate only at high temperatures or over a range of low to high tem-
peratures, depending on the species. Seeds of fleshy-fruited species are animal-dispersed, and
some Myrteae and Syzygieae are desiccation-sensitive and/or exhibit totipotency. Relatively
few species form a persistent soil seed bank, but many dry-fruited species in fire-prone habitats
form an aerial seed bank (serotiny). Heat and smoke from fires have a negative, neutral or
positive effect on germination, depending on the species. Challenges for maintaining the
high species richness of Myrtaceae include habitat destruction/fragmentation, pathogenic
fungi and climate change, especially patterns of precipitation.

Introduction

The purpose of this review is to further explore the relationship between kinds of seed
dormancy/germination, embryo morphology, life form, geographical distribution, habitats
(vegetation regions on Earth) and phylogeny in angiosperm plant families. In particular,
what do highly speciose, widely distributed families have in common, and how do they differ
from families with a low number of species and a narrow geographical distribution? If a spe-
ciose family is widely distributed geographically, how diverse is it with regard to kinds of seed
dormancy, life form and vegetation in regions in which it grows? These questions can be
answered only after we have documented the kinds of seed dormancy in plant families that
differ in number of species, habitats and geographical range. As a contribution to the broad
objective of understanding the diversity of seed dormancy/germination in angiosperm plant
families, we have reviewed available information on the Myrtaceae.

The Myrtaceae is highly speciose and is widely distributed in the Southern Hemisphere, and
we have addressed nine specific questions. (1) What kinds of embryos do seeds of Myrtaceae
have, and how are they distributed in the tribes of this family? (2) What kinds of seed dormancy,
including nondormancy, are found in the Myrtaceae, and what is their occurrence in the tribes
and life forms of this family? (3) What is the seed dormancy profile for Myrtaceae in the various
vegetation regions where species of the family grow? (4) What environmental conditions are
required for dormancy-break and germination of seeds? (5) How many tribes and species of
Myrtaceae have desiccation-sensitive seeds? (6) In the totipotent (i.e. plantlet production from
seed fragments) species of Myrtaceae, how many plantlets can be produced from a single
seed? (7) How is the germination of Myrtaceae seeds affected by the heat and smoke of fires?
(8) What is the relative importance of soil and aerial seed banks for Myrtaceae? (9) What are
the major challenges involved in maintaining the high species richness of Myrtaceae in the
future? However, before considering these questions, information will be provided on the general
characteristics, palaeohistory and reproductive biology of Myrtaceae.

General characteristics of Myrtaceae

de Candolle (1828) divided the Myrtaceae into three tribes: Myrteae (with fleshy berries),
Leptospermeae (dry dehiscent loculicidal capsules) and Chamelaucieae (dry indehiscent
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capsules). The genera Heteropyxis and Psiloxylon have been placed
in the Heteropyxidaceae and Psiloxylaceae, respectively (e.g.
Johnson and Briggs, 1984). However, Scott (1980) concluded that
Psiloxylon belonged to the Myrtaceae, and Tobe and Raven
(1987, 1990) found embryological evidence that Heteropyxis and
Psiloxylon shared a single ancestor and suggested that the two
genera should be included in the Myrtaceae, or close to it. Based
on a matK phylogeny that included 66 genera from all alliances
and suballiances of core Myrtaceae, Heteropyxis natalensis and
Psiloxylon mauritianium, Wilson et al. (2005) concluded that
there are two subfamilies of Myrtaceae: Psiloxyloideae with tribes
Heteropyxideae and Psiloxyleae and Myrtoideae with 15 tribes.
Three additional tribes have been distinguished for the
Myrtoideae, making a total of 18 in this subfamily (Wilson et al.,
2022): Backhousieae, Chamelaucieae, Cloezieae, Eucalypteae,
Kanieae, Leptospermeae, Lindsayomyrteae, Lophostemoneae,
Melaleuceae, Metrosidereae, Myrteae, Osbornieae, Syncarpieae,
Syzygieae, Tristanieae, Tristaniopsideae, Xanthomyrteae and
Xanthostemoneae.

The Myrtaceae has 126 accepted genera and c. 6000 species
(POWO; Landrum, 2021) and is the ninth-largest family of
angiosperms (Govaerts et al., 2008). Fourteen tribes with 70 gen-
era and c. 1700 species occur in Australia (Thornhill et al., 2015;
Hardstaff et al., 2022). In contrast, species richness in the
Neotropics is due mostly to the tribe Myrteae with 51 genera
and c. 2500 species (Wilson et al., 2005; Lucas et al., 2007;
Vasconcelos et al., 2017). At least 15 genera (Archirhodomyrtus,
Austromyrtus, Decaspermum, Gossia, Lenwebbia, Lithomyrtus,
Lophomyrtus, Myrtella, Myrtuastrum, Neomyrtus, Octamyrtus,
Pilidiostigma, Rhodamnia, Rhodomyrtus and Uromyrtus) and c.
450 species of Myrteae occur outside the Neotropics, including
Southeast Asia, northeastern Australia and Pacific Islands
(Wilson, 2010). Outside the Neotropics, Eugenia is found in
Africa, Madagascar and Mauritius (Snow, 2000; van der Merwe
et al., 2005).

Various species of this family are used as ornamentals, medi-
cines or food by humans (Hardstaff et al., 2022). Species in about
20 genera of Myrtaceae have been introduced into parts of the
world beyond their natural range and are considered to be inva-
sive (Mbobo et al., 2022). Both dry- (e.g. Eucalyptus) and fleshy-
(e.g. Psidium) fruited species can be invasive, and fleshy-fruited
species are more likely to be invasive on islands than dry-fruited
species (Mbobo et al., 2022).

With the exception of Myrtus in northern Africa and the
Mediterranean region of southern Europe (Wilson, 2010), the
Myrtaceae is mostly a tropical family with high species richness
in South America and Australia; it also occurs in Africa,
Southeast Asia, India and on various Pacific Islands (Wilson,
2010; Thornhill et al., 2015). The family consists of trees, shrubs
and a few subshrubs and strangling (viny) epiphytes (e.g. some
species of Metrosideros). The monotypic shrub/small tree
Osbornia octodonta is a mangrove, but it does not have pneuma-
tophores. The leaves and stems of Myrtaceae have secretory cav-
ities and lysigenous glands that produce ethereal oils, making
plants (e.g. Eucalyptus) aromatic (Wilson, 2010).

Flowers of Myrtaceae are actinomorphic and (0-) 4 or 5
(-7)-merous with numerous (10–270) stamens that may be in
fascicles opposite the petals. Flowers of Eucalyptus and
Corymbia have an operculum (bud cover) that opens at anthesis
and then falls from the flower (Mabberley, 2017). In some species,
the stamen display attracts pollinators that collect pollen, but in
other species, the thick and sweet petals are the attraction for

pollinators. Flowers have a hypanthium, and the ovary may be
superior, inferior or half-interior. There is one pistil, and the
ovary is 1-6[-18] locular and carpellate. Placentation is axile,
basal or parietal with 2–300(-500) ovules in the ovary (Wilson,
2010; Vasconcelos et al., 2019; Landrum, 2021).

Wilson (2010) described six general kinds of fruits/dispersal
units for the Myrtaceae: (1) three-loculed soft fruit or berry devel-
oped from a superior ovary, Psiloxylon; (2) fruit with an inferior
ovary and fleshy hypanthium, usually called a ‘berry’, Syzygieae;
(3) drupe-like fruits with a thin fleshy covering over a mass of
seeds with bony seed coats,Myrtella and Lithomyrtus; (4) indehis-
cent, leathery fruit, Osbornia; (5) dry, indehiscent fruits (‘nut-
like’), Chamelaucium, Corynanthera and Thryptomene and (6)
dry, dehiscent capsule, Leptospermeae and Melaleuceae. Seeds
of Myrtaceae have little or no endosperm. The embryo in mature
seeds is starchy or oily, fully developed (does not grow inside the
seed prior to initiation of germination) and may be straight, coiled
or folded (Zomlefer, 1994; Snow, 2000; Simpson, 2006; Wilson,
2010; Retamales et al., 2014; Ribeiro et al., 2021; Neto et al.,
2022). The seed coat may be membranous, bony or somewhat lea-
thery, depending on the tribe/genus (Corner, 1976; Landrum and
Sharp, 1989; Retamales et al., 2014; Ribeiro et al., 2021; Sbais
et al., 2022), but it does not have a palisade layer of Malpighian
cells, i.e. specialized macrosclereids with a light line that are
found in water-impermeable seeds (Corner, 1976; Werker,
1997). Seeds are 0.5–20 mm in length, depending on the species
(Kirkbride et al., 2006).

Palaeohistory of Myrtaceae

Berger et al. (2016) reported that the Myrtales diverged from the
Geraniales c. 124 Ma with a crown age of c. 116 Ma and that the
Myrtales originated in West Gondwana (i.e. South America and
Africa). However, Zhang et al. (2021) concluded that the
Myrtales differentiated from the Geraniales c. 111.5 Ma with a
crown age of c. 104.9 Ma. Laurasia had separated from
Gondwana at 116–104.9 Ma, and the southern and central
parts of South America and Africa separated between 135 to
105 and 119 to 105 Ma, respectively (McLoughlin, 2001).
Based on data from studies on molecular phylogeny, the
divergence of the Myrtaceae has been placed at 85 (Thornhill
et al., 2015; Berger et al., 2016) to 80 Ma (Sytsma et al., 2004),
which was before the final separation of South America from
Antarctica and the separation of Australia from Antarctica
c. 30 Ma with opening of the Drake Passage and Tasman
Straight, respectively (Scotese and Golonka, 1992; Lawver and
Gahagan, 2003; Scotese, 2021). However, Gonçalves et al. (2020)
used data for 78 plastid protein-coding genes from 125
species representing 8 myrtalean families, including 8 genera
and 51 species of Vochysiaceae, and fossils from 4 myrtalean
families and estimated the crown age of Myrtales as 125.5 Ma.
These authors placed the divergence of Myrtaceae from its
closest relative the Vochysiaceae at c. 100 Ma with a stem age of
115 Ma. Based on these dates, the Myrtaceae diverged before
the beginning of the separation of West Gondwana and South
America.

Hill and Scriven (1995) and McLoughlin (2001) concluded
that the disturbance caused by continental rifting may have pro-
vided new environmental conditions that promoted the diversifi-
cation and dispersal of angiosperms, including the Myrtaceae.
Jordan et al. (2016) thought that continental movements probably
do not explain the increase in a number of terrestrial species but
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that changes in climates due to the movements of continents may
have promoted increased speciation.

Thornhill et al. (2015) reported that Myrtaceae had a
Gondwanan origin and that at least 6 of the 22 sister groups of
this family included in their study may be a product of vicariance.
Three of the 22 sister groups had evidence of overland dispersal
events, while the other 13 had undergone transoceanic long-
distance dispersal. Some researchers, e.g. Sytsma et al. (2004),
have suggested that the origin of extant Myrtaceae was in
Australasia since tribes such as Chamelaucieae, Eucalypteae,
Leptospermeae, Lindsayomyrteae, Lophostemoneae, Melaleuceae
and Xanthostemoneae are not found in South America or
Africa. Thornhill et al. (2015) suggested that radiation of subfam-
ily Myrtoideae occurred in the part of Gondwana that eventually
became Australia. Berger et al. (2016) found a significant increase
in diversification rates in Myrtaceae at c. 75 Ma, and speciation
was 0.32 species Ma−1 and extinction 0.15 species Ma−1. These
authors determined that extensive radiation of Myrtaceae
occurred in Australia from the Eocene into the Miocene, as the
cooling and drying of the climate increased.

The crown age of subfamily Myrtoideae is c. 75 (Biffin et al.,
2010) to 71.5 Ma (Thornhill et al., 2015), and it is c. 39.7 Ma
for subfamily Psiloxyloideae (Thornhill et al., 2015). The diver-
gence of Heteropyxis and Psiloxylon was c. 18 Ma (Berger et al.,
2016). The crown age of the tribe Myrteae is 50.7 Ma
(Thornhill et al., 2015), and its likely ancestral area is eastern
Gondwana (Australia, New Caledonia, New Guinea and New
Zealand) (Vasconcelos et al., 2017; Estrella et al., 2019). The
divergence of Australasian and South American Myrteae was
43.9 Ma, after which much radiation occurred in both regions
(Thornhill et al., 2015). Dispersal events between Australia and
South America were possible in the Tertiary via Antarctica
(Sytsma et al., 2004).

Fossilized parts of Myrtaceae plants of various ages have been
found: flowers, Early Eocene, Argentina (Zamaloa et al., 2020);
flowers and fruits, Eocene, Australia (Basinger et al., 2007); fruits
and seeds, Eocene, British Columbia (Canada) and Palaeocene,
North Dakota (USA) (Pigg et al., 1993; Manchester, 1999); leaves,
Early Miocene, Australia (Tarran et al., 2018); leaves, Middle
Eocene, Argentina (Panti, 2016); pollen, Cretaceous–Eocene,
Sarawak (Malaysia) (Muller, 1968); pollen, Palaeogene–Neogene,
Australia (Thornhill and Macphail, 2012); wood, Late
Cretaceous–Early Tertiary, Antarctica (Poole et al., 2003) and
wood, Late Cretaceous, India (Shukla et al., 2012). Fossils can
be helpful in dating a phylogeny, but in the case of Myrteae dif-
ferences in crown mode have resulted, depending on the kind of
fossils considered. For example, Vasconcelos et al. (2017) using
macrofossils and fossil pollen of Myrteae obtained a crown
node for Myrteae of 65.55 Ma (Cretaceous–Palaeocene boundary)
and 40.76 Ma (mid-late Eocene), respectively.

Radiation of Myrtaceae resulted in tribes with dry (capsular)
fruits and those with fleshy fruits (Thornhill et al., 2015).
Sytsma et al. (2004) found that fleshy, indehiscent fruits have ori-
ginated at least three times in the Myrtaceae: Myrtoid group
(Myrteae), Acmena group (Syzygieae) and Osbornia
(Osbornieae). Compared with other lineages of Myrtaceae, tribes
Syzygieae and Myrteae have had high rates of diversification, and
the increased rate is associated with a shift from dry to fleshy
fruits, which occurred independently in both tribes (Biffin et al.,
2010). Nine of the 13 long-distance dispersal events proposed
by Thornhill et al. (2015) involved taxa with fleshy fruits that
could be dispersed by birds or bats. The presence of Myrtus in

the Mediterranean Region perhaps is due to a long-distance
dispersal event from East Gondwana to the Mediterranean via
northern Africa during the Eocene (Thornhill et al., 2015).

Two large genera of Myrtaceae with dry (capsular) fruits are
Eucalyptus (tribe Eucalypteae) and Metrosideros (tribe
Metrosidereae). The Australasian eucalypt group includes
Allosyncarpia, Angophora, Arillastrum, Corymbia, Eucalyptus,
Eucalyptopsis and Stockwellia (Ladiges et al., 2003), with
Eucalyptus being the largest with 712 species (POWO, 2024).
Some species diversification of the Eucalyptus group is related
to the cooling and drying of Australia and increased fire fre-
quency (Ladiges et al., 2003). Crisp et al. (2011) reported that
the sclerophyllous woodlands and savannas in Australia are domi-
nated by species of Eucalyptus, many of which can resprout after
fire. Using trait mapping on a dated phylogeny of Myrtaceae,
these authors found that epicormic resprouting (from buds on
the stem) in Myrtaceae was correlated with the development of
fire-prone Eucalyptus-dominated habitats beginning 60–62 Ma.

Metrosideros with c. 60 species has high richness in Australia,
New Caledonia and New Guinea, and it occurs on various Pacific
islands such as Bonin, Fiji, Hawaii, Marquesas, New Zealand and
Samoa (Wilson, 1996; Mabberley, 2017; Wright et al., 2021).
Metrosideros angustifolia is the only species of Myrtaceae with
capsular fruits in Africa (Sytsma et al., 2004; Mabberley, 2017),
and M. stipularis is the only one in the New World (Sytsma
et al., 2004). Seeds of Metrosideros are wind dispersed and can
be lifted by wind speeds of 5–18 km h−1 (Wright et al., 2000).
Thus, long-distance dispersal by wind may help account for the
occurrence of this genus on widely separated Pacific islands.

Except for M. stipularis with dry fruits in Chile and Argentina,
all Myrtaceae in the Neotropics belong to the tribe Myrteae and
have fleshy fruits (Lucas et al., 2005, 2011; Wilson et al., 2005;
Neto et al., 2022). Species diversification in Myrteae accelerated
in the Neotropics compared with that of Myrteae in the Old
World (Vasconcelos et al., 2017). The development of new
embryo traits [e.g. large storage cotyledons or large leaf-like folded
cotyledons) (Landrum, 1986; Landrum and Stevenson, 1986),
polyploidy (Costa et al., 2017) and bony seed coats as in
Psidium (Landrum and Stevenson, 1986)] have been suggested
as new adaptive advantages associated with the increased rates
of speciation of fleshy-fruited species.

Eugenia (Myrteae) with 1218 species (POWO) is the largest
genus of Myrtaceae in the Neotropics (Mazine et al., 2018).
After the ancestors of Eugenia migrated to southern South
America, there was species diversification and dispersal to nor-
thern South America and the Caribbean region. The highest num-
bers of Eugenia species in South America are in the Atlantic
Forest, Amazon Forest and Cerrado (Brazilian savanna) with
250, 91 and 74 species, respectively (Bünger et al., 2016). For E.
uniflora, there are two evolutionary lineages in the Atlantic
Forest, one in the north and another in the south
(Turchetto-Zolet et al., 2016). Eugenia was dispersed from
South America to Southeast Asia and Africa (van der Merwe
et al., 2005; Lucas et al., 2007; Mazine et al., 2018). Two clades
of Eugenia occur in southern Africa: one related to New World
Eugenia and one related to Old World Eugenia (van der Merwe
et al., 2005).

Using chloroplast and nuclear DNA sequences of the genus
Myrceugenia (Myrteae), Murillo-A et al. (2016) determined that
four lineages of the genus had diverged in South America by
the early Miocene: three in Chile and one in southeastern
Brazil. One Chilean lineage dispersed northward, and species
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became part of the subtropical montane flora; part of this lineage
subsequently migrated southward. The other two Chilean lineages
migrated south, and species became part of the cool-temperate
rainy forest flora. The lineage in southeast Brazil diversified,
with species now growing in the Paraná (Araucaria angustifolia)
forest, tropical semi-deciduous forests, pampas and Cerrado.

Myrcia (Myrteae) is a large genus with c. 800 species, and it is
divided into nine sections (Lima et al., 2021). Santos et al. (2017)
concluded that Myrcia originated in the Montane Atlantic Forest
of eastern Brazil in the late Eocene to early Miocene, after which
some lineages diversified in the region. Other lineages migrated
northward to the Amazon, Guyana and Caribbean regions,
where diversification occurred. Also, lineages of Myrcia dispersed
from the Atlantic Forest to regions with Cerrado, Yungas (sub-
tropical cloud forest) and savanna vegetation, which was followed
by diversification of new species (Amorim et al., 2019). In fact,
Myrcia section Aguava seems to have originated in the Cerrado
in the mid-Miocene (Lima et al., 2021).

Syzygium (Syzygieae) with 1231 species (POWO) is an Old
World tropical/subtropical genus of trees or rarely shrubs, many
of which are cultivated for their edible fleshy fruits (Uddin
et al., 2022). Using data from molecular phylogenetic studies of
Syzygium, Low et al. (2022) determined that the genus originated
in Sahul, which was a land mass consisting of Australia, New
Guinea and the Aru Islands that was connected due to low seas
levels during the Last Glacial Maximum, e.g. c. 23,000–19,000
years ago (Clark and Mix, 2002). Migration of Syzygium from
Sahul to the Sunda Islands (Brunei, East Timor, Indonesia,
Malaysia and Singapore) has occurred at least 12 times, and
each dispersal event was followed by species diversification.
Dispersal and diversification have resulted in various species of
Syzygium growing in the Northern Pacific, India and Africa
(Low et al., 2022). These authors note that dispersal to a new
region often has resulted in rapid speciation.

Background information on reproductive biology

Apomixis, polyploidy and polyembryony

The basic haploid chromosome number for the Myrtaceae is n =
11, and ‘… the vast majority of species are diploid with 2n = 22
…’, e.g. Eucalyptus spp. (Grattapaglia et al., 2012). However,
there are triploid and tetraploid species of Myrtaceae (Costa
and Forni-Martins, 2007). Polyploidy is frequent in fleshy-fruited
genera such as Eugenia, Myrcia, Psidium (Costa and
Forni-Martins, 2007; Neto et al., 2022) and Syzygium (Ouadi
et al., 2023). Neto et al. (2022) concluded that hybridization
and allopolyploidy have contributed to speciation in the
Myrteae. Further, Silveira et al. (2016) found that polyploid indi-
viduals of Eugenia species grew in habitats with more adverse
environmental conditions than diploid individuals.

Apomixis (agamospermy) has been reported for several species
of Myrtaceae, and in Syzygium cumini, S. jambos and S. panicu-
latum asexual embryos are derived from the ovules, either the
integuments or nucellus (Souza-Pérez and Speroni, 2017), i.e.
adventitious embryony or sporophytic apomixis (van der Pijl,
1934; Gustafsson, 1947). In S. jambos, up to 13 embryos have
been found in a seed (van der Pijl, 1934), and, in S. cumini, the
number of embryos in a seed ranges from 1 to 7 (Rekha et al.,
2020). In Psidium cattleianum, however, the asexual embryos
are of diplosporic origin, i.e. the megaspore mother cell forms
an embryo sac (Souza-Pérez and Speroni, 2017).

In some cases, both asexual (adventitious embryony) and sex-
ual embryos are formed in the same seed (i.e. polyembryony of
Ganeshaiah et al. (1991)), and they are in close proximity to
each other (Koltunow, 1993). In seeds of Syzygium paniculatum
(a rare polyploid rainforest tree in Australia) with two embryos,
the sexual embryo is larger than the asexual one (Thurlby et al.,
2012). However, if seeds of S. paniculatum have more than two
embryos, the sexual embryo is not the largest one. The largest
embryo in a seed (be it sexual or asexual) produces the largest
seedling. Ganeshaiah et al. (1991) concluded that ‘… polyembry-
ony is a maternal counter strategy to compensate for the loss in
her fitness due to brood reduction caused by sibling rivalry’.

Flowering of fleshy-fruited species

The flowering season often begins with the onset of the rainy sea-
son, e.g. in Australia (Shapcott, 1998), Brazil (Torezan-Silingardi
and Oliveira, 2004; Staggemeier et al., 2010; Vogado et al., 2016)
and Venezuela (Zapata and Arroyo, 1978). Rhodomyrtus tomentosa
grows in a subtropical monsoon climate in China and flowers in
spring, which is at or near the beginning of the summer wet season
(Wei et al., 2009). On Chiloé Island (Chile), the flowering of 13
species of Myrtaceae mostly occurred in summer, at which time
the mean maximum temperature was 17.6°C (Smith-Ramírez
et al., 1998). Syzygium alternifolium grows in tropical deciduous
forests in India and flowers in the dry season (late winter and
early spring) when temperatures are relatively low (Raju et al.,
2014). Many species of Eugenia in South Africa flower in spring,
but a few species flower in early summer; E. verdoorniae flowers
in winter (Van Wyk and Lowrey, 1988). Drought can delay flower-
ing causing some Eugenia species not to flower for one or more
seasons. In the case of the rhizomatous E. albanensis, grassland
fires promoted flowering (Van Wyk and Lowrey, 1988).

In the Atlantic Forest of eastern Brazil, 24 of 34 (70%) species
of Myrtaceae flowered during the wet season; however, fruits were
available for animals all year. At least one species of Myrtaceae
had ripe fruits each month of the year, but, in some months,
six or more species had ripe fruits (Staggemeier et al., 2010).
Although most of the 13 taxa of Myrtaceae studied on Chiloé
Island (Chile) flowered in summer, the duration of flowering var-
ied from 2 to 5 months with a mean flowering time of 3.0 months
(Smith-Ramírez et al., 1998). Further, one or more taxa had ripe
fruits in each month of the year. In the sandy coastal plain in
southeastern Brazil, at least one species of Myrtaceae also had
ripe fruit at all times of the year (Oliveira et al., 2022).

Mass flowering occurs in various species of fleshy-fruited
Myrtaceae, e.g. Eugenia spp. (Silva and Pinheiro, 2009), Syzygium
alternifolium (Raju et al., 2014), S. nervosum (Shapcott, 1998)
and S. tierneyanum (Hopper, 1980). Proença and Gibbs (1994)
found four flowering strategies among eight sympatric species of
Myrtaceae in central Brazil: big bang, synchronized mass flowering
that is completed in about 1 week; pulsed-bang, synchronized flow-
ering for about 1 week but with intervals of up to several days when
no flowers open; cornucopia, many flowers produced per plant over
a period of about 1 month and steady state, plants produce only a
few flowers each day for about 1 month. Torezan-Silingardi and
Oliveira (2004) found that plants of Myrcia rostrata flowered in
pulses over a period of 13 weeks with many or a few flowers open-
ing each day. Since flowering in the M. rostrata population was not
well synchronized, this seems to be a modified steady-state pattern
of flowering. Plants of M. tomentosa had a pulsed-bang flowering
strategy with three synchronized flowering events each year.

4 C.C. Baskin and J.M. Baskin

https://doi.org/10.1017/S0960258525000066
Downloaded from https://www.cambridge.org/core. IP address: 18.219.195.35, on 25 Apr 2025 at 21:33:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0960258525000066
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Flowering of dry-fruited species

In Australia, most capsular-fruited species of Myrtaceae flower in
spring, e.g. Eucalyptus (Birtchnell and Gibson, 2006),
Leptospermum and Melaleuca (Beardsell et al., 1993), presumably
in response to increased day length and/or temperature (Beardsell
et al., 1993). However, the flowering of Chamelaucium uncinatum
is promoted by short days and temperatures of 20–25°C resulting
in flowering during winter (Dawson and King, 1993). In Victoria
(Australia), the commencement of flowering for 28 species of
Eucalyptus ranged from late winter to mid-autumn (Birtchnell
and Gibson, 2006). The duration of the flowering period of
these 28 species ranged between 1 and 8 months; thus, pollinators
(e.g. bees) had a continuous supply of Eucalyptus flowers to visit
throughout the year. The flowering frequencies of the 28 species
were 1–7 years, but most species flowered every 2–4 years. Even
in off-years for flowering of a species, a few individuals produced
flowers.

Franklin et al. (2016) investigated the mass flowering of
Eucalyptus mediocris in dry sclerophyll forests in northern
Queensland (Australia). Trees flowered from late autumn to late
summer, and most (75%) of them flowered heavily. Mass syn-
chronized flowering occurred about once each decade, i.e. flower-
ing occurred at irregular intervals with high seed production
following each flowering event (masting). In contrast to E. medio-
cris, Metrosideros excelsa flowered profusely for about 2 weeks in
summer (Schmidt-Adam et al., 1999, 2000), which was a big bang
flowering strategy.

Pollinators of fleshy-fruited species

Flowers of fleshy-fruited species are pollinated by a diversity of
organisms, and the reward for visitors may be nectar and/or pol-
len. If nectar is the reward, anthers and/or pollen grains smell
sweet, e.g. Eugenia (VanWyk and Lowrey, 1988). Eugenia flowers
are pollinated by insects, in particular bees (Hymenoptera)
including the honeybee Apis mellifera (Zapata and Arroyo,
1978; Van Wyk and Lowrey, 1988; Silva and Pinheiro, 2009).
Coleoptera and Diptera also visit the flowers of Eugenia (Silva
and Pinheiro, 2009). In central Brazil, flowers of Blepharocalyx
salicifolia, Campomanesia pubescens, C. velutina, Eugenia dysen-
terica, Myrcia linearifolia, M. rhodosepala (Proença and Gibbs,
1994), M. rostrata, M. tomentosa (Torezan-Silingardi and
Oliveira, 2004), Psidium firum and Siphoneugena densiflora
(Proença and Gibbs, 1994) have a sweet odour but no nectar,
and pollen is the reward for flower visitors, which are various spe-
cies of bees.

Fleshy-fruited species such as Eugenia speciosa, Gomidesia
schaueriana, Myrcia multiflora, M. racemosa, M. splendens and
Psidium cattleianum growing in the coastal plain forest of São
Paulo state in Brazil begin to flower during the onset of the
rainy season in spring (September–October) (Fidalgo and
Kleinert, 2009). Flowers mainly were visited by bees, which either
touched the anthers or buzzed (sonicated) them to collect pollen.
The breeding system for E. speciosa, G. schaueriana, M. racemosa
and M. splendens was xenogamy (required cross-pollination) and
that of M. multiflora and P. cattleianum facultative xenogamy, i.e.
adapted for cross-pollination by insects but if pollinators are not
present selfing occurs.

Twelve of 16 species of insects (Apidae) that visited flowers of
Rhodomyrtus tomentosa growing in southeastern China had pol-
len grains on their bodies, which became attached to the stigma

when bees were allowed to visit virgin flowers (Wei et al.,
2009). Pollen is the reward for insects visiting the flowers of R.
tomentosa. The bees Amegilla florea and Xylocopa nasalis were
the primary visitors/pollinators, and females were observed col-
lecting pollen into the pollen basket on their hind legs.

Syzygium species have both pollen and nectar as rewards for
pollinators, and flowers are visited by many insects. For example,
in the southern Eastern Ghats of India, flowers of S. alternifolium
were visited by 32 species of insects, including bees, beetles,
butterflies, flies, hawkmoths and wasps, and by the African fat-
tailed gecko (Hemitheconyx caudicinctus). All flower visitors col-
lected nectar, while the bee Trigona iridipennis collected both
nectar and pollen (Raju et al., 2014). In Zambia, Hymenoptera,
Diptera, Coleoptera and Lepidoptera visited flowers of S. gui-
neense, and nectar-collecting was the most common behaviour
observed (Coppinger and Stanley, 2023). Apis mellifera was the
most frequent flower visitor followed by Braunsapis bees, wasps
and Diptera. Among the various invertebrate visitors to flowers
of S. cormiflorum in the Australian rainforest, only the bodies
of moths, ants, cockroaches, mites and a Staphylinid beetle had
pollen on them (Crome and Irvine, 1986). In addition, four spe-
cies of honeyeater birds (Meliphagidae) and two species of small
blossom bats (Pteropodidae) were daily visitors of S. cormiflorum
flowers; bats visited after dusk and before dawn. Flowers of S. tier-
neyanum, a species of northern Australian rainforests, were visited
by 45 species of animals: bats, birds, bees (Apis mellifera), butter-
flies, hawkmoths and four other kinds of moths and honeyeaters
(Hopper, 1980). Hawkmoths and honeyeaters were the most fre-
quent native pollinators, and nectar was the reward for flower visi-
tors. In the bird-pollinated flowers of Acca sellowiana and
Myrrhinium atropurpureum, the reward is fleshy, sweet petals
(Gressler et al., 2006).

Pollination of dry-fruited species

Pollinators include insects such as ants, bees, beetles, butterflies,
flies, moths and wasps and vertebrates such as bats, birds and
small marsupials (Beardsell et al., 1993; Carthew and Goldingay,
1997; Yates et al., 2005; Sharanya et al., 2014; Groom and
Lamont, 2015; Chauhan et al., 2017). For Australian genera
such as Callistemon, Eucalyptus and Melaleuca, bees, especially
those in the family Colletidae, are important pollinators, and
they collect both pollen and nectar (Beardsell et al., 1993).
However, the honeybee (Apis mellifera) is sometimes the most
common pollinator (Yates et al., 2005).

Bird pollinators include various species of honeyeaters, lori-
keets (Ford et al., 1979), honeycreepers (Carpenter, 1976), sun-
birds, parrots and oriental white-eyed sparrows (Chauhan et al.,
2017). Phillips et al. (2010) concluded that bird pollination results
in the movement of pollen for relatively long distances and could
help reduce inbreeding compared with insect pollination.
However, there was no significant difference in the fruit set of
honeyeater-pollinated flowers of Calothamnus quadrifus growing
in large versus small fragments of Kwongan Sand Plain
(Mediterranean) shrubland in south-west Australia (Yates et al.,
2007). Also, seed germination, seedling development and seedling
mortality did not increase significantly with increased fragment
size; mean seed germination across all population sizes ranged
between 78 and 100%. However, the authors concluded that
bird movement of pollen between population fragments would
not prevent inbreeding depression from occurring in small frag-
ments. Bats are also long-distance pollinators, and they can
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deposit large amounts of pollen with a variety of genotypes on
flower stigmas (Fleming et al., 2009).

Breeding systems

Self-compatibility versus self-incompatibility is one of the first
considerations in understanding the breeding system of a species,
and many hand cross- and hand self-pollination experiments have
been done with Myrtaceae. Much variation in self-compatibility
and self-incompatibility is found in the Myrtaceae. Some species
of Eugenia are self-compatible, but others are self-incompatible
(Proença and Gibbs, 1994; Silva and Pinheiro, 2009).
Blepharocalyx salicifolius, Campomanesia velutina and
Siphoneugenia densiflora are strictly self-incompatible;Myrcia lin-
earifolia and C. pubescens mostly self-incompatible but with low
selfing; and Eucalyptus argutifolia (Kennington and James,
1997), Eugenia dysenterica, M. rhodosepala, Psidium firmum,
Syzygium guineense (Coppinger and Stanley, 2023) and S. nervo-
sum (Shapcott, 1998) self-compatible (Proença and Gibbs, 1994).
Kunzea pomifera is mostly self-compatible, and one barrier to
self-fertilization is that pollen tubes do not grow into the ovules
(Page et al., 2010). Not only is E. argutifolia self-compatible,
but Kennington and James (1997) concluded that geitonogamous
pollination (i.e. pollen from other flowers on the same plant) was
probably more common than outcrossing. High seed abortion in
the late stages of development prevents the occurrence of high
homozygosity in the population.

Some trees of Metrosideros excelsa are self-compatible and
others self-incompatible (Schmidt-Adam et al., 1999). Seed ger-
mination was 98.4% for fertile seeds of M. excelsa from all pollin-
ation treatments; thus, no inbreeding depression was detected. In
Hawaii (USA), flowers on red-flowered trees of M. collina are
partly self-incompatible, but those on yellow-flowered trees are
totally self-compatible (Carpenter, 1976). In New Zealand, the
endangered M. bartletti is self-incompatible and cross-pollination
is required for seed set (van der Walt et al., 2022).

Fruit set and seed formation in Myrcianthus coquimbensis did
not differ significantly between outcrossed and selfed flowers
(García-Guzmán et al., 2020). The germination of seeds from out-
crossed, selfed and control flowers ofMyrtus communis was 79, 52
and 45%, respectively, i.e. no inbreeding depression
(González-Varo and Traveset, 2010). These authors found that
outcrossing enhanced the number of seeds per fruit, seed germin-
ation and seedling growth, but it did not enhance fruit set.
Furthermore, the authors acknowledged that their sample size
of 10 mother plants is very modest with low statistical power,
and one of the main conclusions is that pollen limitation may
be genotype-dependent. However, the mass of seeds from selfed
flowers of M. communis was significantly higher than that of
seeds from outcrossed flowers, suggesting a trade-off between
seed number and mean seed mass within a fruit.

Fruit set for flowers of Campomanesia pubescens that were
bagged, hand self-pollinated, cross-pollinated or nonbagged (nat-
ural pollination) was 0, 40.3, 65.7 and 17.8%, respectively, and
germination was 0, 78.5, 100.0 and 87.7%, respectively
(Rodrigues et al., 2017). Seeds from hand cross-pollinated flowers
had faster germination and seedling growth than those from hand
self-pollinated flowers. Fruit set for flowers of Eugenia uniflora
that were bagged, hand self-pollinated, and cross-pollinated or
nonbagged/natural pollination was c. 15.5, 11.1, 34.4 and 52.0%,
respectively, and germination was 93.6, 98.5, 94.6 and 91.6%,
respectively (Fidalgo et al., 2019). That is, there was no inbreeding

depression for seed germination. The average germination per
gram of seeds (plus chaff) was 280 and 327 for seeds from self-
and cross-pollinated flowers of Eucalyptus regnans, respectively
(Eldridge and Griffin, 1983). Compared with outcrossing, self-
pollination significantly decreased the seed set of E. globulus
subsp. globulus, but there was no effect on seed germination per-
centage or rate (Hardner and Potts, 1995).

Self-pollinated flowers of Syzygium rubicundum had c. 2.1%
fruit set, and as the crossing distance increased to 1–2 km fruit
set increased to c. 9.5% (Stacy, 2001). However, an increase in
crossing distance up to 12 km decreased fruit set to c. 3%.
Regardless of crossing distance, seed germination percentages
were not significantly affected, while cumulative fitness was simi-
lar to fruit set. A pollen donor from a close-neighbor tree resulted
in biparental inbreeding depression, but that from trees in separ-
ate/distant forests resulted in outbreeding depression.

Some species in various genera of Myrtaceae have male and
hermaphroditic flowers on the same plant (andromonoecy),
including Beaufortia, Conothamnus, Eucalyptus, Leptospermum,
Melaleuca, Phymatocarpus and Regelia (Carr et al., 1971;
Primack and Lloyd, 1980; Beardsell et al., 1993). Other breeding
systems reported for species of Myrtaceae include dioecy and
gynodioecy. Dioecious species have male and female flowers on
different individual plants, e.g. Myrcia almasensis (Nic
Lughadha, 1994), and the most common pollinators are small
bees (Bawa, 1980). Dioecy is rare among angiosperms, but it
has been reported in the Myrtaceae (Landrum, 1986; Nic
Lughadha, 1994; Renner, 2014; Käfer et al., 2017), e.g. Pimenta
guatemalensis (Landrum, 1986). Cryptic dioecy also occurs in
the Myrtaceae (Chapman, 1964; Van Wyk and Lowrey, 1988;
Nic Lughadha and Proença, 1996). For example, populations of
about 15 species of Eugenia native to South Africa consist of
plants that are either male or have hermaphroditic flowers (andro-
dioecious), but these plants are functionally dioecious (Van Wyk
and Lowrey, 1988). Fruits are formed only when hermaphroditic
flowers are pollinated with pollen from male flowers because pol-
len from hermaphroditic flowers is not viable.

Gynodioecious species have only female (male sterile) flowers
on some plants and hermaphroditic flowers on other plants in the
same population. The ratio of female and hermaphroditic flowers
can vary greatly within and among populations. Gynodioecy
occurs in only about 2% of the angiosperm genera, but it is taxo-
nomically widespread and occurs in eumagnoliids, monocots and
eudicots (Dufay et al., 2014; Baskin and Baskin, 2020). The
Myrtaceae is 1 of 81 families with this kind of breeding system
(Dufay et al., 2014). However, the only example of a gynodioe-
cious Myrtaceae that we have found in the literature is
Eucalyptus leucoxylon subsp. leucoxylon (Ellis and Sedgley,
1993). In this taxon, some trees in the population have female
flowers and others have hermaphroditic flowers. Anthers in the
hermaphroditic flowers dehisced before the flowers opened result-
ing in c. 93% of the pollen being deposited on the stigma; the
other 7% of the pollen was available for cross-pollination.
Female flowers were cross-pollinated. However, there was no dif-
ference in seed set from cross-pollination for the two flower
morphs.

Seed dispersal

Fleshy fruits of Myrtaceae are eaten by various animals, including
birds, bats, carnivorous mammals, lemurs, monkeys, rodents,
marsupials and ungulates (Dew and Wright, 1998; Pizo, 2002,
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2003; Côrtes et al., 2009; Sinu et al., 2012; Tang et al., 2012; Lessa
et al., 2013; Chaves et al., 2018). Seed dispersal of Myrtaceae in the
Atlantic Forest of Brazil included birds (dispersing 14 Myrtaceae
genera), bats (2), carnivorous mammals (6), monkeys (9), rodents
(1), marsupials (2) and ungulates (2) (Pizo, 2002). Nine of the 14
genera had only one to two seed disperser(s), while
Campomanesia, Eugenia, Myrcia, Myrciaria and Psidium had 4,
5, 3, 3 and 6 dispersers, respectively.

Many species of birds eat fleshy fruits of Myrtaceae and then
disperse the seeds (Pizo, 2002, 2003; Bollen et al., 2004; Côrtes
et al., 2009; Sinu et al., 2012; Hicks and Elliott, 2020). Birds differ
in their fruit-eating behaviour: (1) swallow the whole fruit, (2) roll
the fruit around in the mouth and spit out the seeds and (3) eat
some of the fruit while leaving the seed attached to the parent
plant (Sinu et al., 2012). Only birds that swallow the fruit and
defecate or regurgitate the seeds at sites away from the parent
plant are effective seed dispersers. For example, in the Atlantic
Forest of Brazil, 17 species of birds visited fruits of Eugenia
umbelliflora, but only Turdua amaurochalinus and T. rufiventris
had the highest probability (0.28 and 0.24, respectively) of disper-
sing seeds (Côrtes et al., 2009). The crab-eating fox (Cerdocyon
thous) is a secondary disperser of E. umbelliflora seeds initially
dispersed by birds and then dropped to the soil surface (Cazetta
and Galetti, 2009). Germination percentage was not increased
by gut passage through the fox, but germination speed was
increased significantly.

In the Atlantic Forest of Brazil, bats eat the fruits of Eugenia stic-
tosepala, Psidium catleianum and P. guajava and disperse the seeds
(Pizo, 2002). The bat species Cynopterus sphinx and Rousettus
leschenault removed fruits from Syzygium oblatum trees growing
in Yunnan Province, China, and carried them for up to 73 m
away from the parent trees (Tang et al., 2012). Seedling survival of
S. oblatum under parent trees, in forest gap and under feeding-roost
trees was 78.3, 91.7 and 86.7%, respectively. The carnivorous mam-
mals coatis and canids and the ungulates tapirs and deer in the
Atlantic Forest eat fruits of Myrtaceae that have fallen on the ground
(Pizo, 2002). The rodents agoutis (Dasyprocta) and spiny rats
(Echimyidae) also collect fleshy fruits of Myrtaceae from the soil sur-
face, and they may cache some of them in soil/litter up to 6.1 m
away from the fruiting trees (Pizo, 2002).

Monkeys eat fleshy fruits of various species of Myrtaceae.
Brown howler monkeys are legitimate seed dispersers of
Myrtaceae and other plant families with fleshy fruits that grow
in their habitat (Chaves et al., 2018). Monkeys swallow the fruits
and later defecate seeds in new locations away from the parent
trees. Monkeys defecate seeds in groups, while birds may drop
individual seeds (Pizo, 2003). A comparison of seedling survival
for clumped versus individual seeds in the seed-deposition site
revealed that the isolated seeds of Gomidesia anacardiifolia and
Marlierea obscura (i.e. bird-dispersed seeds) had higher survival
than clumped seeds. Marsupials in particular didelphids eat fleshy
fruits of angiosperms, including those of Myrtaceae (Lessa et al.,
2013). After gut passage, seeds of Myrcia sp. germinated to higher
percentages than control seeds, while those of Psidium sp. germi-
nated to a lower percentage than control seeds (Lessa et al., 2013).

The fleshy fruits of Myrtus communis in the Mediterranean
shrublands of southern Europe are dispersed by birds (Herrera,
1995; Traveset et al., 2001) and the carnivorous mammals red
fox and pine marten (Aronne and Russo, 1997; Traveset et al.,
2001). Also, seeds of M. communis have an elaiosome (fleshy
body on seed that is rich in lipids and proteins) and are dispersed
by ants (Aronne and Wilcock, 1994).

After dry fruits of Myrtaceae, e.g. Calothamnus, Corymbia,
Eucalyptus andMelaleuca, open and release seeds and indehiscent
fruits, e.g. Calytrix, Darwinia and Micromyrtus, fall from the par-
ent plant, both gravity and wind facilitate dispersal. Fruits of
Calytrix retain the calyx, which promotes dispersal by wind
(Groom and Lamont, 2015). Seeds of Metrosideros polymorpha
are dispersed by wind and can reach seed densities of 363, 137,
37, 25 and 20 m−2 at distances of 25, 50, 100, 150 and 250 m,
respectively, beyond the edge of the forest (Drake, 1992).

Following the dispersal of seeds/fruits via gravity and wind,
ants may take them and thus serve as secondary dispersers (e.g.
Andersen and Ashton, 1985; Myerscough, 1998). After the fruits
of Corymbia torelliana open, c. 88% of the seeds are dispersed by
gravity, but a few seeds in each fruit are embedded in resin in the
open fruits and are not dispersed (Wallace et al., 2008). Stingless
bees in the genus Trigona collect the resin, and as they do so they
collect seeds of C. torelliana. Bees carry the seeds and resin to
their nests 20–220 m away from the parent trees, after which
they discard the seeds from their nests; these seeds germinate to
about 95%.

It should be noted that the seeds of Myrtaceae taken by ants,
beetles, birds, lemurs, lygaeid bugs, monkeys, rodents and other
animals may serve as food for the animals, i.e. seed predation
(Ashton and Frankenberg, 1979; Ashton, 1979; Andersen and
Ashton, 1985; Wellington and Noble, 1985; Dew and Wright,
1998; Silva and Pinheiro, 2009; Carvalho and Pizo, 2023). For
example, no seeds of Eucalyptus regnans were found in/on the
soil in mature forests of this species, although seed rain/fall was
good each year (Ashton, 1979). Seeds were eaten/destroyed by
several species of ants including Chelaner leae, Prolasius frunneas,
P. flavicorns and P. pallidus. After a fire, however, massive seed fall
from canopy-stored seeds not only satiated the ants, but there was
‘a temporary interference of ant foraging activity’. In southeastern
Australia, the number of viable seeds in the annual seed rain of
Eucalyptus baxteri, Leptospermum juniperinum and L. myrsi-
noides was 13, 480 and 800 seeds m−2 yr−1, respectively, but the
number of seeds remaining after predation was 1.3, 48 and
80 m−2 yr−1, respectively (Andersen, 1989).

Kinds of embryos in seeds of Myrtaceae

Martin (1946) listed bent, folded and linear embryos for
Myrtaceae, but investing and spatulate embryos also occur in
this family (e.g. Dawson, 1970; Landrum and Kawasaki, 1997;
Wilson, 2010). Thus, five morphologically distinct kinds of
embryos are found in Myrtaceae (Fig. 1). A linear-full embryo
(i.e. a fully developed linear embryo) is long, usually curved
with small, recurved cotyledons and an enlarged hypocotyl that
is greatly swollen in some species (Fig. 1A). A spatulate embryo
has spoon-shaped cotyledons attached directly above a straight
(easily visible) hypocotyl/radicle (Fig. 1B). A bent embryo has
rounded cotyledons and a hypocotyl that curves sharply around
the end of the cotyledons (Fig. 1C). A folded embryo has large
foliaceous cotyledons that are folded together and an obviously
protruding hypocotyl that may be somewhat curved (Fig. 1D).
An investing embryo has thick fleshy cotyledons that cover
most, or all, of the embryo axis (Fig. 1E). The investing embryo
of Myrtaceae has been described as massive but undivided, i.e.
undifferentiated (McVaugh, 1956). However, Justo et al. (2007)
clearly showed that the investing embryo of Eugenia pyriformis
was differentiated and had an embryo axis c. 1.0 mm in length
located between the cotyledons.
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Investing, folded and linear-full embryos in tribe Myrteae have
been called eugenioid, myrcioid and myrtoid embryos, respect-
ively (e.g. Landrum and Stevenson, 1986; Lucas et al., 2007; da
Silva and Mazine, 2016). However, in this review, we refer to all
embryos using the embryo classification system of Martin
(1946) as modified by Baskin and Baskin (2007).

In seeds of Myrtaceae with a bent, folded, investing or linear-full
embryo, there is a shoot apical meristem between the cotyledons and
a root apical meristem at the lower end of the hypocotyl. The hypo-
cotyl is the first structure to emerge from seeds with a bent, folded,
investing and linear-full embryo (see spatulate embryo below), after
which the primary root and a shoot are produced by the apical mer-
istems (Beltrati, 1978; Landrum and Stevenson, 1986; Aronne and de
Micco, 2004; Meza and Bautista, 2007; Rego et al., 2011; Bardales
et al., 2014; Cosmo et al., 2017; Freitas et al., 2018). The amount
(length) that the hypocotyl extends from seeds before the primary
root is visible varies, resulting in some seedlings with a relatively
long hypocotyl (between the seed and root) (Aronne and de
Micco, 2004) and others with a short hypocotyl (Beltrati, 1978;
Nacata and Andrade, 2020). This kind of seed dormancy was placed
in Subclass 4 (Hypocotylar) of Class physiological dormancy (PD)
by Baskin and Baskin (2021). The dormancy formula they suggested
for seeds is Cm′

xb , where C is class physiological dormancy (PD), ×
level 1 (nondeep), 2 (intermediate) or 3 (deep) of PD, subscript b
that warm temperatures are required to break PD and superscript
m′ that the root and shoot arise from meristematic tissue on oppos-
ite ends of the hypocotyl after the hypocotyl has emerged from the
seed. For nondormant (ND) seeds, the formula is Cm′

nd , where sub-
script nd means nondormant (Baskin and Baskin, 2021).

Information about the germination morphology of seeds with
a spatulate embryo is not clear. Some authors (e.g. Ladiges et al.,
1981; Robinson et al., 2008; Baumann and Hewitt, 2023) have said
that radicle emergence was the criterion for germination.
However, the photographs of Melaleuca alternifolia seeds in vari-
ous stages of germination show the first stage as having a hypo-
cotyl that is twice as long of the radicle (Pinheiro et al., 2020),
causing us to wonder if germination morphology in seeds with
a spatulate embryo is like that in the other kinds of Myrtaceae
seeds, i.e. the radicle does not grow until the hypocotyl has
emerged from the seed.

A literature search was conducted to increase the size of our
embryo database for the Myrtaceae. In total, we have information
on embryo morphology for 240 species in 123 genera and 20
tribes of Myrtaceae (Supplementary Table S1). Some tribes of
Myrtaceae have only one kind of embryo, e.g. Chamelaucieae
has only linear-full and Heterophyxideae, Lindsaomyrteae,
Lophostemoneae, Psiloxyleae, Syncarpieae and Syzygieae have

only investing embryos (Table 1). Xanthomyrteae and
Xanthostemoneae have only bent embryos; Tristaniopsideae
only folded embryos; and Cloezieae, Leptospermeae,
Melaleuceae, Metrosidereae, Osbornieae and Tristanieae only
spatulate embryos. Backhousieae (bent, linear-full), Eucalypteae
(folded, investing) and Kanieae (linear-full, spatulate) have two
kinds of embryos, while the Myrteae have four kinds: bent, folded,
investing and linear-full.

According to Martin (1946), bent, folded, investing, linear and
spatulate embryos have a central (axile) position inside the seed.
Martin’s family tree of seed phylogeny shows the linear embryo
as being in about the middle of the tree, and the upward progres-
sion of embryos on the tree is linear→ spatulate→ bent→
folded→ investing. That is, the investing embryo is at the top of
Martin’s tree. However, when compared to the crown age of the
various tribes of Myrtaceae (Thornhill et al., 2015), no clear pattern
of phylogenetic relationships between the various kinds of embryos
in Myrtaceae is evident. For example, the crown age of
Lophostemoneae and Syzygieae with an investing embryo is 41.3
and 29.3 Ma, respectively, while that of Melaleuceae and
Metrosidereae with spatulate embryos is 55.5 and 24.9 Ma, respect-
ively. The crown age of Myrteae with bent, folded, investing and
linear-full embryos is 50.7. The crown age of Xanthostemoneae
and Backhousieae with a bent embryo is 55.6 and that of
Backhousieae with bent and linear-full embryos is 18.5 Ma.

Vochysiaceae is the closest relative of Myrtaceae (Gonçalves
et al., 2020), and living species of Vochysiaceae have seeds with
folded, investing or spatulate embryos (Niembro, 1983;
Garwood, 1998; Ferreira et al., 2001; Kirkbride et al., 2006).
Thus, it is not surprising to find these three kinds of embryos
in various positions on molecular phylogeny trees of Myrtaceae
based on either combined plastid or combined nuclear data
(Wilson et al., 2022). The presence of two or more kinds of
embryos in four tribes of Myrtaceae (Table 1) suggests that
there are some possible evolutionary relationships between
kinds of embryos in this family that merit research, e.g. what is
the origin of the bent and linear-full embryos in the Myrtaceae?
Bent and linear-full embryos occur in Backhousieae and linear-
full and spatulate embryos in Kanieae; however, the Myrteae
have linear-full, bent, folded and investing embryos but no spatu-
late embryos.

Occurrence of seed dormancy: tribes, life forms and
vegetation regions

Since the five kinds of embryos in seeds of Myrtaceae are fully
developed (Fig. 1) and seeds are water permeable (e.g.

Figure 1. Embryo types of Myrtaceae. (A) Linear-full (myrtoid); (B) spatulate; (C) bent; (D) folded (myrcioid) and (E) investing (eugenioid). A, axis (which is covered
by cotyledons); C, cotyledons; H, hypocotyl.
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Pérez-Fernández et al., 2000; Auld and Ooi, 2009; Hue et al.,
2013), freshly matured seeds are either ND or have PD. If seeds
tested over a range of temperatures and in light and in dark ger-
minate in less than about 4 weeks and show no increase in ger-
mination percentages when given a dormancy-breaking
treatment, they are ND. On the other hand, if fresh seeds either
do not germinate in about 4 weeks or exhibit a widening of
range of environmental conditions (e.g. temperature) over
which they germinated after receiving a dormancy-breaking treat-
ment, they have PD (Baskin and Baskin, 2014).

To enhance our database for seed dormancy/germination of
Myrtaceae in Baskin and Baskin (2014), a literature search was
conducted using the name of each tribe of Myrtaceae, seeds, semi-
llas, sementes, germination, germinação and germinación. In
total, information on seed dormancy/germination was found for
571 species of Myrtaceae (Supplementary Table S2). Some species
in all 20 tribes of Myrtaceae have ND seeds, and species in 8 tribes
have seeds with PD (Table 1). For many tribes, however, the
absence of PD in the tribe may be due to a lack of detailed ger-
mination studies for members of that tribe.

Each of the 571 species was recorded by life form (tree or shrub)
in the vegetation region in which it grew (Supplementary Table S2).
Then, the proportion of tree and shrub species in each vegetation
region with ND seeds or with PD was calculated to create a seed
dormancy profile for the Myrtaceae (Table 2). Overall, seeds of
55.6% of the Myrtaceae species had ND seeds, and the other

44.4% had seeds with PD. The highest number of tree species
was recorded for tropical rainforest and semi-evergreen rainforest,
and that for shrubs was the matorral (sclerophyllous woodlands
with winter rain). The relative importance of ND and PD trees
and shrubs varied with the vegetation region. In rainforests, the
percentage of trees and shrubs with either ND or PD was almost
equal (c. 50%). In semi-evergreen rainforests and savannas, both
trees and shrubs had a higher percentage of ND than PD. In the
matorral and broad-leaved evergreen forests, trees had a higher per-
centage of ND than shrubs, while shrubs had a higher percentage
of PD than trees. In hot deserts (trees) and grasslands (shrubs), all
species had ND seeds. Tropical montane trees had a higher per-
centage of PD (68.4) than ND (31.6), but 50% of shrubs had ND
seeds and 50% seeds with PD. In dry deciduous forests, trees had
42.9 and 57.1% ND and PD, respectively, but all shrubs had
seeds with PD.

Not only did the rainforest and semi-evergreen rainforest have
the highest number of species of trees (93 and 104, respectively),
but they also had 12 and 9 tribes of Myrtaceae, respectively
(Table 3). Shrubs in the rainforest and semi-evergreen rainforest
were represented by 3 and 12 tribes of Myrtaceae, respectively.
In the other seven vegetation regions, both trees and shrubs
were represented by 0–5 tribes. Trees were represented by 0 and
5 tribes in grassland and savanna, respectively, and shrubs by 0
and 5 tribes in hot desert and broad-leaved evergreen forest,
respectively.

Table 1. Number of genera with different kinds of embryos in each tribe of Myrtaceae and occurrence of nondormancy (ND) and physiological dormancy (PD) in
each tribe

Tribe

Kind of embryo

ND PDBent Folded Investing Linear-full Spatulate

Backhousieae 1 1 + −

Chamelaucieae 34 + +

Cloezieae 1 + −

Eucalypteae 1 4 + +

Heteropyxideae 1 + −

Kanieae 5 1 + −

Leptospermeae 8 + +

Lindsayomyrteae 1 + −

Lophostemoneae 3 + −

Melaleuceae 2 + +

Metrosidereae 1 + +

Myrteae 1 3 10 34 + +

Osbornieae 1 + −

Psiloxyleae 1 + −

Syncarpieae 1 + −

Syzygieae 2 + +

Tristanieae 2 + −

Tristaniopsideae 1 + −

Xanthomyrteae 1 + −

Xanthostemoneae 3 + +

Note: +, yes; −, no information.
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Dormancy-break in seeds of Myrtaceae

Since Myrtaceae is mostly a tropical family, it comes as no surprise
that the breaking of PD in seeds of many members of this family
occurs at warm conditions suitable for germination. Thus, in
many studies, seeds have been sown in nurseries or greenhouses
without receiving any dormancy-breaking treatments
(Supplementary Table S2), and the number of days until seeds ger-
minated was monitored. Methods used in laboratories to break seed
dormancy and promote germination include treatment with GA3

(Cochrane et al., 2002; Scalon et al., 2004; Liang et al., 2013;
Saldías and Velozo, 2014; Damiani et al., 2016; Griebeler et al.,
2019; Mali et al., 2021; Santos et al., 2022), potassium nitrate
(Liang et al., 2013), smoke-infused water (Cochrane et al., 2001),
sodium nitrite and potassium cyanide (Bardales et al., 2014).
Germination also has been promoted by mechanical scarification
(Gentil and Ferreira, 1999; Martinotto et al., 2007; Tafarel et al.,
2021) and by removing the seed coat from the embryo (Rizzini,
1970; Gentil and Ferreira, 1999). In a study of the cold hardiness
of 15 species of Eucalyptus being considered for possible

introduction into Ireland, 4 weeks of cold stratification increased
germination (compared to fresh seeds) for only one species
(Afroze et al., 2021). The positive response of seeds to treatments
such as GA3 and scarification indicates that seeds have nondeep PD.

Seed germination of Myrtus communis is promoted by soaking
seeds in water, treatment with GA3 and cold stratification
(Benvenuti and Macchia, 2001). Ballesteros et al. (2015) recom-
mended 3 months of cold stratification to break dormancy of
M. communis seeds. After cold stratification, Benvenuti and
Macchia (2001) obtained higher germination percentages at
25–30°C than at 10–20°C. We conclude that seeds of this species
also have nondeep PD.

If GA3 and scarification do not promote germination and if
seeds require a long period of time (40–150 d) to germinate
(Rizzini, 1970; Smith-Ramírez et al., 1998; Santos et al., 2004;
Scalon et al., 2004; Masetto et al., 2009; Simpson, 2011; Saldías
and Velozo, 2014), they may have intermediate or deep PD.
Unfortunately, no studies have been done to determine if the long-
germinating seeds of Myrtaceae have intermediate or deep PD.

There are six types of nondeep PD, and they can be distin-
guished by the changes in temperature requirement for germin-
ation during the dormancy-breaking treatment (Types 1, 2
and 3) or by the temperature range over which seeds will germin-
ate when dormancy is broken (Types 4, 5 and 6) (Baskin and
Baskin, 2014; Soltani et al., 2017). In the early stages of
dormancy-break, seeds with Types 1, 2 and 3 dormancy germin-
ate at low, high and intermediate temperatures, respectively. As
dormancy-break continues, seeds with Types 1 and 2 dormancy
exhibit an increase in the maximum temperature for germination
and a decrease in the minimum temperature for germination,
respectively, while seeds with Type 3 dormancy exhibit an
increase in the maximum and a decrease in the minimum tem-
peratures for germination. In the early stages of dormancy-break,
seeds with Type 6 dormancy germinate over a range of low to
high temperatures. During the continuation of dormancy-break,
seeds with Type 6 dormancy do not exhibit an increase in the
range of temperatures over which they can germinate, but germin-
ation percentages may increase. Seeds with Types 4 and 5 dor-
mancy gain the ability to germinate only at high and low
temperatures, respectively.

Seeds of Myrtaceae with PD have been tested at 20, 25 and 30°C
(Hossel et al., 2017; Paim et al., 2018; Souza et al., 2018;
Leão-Araújo et al., 2019); 25, 30 and 30/20°C (Mugnol et al.,
2014) and 20, 25, 30, 35 and 30/20°C (Maeda et al., 1991;
Masetto et al., 2009). Among these studies, the ability of seeds to
germinate at 20°C varied between the species. Seeds of Psidium cat-
tleianum germinated to low percentages at 20°C (Hossel et al.,
2017), while those of Campomanesia adamantium (Leão-Araújo
et al., 2019), C. guazumifolia (Souza et al., 2018) Eugenia pleur-
antha (Masetto et al., 2009), Myrceugenia myrtoides (Paim et al.,
2018) and Syzygium aromaticum (Maeda et al., 1991) germinated
to high percentages. Seeds of P. guineense germinated at 25, 30
and 30/20°C, and after both 20 and 42 d of incubation, the highest
percentage was at 30/20°C. After 42 d of incubation, the germin-
ation percentage had increased at 30°C (Mugnol et al., 2014).

Some studies have tested seeds with PD at 5, 10 and 15°C. No
seeds of Rhodomyrtus tomentosa germinated at 5 or 10°C (Liang
et al., 2013) or at 10 or 15°C (Hue et al., 2013). There was little or
no germination of seeds of Acca sellowiana, Campomanesia
xanthocarpa, Eugenia involucrata or E. pyriformis at 15°C
(Gomes et al., 2016), but seeds of Psidium guineense germinated
to 35% at this temperature (Santos et al., 2015). Seeds of

Table 2. Seed dormancy profile for trees and shrubs of Myrtaceae in different
vegetation regions

Vegetation
region/life
form

Number
of species

Nondormancy
(%)

Physiological
dormancy (%)

Rainforest (RF)

Trees 93 51.6 48.4

Shrubs 8 50.0 50.0

Semi-evergreen RF

Trees 104 72.1 27.9

Shrubs 35 88.6 11.4

Tropical montane

Trees 19 31.6 68.4

Shrubs 4 50.0 50.0

Dry deciduous forest

Trees 7 42.9 57.1

Shrubs 4 0 100

Savanna

Trees 37 78.3 21.6

Shrubs 8 75.0 25.0

Hot desert

Trees 1 100 0

Matorral

Trees 74 89.2 10.8

Shrubs 148 10.1 90.0

Broad-leaved evergreen

Trees 6 83.3 16.7

Shrubs 19 31.6 68.4

Grassland

Shrubs 4 100 0

Total 571 55.6 44.4
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Darwinia species and Melaleuca species (with PD when freshly
matured) germinated at 15°C (Cochrane et al., 2002), but the
full range of temperatures for germination of these seeds was
not determined.

The general conclusion from studies in which seeds of
Myrtaceae were tested over a range of temperatures is that the
highest germination percentages were at high temperatures.
These results suggest that seeds have Type 4 nondeep PD.
However, due to a lack of detailed studies on the temperature
requirements for germination during the period of dormancy-
break, we cannot rule out the possibility that some species have
Type 6 nondeep PD (or other types of nondeep PD) with a tem-
perature range of 20 to about 35°C for germination after PD is
broken. Much more research needs to be done on the temperature
requirements for germination during the dormancy-breaking per-
iod of seeds of Myrtaceae.

In Supplementary Table S2, we have recorded the temperatures
(or conditions such as nursery or greenhouse) at(in) which a high
percentage of the seeds of each species germinated. For 320 spe-
cies listed in tropical vegetation regions, only 5 species (1.6%)
have 15°C (often along with temperatures >15°C) listed as suitable
for high germination; 3 of the species are in the Myrteae and one
each in the Eucalypteae and Melaleuceae. For 251 species listed
for temperate vegetation regions, 59 species (23.5%) have 15°C
listed as a temperature for high germination. All 59 species

occur in the matorral, and they belong to the Chamelaucieae,
Eucalypteae or Melaleuceae, which are dry-fruited tribes. The
ability of seeds of Myrtaceae to germinate at relatively low tem-
peratures, e.g. 15°C, especially in the matorral indicates that ger-
mination can be delayed until the onset of the cool, wet season in
winter. That is, dormancy-break occurs in summer and seeds ger-
minate when the cool, wet season begins; however, no studies have
been done that inform us as to what type of nondeep PD these
seeds have.

Seed germination requirements

Many seed germination studies of Myrtaceae species have been
conducted in nurseries, shade houses and greenhouses at near
natural temperature regimes (Supplementary Table S2). The tem-
perature at which a high germination percentage was obtained is
available for 246 species (Supplementary Table S2), and the mean
(±SE) of these temperatures is 22.5 ± 0.2°C. Determinations of
the light (L)–dark (D) requirements for seed germination have
been made for 34 species (Supplementary Table S2): 15 species,
L > D; 14, L = D; 3, D > L; and 2 species with mixed results, i.e.
one paper reported L = D and another D > L. Germination of
Eucalyptus marginata seeds was significantly lower in white
light than in darkness or in light with peak wavelengths of 430,
450, 490, 520, 570, 640 and 720 nm, as transmitted through

Table 3. Tribes of Myrtaceae, vegetation regions (1–9)a and life form (tree or shrub)

Tribe

Trees Shrubs

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Backhousieae x

Chamelaucieae x x

Cloezieae x

Eucalypteae x x x x x x x

Heteropyxideae x

Kanieae x x

Leptospermeae x x x x x x x

Lindsayomyrteae x

Lophostemoneae x x x

Melaleuceae x x x x x x x x

Metrosidereae x x x

Myrteae x x x x x x x x x x x x x x

Osbornieae x

Psiloxyleae x

Syncarpieae x

Syzygieae x x x x x x x x x x

Tristanieae x

Tristaniopsideae x x x

Xanthomyrteae x

Xanthostemoneae x x x

total 12 9 3 2 5 1 3 4 0 3 12 3 2 2 0 4 5 1

aVegetation regions: 1, rainforest; 2, semi-evergreen rainforest; 3, tropical montane; 4, tropical dry deciduous; 5, savanna; 6, hot desert; 7, matorral; 8, broad-leaved evergreen and 9,
temperate grassland.
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Kodak Wratten photographic coloured filters (Rokich and Bell,
1995). Germination of E. calophylla seeds was significantly
reduced in white light and at wavelengths of 570 and 640 nm.

Seeds of Myrtaceae differ in their ability to germinate during
and after water stress, and not surprisingly the ND, desiccation-
sensitive seeds of Campomanesia pubescens (Dousseau et al.,
2011) and Eugenia pyriformis (Andrade and Ferreira, 2000) are
dispersed at the onset of the rainy season in the seasonally dry
Cerrado of Brazil (Escobar et al., 2021). The ND seeds of
Myrcia guianensis and M. splendens, which also grow in the
Cerrado of Brazil, are dispersed at the onset of the rainy season
and mid-rainy season, respectively. Thus, seed dispersal in these
four species occurs at a time when soil moisture would be
adequate for seed germination.

Seeds of Eugenia brasiliensis, E. involucrata, E. pyriformis and
E. uniflora germinated to 100, 84, 66 and 91% at 0.0 MPa,
respectively, but germination of each species decreased with
water stress, e.g. 44, 8, 0 and 39% at −1.5 MPa, respectively;
and 0, 2, 0 and 0%, respectively, at −2.0 MPa (Inocente and
Barbedo, 2019). Seeds of E. umbelliflora were dispersed during
the dry season in restinga vegetation in Brazil (Braz and de
Mattos, 2010). At 0 and −0.37 MPa, seeds of E. umbelliflora ger-
minated to 88 and 38%, respectively, and 52 and 54 d, respect-
ively, were required for seeds to reach 50% of final germination.
Further, moisture content (MC) of fresh seeds was 45–50%, and
after drying at 68% relative humidity for c. 17 d, it was 28%, at
which point only 30% of them germinated. At −0.1, −0.4 and
−0.7 MPa, seeds of Melaleuca nematophylla germinated to 58.4,
36.3 and 0.5%, respectively (Merino-Martín et al., 2017). Seeds
of Eucalyptus caesia subsp. caesia, E. ornata, and E. salubris ger-
minated to 95–100% at −0.1 MPa; to 95, 95 and 70%, respectively,
at −0.4 MPa and to 70, 35 and 8%, respectively, at −0.7 MPa
(Rajapakshe et al., 2020). However, seeds of E. salmonophloia ger-
minated to 50, 4 and 0% at −0.1, −0.4 and −0.7 MPa, respectively.
Thus, seeds of the range-restricted E. caesia subsp. caesia and E.
ornata were more tolerant of water stress during germination
than those of the widely distributed E. salmonophloia.

Seeds of Eucalyptus macrocarpa and E. tetragona from deep
sand habitats and those of E. loxophleba and E. wandoo from lat-
eritic loam habitats germinated to c. 100% at a soil moisture
potential of −0.1 MPa (Schütz et al., 2002). At −0.5 MPa, seeds
of E. tetragona germinated to c. 95% and those of the other
three species to 70–75%. At −1.0 MPa, however, the only germin-
ation (c. 5%) was for seeds of E. tetragona. Seeds of E. todtiana
incubated on a moist substrate for 24 h at 15°C reached an MC
of c. 50%. However, when seeds at 50% MC were placed on dry
filter paper in an ‘air-blown cabinet’ at 23° and 55% relative
humidity for 48 h MC decreased to c. 10% (Pérez-Fernández
et al., 2000). Seeds dried for 48 h germinated to 100% and reached
50% germination in c. 9 d. Thus, seeds of E. todtiana recovered
from dehydration and germinated.

Seeds of Eucalyptus brassiana, E. camaldulensis, E. grandis, E.
saligna, E. tereticornis and E. urophylla germinated to 8, 39, 9, 4,
46 and 45%, respectively, at a water stress of −0.6 MPa but to only
0, 5, 0, 0, 5 and 9%, respectively, at −0.8 MPa (de Sá-Martins
et al., 2019). In a NaCl solution with an osmotic potential of
−1.5 MPa, seeds of E. brassiana, E. camaldulensis, E. grandis, E.
saligna, E. tereticornis and E. urophylla germinated to 9, 18, 4,
4, 18 and 6%, respectively.

Some species of Myrtaceae grow in habitats that are submerged
in water for part, or all, of the year. Seeds of Leptospermum
lanigerum and Melaleuca squarrosa germinated under water,

but flooding reduced seedling growth and survival (Zacks et al.,
2018). The recalcitrant seeds of Eugenia stipitata submerged in
6 cm of water began to germinate after 2 months and after
1 year 87% had germinated (Calvi et al., 2017). Most seeds of
Melaleuca ericifolia did not germinate while flooded, but even
after 3–4 weeks of flooding, seeds germinated to high percentages
when transferred to moist germination pads in Petri dishes
(Ladiges et al., 1981). Seedlings from the few seeds that germi-
nated under water did not grow past the cotyledon stage while
flooded. Fleshy fruits of Blepharocalyx cruckshanksii and Luma
apiculata growing in forested wetlands of south-central Chile
floated for 37 and 53 d, respectively (Mora and Smith-Ramírez,
2017). After 90 d in water, seeds of both species germinated
(c. 80%) inside the fruits, when fruits were removed from water
and placed in moist soil. The authors concluded that the fleshy
fruits promoted dispersal, but after fruits became lodged on
moist soil as water receded seeds inside them could germinate
readily.

There is concern that global warming will modify the environ-
ment to the extent that dormancy-break, germination and seed-
ling survival will be negatively impacted. In a study of 100 plant
species growing in Western Australia that included 37
Myrtaceae species/taxa, Eucalyptus kruseana, E. nigrifunda, E.
pimpiniana, E. jimberlanica and Rhodanthe pyrethrum germi-
nated to higher percentages when incubated at temperatures
lower than those in the field during the wet season (Cochrane,
2020). One species germinated to the highest percentages at
field temperature during the wet season, while 31 species germi-
nated to higher percentages at temperatures higher than those
in the field during the wet season. Thus, based on this small sam-
ple of Myrtaceae species, it appears that increased temperatures
due to global warming may not significantly impede the regener-
ation of species of Myrtaceae from seeds. For 26 species of
Eucalyptus in Western Australia, modelling of seed germination
response to temperature revealed that the majority of species
will be able to germinate in the future, especially in the cool win-
ter months (Cochrane, 2017).

Although temperatures may be favourable for seed germination
of many Myrtaceae species in the future, the question is will there
be adequate precipitation for seedling survival? In other words, if
precipitation decreases in the driest months will there be enough
soil moisture to sustain the seedlings? Some modelling has been
done to look at future precipitation patterns, but more is needed.
Barrientos-Díaz et al. (2024) predicted that future temperature
and rainfall conditions will be favourable for species of Myrteae
to live in the Atlantic Forest of Brazil. However, predictions for
the future distribution of Eugenia uniflora in South America sug-
gest that Argentina and Paraguay will not have suitable habitat
for this species, but populations of it may increase on the
Brazilian Plateau (Turchetto-Zolet et al., 2016).

Tribes and species of Myrtaceae with desiccation-sensitive
seeds

Information was found for desiccation sensitivity of 58 species of
Myrtaceae, and all of them belonged either to the Myrteae (33
species) or Syzygieae (25 species) (Table 4). According to
Wilson (2010), all the genera of Myrteae and Syzygieae repre-
sented in Table 4 have fleshy fruits. Seven species of Myrteae
have intermediate seed storage behaviour, and the other 26 have
recalcitrant seeds. The species of Myrteae with intermediate stor-
age behaviour have seeds with linear-full embryos, and those that
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Table 4. Species of Myrtaceae with desiccation-sensitive (recalcitrant [R] or intermediate [I]) seed storage behaviour

Species Tribe Embryo Storage behaviour References

Archirhodomyrtus beckleri Myrteae Linear-full I Sommerville et al. (2021)

Blepharocalyx salicifolius Myrteae Linear-full R Rego et al. (2013) and Pelissari et al. (2018)

Campomanesia adamantium Myrteae Linear-full R Melchior et al. (2006) and Dresch et al. (2014, 2015)

Campomanesia phaea Myrteae Linear-full R Maluf and Pisciottano-Ereio (2005)

Campomanesia pubescens Myrteae Linear-full R Dousseau et al. (2011)

Campomanesia xanthocarpa Myrteae Linear-full R Vieira et al. (2022)

Eugenia astringens Myrteae Investing R Delgado and Barbedo (2007, 2012) and Rodrigues et al. (2022)

Eugenia brasiliensis Myrteae Investing R Hong et al. (1998), Kohama et al. (2006), Delgado and Barbedo
(2007, 2012) and Rodrigues et al. (2022)

Eugenia capuli Myrteae Investing R Subbiah et al. (2019)

Eugenia cerasiflora Myrteae Investing R Delgado and Barbedo (2007, 2012)

Eugenia dysenterica Myrteae Investing R Santos et al. (2014)

Eugenia handroana Myrteae Investing R Subbiah et al. (2019)

Eugenia involucrata Myrteae Investing R von Bülow et al. (1994), Barbedo et al., (1998), Maluf et al.
(2003), Delgado and Barbedo (2007, 2012), Subbiah et al. (2019)
and Rodrigues et al. (2022)

Eugenia luschnathiana Myrteae Investing R Subbiah et al. (2019)

Eugenia pyriformis Myrteae Investing R Andrade and Ferreira (2000), Delgado and Barbedo (2007, 2012),
Mayrinck et al. (2019) and Rodrigues et al. (2022)

Eugenia sonderiana Myrteae Investing R Pelissari et al. (2018)

Eugenia stipitata Myrteae Investing R Gentil and Ferreira (1999), Mendes and Mendonça (2012) and
Maia et al. (2024)

Eugenia umbellata Myrteae Investing R Carvalho et al. (2006) and Masetto et al. (2008)

Eugenia uniflora Myrteae Investing R Delgado and Barbedo (2007, 2012), Mello et al. (2010), Pelissari
et al. (2018) and Rodrigues et al. (2022)

Lophomyrtus bullata Myrteae Linear-full I van der Walt (2022) and van der Walt and Nadarajan (2023)

Lophomyrtus obcordata Myrteae Linear-full I van der Walt (2022) and van der Walt and Nadarajan (2023)

Myrcia inaequiloba Myrteae Folded R Carvalho et al. (2006)

Myrcia neoludica Myrteae Folded R Subbiah et al. (2019)

Myrcia venulosa Myrteae Folded R José et al. (2007) and Mayrinck et al. (2016)

Myrcianthes coquimbensis Myrteae Investing R Loayza et al. (2015)

Myrcianthes pungens Myrteae Investing R Subbiah et al. (2019)

Myrciaria dubia Myrteae Investing R Subbiah et al. (2019)

Neomyrtus pedunculata Myrteae Linear-full I van der Walt (2023) and van der Walt and Nadarajan (2023)

Pimenta dioica Myrteae Linear-full R Subbiah et al. (2019)

Plinia cauliflora Myrteae Linear-full R Valio and Ferreira (1992) and Subbiah et al. (2019)

Rhodamnia maideniana Myrteae Linear-full I Sommerville et al. (2021)

Rhodomyrtus psidioides Myrteae Linear-full I Sommerville et al. (2021)

Syzygium acuminatissimum Syzygieae Investing R Wyse and Dickie (2017) and Subbiah et al. (2019)

Syzygium aqueum Syzygieae Investing R Wyse and Dickie (2017) and Subbiah et al. (2019)

Syzygium aromaticum Syzygieae Investing R Umarani et al. (2015)

Syzygium australe Syzygieae Investing R Hamilton et al. (2013)

Syzygium cordatum Syzygieae Investing R Hong et al. (1998)

Syzygium cumini Syzygieae Investing R Umarani et al. (2015)

Syzygium cymosum Syzygieae Investing R Wyse and Dickie (2017) and Subbiah et al. (2019)

(Continued )
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are desiccation-sensitive have seeds with investing, folded or
linear-full embryos. The 25 species of Syzygieae have desiccation-
sensitive seeds, and all have investing embryos.

Among five Brazilian species of Eugenia with desiccation-
sensitive seeds, the speed of seed drying and the speed of germin-
ation help explain differences in geographical range (Rodrigues
et al., 2022). For seeds of E. uniflora, E. involucrata, E. pyriformis,
E. brasiliensis and E. astringens, the water content threshold that
decreased germination to c. 50% was 0.44, 0.33, 0.33, 0.25 and
0.25 g H2O (g DW)−1, respectively, and the species occurred in
four, three, two, one and one morphoclimatic domain(s) (based
on temperature and precipitation data) in Brazil, respectively.
However, under laboratory conditions, seeds of E. uniflora had
the second highest rate (speed) of germination and the slowest
rate of water loss compared with the other species. The authors
concluded that rapid germination and slow seed drying help
explain why E. uniflora has a wider geographical distribution
than the other four species.

Plantlet production from seed fragments (totipotency)

One consequence of seed predation is that the predator may not
consume the whole seed, especially in the case of large seeds
(Vallejo-Marín et al., 2006; Pérez et al., 2008; Loayza et al.,
2015). In some species, if fragments of seeds have an intact embry-
onic axis, there is a possibility that a plantlet will be produced. For
example, the large recalcitrant seeds ofMyrcianthes coquimbensis, a
threatened Myrtaceous shrub in the Atacama Desert of Chile, will
produce a plantlet if up to 75% of seed mass is removed from either
mature or immature seeds (Loayza et al., 2015).

Normal plantlet development occurred when seeds of Eugenia
stipitata subsp. sororia (Anjos and Ferraz, 1999; Calvi et al., 2017),
E. brasiliensis, E. involucrata and E. uniflora (Silva et al., 2005)
were cut into two parts. Seeds of E. pyriformis cut in half longitu-
dinally or transversally and those cut transversally into two parts,
i.e. one-fourth of the seed and three-fourths of the seed, produced
normal plantlets (Silva et al., 2003). Normal plantlet development
occurred for seeds of E. cerasiflora, E. pruinosa and E. umbelliflora
cut in half transversally or longitudinally and from three-fourths
of a seed (Delgado et al., 2010). When seeds were cut into four
equal parts (in a linear fashion), normal plantlets developed
from one-fourth (external/end part) of a seed for E. cerasiflora
and E. pruinosa but not for E. umbelliflora. Also, normal plantlet
development occurred from one-fourth of a seed (internal/central
part) for E. cerasiflora and E. umbelliflora but not for E. pruinosa.

In some species, the percentage of plantlet development/ger-
mination was higher for pieces of seeds than for intact seeds,
e.g. E. cerasiflora and E. pruinosa (Delgado et al., 2010), but
often the percentage for seed fragments and intact seeds did not
differ significantly, e.g. E. umbelliflora (Delgado et al., 2010)
and E. uniflora (Silva et al., 2005). However, plantlet formation
from E. pyriformis seeds cut into 0, 2 and 4 pieces was 97, 73
and 62%, respectively (Costa et al., 2017). The production of nor-
mal plantlets from seeds of E. uniflora cut into two parts was
higher for seeds produced from cross- than from self-pollinated
flowers (Fidalgo et al., 2019).

The regeneration of roots and plantlets from fragments of
Eugenia seeds occurs in seeds taken from both immature and
mature fruits (Teixeira and Barbedo, 2012; Amador and Barbedo,
2015; Delgado and Barbedo, 2020). However, there is a reduction

Table 4. (Continued.)

Species Tribe Embryo Storage behaviour References

Syzygium fullageri Syzygieae Investing R Hamilton et al. (2013)

Syzygium grande Syzygieae Investing R Wyse and Dickie (2017) and Subbiah et al. (2019)

Syzygium guineense Syzygieae Investing R Hong et al. (1998) and Badou et al. (2017)

Syzygium ingens Syzygieae Investing R Hamilton et al. (2013)

Syzygium jambos Syzygieae Investing R Hong et al. (1998) and Subbiah et al. (2019)

Syzygium maire Syzygieae Investing R Fountain and Outred (1991), Nadarajan et al. (2021) and van der
Walt et al. (2022)

Syzygium malaccense Syzygieae Investing R Wyse and Dickie (2017) and Subbiah et al. (2019)

Syzygium moorei Syzygieae Investing R Hamilton et al. (2013)

Syzygium multipetalum Syzygieae Investing R Toublance-Lambault et al. (2019)

Syzygium myrtifolium Syzygieae Investing R Tsan and Awang (2021)

Syzygium paniculatum Syzygieae Investing R Wyse and Dickie (2017) and Subbiah et al. (2019)

Syzygium phillyreifolium Syzygieae Investing R Wyse and Dickie (2017) and Subbiah et al. (2019)

Syzygium pseudofastigiatum Syzygieae Investing R Hamilton et al. (2013)

Syzygium samarangense Syzygieae Investing R Wyse and Dickie (2017) and Subbiah et al. (2019)

Syzygium sandwicense Syzygieae Investing R Wyse and Dickie (2017) and Subbiah et al. (2019)

Syzygium smithii Syzygieae Investing R Hamilton et al. (2013)

Syzygium unipunctatum Syzygieae Investing R Sommerville et al. (2021)

Syzygium wilsonii Syzygieae Investing R Hamilton et al. (2013)

Uromyrtus australis Myrteae Linear-full I Sommerville et al. (2021)
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in the success of plantlet formation from E. pyriformis seed frag-
ments with an overall decrease in seed size, which is related to a
number of seeds in fruit (Prataviera et al., 2015). Although seed
fragments of E. pyriformis (Amador and Barbedo, 2011), E. brasi-
liensis, E. uniflora (Amador and Barbedo, 2015) and E. stipitata
(Calvi et al., 2017) can form a plantlet, only one plantlet is pro-
duced if the incision does not completely separate the seed parts.
That is, if there is a connection between two seed parts only one
of them produces roots and a plantlet.

Normal plantlet development occurred when seeds of
Syzygium myrtifolium were cut into two parts longitudinally,
but when seeds were cut transversally into two parts only one
part produced a plantlet (Tsan, 2023). When a seed was cut
into four parts longitudinally, at least one of the parts produced
a plantlet, with the central and right fractions being the most
likely to do so. However, when cut into two longitudinal and
two transverse (i.e. four) parts, only the top left and top right
parts produced a plantlet.

Effects of fire (heat and smoke) on seed germination

The appearance of Myrtaceae seedlings in the field after a fire (e.g.
Mount, 1969; Williams, 2000; Wright, 2018; Wright et al., 2019)
has prompted people to conduct experiments on the effects of
heat and smoke on seed germination. Heat treatments on seeds
of various species have revealed that temperatures simulating
those in/at the soil surface during a fire can increase, decrease
or have no effect on germination percentages (Table 5). Smoke,
in general, either increases or decreases germination percentages
of Myrtaceae seeds (Table 6). Seeds of Baeckea utilis did not
respond to heat in the absence of smoke, but they responded to
smoke in the absence of heat (Thomas et al., 2007). For seeds
of Kunzea ambigua and K. capitata, there was an interaction
between incubation temperature (15 and 25°C), water stress
(0 and −0.9 MPa) and fire cues (heat and smoke) (Thomas
et al., 2010). Fire cues increased germination percentages at 15
and 25°C across the range of water stress, i.e. fire cues increased
seed tolerance to water stress.

Another aspect of fire in a plant community is that the smoke
contains various compounds, including cyanohydrin (glyceroni-
trile, which in the presence of water releases cyanide), ethylene,
karrikins (especially karrikin-1), nitrate and nitric oxide, that
are known to promote seed germination (Flematti et al., 2011,
2013; Soós et al., 2019; Cao et al., 2021, 2023; Kępczyański and
Kępczyańska, 2023). However, only karrikins and cyanohydrins
can persist in the upper layers of the soil after a fire (Flematti
et al., 2013). Smoke also contains compounds that are structurally
similar to karrikins, i.e. contain a butanolide ring that inhibits
germination (Light et al., 2010; Burger et al., 2018). Soós et al.
(2019) suggested that after a fire both germination inhibitors
and promotors are in the surface layers of soil. However, the pro-
motors cannot be effective in stimulating germination until rain
water has removed the inhibitors.

If a fire occurs while seedlings/juveniles are relatively small,
they may not be robust/resilient enough to tolerate fire and are
killed (e.g. Fordyce et al., 1997; Tozer and Bradstock, 1997;
Wardell-Johnson, 2000; Fujita, 2021; Plumanns-Pouton et al.,
2023). Thus, regeneration from seeds is not successful if the fire
interval is more frequent than the time required for young plants
to reach a fire-tolerant size.

Various species of Myrtaceae produce new stems from buds if
the aerial portion of the plant is damaged/destroyed, as for

example by fire. Epicormic buds (dormant buds located under
the bark), arise from meristematic cells (epicormic strands) that
are inside the bark, often at the junction of the bark and vascular
cambium, e.g. Eucalyptus and Melaleuca (Burrows, 2002; Clarke
et al., 2013). Lignotubers which form at the base of the stem,
e.g. in many species of Eucalyptus, have many buds that can
grow if the stem is killed. The development of a lignotuber begins
shortly after seedling emergence, and it increases in size as the
plant grows (Fordyce et al., 2000; Nicolle, 2006). Lignotubers
were initiated on seedlings of Eucalyptus cinerea by the time
plants were 6 weeks old (Graham et al., 1998). After 9 months
of growth, the size of the lignotubers on Eucalyptus obliqua juve-
niles derived from seeds from 13 provenances in Australia was
inversely related to mean annual precipitation in the original
habitat (Walters et al., 2005). Interestingly, a molecular marker
for lignotuber formation (Elig) has been identified in Eucalyptus
(Bortoloto et al., 2020).

Buds that can replace damaged aerial stems also occur on rhi-
zomes. For example, Eugenia dysenterica and E. pumicifolia,
which grow in the fire-prone Cerrado of Brazil, have a woody rhi-
zome covered with periderm. Silva et al. (2020) found numerous
buds (254–517 per plant) on the upper surface of the rhizome of
each species.

Global warming is having significant effects on fire regimes,
especially in fire-prone habitats (Ooi et al., 2022). There are
increases in the severity and frequency of fires, as well as changes
in the time of year when fires occur (Ooi et al., 2022). Even if spe-
cies of Myrtaceae resprout after fire, increased fire intensity and
frequency can cause shifts from wet- to dry-plant communities
(Furland et al., 2021; Fensham et al., 2024). Further, the patho-
genic fungus Austropuccinia psidii may retard the regrowth of
new stems and leaves following a fire. The impact of A. psidii
on regrowth of tissues on nine Myrtaceae species following fire
in a coastal heathland in New South Wales (Australia) varied
between species and ranged between minor leaf damage to die-
back and eventual death of the tree (Pegg et al., 2020).

For some species, e.g. Eucalyptus pauciflora in the subalpine
zone in Victoria, Australia, increased fire frequency has raised ser-
ious concerns about the ability of the species to persist in its nat-
ural habitat (Coates, 2015). Increased temperatures, decreased
precipitation and increased fire frequency are expected to nega-
tively impact the tropical montane species Melaleuca uxorum
and could result in its extinction as well as the loss of the local
specialized flora in the habitat of this species being replaced by
widely distributed species (Ford and Hardesty, 2012).

Formation of soil seed banks

In 170 soil seed bank studies, in which soil samples were collected
after the seed germination season but before newly matured seeds
were dispersed, i.e. samples potentially had at least a short-lived
persistent soil seed bank, we found nine papers that contained
information for species of Myrtaceae. Seven species in six tribes
of Myrtaceae were listed in these nine papers (Table 7). The num-
ber of seeds per species in the seed bank ranged from 1 to 32 m−2.
However, for Eucalyptus grandis, the number of seeds was not
given (Gonçalves et al., 2008), and, for Tristaniopsis sp., none of
the seeds found in the soil samples germinated (Graham and
Page, 2018). However, some soil seed bank studies conducted in
habitats where species of Myrtaceae were growing did not contain
any seeds of Myrtaceae (e.g. Vlahos and Bell, 1986; Yates et al.,
1995; Sem and Enright, 1996; Wang, 1997; Hamilton-Brown
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et al., 2009; Bechara et al., 2020; Neto et al., 2021; Kraaij et al.,
2024).

To help determine how long seeds of Myrtaceae live in the soil,
seeds of various species have been placed in mesh bags and buried

in the field. At intervals over a 1- to 3-year period, some of the bur-
ied seeds were exhumed, and the number of viable seeds was deter-
mined (Table 8). In general, seeds do not live for long periods of
time in the soil. Of the 11 species listed in Table 8, only Kunzea

Table 5. Effect of dry heat treatments on seed germination of species of Myrtaceae

Species
Change in germination percentage

compared with control
Heat treatment

(°C)
Heat treatment duration

(min) References

Alutea maisonneuvei 0 100 5 Wright et al. (2019)

Baeckea diosmifolia +5 100 5 Thomas et al. (2003)

Baeckea imbricata −20 100 5 Thomas et al. (2003)

Baeckea utilis −4 100 5 Thomas et al. (2007)

Calothamnus quadrifidus −10 100 10 Hanley and Lamont
(2000)

Darwinia biflora +40 100 10 Auld and Ooi (2009)

Darwinia biflora −20 120 10 Auld and Ooi (2009)

Darwinia dimiuta +45 100 10 Auld and Ooi (2009)

Darwinia dimiuta +5 120 10 Auld and Ooi (2009)

Darwinia fascicularis +65 90 10 Auld and Ooi (2009)

Darwinia fascicularis +10 120 10 Auld and Ooi (2009)

Darwinia glaucophylla +80 90 10 Auld and Ooi (2009)

Darwinia glaucophylla +9 120 10 Auld and Ooi (2009)

Darwinia procera +10 80 10 Auld and Ooi (2009)

Darwinia procera +45 100 10 Auld and Ooi (2009)

Eucalyptus blakelyi −4 80 15 Clarke et al. (2000)

Eucalyptus dalrympleana +5 80 15 Clarke et al. (2000)

Eucalyptus melliodora −14 80 15 Clarke et al. (2000)

Eucalyptus pauciflora +4 80 15 Clarke et al. (2000)

Eucalyptus viminalis +5 80 15 Clarke et al. (2000)

Eucalyptus youmannii −16 80 15 Clarke et al. (2000)

Kunzea ambigua +35 50 5 Thomas et al. (2003)

Kunzea capitata +5 100 5 Thomas et al. (2003)

Leptospermum
juniperinum

+7 100 5 Ne’eman et al. (2009)

Leptospermum
myrsinoides

+17 100 15 Wills and Read (2002)

Leptospermum
polygalifolium

0 80 15 Clarke et al. (2000)

Leptospermum
polygalifolium

−16 80 5 Ne’eman et al. (2009)

Leptospermum
scopariuma

−2 80 60 Battersby et al.
(2017b)

Leptospermum
squarrosum

+3 100 5 Ne’eman et al. (2009)

Melaleuca acuminata −10 100 5 Ne’eman et al. (2009)

Melaleuca hypericifolia −2 100 5 Ne’eman et al. (2009)

Melaleuca squarrosa −14 100 5 Ne’eman et al. (2009)

Micromyrtus minutiflora +7b 80 30 Bangel et al. (2023)

All studies were conducted in Australia unless otherwise noted.
aStudy conducted in New Zealand.
bIncrease in number of seedlings in soil seed bank samples after soil heating.
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ambigua and K. capitata had >50% viable seeds after 2 years (Auld
et al., 2000).

Yates et al. (1995) buried seeds of Eucalyptus salmonophloia in soil
at a depth of 1 cm in 3-cm-diameter areas in Western Australia in
summer, autumn, winter and spring. Then, 2, 6 and 12 months
after burial in each season, soil cores (from inside the 3-cm-diameter

areas) were removed and germination of seeds was monitored. Some
seeds buried in summer survived and germinated after 12 months of
burial, but few or no seeds buried in autumn, winter or spring sur-
vived and germinated after 12 months of burial.

Seeds of 10 species of Myrtaceae were sown in moist soil in a shade
house in Western Australia, and seed viability was determined initially

Table 6. Effect of smoke and/or smoke extracts on seed germination of species of Myrtaceae

Species
Change in germination percentage

compared with control References

Agonis linearifolia +16 Roche et al. (1997a)

Astartea fascicularis +20 Roche et al. (1997a)

Baeckea camphorosmae +12 Roche et al. (1997a)

Baeckea diosmifolia −10 Thomas et al. (2003)

Baeckea imbricata +6 Thomas et al. (2003)

Baeckea utilis +20 Thomas et al. (2007)

Calytrix breviseta +13 Roche et al. (1997a)

Calytrix depressa +30 Roche et al. (1997a)

Calytrix flavescens 0 Roche et al. (1997a)

Calytrix fraseri +8 Roche et al. (1997a)

Calytrix tetragona +13 Roche et al. (1997a)

Darwinia masonii +69 Elliott et al. (2019)

Eucalyptus marginata +4 Roche et al. (1997b)

Hypocalymma angustifolium +26, +2 Dixon et al. (1995) and
Norman et al. (2006)

Hypocalymma robustum +1, 0 Norman et al. (2006)

Kunzea ambigua +21 Thomas et al. (2003)

Kunzea capitata +25 Thomas et al. (2003)

Leptospermum juniperinum −6 Ne’eman et al. (2009)

Leptospermum myrsinoides +18 Wills and Read (2002)

Leptospermum polygalifolium −1 Ne’eman et al. (2009)

Leptospermum squarrosum +1 Ne’eman et al. (2009)

Leptospermum spinescens +39 Roche et al. (1997a)

Melaleuca acuminata −5 Ne’eman et al. (2009)

Melaleuca cardiophylla −3 Commander et al. (2009)

Melaleuca hypericifolia −21 Ne’eman et al. (2009)

Melaleuca squarrosa −11 Ne’eman et al. (2009)

Thryptomene baeckeacea −33, +20a Commander et al. (2009)

Thryptomene saxicola 0 Roche et al. (1997a)

Verticordia aurea +16 Roche et al. (1997a)

Verticordia chrysantha +42 Roche et al. (1997a)

Verticordia densiflora +67, +28 Dixon et al. (1995) and
Roche et al. (1997a)

Verticordia eriocephala +35 Roche et al. (1997a)

Verticordia huegelii +26 Roche et al. (1997a)

Verticordia nitens +11 Roche et al. (2002)

aSeeds tested at 26/30 and 33/18°C, respectively.
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and after 1 year: Agonis linearifolia, 80 (initially) and 5% (after 1 year)
viable seeds; Astartea fascicularis, 47 and 14%; Baeckea camphoros-
mae, 52 and 30%; Calytrix breviseta var. breviseta, 63 and 18%; C.
depressa, 54 and 20%; Verticordia aurea, 60 and 40%; V. chrysantha,

63 and 38%; V. densiflora, 58 and 23%; V. eriocephala, 20 and 11%
and V. huegelii, 26 and 3% (Roche et al., 1997a).

Seeds of Baeckea gunniana and B. utilis were buried in the
Ginini Flats subalpine bog complex of the Brindabella

Table 7. Soil seed bank of Myrtaceae

Species Tribe Habitat Number of seeds in samples References

Baeckea
ramosissima

Chamelaucieae Alpine zone, Australia 3.3–13.3 m−2 Venn and Morgan
(2010)

Eucalyptus grandis Eucalypteae Dry Pinus plantation, Brazil Present but no numbers given Gonçalves et al.
(2008)

Eucalyptus obliqua Eucalypteae Dry sclerophyll forest, Australia 50 seeds in 20 50 cm3 samples Barbour and Lange
(1967)

Eucalyptus
marginata

Eucalypteae Jarrah forest, Australia 1 m−2 Ward et al. (1997)

Eucalyptus resinifera Eucalypteae Rehabilitated bauxite mine, Australia 1.25 m−2 Grant and Koch
(1997)

Kunzea muelleri Leptospermeae Alpine zone, Australia 3.3–6.7 m−2 Venn and Morgan
(2010)

Metrosideros excelsa Metrosidereae Primary succession, New Zealand 1 seedling from 50 0.4 m2 samples Clarkson et al. (2002)

Micromyrtus
minutiflora

Chamelaucieae Cumberland Plain, New South Wales,
Australia

32 m−2 Bangel et al. (2023)

Syzygium hancei Syzygieae Subtropical rainforest, China 1 m−2 Zhu et al. (2006)

Tristaniopsis sp. Tristaniopsideae Peat swamp forest, Kalimantan,
Indonesia

Seeds found in samples but none
germinated

Graham and Page
(2018)

Table 8. Longevity of seeds of Myrtaceae placed in mesh bags and buried in soil in the field

Species Tribe
Initial seed viability

(%)
Period of burial

(years)
Viable seeds at end of

burial (%) References

Darwinia biflora Chamelaucieae 85 2 7–22 Auld et al. (2000)

Eucalyptus baxteri Eucalypteae 50 1 0a Andersen (1989)

Eucalyptus victrix Eucalypteae 94 0.4 0 Florentine and Fox
(2002)

Eugenia duthieana Myrteae –b c. 0.25 0 Kanzaki et al. (1997)

Kunzea ambigua Leptospermeae 73 2 60 Auld et al. (2000)

Kunzea capitata Leptospermeae 92 2 40–70 Auld et al. (2000)

Leptospermum
juniperinum

Leptospermeae 18 1 18 Andersen (1989)

Leptospermum
myrcinoides

Leptospermeae 16 1 14 Andersen (1989)

Melaleuca
quinquenervia

Melaleuceae

FL (USA) flooded 5.6 1.5 0 Van et al. (2005)

FL (USA) nonflooded 8.8 2.3 5 Van et al. (2005)

Melaleuca
quinquenervia
Australia, sandy lake
Shore

Melaleuceae 100 1 36 Baumann and Hewitt
(2023)

Psidium cattleianum Myrteae 86 0.54 0 Uowolo and Denslow
(2008)

Verticordia fimbrilepis Chamelaucieae 15 2.5 10 Yates and Ladd (2005)

aAll buried seeds had germinated after 1 month; thus, no nongerminated viable seeds were present at the end of the study.
bNo information.
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Mountains (Australian Alps) in southeastern Australia (Guja and
Brindley, 2017). After 27 months of burial, the exhumed seeds of
both species germinated to c. 97%. The germination of B. utilis
seeds at 25/15 and 20/10°C exhumed after 3, 6, 9, 12, 21 and
27 months revealed that dormancy cycling was occurring with
seeds exhumed after 3, 12 and 27 months having the highest ger-
mination percentages and those exhumed after 9 and 21 months
the lowest percentages.

The application of smoke to field sites has been shown to pro-
mote the germination of seeds in the soil. For example, smoke
fumigation in Banksia woodland in Western Australia signifi-
cantly increased seed germination of 15 plant taxa, but none of
them were Myrtaceae (Dixon et al., 1995). Aerosol smoke and
smoke-infused water applied to soil seed bank samples collected
in Western Australia promoted seed germination of native
grasses, sedges, herbs and woody species, including a few seeds
of Eucalyptus sp., as well as seeds of weedy herbs in families
other than Myrtaceae (Cochrane et al., 2007). In Queensland
(Australia), soil seed bank samples from nonburned forest/wood-
land/shrubland habitats at four sites were subjected to heat and/or
smoke treatments (Page, 2009). Following a fire in the four sites,
additional soil samples were collected and germination of seeds in
them was compared with that of seeds in the treated, nonburned
samples. The number of seedlings (m−2) in the heat and smoke-
treated samples was higher than that in the control samples with
no treatments. However, the number of species and the number of
seedlings that emerged from the four sites after the fire were
higher than in the nonburned control, except in the burned
mixed Eucalyptus forest with lower numbers than in the control.

Smoke treatments have been applied in the field in relation to
using the soil seed bank from Eucalyptus/Banksia woodlands in
Western Australia as a source of seeds for rehabilitation of
surface-mined sites (Roche et al., 1997b). Following smoke treat-
ments of soil in the field, the number of species and the number
of seedlings increased significantly, but often the density of
Myrtaceae seedlings was low. For example, the density of
Eucalyptus marginata seedlings increased from 0 to 1.67 m−2

after smoke treatments of soil in Western Australia (Roche
et al., 1997b). Soil samples collected in a plant community domi-
nated by Eucalyptus cneorifolia in South Australia were subjected
to heat (80° for 60 min), smoke (from burning barley hay) and
heat + smoke treatments in a greenhouse. Compared with the
control, all treatments increased the germination of
Thryptomene ericaea; and heat + smoke increased the germination
of Baeckea crassifolia, Calytrix glaberrina and E. cneorifolia
(Rawson et al., 2013).

Formation of aerial seed banks

Various species of Myrtaceae growing in fire-prone habits, e.g. in
southwestern Australia (Lamont et al., 1991) retain seeds on the
mother plant for extended periods of time (Table 9). Prolonged
storage of viable seeds in the canopy is called serotiny, and it is
more likely to be found in fire-killed, nonsprouting species than
in species capable of resprouting after fire (Lamont et al., 1991,
2020). The seed-holding structures in serotinous Myrtaceae are
woody capsules (Wellington and Noble, 1985) or infructescences
of capsules (Whelan and Brown, 1998; Kim et al., 2009). These
capsules can provide some protection of seeds from the heat of
fires (Judd and Ashton, 1991; Judd, 1994; Whelan and Brown,
1998; Battersby et al., 2017b).

Table 9. Aerial seed bank (serotiny) in species of Myrtaceae

Species
Time on mother

plant References

Agonis, includes
Taxandria and
Paragonis

W Lamont et al. (2020)

Angophora sp.
(Eucalyptus s.l.)

W Lamont et al. (2020)

Beaufortia spp. W-M Lamont et al. (2020)

Callistemon spp. M-S Lamont et al. (2020)

Callistemon glaucus 2–7 yr Kim et al. (2009)

Callistemon rigida 3–30 yr Ewart (1907)

Calothamnus spp. M Lamont et al. (2020)

Calothamnus
quadrifidus

2–9 yr Kim et al. (2009)

Conothamnus spp. W Lamont et al. (2020)

Eremaea spp. W-M Lamont et al. (2020)

Eucalyptus spp. W-M Lamont et al. (2020)

Eucalyptus baxteri >2 yr Andersen (1989)

Eucalyptus
luehmanniana

– Tozer and Bradstock (1997)

Eucalyptus platypus
var. acutifolius

5 yr Hardy (1926)

Kunzea spp. W or
nonserotinous

Lamont et al. (2020)

Kunzea ambigua – Judd and Ashton (1991)

Lamarchea spp. W-M Lamont et al. (2020)

Leptospermum spp. W-M Lamont et al. (2020)

Leptospermum
juniperinum

3 yr Andersen (1989)

Leptospermum
scoparium

1 yr Burrows (1997), Battersby
et al. (2017a) and Harris
(2002)

Lophostemon spp. W Lamont et al. (2020)

Melaleuca spp. W-S Lamont et al. (2020)

Melaleuca ericifolia – Hamilton-Brown et al. (2009)

Melaleuca
parvistaminea

– Jacobs et al. (2014)

Melaleuca
quinquenervia

– Rayachhetry et al. (1998)
and Baumann and Hewitt
(2023)

Metrosideros perforata 3 mo Burrows (1997)

Metrosideros robusta 4 mo Burrows (1997)

Metrosideros umbellata 6 mo Burrows (1997)

Phymatocarpus sp. W-M Lamont et al. (1991, 2020)

Regelia spp. W-M Lamont et al. (2020)

Syncarpia spp. W Lamont et al. (2020)

Tristania spp. – Lamont et al. (1991, 2020)

Xanthostemon spp. – Lamont et al. (2020)

M-S, moderately to strongly serotinous; W, weakly serotinous; W-M, weakly to
moderately serotinous; W-S, weakly to strongly serotinous; –, no information; mo, months;
yr, years.
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Aerial seed banks have advantages for the species, including
protection of seeds from granivores on the soil surface such as
ants, and the continuous supply of viable seeds although few or
no seeds are produced in some years (Lamont and Enright,
2000). When the seeds are dispersed, they can germinate imme-
diately because they are ND (e.g. Kim et al., 2009). However, habi-
tat substrate moisture and temperatures must be favourable for
germination at the time of seed dispersal because seeds of seroti-
nous species quickly lose viability on/in the soil (Cowling and
Lamont, 1987; Enright and Lamont, 1989), or they may be
eaten by predators (Wellington and Noble, 1985).

In some serotinous species, capsules slowly open throughout
the year, resulting in a low rate of seed dispersal, e.g. Eucalyptus
luehmanniana (Tozer and Bradstock, 1997) and Melaleuca quin-
quenervia (Baumann and Hewitt, 2023). In fire-prone habitats in
New Zealand, capsules of Leptospermum scoparium remain
attached to the parent plant and do not open for 1 year or longer,
but in other kinds of habitats capsules split and release the seeds
within 1 year (Harris, 2002). Mature fruits remain alive on plants
of Callistemon rigida for 3–4 years or longer, but they die and
open when their water supply is stopped (Ewart, 1907). Fruits
of Melaleuca parvistaminea dried and opened when plants were
cut (Jacobs et al., 2014). In M. ericifolia, a wetland species, the
peak of annual seed dispersal is in April, at which time water
levels in the habitat are low (Hamilton-Brown et al., 2009). Fire
is an important and reliable seed-releasing factor because it pro-
motes massive capsule opening and seeds are released into sites
where fire has removed the standing vegetation (e.g. dos Santos
et al., 2015; Hewitt et al., 2015), i.e. fire prepares a good seed
bed (Lamont and Enright, 2000). However, if a fire occurs after
seed dispersal, it kills seeds on the soil surface (dos Santos
et al., 2015).

Future challenges to maintain species richness of
Myrtaceae

Invasive species of fungi

The fungus Austropuccinia psidii (syn. Puccinia psidii) was first
identified on guava (Psidium guajava) in South America (Winter,
1884), but it now has been found on plants of Myrtaceae growing
in many countries, including Australia (Glen et al., 2007; Pegg
et al., 2017; Berthon et al., 2018), Mexico (Esperón-Rodríguez
et al., 2018), New Caledonia (Giblin, 2013), New Zealand
(Campbell et al., 2020; Jo et al., 2022), South Africa (Roux et al.,
2013; Paap et al., 2023), Southeast Asia (Fensham et al., 2020;
Liu et al., 2024) and the USA in Florida and Hawaii (Marlatt
and Kimbrough, 1979; Loope, 2010). Many strains of A. psidii
have been identified, and research is being conducted to determine
which species of Myrtaceae are susceptible to them (Soewarto et al.,
2020). Also, germplasm conservation, i.e. seed banking, has been
initiated in Australia as a pre-emptive strategy to conserve
Myrtaceae species susceptible to damage or death due to attack
by A. psidii (Dalziell et al., 2024).

Austropuccinia psidii attacks young growing stems and leaves
as well as fruits of many species of Myrtaceae, resulting in the
death of the infected plant parts. In susceptible species of
Myrtaceae, the fungus attacks and kills the regrowth of plants fol-
lowing die-back, prevents seed production and kills seedlings
(Fensham et al., 2021). Myrtaceae growing in eastern and south-
ern coastal areas as well as the northern tropical rainforests of
Australia are at high risk for fungal infection. Berthon et al.

(2018) estimated that under current climate conditions in eastern
and northern Australia, 1285 species of Myrtaceae are at risk of
being exposed to A. psidii. As early as 2007, tests showed that
73 of 83 native species in 16 of 19 genera of Australian
Myrtaceae are susceptible to A. psidii (Glen et al., 2007), and
Fernandez-Winzer et al. (2020) noted that the host range is 370
species of Myrtaceae.

Conditions for germination of spores of A. psidii are high
humidity (or wetness), light for at least 6 h and warm tempera-
tures (optimum of 25–28°C) (Campbell et al., 2020). Thus, it
was hoped that in cool climates, e.g. New Zealand (Campbell
et al., 2020), and dry climates, e.g. Western Australia (Berthon
et al., 2018), there is a reduced risk of Myrtaceae being infected
by A. psidii. However, this fungus has been detected in the nor-
thern part of Western Australia (Dalziell et al., 2024). Much con-
cern is being expressed about global warming and the increased
spread of A. psidii in places such as New Zealand (Jo et al.,
2022), where climate warming could increase temperature enough
to be favourable for the germination of A. psidii spores (Campbell
et al., 2020). Unfortunately, A. psidii now has invaded the North
Island of New Zealand, and 24 Myrtaceae species have been
infected by it (Toome-Heller et al., 2020).

Due to repeated attacks by A. psidii on the regrowth of new
stems and leaves, plants may die in 3–4 years, and some
Myrtaceae in Australia, e.g. Archirhodomyrtus beckleri,
Decaspermum humile, Gossia hillii and Rhodamnia maideniana,
are in serious decline (Pegg et al., 2017). Species such as
Rhodamnia rubescens and Rhodomyrtus psidioides (Carnegie
et al., 2016; Fernandez-Winzer et al., 2020) in Australia,
Eugenia koolauensis in Hawaii (USA) (Loope, 2010) and E. gacog-
nei in New Caledonia (Fensham et al., 2020) are seriously threa-
tened with extinction. Overall, the death of Myrtaceous species
due to attack by A. psidii is affecting the structure of various
plant communities in Australia, including wet sclerophyllous for-
ests, rainforests, wetlands and swamps (Glen et al., 2007; Carnegie
et al., 2016; Pegg et al., 2017; Fernandez-Winzer et al., 2020).
Other invasive fungi such as Phytophthora cinnamoni (Carnegie
et al., 2016; Fensham et al., 2020; McDougall and Liew,
2024; McDougall et al., 2024) cause die-back and death of
Myrtaceae species. Also, the polyphagous short-hole borer/beetle
Euwallacea fornicatus and its associated fungus Fusarium sp.,
which can lead to tree death, have been detected in Western
Australia, and many Myrtaceae species can serve as hosts
(Dalziell et al., 2024).

In the Hawaiian Islands, the vascular wilt fungi Ceratocystis
lukuohia and the canker pathogen C. huliohia have caused the
death of many Metrosideros polymorpha trees (Camp et al.,
2019; Atkinson and Roy, 2023). Not only do the dying trees
have a significant impact on forest structure, but this loss of
trees has major negative effects on the native birds that depend
on the flowers of M. polymorpha for food (Camp et al., 2019).

Other challenges and some possible solutions

The ever-increasing effects of human activities on natural ecosys-
tems, in particular the destruction of natural habitats of species
of Myrtaceae, are causing many species to become rare and in
some cases on the verge of extinction (Breman et al., 2021). In add-
ition to the potential loss of Myrtaceae species and their habitats,
the animals in these habitats that use Myrtaceae species as food
will be negatively affected, e.g. tropical dry forests in the Andes
Mountains (Galván-Cisneros et al., 2023). These authors note
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that with the loss of animals seed dispersal across the landscape will
be decreased, thereby reducing the regeneration of Myrtaceae spe-
cies from seeds and restricting the distribution of species.

In addition to habitat destruction and loss of seed dispersal,
global warming with increased temperatures and modified pat-
terns of precipitation could intensify the negative effects of
increased fire intensity and frequency in plant communities
dominated by species of Myrtaceae and promote the spread of
pathogenic fungi that can kill plants of Myrtaceae. The challenge
for the future is to find ways to conserve species of Myrtaceae
(and other plant families) that are being threatened with
extinction.

Growing plants in botanical gardens (Breman et al., 2021) and
storing seeds in seed banks (e.g. Pilatti et al., 2011; Hardstaff et al.,
2022) are two conservation options. However, seeds of some
Myrtaceae are desiccation-sensitive and can not be stored dry at
low temperatures. Thus, cryogenic techniques for storage are
being tested/used for pollen, seeds, embryos and shoot tips of
Myrtaceae (Kaczmarczyk et al., 2011; Nadarajan et al., 2021).
More conservation areas/preserves are needed to protect the habi-
tat and species, e.g. in the Brazilian Cerrado (Oliveira et al., 2019)
and the Atlantic Forest of eastern Brazil (Oliveira et al., 2021).
Also, methods to propagate critically endangered species, espe-
cially from seeds, are needed (e.g. Sarcar et al., 2006; Montalyo
et al., 2010; Raju et al., 2014).

One idea for conserving rare species of Myrtaceae, especially in
Australia where some species are becoming rare due to fungal
attack (Fensham et al., 2021) is to grow plants in regions where
the climate is not suitable for the fungi. For example, growing spe-
cies of Myrtaceae in locations with <900 mm annual precipitation
potentially would prevent the plants from being attacked by A.
psidii (Fensham et al., 2020). However, when growing species of
Myrtaceae in new habitats, consideration needs to be given to
edaphic factors such as acidity and fertility (Gomes et al., 2020).

Another possibility for conserving species of Myrtaceae threa-
tened by A. psidii is to breed/select for resistance to pathogenic
fungi (Chock, 2020; Smith et al., 2020; Yong et al., 2021).
Further, a spray containing double-stranded RNA from A. psidii
has shown effectiveness in both preventing and curing infection
by A. psidii on Syzygium jambos trees (Degnan et al., 2023).

Concluding thoughts

In our comparison of the highly speciose, widely distributed plant
families, the Asteraceae, Rubiaceae and Myrtaceae, which are the
first, fourth and ninth most speciose angiosperm families, respect-
ively (Mabberley, 2017), have been considered. The Asteraceae has
trees, shrubs, lianas and herbs, with number of life forms decreas-
ing with distance from the Equator, resulting in only herbs in the
tundra (Baskin and Baskin, 2023). Only one kind of embryo
(spatulate) is found in cypselae (seeds) of Asteraceae, and seeds
may be ND or have PD. The six known types of nondeep PD
occur in the Asteraceae, and, depending on habitat/vegetation
region, PD is broken by warm summer or cold moist winter con-
ditions. Thus, in Asteraceae, the great species richness is related to
seed dormancy-breaking and germination requirements that
closely coincide with a wide range of habitats throughout the
world, except Antarctica.

The Rubiaceae has trees, shrubs, lianas/climbers and herbs.
The highest species richness is in moist tropical forests, but
some shrubs and herbs grow in temperate regions and a few
herbs in the tundra. The Rubiaceae has five kinds of embryos,

and seeds are ND or have morphological, physiological or mor-
phophysiological dormancy. The greatest species richness in
Rubiaceae is related to the diversity of seed dormancy, especially
among tropical rainforest trees and semi-evergreen rainforest
shrubs (Baskin and Baskin, 2024).

The Myrtaceae has only trees, shrubs and a few viny epiphytes
but no herbs. The distribution of the family outside the tropics is
in regions with a Mediterranean climate, e.g. Australia, South
Africa and southern Europe/North Africa, and to a limited extent
in temperate vegetation regions such as broad-leaved evergreen
forests and grasslands. Five kinds of fully developed embryos
are found in seeds of Myrtaceae; however, seeds are either ND
or have PD, regardless of tribe, habitat/vegetation region or
kind of fruit produced. Great species richness is found in
fleshy-fruited Myrtaceae that grow in moist tropical regions.
Seeds of fleshy-fruited species are either ND or have PD that is
broken during exposure to relatively high temperatures, after
which seeds germinate at high temperatures. The only known
exception is for seeds of fleshy-fruited Myrtus communis that
become ND during cold stratification. However, after cold strati-
fication, seeds germinated to high percentages at 25–30°C than at
10–20°C (Benvenuti and Macchia, 2001). Also, seeds of Baeckea
utilis buried in the subalpine of the Brindabella Mountains
(Australian Alps) in southeastern Australia germinated to higher
percentages when exhumed in spring (3, 12 and 27 months of
burial) than those exhumed in winter or autumn (6, 9 and 21
months of burial) (Guja and Brindley, 2017). These results sug-
gest that cold stratification during winter was breaking seed
dormancy.

Great species richness is also found in dry-fruited Myrtaceae
species that grow in seasonally dry tropical vegetation regions
and in habitats with a Mediterranean climate, e.g. the matorral
with hot, dry summer and cool, moist winters. For dry-fruited
species, dormancy-break during the hot, dry season is followed
by germination when the wet season begins. In tropical vegetation
regions, temperatures are high when the wet season begins; thus,
both dormancy-break and germination occur at high tempera-
tures. In the matorral, seeds germinate over a range of low to
high temperatures that include the temperatures (e.g. c. 15°C) of
the cool, rainy season. Thus, in the Myrtaceae, we find many
fleshy-fruited species in which both seed dormancy-break and
germination occur during exposure to warm, wet conditions
(e.g. rainforest) and many dry-fruited species in which dormancy-
break at warm, dry conditions are followed by germination at
either warm, wet (e.g. savannas) or cool-to-warm, wet (e.g. mator-
ral) conditions.
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