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SUMMARY

Mathematical modelling is an important tool for understanding the dynamics of the spread of
infectious diseases, which could be the result of a natural outbreak or of the intentional release of
pathogenic biological agents. Decision makers and policymakers responsible for strategies to
contain disease, prevent epidemics and fight possible bioterrorism attacks, need accurate
computational tools, based on mathematical modelling, for preventing or even managing these
complex situations. In this article, we tested the validity, and demonstrate the reliability, of an
open-source software, the Spatio-Temporal Epidemiological Modeler (STEM), designed to help
scientists and public health officials to evaluate and create models of emerging infectious diseases,
analysing three real cases of Ebola haemorrhagic fever (EHF) outbreaks: Uganda (2000), Gabon
(2001) and Guinea (2014). We discuss the cases analysed through the simulation results obtained
with STEM in order to demonstrate the capability of this software in helping decision makers
plan interventions in case of biological emergencies.
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INTRODUCTION

Mathematical modelling has emerged as an important
tool for gaining understanding of the dynamics of the
spread of infectious diseases. The need for accurate
models which describe the epidemic process are vital,
as infectious disease outbreaks threaten national and
international stability with their potential impact, espe-
cially on public health and the economy. Scientific

literature proposes mathematical models for studying
epidemics, outbreaks, and optimization of interventions
[1]. These mathematical tools are extremely valuable
also for risk analysis, although sometimes challenging
to apply and decipher for non-specifically trained
users. For this reason, the development of user-friendly
software for the easy application and visualization of
epidemic models is of great interest in the field of risk as-
sessment and emergency management.

Infectious diseases have always been of great con-
cern for humanity. The struggle with these agents
appears to know no bounds, and the strong belief, dif-
fused after the 1960s, that infectious diseases would be
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eradicated with the improvement in sanitation, antibio-
tics, vaccinations, medical science and medical care,
is now wavering. The World Health Organization
(WHO) states that infectious diseases are responsible
for the death of over 17 million people a year [2] and
billions of others are infected. Furthermore, infectious
diseases are still among the major causes of mortality
in developing countries [3]. The main causes for this
situation is that the aetiological agents causing infec-
tious diseases are able to adapt and evolve, therefore
we can observe new emerging infectious diseases [4];
at present, bacteria which are able to swim in pure
bleach or survive in a dose of penicillin are known.
Moreover, some diseases which were believed to be era-
dicated, are re-emerging, sometimes after hundreds of
years and/or even in a more virulent form [5].

Together with the threat of biological weapons,
whose research is lately focused on microorganisms
and lethal infectious diseases, we have great motivation
to understand how infectious diseases spread in the
population and, eventually, improve the counter-
measures to control their diffusion. Mathematical epi-
demiology contributes to the understanding of the
behaviour of infectious diseases, and allows predictions
about their spread in the population. Detection, preven-
tion, therapy and control programmes, all take advan-
tage of mathematical modelling for their comparison,
evaluation, optimization and implementation.

In order to prevent, or at least to reduce an epidemic
outbreak (or to minimize an infection from spreading),
there is the need of models that can accurately capture
the main characteristics of the disease; in fact, being
able to foresee disease propagation is vital to provide
more effective response measures. These will be reliable
only if model parameters are well estimated.

Epidemic modelling has three main aims. The first is
to understand the spreading mechanism of the disease.
For this, the essential part is a mathematical structure
(equations give us threshold values and other constants
which we use to describe the behaviour of the disease).
The second aim is to predict the future course of the epi-
demic. The third is to understand how we may control
the spread of the epidemic (education, immunization,
isolation, andmore, analysis of the international proto-
cols to contain epidemics and pandemic events based
on evidence). In order to make a reliable model and
predictions to develop methods of control, we must
be sure that our model describes the epidemic closely,
i.e. it contains all its specific features. Therefore, it is im-
portant to validate models by investigating whether
they fit the observed data.

In this article, we used the Spatio-Temporal
Epidemiological Modeler [STEM (Eclipse Foundation;
http://www.eclipse.org], a tool designed to help scientists
and public health officials to create and use models of
emerging infectious diseases. STEM uses mathematical
models of diseases (based on differential equations) to
simulate the development or space–time evolution of a
disease. In particular, our challenge is to demonstrate
the reliability of this tool by analysing three real cases of
Ebola haemorrhagic fever (EHF) outbreaks: Uganda
(2000) [6, 7], Gabon (2001) [8], andGuinea (2014) [9–11].

In particular, our approach consisted of an initial
assessment of the validity of the software through a
benchmark between simulations and epidemiological
data from the past Uganda EHF outbreak (2000,
SEBOV strain). Next, we applied the epidemiological
data from another well known EHF outbreak (Zaire
1995, ZEBOV strain), and we further evaluated the
software as tool to simulate the development and evo-
lution of two real EHF outbreak, Gabon (2001) and
the recent Guinea outbreak (2014). These two EHF
outbreaks were due to ZEBOV strain.

METHODS

STEM

STEMsoftware is Java-based, and is an open-source soft-
ware project under the umbrella of theEclipse foundation
[12]. STEM allows users to create spatial and temporal
models of emerging infectious diseases. It was designed
to help developers, researchers and users to plug in their
choice ofmodels. It comeswith a large numberof existing
compartment models, e.g. Susceptible/Infectious (SI),
Susceptible/Infectious/Recovered (SIR) and Susceptible/
Exposed/Infectious/Recovered (SEIR) models pre-coded
with both deterministic and stochastic engines, and a new
model-building framework that allows users to rapidly
extend existing models or to create entirely new models.
Thesemodels could aid in understanding, and potentially
preventing, the spread of a disease.

The STEM application has built-in Geographical
Information System (GIS) data for almost every coun-
try in the world. It comes with data about country
borders, populations, shared borders (neighbours),
interstate highways, state highways, and airports.
This data come from various public sources.

STEM treats the world as a graph within a modular
and hierarchical modelling structure. From bottom
to top, this structure has three basic levels: graphs,
models, and scenarios. We refer to STEM tutorial
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(https://wiki.eclipse.org/Tutorials_for_Developers) for
in-depth examination of all the software functions.

SEIR epidemic model

Among different mathematical epidemic models
[1, 12–14], we fitted the data from Uganda (2000),
Gabon (2001) and Guinea (2014) EHF outbreaks in a
simple deterministic (continuous time) SEIR epidemic
model [15]. Almost all existing literature [16–18] on
Ebola epidemic prediction are based on this model.

Individuals can be part of one of the following epi-
demiological states:

Susceptible (S): healthy population at risk of contract-
ing the disease.

Exposed (E): infected, but not yet infectious.
Infectious (I): infected and infecting others; capable of

transmitting the disease.
Removed or Recovered (R): population that dies or

recovers from the disease.

We assume the population is closed, that is, the effect
of demographic changes (birth and natural death) is
minimal during the course of the epidemic. The total
population size N is divided in four compartments: sus-
ceptible individuals at time t, S(t), the exposed class E
(t) with an average incubation period of 1/ε days before
progressing to the infectious class I(t), and the removed
[death D(t) or recovered R(t)] class R(t) (where without
any ambiguity of notation, R will henceforth be re-
ferred to as recovered class). Infectious individuals
move to the R class (death or recovered) at the per
capita rate 1/γ. In the absence of treatment, the R
class is termed removed because individuals reaching
it will never have the chance to rejoin the process
[14, 18]. The model flowchart is depicted in Figure 1.

C(t) is not a compartment, but is needed to keep
track of the cumulative number of Ebola cases from
the onset of symptoms. C(t) is not an epidemiological
parameter, it is the sum of I and R, thereby including
all suspected and confirmed cases.

The epidemiological states and epidemiological fea-
tures present in the SEIR compartment model are
reported in Table 1.

Differential equation model

The above transmission process is modelled by the fol-
lowing system of nonlinear ordinary differential equa-
tions [12, 13]:

dS(t)
dt

= −βS t( )I t( )/N, (1)

dE(t)
dt

= −βS t( )I t( )/N − εE(t), (2)

dI (t)
dt

= εE(t) − γI (t), (3)

dR(t)
dt

= γI (t). (4)

This model takes into consideration the number of
people infected due to direct contact with an infected
individual and the number of people infected due to
indirect contact: –βS(t)I(t)/N. The individuals exhibit
the symptoms of the disease and move on to the infec-
tious stage. This is denoted by εE, where ε is the

Fig. 1. SEIR compartment model. Epidemiological states:
S, susceptible (healthy population at risk of contracting the
disease); E, exposed (infected, but not yet infectious); I,
infectious (infected and infecting others, capable of
transmitting the disease); R, removed or recovered
(population that dies or recovers from the disease); C, is not
a compartment (includes I and R); β, transmission rate; ε,
incubation rate (per unit time); γ, recovery rate (per unit
time); 1/γ, average recovery period; μ*, population birth rate;
μ, population death rate; α, immunity loss rate.

Table 1. Epidemiological states and epidemiological
features present in the SEIR compartment model.
Explanation in extenso are reported in the text

Epidemiological states
S Susceptible
E Exposed
I Infectious
R Removed or recovered
C Suspected cases

Epidemiological features
N Size of the population
ε Incubation rate
γ Recovery rate
δ Infectious mortality rate
β Transmission rate
1/γ Average recovery period
1/ε Average incubation period
μ* Population birth rate
μ Population death rate
α Immunity loss rate
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per capita infectious rate. Then 1/ε becomes the aver-
age time for a latent individual to become infectious.
This will be denoted by γI, where γ is the per capita
death rate. Then, 1/γ becomes the average time it
takes an individual to die once he/she has entered
the infectious stage. As before, the number of dead
and recovered individuals is assumed to be the same,
since there has not been a case in which a person
who survived Ebola contracts the disease again [14].

Outbreak data

The Ebola virus is a member of the family Filoviridae.
The viruses in the family, called Filoviruses, cause se-
vere haemorrhagic fever in humans and primates.
Haemorrhagic fever is characterized by high fever, in-
ternal bleeding, hypotension and shock. There are five
known strains of Ebola virus, each named according
to the location where it was first recognized. These
five strains are Ebola-Zaire (ZEBOV), Ebola-Sudan

(SEBOV), Ebola-Ivory Coast (CIEBOV), Ebola-
Bundibugyo (BEBOV) and Ebola-Reston (REBOV)
[19, 20].

The virus is spread through close contact and con-
taminated medical equipment. When a person comes
into contact with, and becomes infected by the Ebola
virus, the incubation period is 2–21 days (average 8–10
days). The onset of the illness is then abrupt and includes
fever, headache, joint and muscle aches, sore throat and
weakness, followed by diarrhoea, vomiting and stomach
pain. This condition is called haemorrhagic fever and it
is often fatal [19, 21]. We analysed data from the three
aforementioned EHF epidemics. A brief description of
the outbreaks is given in the next sections.

Uganda (2000)

A total of 425 cases (case fatality rate 53%) of Ebola
were identified in three districts of Uganda: Gulu,
Masindi and Mbara [22–25]. The onset of symptoms

Table 2. Epidemiological features of three EHF outbreaks

Epidemiological features Value Reference

Uganda (2000)
Size of the population (N) 470 000 [16, 27]
Number of index cases 9 [16]
Period considered 18 Sept.–16 Oct. [6, 16, 28]
Incubation rate (ε) 0·083 [16]
Recovery rate (γ) 0·1 [16]
Infectious mortality rate (δ)b 0·125 [16]
Transmission rate (β) 0·505 [16]
Population density 41 [27]

Gabon (2001)
Size of the population (N) 72·461 –a

Number of index cases 1 [15, 18]
Period considered 25 Oct.–16 Dec. [8, 29]
Incubation rate (ε) 0·607 [18]
Recovery rate (γ) 0·135 [18]
Infectious mortality rate (δ)b 0·135 [18]
Transmission rate (β) 0·284 [18]
Population density 5·5 –c

Guinea (2014)
Size of the population (N) 1 081 675 –d

Number of index cases 1 [15,18]
Period considered 1 Dec.–22 Mar. [9, 26, 30]
Incubation rate (ε) 0·607 [18]
Recovery rate (γ) 0·135 [18]
Infectious mortality rate (δ)b 0·135 [18]
Transmission rate (β) 0·284 [18]
Population density 45 –d

a Standard STEM population (2006).
b Infectious mortality rate (δ): shown only in the STEM compartment SEIR model.
c http://www.citypopulation.de/Gabon.html.
d UN data – A world of information: Guinea (https://data.un.org/CountryProfile.aspx?crName=GUINEA).
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of the first reported case was on 30 August, but the
cause was not identified as Ebola until 15 October by
the National Institute of Virology in Johannesburg
(South Africa).

Most of the 425 presumptive cases (confirmed and
clinically diagnosed) occurred in the district of Gulu
(470 000 inhabitants [6]). For this reason, we fitted
our model with Gulu district data.

Fig. 2. Results of STEM simulation of the Uganda scenario. (a) Map view of the geographical distribution of the disease
deaths; in particular, in the square with a red border the main information is reported: i.e. the name of the region
considered, the area extension in km2 and the coordinates of the region, the population numbers before the disease
occurred, the population numbers after the period considered that the disease occurred and the end time of the period
considered. (b) Disease deaths, (D)t. (c) Infected people, (I)t. (d) Recovered people, (R)t. Time in days.
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Gabon (2001)

The first index case was probably infected during a hunt
near Mendemba village, on 21 October 2001, and the
last index case was infected near Grand Itoumbi village
on 23 February 2002. During this epidemic, most sec-
ondary caseswere related to community-based transmis-
sion. All cases observed in the Ivindo district were linked
to two imported cases fromLaZadié, whichwere admit-
ted to Makokou Regional Hospital. Two healthcare
workers were infected: one in Mékambo Health Centre
(La Zadié district, Gabon), and one in Makokou
Regional Hospital (Ivindo district, Gabon) [8].

Guinea (2014)

On 23 March 2014, the WHO issued its first public an-
nouncement on a new outbreak of Ebola virus disease,
which began in December 2013 in the Republic of
Guinea [9–11, 26]. The initial source of the outbreak
appears to be the village of Meliandou in Gueckedou
Prefecture, and the index case was a 2-year-old child
who died on 6 December 2013. From the start of the
outbreak to 22 March 2014, a total of 49 cases includ-
ing 29 deaths (case fatality ratio 59%) were reported
[9, 10, 11, 26].

Epidemiological features of the three EHF outbreaks

See Table 2 for epidemiological features of the three
EHF outbreaks.

Assumptions

To run the simulations, we made the following
assumptions for the epidemics:

(1) The entire population was initially considered sus-
ceptible, and as a result, at the beginning of the
epidemic N(t) = S(t).

(2) The population considered is a constant popula-
tion during the simulation of all outbreaks. This
means that there are no deaths due to outside fac-
tors and the number of births that occurred are so
small that we overlook them. As a result, we can
safely ignore the μ* and μ parameters.

(3) For each outbreak simulation the SEIR epidemic
model was respectively initialized with the number
of index cases indicated in Table 2 (see ‘Number
of index cases’).

(4) All observed EHF cases (deaths and suspected
cases) were assumed to be related to
human-to-human transmission.

(5) For each outbreak the period of time evaluated,
indicated in Table 2 as ‘Period considered’, go
from the onset of outbreak to the initial control
interventions (hospitalization, disease control mea-
sures, quarantine, etc.). In this way we can study
the real distribution of the outbreak, without exter-
nal interventions.

(6) The suspected cases (C) are the combination of I
and R(D) individuals.

(7) To simulate the Uganda outbreak we assumed
that the index cases were distributed uniformly
in all Gulu districts; this is because the literature
from where we obtain the epidemiological data
of the EHF Uganda outbreak [16] does not detail
the real geographical distribution of these index
cases.

(8) For simulating Gabon and Guinea outbreaks we
used the epidemiological data of the Congo out-
break (1995). This allows evaluation of the software
as tool for simulating the development and evolu-
tion of two real EHF outbreak using the epidemio-
logical data from another EHF outbreak, but
caused by the same strain (ZEBOV).

RESULTS

We use the parameters in Table 2 to simulate the EHF
outbreaks in Uganda (2000), Gabon (2001) and
Guinea (2014) through STEM software.

According to the reference literature from WHO
[28], the EHF outbreak in Uganda in 2000, produced
71 suspected cases including 35 deaths in Gulu dis-
trict, northern Uganda in the reference period between
18 September and 16 October in 2000. We fit the

Table 3. Results of the three EHF outbreaks
simulation. Real and simulated data are reported
together with a percentage estimation of the accuracy

EHF outbreak
Real
data

Simulated
data

Accuracy
(%)

Uganda (2000)
Deaths 35 36 97·2
Suspected
cases

71 77 92·2

Gabon (2001)
Deaths 12 11 91·7
Suspected
cases

15 16 93·7

Guinea (2014)
Deaths 29 29 100
Suspected
cases

49 56 87·5
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Fig. 3. Results of STEM simulation of the Gabon scenario. (a) Map view of the geographical distribution of the disease
deaths; in particular, in the square with the red border the main information is reported: i.e. the name of the region
considered, the area extension in km2 and the coordinates of the region, the population numbers before the disease
occurred, the population numbers after the period considered that the disease occurred and the end time of the period
considered. (b) Disease deaths, (D)t. (c) Infected people, (I)t. (d) Recovered people, (R)t. Time in weeks.
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Fig. 4. Results of STEM simulation of the Guinea scenario. (a) Map view of the geographical distribution of the disease
deaths; in particular, in the square with the red border the main information is reported: the name of the region
considered, the area extension in km2 and the coordinates of the region, the population numbers before the disease
occurred, the population numbers after the period considered that the disease occurred and the end time of the period
considered. (b) Disease deaths, (D)t. (c) Infected people, (I)t. (d) Recovered people, (R)t. Time in weeks.
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epidemiological features in Table 2 in STEM and the
results of the simulation are given in Figure 2 and
Table 3.

In the EHF outbreak in Gabon (2001), according to
the WHO [29], in the considered period of 25
October–16 December 2001, the Gabon Ministry of
Health had reported 15 suspected cases (two labora-
tory confirmed) including 12 deaths in Ogooué
Ivindo province in the northeastern part of the coun-
try. The simulated data obtained with STEM for
this scenario are reported in Figure 3 and Table 3.

Finally, in the last EHF outbreak and according to
WHO reports [26], in the considered period of 1
December 2013–22 March 2014, the Ministry of
Health (MoH) of Guinea had notified a total of 49
cases including 29 deaths in Guekedou, Macenta,
Nzerekore and Kissidougou districts in the east part
of the country. We fit the epidemiological features in
STEM software and the results of the simulation are
indicated in Figure 4 and Table 3.

DISCUSSION

We simulated three different Ebola outbreaks using
STEM and the results showed an elevated accuracy
within the real and simulated data. This means that
the SEIR compartmental model and STEM software
could explain the epidemiological dynamics of Ebola
virus (ZEBOV and SEBOV). Nevertheless, simplify-
ing assumptions of the model implies that the results
of this study need to be interpreted with caution.

In the EHF Uganda outbreak simulation the results
obtained with STEM matched >90% with the real
data and this outcome gives us the reasonable cer-
tainty that it can represent the epidemiological data
obtained from the literature.

Other significant data come from the study per-
formed with the epidemiological features of the
EHF Zaire outbreak (1995) applied to the Gabon
and Guinea EHF epidemics caused by the same strain
of Ebola virus (ZEBOV). We arrange the epidemio-
logical data from the Zaire outbreak in order to
understand the behaviour of the disease in the cases
of Gabon and Guinea. As can be seen in Table 3,
the results are significant and considerable. In fact,
the simulated data match the case of the Gabon out-
break by >91% and match the recent case of Guinea
by 87–100%. However, in the last Ebola case we em-
phasize that the full-length genome sequencing and
phylogenetic analysis showed that the ZEBOV from
Guinea forms a separate clade in relation to the

known EBOV strains from the Zaire and Gabon
outbreaks.

Overall, STEM software overestimates the real
data, with few exceptions. In this regard, it should
be emphasized that the period considered in the
STEM simulations referred only to the onset of the
disease until the initial interventions. We decided to
proceed in this way in order to understand if STEM
could characterize the natural distribution of the out-
break without external interventions, such as medical
countermeasures or quarantine.

CONCLUSIONS

The outcomes of this study suggest that if the epi-
demiological features of a specific contagious disease
are already known, STEM software could be a useful
tool for understanding, with a high level of accuracy,
how the outbreak will spread. As a result, this open-
source software could became, with some limitations,
an additional powerful weapon to evaluate the dy-
namics of the spread of infectious diseases whether
they are the result of a natural epidemic or non-
conventional human activities.
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