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Abstract

In this paper we shall extend the classical theory of Morita equivalence to semigroups with local units. We
shall use the concept of a Morita context to rediscover the Rees theorem and to characterise completely
0-simple and regular bisimple semigroups.

1991 Mathematics subject classification (Amer. Math. Soc.): 20M50.

Introduction

Category theory allows us to study simultaneously certain aspects of a large number
of mathematical structures. A deep application of the theory is Morita’s (1961)
equivalence theory for categories R-Mod, of ‘unital’ modules over rings with identity,
which gives a new insight into the classical Artin-Wedderburn structure theorem for
simple rings. The theorem can be interpreted as asserting that a ring R with identity
is simple artinian if and only if the category R-Mod is ‘the same’ as the category
D-Mod for some division ring D.

The principal questions considered in Morita theory are: When are the two cat-
egories R-Mod and S-Med equivalent, and how are such equivalences realised?

Knauer (1972) and Banaschewski (1972), independently parallel the ring theoretic
approach. The two authors present essentially the same results. Knauer considers a
non-additive category of A-modules, that is, instead of a ring, he takes a monoid A
which acts on sets from the left. He calls the category defined by such objects A-Act.
For a given monoid A he describes all monoids B such that the category B-Act is
equivalent to the category A-Act. In particular, he finds that the equivalence of these
categories yields an isomorphism between the monoids A and B if A is a group or
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finite or commutative. This differs from the additive case where the categories of
modules over a commutative field and its ring of n x n matrices are equivalent.

Abrams (1983), made a first step in extending the theory to rings without identity.
He considered rings in which a set of commuting idempotents is given such that
every element of the ring admits one of these idempotents as a two-sided unit, and
the categories of all left modules which are unitary in a natural sense. Anh and
Marki (1987) extend this theory to cover a wider range of rings and transfer more of
the classical Morita theory as presented in Anderson and Fuller (1974). Their rings
require any two elements to have a common two-sided identity, a condition which is
fulfilled by all regular rings (in the sense of von Neumann). Their framework yields a
new proof of Jacobson’s theorem on simple rings with minimal condition for principal
one-sided ideals.

All the above treatments consider those modules which are unitary, that is, RM =
M for R a ring (monoid), and M a left R-module (act). In all cases we find that
there exists a functor F defined on the category of all left R-modules (acts) such that
F is equivalent to the identity functor on the subcategory of unitary left R-modules
(acts). We may think of the unitary subcategories as ‘fixed objects’ of the appropriate
functors.

In extending the theory to semigroups without identity we use the above as our
motivation. We show that there exists a functor F defined on the category S-Act such
that § is a fixed object of F and that F (S) is a semigroup isomorphic to S. In so doing
we discover a representation, namely S ® s Hom(S, S), of semigroups with local units
(that is, semigroups in which every element of S has an idempotent as a left unit and an
idempotent as a right unit, a condition fulfilled by all regular semigroups). Moreover
we find that our representation reduces to the Vagner-Preston representation in the
inverse case.

Using the representation to define the functor S ®; Hom(S, —) on the category
S-Act we concentrate our attention on the subcategory FS-Act of fixed objects of
this functor. We find that FS-Act is a subcategory of the category of unitary S-acts
(US-Act). Furthermore all projectives in US-Act lie in FS-Act.

We then proceed to develop the necessary machinery to achieve our goals, namely,
necessary and sufficient conditions for FS-Act and FR-Act to be equivalent, where
S and R are semigroups with local units. By analogy with ring theory, we define a
Morita context to be a six-tuple (S, R, sPx, #Qs, T, ), where s Py is an S-R-biact,
Qs isan R-S-biact, T is an S-S-morphism of P® Q into S and u is an R-R-morphism
of Q ® P into R. Our main theorem states that FS-Act and FR-Act are equivalent if
and only if there exists a Morita context with T and u surjective.

As an example we describe those semigroups which are Morita equivalent to a
monoid. We find that such an exposition also leads us to a new proof of the Rees
theorem for completely 0-simple semigroups, furthering the list of analogies between
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simple rings with minimal one-sided ideals and completely O-simple semigroups.
Moreover, we are able to characterise completely O-simple (bisimple with regular 0)
semigroups as precisely those regular semigroups which are Morita equivalent to a
group with zero (a bisimple monoid with 0).

1. The categories S-Act and US-Act

DEFINITION. Let S be a semigroup. A set M together with a function S x M — M,
denoted (s, x) > sx, satisfying (st)x = s(¢tx) is called a (left) S-act.

For a semigroup S with 0 we are concerned with pointed S-acts, where an S-act M
is pointed if it has a distinguished element, also denoted by 0, such that Ox =0 ¢ M
for all x € M. We note that for this element 0 in M we have s =Oforalls € §. We
denote the category of pointed S-acts by S°-Act.

Let M and N be two S-acts. A mapping f : M — N is called a (left) S-morphism
if (sx) f = s(xf). The left S-acts together with the S-morphisms form a category
which we shall denote by S-Act.

As usual we shall denote a left S-act M by s M and the set of left S-morphisms from
sM into ¢N by Homg(M, N). We note that Homg(M, M) (which we shall denote by
Endg M) is a monoid under the usual composition of maps.

Analogously, right S-acts are defined. Their category will be denoted by Act-S. If
necessary we shall distinguish left and right S-acts by writing s M and M; respectively.

We note that for a family {P; : i € I} of S-acts, the product [],_, P: and the
coproduct | |,, P; exist, being respectively isomorphic to the cartesian product and
the disjoint union of the sets P; with a suitable actionof S. If ShasaQand {P; : i € I}
is an indexed set of pointed S-acts, then their coproduct is the O-direct union of the P;
which we denote by UO P.

DEFINITION. If a set M is simultaneously a left S-act and a right R-act such that
s(mr) = (sm)r,foralls € S, m € M, r € R, then we shall call M an S-R-biact
and denote it by sMg. If ¢Ng is some other S-R-biact, then we say that a map
f : N > Misan S-R-morphism if f is simultaneously a left S-morphism and a
right R-morphism.

We note that if N is a left S-act, then it is naturally a right EndgN-act. Moreover,
if as usual we write morphisms to the right, then by definition of a left S-morphism
we have: s(nf) = (sn)f foralls € §, n € N, f € EndgN and it follows that N is
an S-Endg N -biact.

In what follows we shall be interested in certain subcategories of the category
S-Act.
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The category US-Act

DEFINITION. We say that a semigroup S has local units if for each s € S there exist
idempotents (not necessarily unique) e,, ; f € S such that (¢;)s = s = s(; f). Wecall
es aleftunitof s, and ; f a right unit of s.

We note that all regular semigroups have local units as do all monoids.

DEFINITION. Let S be a semigroup, and let M be a left S-act. We say that M
is a unitary S-act if SM = M. If S has local units then this implies that for each
m € M there exists an idempotent e,, € S such that e,,m = m. The unitary left
S-acts together with the S-morphisms form a full subcategory of S-Act, which we
shall denote by US-Act. We shall sometimes refer to members of US-Act as US-acts.
Also, an S-R-biact will be said to be unitary if it is a unitary left S-act and a unitary
right R-act.

If § is a monoid with identity 1, then as in the case for rings with identity, we say
that an S-act M is unital if 1m = m for allm € M. Knauer (1972) requires this clause
as part of his definition of an S-act. We note that if S is a monoid, then the concepts
of unital and unitary coincide.

Clearly, every semigroup with local units is a unitary S-act over itself, if we define
an action by the multiplication of the semigroup. For an example of a non-unitary
S-act, let S be the semigroup of positive integers under addition. Then § is a left S-act
over itself. However, it is not unitary since the equation 1 = x + y has no solutions
in S.

DEFINITION. Let M be an S-act. A subset N C M is a subactof M if SN C N.
If S is a semigroup with local units and M is any S-act, then the set
SM={sm:s¢eS§, me M)}

is clearly a unitary subact of M which contains every unitary subact of M. For, if
N is a unitary subact of M, then SN = N so thatif n € N, then n = sp for some
s€S, pe Nandhencen € SM.

Generators. Generators play a central role in the study of equivalences between
categories of acts over monoids as they do in categories of modules over rings with
identity. To keep the discussion brief, we state Proposition 15.2 from Mitchell (1965),
and take it as our definition.

PROPOSITION 1.1. If the category C has coproducts, then an object G of C is
a generator for C if and only if for each ¢ € obC there is an epimorphism y :
L;c; Gi = C for some set I, where each G; is isomorphic to G.
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Let S be a semigroup with local units. Then the left S-act ¢S is a generator for the
category US-Act. For let ;M € US-Act and for each m € M, let S,, be isomorphic
to ¢S via an isomorphism x,, : S,, > S. Now define p : || _,, S» — M by putting
S0 = sm; clearly p is a surjective S-morphism.

meM

DEFINITION. In the category S-Act we shall say that the family {G; : G; €
S-Act, i € I}, is a family of generators for S-Act if every M € S-Act is an epi-
morphic image of a coproduct of isomorphic copies of | [,.; G;.

We note that if S is a semigroup with local units then {Se : e € E(S)} where
E(S) = {e € S : €* = ¢} is a family of generators for US-Act.

It is a well-known fact that equivalences preserve generators and families of gen-
erators.

2, Indecomposables and projectives in US-Act

‘We now look at two concepts specifically in the category US-Act for S a semigroup
with local units. As in Knauer (1972) we shall describe all indecomposable projectives
in US-Act in order to get a characterisation of all projectives in US-Act.

DEFINITION. The S-act M is call decomposable if there are non-empty acts M, M,
such that M = M, [ [ M,. Otherwise M is called indecomposable.

We note that since coproducts are preserved by equivalences, so are indecompos-
ables.

Throughout the following we shall assume that S is a semigroup with local units
unless otherwise stated.

LEMMA 2.1. A cyclic unitary S-act P = Sx, x € P is indecomposable.

PROOE. If Sx = P, U P,, then since there exists an idempotent e, in S such that
(e,)x = x, we have that x € Sx. Let x € P,. Thus P, = Sx.

The existence of left units for US-acts allows us to modify most of Knauer’s results
with relative ease; we shall therefore present them without proof. Moreover, we leave
it as an exercise for the reader to prove the results when S has a 0.

LEMMA 2.2. Let P; € US-Act, i € I, be indecomposable subacts of P € US-Act,
where (., P: # 9. Then | J,., P; is an indecomposable subact of P.

iel

PROOF. See Lemma 2.2 of Knauer (1972).
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PROPOSITION 2.3. Every US-act P is uniquely decomposable into a coproduct of
indecomposable subacts P; of P such that P = [ |, P..

PROOF. See Proposition 2.5 of Knauer (1972).

DEFINITION. P € S-Act is called projective if given any diagram

of S-acts and S-morphisms with p surjective there exists an S-morphismg : P - M
such that the triangle is commutative. In other words, given an epimorphism p :

M—N, then any S-morphism f : P — N can be factored as f = gp for some
g: P> M.

LEMMA 2.4. The left S-act Se, for e an idempotent of S, is projective.

PROOF. See Theorem 3.7 of Knauer (1972).

We note that it is clear that if P € US-Act and P is a projective in S-Act, then P is
also a projective in US-Act. Hence, for any idempotent e in S it follows from Lemma
2.4 that Se is a projective in US-Act.

DEFINITION. A category has enough projectives if every object is an epimorphic
image of a projective one.

LEMMA 2.5. The category US-Act has enough projectives.

PROOF. We have already noted that {Se : e € E(S)} is a family of generators for
US-Act. Also it is a well-known fact that in any category the coproduct of projectives
is projective. Thus the result follows from Lemma 2.4 and definition of a family of
generators.

The next result is simply a restatement of Proposition I1.14.2 of Mitchell (1965),
in the special case of the category US-Act.

PROPOSITION 2.6. In the category US-Act the following are equivalent:

(1) The US-act P is projective.
(2) Every epimorphism M—»P, M € US-Act, is a retract.

https://doi.org/10.1017/51446788700038489 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038489

[7] Morita equivalence for semigroups 87

PROPOSITION 2.7. Let P; € US-Act, i € I. The US-act ||
and only if P; is projective for everyi € I.

i1 Fi is projective if

PROOF. See Proposition 3.3 of Knauer (1972).

Using Propositions 2.3 and 2.7 we shall now characterise all projectives in US-Act.

LEMMA 2.8. A projective US-act P is indecomposable if and only if P is cyclic.
PROOF. See Lemma 3.5 of Knauer (1972).
Knauer (1972), makes the following remark: As there is no symmetric notion of

an exact sequence in S-Act, Proposition 2.6 does not imply that a retract f : M — P
onto a projective P gives a decomposition of M, which is the case for modules.

THEOREM 2.9. P is an indecomposable projective US-act if and only if P = Se
where e is an idempotent of S.

PROOE. See Theorem 3.7 of Knauer (1972).

COROLLARY 2.10. The US-act P is projective if and only if P = | |,,
set I where for each i, there is an idempotent e; of S such that P; = Se;.

P; for some

PROOF. The assertion follows from Propositions 2.3 and 2.7 and Theorem 2.9
above.

3. The Hom and ® functors and a representation of semigroups with local units

As we shall see, homological algebra allows us to study a semigroup S by invest-
igating its category of left S-acts; this category, in turn, is investigated by examining
the behaviour of certain functors on it, the most important of which are Hom, ® and
related functors derived from these.

The tensor product of acts. The tensor functor ®, arises from the concept of
tensor product of left and right S-acts much in the same way as it does in the theory
of modules over rings.

DEFINITION. For aright S-act Mg and aleft S-act 4N, M ® N is the solution of the
usual universal problem: thatis, M ® sN = (M x N)/o, where o is the equivalence
relation on M x N generated by

T ={((xrs,y), (x,59)) :xeM, ye N, s €5}
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We denote the o-class of (x, y) by x ® y.

As usual we refer to the set M ® sN as the tensor product of M5 and ¢ N and often
write it as M ® N when there is no ambiguity about the semigroup S. It follows from
the universal property that up to isomorphism there is only one tensor product of M
and sN .

We often need to know when two elements a®b and c®d in a tensor product M @ s N
are equal. From Proposition 1.4.26 of Howie (1976), we know thata @ b = c ® d
if and only if either (a, b) = (c, d), or for some positive integer n > 2 there is a
sequence

(@, b) = (a1, b)) —> (a2, b2) > ... > (as, b)) = (¢, d)

in which foreachi € {1,...,n — 1}
either (@, by), (@iy1, bis)) € Z or (@i+1, bit1), (@i, b)) € E.

Now ((a,-, b,'), (a,-+1, bi+l)) € X means that for some S; € S, a; = a;15;, bi+l = S,'b,'.
It follows immediately from this observation thatif M = Sand s ® b =t @ cin
S ® N, then sb = tc.

We also note that if P is a subact of N, it is clear that ifa,c € M, b,d € P and
a®b=c®dinM @ P,thenwe alsohavea ® b =c®d in M ® N. We caution
that the converse of this assertion is not true in general. That is, it is possible to have
a®b=c@dinMONbuta®b # c®din M ® P for appropriate choices of
M,N,P.

Let M be a fixed right S-act. Then we define the functor (M ®;s —) by specifying
that for any left S-act N and any left S-morphism g : N — P of left S-acts we have

(M®s—)N=MQ®;s N and (M Q5 —)(g) =1y ®3g.

Since ly®gh=(1yQg)(Ily @h)forh: P - Qand 1, ® 1y = lygy We have
that (M ® s—) is a functor from S-Act to Sets. Analogously we may fix a left S-act N
and define the functor(— ® sN) from Act-S to Sets.

PROPOSITION 3.1. Let My be an S-R-biact and g N be an R-act. Then the tensor .
product sM @ g N can be made into an S-act by defining s(m ® n) = sm Q n for
seS, meMandneN.

Similarly, for aright R-act My and an R-T -biactg Ny we getaright T-act M ® gk Nt
by defining (im ® n)t = m ® nt, and for biacts sMy and xNr, these actions make
sM ® gNr into an S-T -biact.

PROOF. That the actions are well-defined follows from our remarks on equality of
elements in tensor products. The result is now clear.
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As a consequence of this proposition we may define the functor (sM ® z—) from
R-Act to S-Act, for a fixed biact {Mp.

PROPOSITION 3.2. Let S be a semigroup with local units and M be a unitary S-act.
Thenk : S® M — M defined by s ® m — sm is a surjective S-morphism.

PROOF. That « is well-defined has been noted in our remarks on equality of elements
in tensor products. It is clear that « is an S-morphism and surjectivity follows from
the fact that M is unitary.

The tensor product is an associative operation on acts. The following proposition
is proved in exactly the same manner as is the module case in Jacobson (1980).

PROPOSITION 3.3. For semigroups R, S, T and U we have an R-U -biact isomorph-
ismof (kM @sN1)R1 Pyonto kMsQ(sN @1 Py) givenby (x®@y)®z > x® (yQz),
forxeM, yeN, z€P.

The Hom acts and the Hom functor

PROPOSITION 3.4. Let R, S and T be semigroups and sNg and sUr be biacts. Then
Homg(U, N) is a left T-act and a right R-act if for & € Homg(U, N), r € R and
t € T, we define the respective actions by

t,P)r—~>1t-® where t-®:uelUm— (u)deN and
(O, r)> P-r where ®.-r:uelUm-> (ub)reN.

PROOF. Clearly ¢ - ® € Homgs(U, N), and the above map defines an action. Let
s,teTandu € U. Then

u(s - (t - ®)) = (us)r - ® = (ust)d = u(st - ¥).
If R, S and T are semigroups with local units and the biacts are unitary, then the

subact
THoms(U,N)={t-®:t €T, ® € Homg(U, N)}

is the largest unitary T-subact of Homg(U, N).
By fixing U we obtain the functor THomg (U, —) which is induced by the mappings

N+ THomg(U,N) and f € Homg(N, M) f = THoms(U, f)

where f : THomg(U, N) —» THoms(U, M) is defined by ¢ - @ > (¢ - ) f.
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We observe that (¢t - @) f = ¢ - (®f), forif u € U, then
u(t - D) f = @ - P))f = (u)®)f = e)(®f) = u(t - (®f)).

Similarly, the subact Homg (U, N)R is the largest right unitary R-act contained in
Homg(U, N).

For a left S-act N we have that Homg (S, N) is a left S-act. If n is a fixed element
of N then the mapping p(n) : s — sn is a member of Homg(S, N). The morphism
t - @ is closely related to the right multiplication map p (¢ ®). In fact, t - = p (¢t ®),
for if s is an arbitrary element of S, then

st - P)=(st)® =5 P) =sp0 D).
Moreover, if N = §, then for all s, ¢ € S we clearly have

§ - p(t) = p(st).

4. The category FS-Act and a representation for semigroups with local units

We now combine the Hom and tensor product functors to obtain a representation
for semigroups with local units and to define a subcategory of US-Act for such
semigroups. We begin by defining an important S-morphism as follows:

DEFINITION. For M € S-Act, define
FM : S®3Homs(S, M) - M

by putting
R@P)'y =s5.

LEMMA 4.1. The map Ty is well-defined and is a morphism of left S-acts. Further-
more, if M is a unitary S-act, then 'y, is surjective.

PROOF. Suppose that s @ ® = t¥ where 5,¢ € S and ®¥ € Homg(S, M). Then
from our comments on equality of elements in tensor products, we have that either
(s, ®) = (¢, ¥) in which case s® = tW¥ or for some n > 2, there is a sequence

(s’ q>) = (sl, q)l) d (s21 d)Z) > e > (sns ¢n) = (tv w)
in which foreach i € {1, ..., n — 1} either

(Gsi, @), Gig1, Pit1)) € X or (Siz1, Pigr), (si, ) € X
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If ((si, @:), (i1, Pis1)) € X, then for some v; € S, 5; = 5,0 and Pyyy = v; - @,
Hence
Sin @i = 5in (Ui - @) = i) P = 5, P;.

If ((5it1, @iv1), (5;, ;) € I, then for some v; € §, 541 = 5;v; and P; = v; - Dy,
Hence
$5ir1 @it = (V) Pigy = 85 (v - Piyy) = 5P

Thus
Sq) =sl¢l =s2(b2 = ... =sn¢" =t‘-I1,

and I'y, is well-defined. It is clear that I'y, is an S-morphism.
Now suppose that M is unitary and let m € M. Then m = sp for some s € § and
p € M. Then p(p) € Homg(S, M) and

CRp(PNTy =sp(p) =sp=m

so that I'y, is surjective.

Let M, N € S-Act, and let ©® : M — N be an S-morphism. We define

e = S® sHoms(S, @) :S® sHoms(S, M) > S® sHoms(S, N),
O :s@P > s DO.

©' is clearly well-defined and it is left as an easy exercise to show that S® sHoms (S, —)
is a functor from S-Act into S-Act. In particular if © is an isomorphism then ©' is an
isomorphism. We now use this fact to define the category FS-Act.

DEFINITION. We say that M € US-Act is a fixed object of the functor S ®
sHomg(S, —), if the S-morphism Iy, is an isomorphism. The class of fixed ob-
jects of S @ sHom; (S, —) together with the usual left S-morphisms defines a category
which we shall denote by FS-Act. In view of Lemma 4.1, M is a fixed object if and
only if Iy is injective.

If S has a 0, then O is clearly a left US-act. Moreover 0 is a fixed object. For if
s® P € § ® sHom(S, 0), then letting f be a left unit of s we have that s ® ¢ =
f®s - = fQp(sP) =08 p(0).

DEFINITION. Following ring and monoid theory we shall say that two semigroups
R and S with local units are Morita equivalent if FS-Act is equivalent to FR-Act. If R
and S both have a zero, then we shall require that FS®-Act be equivalent to FR%-Act.
We note that FS-Act coincides with S-Act as studied by Knauer in the monoid case.

https://doi.org/10.1017/51446788700038489 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038489

92 S. Talwar [12]

Banaschewski (1972), makes the important observation that Morita equivalent
semigroups (in the sense that R-Act and S-Act are equivalent, with no requirement
that acts be unitary in any sense) are in fact isomorphic. So one is forced to define
Morita equivalence in terms of subcategories if a notion differing from isomorphism
is to be obtained. Knauer and Normak (1990), have shown that the monoids A and B
are Morita equivalent if and only if 4c and pc are equivalent categories, where ,c is
the minimal full subcategory of A-Act which is closed under subacts, factor acts and
contains A.

LEMMA 4.2. The restriction S ® sHomg(S, —) to FS-Act is naturally isomorphic
10 lys-act.

PROOF. By the definition of I'y; we have that the following diagram

I'u
S®sH0ms(S, M) M
o' 0
S ® sHoms(S, N) N
N

commutes. Since I' is an isomorphism by definition, the result follows.

We observe that the situation for a von-Neumann regular ring R differs from ours
in the sense that any two elements of R lie in a subring of the form eRe, where e
is an idempotent of R. Thus the natural morphisms of R ® M into M and of M
into RHomg(R, M) are isomorphisms (see Anh and Marki (1987)). Since regular
semigroups do not enjoy such a property we are led to consider more elaborate
functors.

PROPOSITION 4.3. Let M = | J{M, : i € I} be a unitary S-act where for each M;
there is an idempotent e; € S and an isomorphism ©; : M; — Se;. Then 'y is an
isomorphism, that is, M € FS-Act.

PROOF. Let s,t € S, @, ¥ € Homs(S, M) and suppose that (s @ ®)I'y = (¢t ®
W)y, thatis, s® = tW. Let s® € M;. Then s®O; =¥, € Se;.

Let f2 = f € S be such that f(s®®,) = s®O; and €? = ¢,, €> = ¢, € S be such
that (e;)s = s and (e,)t = ¢t. Then in § ® Homg(S, Se;) we have e, ® p(sP®,;) =
e, @p(t¥O,;). Hence (e:®p(sd>))®}‘ = (e,®p(t\l/))®:. Now ©, is an isomorphism
and hence so is ®. Thus e, ® p(s®) = ¢, ® p(t¥) in § ® sHoms(S, M;). But
Hom; (S, M;) is a subact of Homg(S, M) and so in view of our remarks about equality
in tensor products we have e, ® p(s®) = ¢, ® p(t¥) in § ® sHomg(S, M).
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Now, in § ® Hom(S, M) we have
SQP=es5Q3P=¢6,Q5 - P=¢,Q p(sP)

and similarly, t @ W = ¢, ® p(t V). Thus s ® ® = t ® ¥ and I'y, is injective. In view
of Lemma 4.1, we thus have that I'y is an isomorphism.

COROLLARY 4.4. If § is semigroup with local units, then ;S = S @ sHomg(S, S).

COROLLARY 4.5. If P € US-Act is projective, then P € FS-Act.

PROOF. This is immediate from Proposition 4.3 and Coroilary 2.10.

We remark that in the situation of Corollary 4.4 we can define a multiplication on
S ® Homg(S, §) in such a way that I's becomes a semigroup isomorphism. To do this
define

@@u)(c®n)=apn®c-n

where a, c € S and i, n € Homg(S, S). It is easy to prove directly that this definition
gives a well-defined associative multiplication, and since

(@au®c-nls = (ap)(c-n)
= (ap)p(cn)
= (ap)(cn)
= (@ ® u)'s(c ® NTs,

we see that I'g is a semigroup isomorphism.

The inverse of I's is the map K given by s — ¢ ® p(s) where s € S and ¢ is an
idempotent in S such that es = s. It is easy to see that the map is independent of the
choice of the idempotent. For, if f is some other idempotent in S such that fs = s,
then letting g be a right unit of s, we have that

eR@p(s)=e®s-p(8) =5Qp)=f®s-p(g) =f®ps).

Thus KX is a representation of a semigroup S with local units. This representation can
be regarded as a generalization of both the right regular representation of a monoid and
the Vagner-Preston representation of an inverse semigroup (see Howie (1976)). For,
if S is a monoid, then there is an isomorphism of semigroups €2 : S ® Homg(S, S) —
Hom;(S, S) givenby s®@® +—» s-®. If X : Homg(S, S) — T (S) is the inclusion map
where T'(S) is the full transformation monoid on S, then the composed map K QX is
the right regular representation of S.
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Now consider an inverse semigroup S and a unitary S-act M. We claim that
B:S®sM — M given by s ® m +— sm is an isomorphism. We know that it
is well-defined and it is clearly a surjective S-morphism. To see that it is injective,
suppose that sm = tn forsome s, ¢ € S and m,n € M. Then

tn =sm=ss 'sm=ss""tn
and similarly, sm = tt~'sm. Hence

s®m =ss's@m =ss! R sm = g5} ®tn
=ss U @n=ss"'tt 7t @n=1t"'sst@n
=nu'Q@sstn=t""'Qtn=1tt""t@n=t@n.
Now Homg(S, ) need not be unitary but SHomg(S, S) is unitary and we have
S ® sHomg(S, ) = S ® sSHomg(S, S).

Indeed, more generally:

LEMMA 4.6. Let R and S be semigroups with local units, U a unitary R-S-biact
and suppose N is a left R-act. Then S @ sHomg(U, N) = S @ sSHomg (U, N).

PROOF. It is clear that the natural map from § ® SHomg (U, N) to S®@ Homg (U, N)
is surjective. Let s ®t-® = u ® v-nin § ® Homg(U, N). Then either (s, ¢ -
®) = (u,v-n),inwhichcase s @t - & =u®v-nin S ® SHom(U, N), or for
some n > 2 there exists a sequence, (s,f - ®) = (51, D)) = (5, P) —> -+ >
(sp, ©,) = (4, v-n),in § x Homgz (U, N) such that either ((s;, ®;), (siy1, Piy1)) € Z,
or ((Sit1, Piv1), (s, D)) € L.

If ((s;, ®;), (5i41, Piy1)) € L thenforsomex; € S, 5; = 5,1 x; and D, = x; - ;.
Foreachi =1, ..., n let f; and ¢; be respectively a left and right unit of s;. Then,

(S,‘, €; - q)t) = (Si+1x,', e; - d),)
= (fists Sivixiei - P;) = (fiyr, 5i - ©i) = (firr, Siv1 - Pig1)

= (Si+1, €ig1 - Pigr).

Now, the result follows from observing that each term in the above sequence lies in
S x SHomg(U, N).

Thus, for an inverse semigroup S we have
S ® sHomg(S, §) = S ® sSHomg(S, §) = SHomg(S, S).

Consequently, we have

https://doi.org/10.1017/51446788700038489 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038489

[15] Morita equivalence for semigroups 95

COROLLARY 4.7. If S is an inverse semigroup, then k : S — Homs(S, S) given by
ax = aa™' - p(a) is an isomorphism of semigroups.

Of course, aa™! - p(a) = p(aa~'a) = p(a) but we may also identify it with the
partial one-one map with domain Saa~! (see Howie (1976)). On doing this we recover
the Vagner-Preston representation for an inverse semigroup.

We conclude this section by showing that the tensor product functor allows us to
map US-Act into FS-Act. We shall use this fact to construct equivalence functors
between the categories FS-Act and FR-Act. More specifically, we shall map a given
M € FR-Act into US-Act and then map its image into FS-Act.

LEMMA 4.8. If S is a semigroup with local units and M € US-Act, then S ® sM €
FS-Act.

PROOF. Define K : S@M — S®Homs(S,SQ@M)bys@m — s ® p(h, ®m)
where h% = h,, € S and h,,m = m.
We note first that if /4 is any idempotent in S such that zm = m then

s@pth,@®m) =s® p(h @ m).

Forlet f2= f € Sbesuchthatsf =s. Thens ® p(h, ®m) =5 ® p(h, @m) =
S®f-0(fhn®m) = s@p(f®m) = s@p(f®hm) = s f -p(h®m) = s@p(h®m).

Nowlets ® m =t ® pin S ® M. Then either (s, m) = (¢, p) in which case
s® p(h, ®m) =t ® p(h, @ p) from above, or for some n > 2 there is a sequence

(s, m) = (s1,m1) = (s2,m2) = -+ = ($p, M) = (¢, p)
in which forevery i € {1, ..., n — 1} either
((si, mi), (Si41,mit1)) € X or ((Si41, Mig1), (si, m;)) € T.
If ((s;, m;), (5i31, miy1)) € X, then for some v; € S,
S; = i1V and my = v;m;.

Now, S is a semigroup with local units and M is a unitary S-act, so we may assume
that for each i € {1,...,n — 1} there exist idempotents ¢;, f;, g;, #; in S such that
es; =5; =5; fi, vigi = v; and h;m; = m;. Then, noting that e;s; . v; = ¢;5; = §; =
si+1V; we have

5i®@phi @m;) =e;5; ® p(h; @m;)
=€ ® p(sihi ® m;)
=e; ® p(si @ m;)
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=€ Q p(Sin1v; @ m;)

=€ @ p(si+1v:8 @ m;)
=& @ sV - p(g @ m;)

= €;Si1v; @ p(g ® m;)

= 5inV; @ p(g ®m;)

= Siv1 fir1Vi @ p(g ® m;)
= 5i41 ® firvi - p(g @ m;)
= $iv1 @ p(fir1vigi ® m;)
= 8i+1 ® p(fir1 @ vim;)

= Si+1 ® p(fir1 @ mity)

= Si+1 @ p(fir1 @ hiyamiyy)
=5i41 ® fir1+ p(hiy1 @ miyy)
= Sit1fiv1 @ p(hiy1 ® miy1)
=5i1 @ plhizs @ miyy)

Similarly, if ((s;11, m;41), (s;, m;)) € X, then
Siv1 @ plhiyt @ miyy) =5, ® p(h; @ my),

so that

s@ph, dm) =5 QoM @m) =5 ph, @my) =---
=5, ®@ph, ®m,) =t ® ph, ® p)

and we have that K is well-defined. K is clearly a left S-morphism.

Noting that the map I'sgy : S ® Homs(S, S @ M) — S ® M is well-defined
we can easily show that K is injective. Suppose that (s @ m)K = (t ® p)K. Then
5®@phn®m) =1 p(h,® p)sothat (s® p(hn ®m))T'sgu = @ p(h, @ p))Tsem,
thatis,s @m = s(h,, @m) =t(h,®d p) =t @ p.

To show that X is surjective let s®@ ® € S®@Homg (S, S®M). Thens® = a®q for
somea € Sandg € M. Also,es = s forsome e’ = e € Sandsoe(a®q) =a ®gq.
Now, (@a®¢)K = (ea®q)K = ea®p(h,®q) = e®a-p(h,®q) =e®@p(a®q) =
eRpEP)=e@s - =51 .

Furthermore, "), is the inverse of K. For,lets @ m € S ® M. Then

(s @m)KTsgy = (s ® p(hr, @ mM))Tsey = s(hn @ M) =5 @ m.

That I'seu K = 15g4 follows from the proof of surjectivity.
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5. The Morita equivalence

We begin by reminding the reader that we shall say that two semigroups R and S
with local units are Morita equivalent if FS-Act is equivalent to FR-Act.

Now we address our central question: When are two semigroups with local units
equivalent, and how are the equivalences realised? The Hom and ® functors will play
a further role in our exposition, for we shall give the complete characterisations of
equivalence in terms of them.

The central concept of our machinery is the classical notion of a Morita context
(see Jacobson (1980)).

DEFINITION. A six-tuple (R, S, rPs, sQr. T, ) is said to be a Morita context,
where R and S are semigroups, g Ps is an R-S-biact, sQp is an S-R-biact, 7 is an
R-R-morphism of P®;Q into R, and p is an S-S-morphism of Q® P into S such that
if weput (p®q)r = (p,q) and (¢ ® p)u = [g, p), thenforall p, p’ € P, q,4' € Q,
we have
I (p,q)p' = rplq, Pl
2 4q({p.q9)=1q, Plq".

The conditions 1 and 2 are equivalent respectively to the commutativity of the

following diagrams.
T®1
PR®QQ®P R®P
1ou r®pwrp
P®S P
® pP&®s+— ps
1®1
o0®P®Q - O®R
u®l qAriqr
S
®0 s®q > sq 0

https://doi.org/10.1017/51446788700038489 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038489

98 S. Talwar [18]

6. Necessary conditions for equivalence

We now use properties of equivalence to arrive at various necessary conditions.
Throughout this section we shall assume that all semigroups have local units.

THEOREM 6.1. Let R and S be equivalent semigroups via inverse equivalences
G : FR-Act — FS-Act and H : FS-Act — FR-Act.

Set P = H(sS) and Q = G(gR). Then P and Q are unitary biacts g Ps and sQg
respectively such that

(1) &P and 5Q are generators for FR-Act and FS-Act respectively;
(2) R=RQ®gEndsQ, S = S ® sEndg P as semigroups;

(3) G =~ S®sHomg(P, —), H=~ R® zHoms(Q, —);

(4) sQr = S @ sHomg(P, R), Ps = R ® gHomg(Q, S).

PROOF. (1) §Q is naturally a right Ends Q-act and EndgQ = EndgiR, so sQ is a
right Endg R-act. Now © : r + p(r) is a homomorphism of R into Endg R. Defining
qgr = q(r®) = qG(p(r)) we have that Q is an S-R-biact. Similarly, P is an
R-S-biact.

Since gz R and 5 S are generators, the same holds for sQ and z P. In order to show that
Qr is unitary, take an arbitrary element ¢ € Q. Since Q = | J{G(Re) : ¢> = ¢ € R},
there is an idempotent ¢ € R such that ¢ € G(Re). Now p(e) € EndgR and p(e)
acts as an identity on Re. Hence G(p(e)) acts as an identity on G(Re) and we have
ge = q(Gp(e)) = q. Itis clear that Qe = G(Re) is an indecomposable projective.

(2) Since R = R ® zEndz R and Endg R = EndgQ, we may define multiplication
on R ® rkEnd;Q by (a ® £)(c ® w) = a&’ @ ¢ - w, where §' is the unique element of
Endg R corresponding to £ € EndsQ. The multiplication is clearly well-defined and
associative. Furthermore the map a ® £’ > a ® £ is an isomorphism of R ® zEndz R
onto R ® gEnds Q. Similarly S = S ® sSEndz P.

(3) For kM € FR-Act we have that G(M) = S ® sHoms(S, G(M)) by Lemma
4.1. Since G and H are inverse equivalences,

Homg (S, G(M)) = Homg(H(S), M) = Homz(P, M),

and it is now easy to see that G =~ S @ sHomgz(P,—). Similarly H = R ®
rHoms(Q, —). )

(4) Let T" be the natural isomorphism such that G = § ® sHomgz(P, —). Since I'
is natural and p(r) € EndgR for r € R, we have that the following diagram
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G(p(r))
G(R) — G(R)
fk I:R
S ® sHomg(P, R) S ® sHomg(P, R)
p(r)

commutes, where
p(r)f = S ® sHomg(P, p(r)) : S ® sHomg(P, R) — S ® sHomg(P, R)

SQw sQuwp(r)=sQw-r=(Qw)r.

By the commutativity of the diagram we have forq € Q

(@r)Tr = @G(p())r = (qTRP () = @Tr)r;

and it follows that Ty is also a right R-isomorphism. Similarly we show that z Pg =
R ® zHomg(Q, S).

When R and § are monoids we have the following form of the necessary part of
Knauer’s main theorem.

COROLLARY 6.2. Let R and S be equivalent monoids via inverse equivalences
G : R-Act > S-Actand H : S-Act — R-Act.

Set P = H(5S8) and Q = G(zxR). Then P and Q are unitary biacts g Ps and sQr
respectively such that

(1) P and sQ are generators for R-Act and S-Act respectively;
(2) R =EndsQ, S = Endg P are semigroups;

(3) G = Homg(P, —), H = Homg(Q, —);

(@) sQr = Homg(P, R), g Ps = Homg(Q, S).

Moreover, there exists an idempotent e in R such that S = eRe and R = ReR.

PROOE. It has already been noted that for a monoid R, R-Act coincides with
FR-Act. The conditions (2), (3) and (4) follow from the fact that for a monoid R and
aleft R-act M, RIrM =M.

Since § is a monoid, it is an indecomposable projective left S-act. It follows
therefore that P = H(sS) is an indecomposable projective in R-Act. By Theorem
2.9 there exists an idempotent e in R such that g P = g Re, so that by (2) we have that
S = EndgRe = eRe.
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Let » € R. We note that since R is an indecomposable projective and Re is a
generator for R-Act, there exists a surjective 2 € Homg(Re, R). It follows that
r = (se)2 = se(eS2) € ReR for some se € Re.

7. The Morita context associated with equivalence

Equivalence is used in ring theory by drawing important conclusions from the
surjectivity of T and u in an associated Morita context. In this section we shall show
that if R and S are equivalent semigroups with local units, then we may define a
Morita context such that T and u are surjective.

Let R and S be equivalent semigroups as in Theorem 6.1. We identify S with § ®
sHomgz (P, P) and sQr with S ® sHomg(P, R). Letq = s @ & € S @ sHomg(P, R)
and p € P, and consider the maps:

T:P®Q—>R, p®qr (p,q)=ps-&

and
nw:0®P—>S, q®pr[q,pl=5®39,

where p’é6 = (p'®)p for all p’ € P. We note first that § € Homg(P, P). For let
r € Rand p’ € P. Then (rp")8 = ((rp")®)p = r(p'®)p = r((p'®)p) = r(p's).

It is an easy exercise to show that v and y are well-defined and are R-R- and
S-S-morphisms respectively.

LEMMA 7.1. {q, plg’ = q{p.q ) forallq,q' € Qandall p € P.

PROOF. Letg =s@Pandqg' =u @ ¥ fors, u € S and &, ¥ € Homg (P, R). As
above we write [g, p] = 5§ ® 4.

Now Homg (P, P) = Homg(S, S) and for each § € Homgz(P, P) we let & be
the corresponding element in Homg(S, S). Also S ® Homg(S, S) acts on Q by
(a ® £)q = (a&)q, and hence

[q.plg = (s8Hu @V =¢, @ (s8)u - V.
We also have that
9(p.qd)=(®P)p,¢d)=s@P-(p,q) =€,®s5- P ((pu)¥)

where, since Homg (P, R) is a right R-act, we have s - ®((pu)¥) € Homg(P, R).
We show that (s6)u - W =5 - ® - ((pu)V¥). Let p” € P. Then

p'((s8)u - W) = (p"(s8)w)¥ and p"(s- @ - ((p)¥)) = ((P"s)P)(pu)W);

https://doi.org/10.1017/51446788700038489 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038489

[21] Morita equivalence for semigroups 101

so if we can show that
# p"(s8) = ((p"s)P)p,

then we are done.

Now P is a right Homg (P, P)-act, and therefore p”§ = p”§’, by definition of
action by isomorphism. We have p”(s8') = p”p(sd’), where p(s8') € Homy(S, S).
But p(sé") = s - &'; hence

p'(s8) = p'p(s8)y = p(s-8) = p"(s-8) = (p"s)8 = (p"s)P)p,

where the last equality follows from the definition of 4.

LEMMA 7.2. p'lq, pl = (p’.q)pforall p, p' € P andall q € Q.

PROOF. Let g = 5 @ ®. Then (p’, q)p = (p'(s - P))p and p'lq, p] = p'(s ® 9),
where 8 is as in Lemma 7.1. Now

P®8) =p(s®s)=p(ss)
and from (#) we have
p'(s8) = ((p's)®)p = (p'(s - P))p.

The result follows.

The compatibility conditions proved above allow us to prove the following.

THEOREM 7.3. Let R and S be equivalent semigroups as in Theorem 6.1. We may
identify S with S®@ sHomz (P, P) and s Qg with S® sHomg(P, R). Letq = s®@P € Q
and p € P. Definethe mapst : PR Q - Rbyp®q +— (p,q) = ps-® and
Uu: Q0P >Sbyqg®pr—[q,pl=s5s®68, whered : pe P — (p®)p € P.
Then the six-tuple (R, S, P, Q, 1, i) defines a Morita context. Furthermore P ® sQ
and Q @ r P become semigroups if we put (p1 ® 41)(p2 ® ¢2) = p1 ® 5[q1, p2lq: and
(q1 ® P1)(q2 ® pP2) = @1 ® r{P1, q2) p» respectively. Moreover the maps t and . as
defined above are surjective semigroup homomorphisms.

PROOF. We have already shown that (R, S, P, Q, 7, u) defines a Morita context.
It is easy to check that P ® ¢Q and Q ® ;P are in fact semigroups. Moreover,

{(P1 ®q1) (P2 @ ¢2)}t = {p1 ® [q1, p2lga}r = (p1, [q1, P21g2)
= {lq1, P21, 42) = (P1, ¢1){P2. ¢2) = (P1 ® q1)T(P2 B q2)7.
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Hence 7 is a semigroup homomorphism. Similarly we may show that u is also a
semigroup homomorphism.

Since gz P is a generator it generates z R, and so every » € R can be written as
r = px, for some p € P and x € Homg(P, R) depending on r. Since P is also
unitary, there exists an idempotent f in S such that p = pf.

Letg=fQ®x. Thenp®qg — (p,q) = p(f - x) = px = r and we have that t
is surjective.

To show u is surjective let ¢ be an idempotent in S. Then Pg = H(Sg) is
an indecomposable projective left R-act, so there exists e = e € R and A €
Hompg(Re, Pg) such that X is an isomorphism. Therefore we may write any p € Pg
as
) p=(re)h =re(erh) =rep where p=cehc Pg.

Denote by ¢ the mapping which assigns to each p € Pg the corresponding re.
Then q is clearly a well-defined left R-morphism from Pg to Re C R.

We now extend ¢ to the whole of P by putting pg = (pg)q and then by writing
q' = g ® ¢ we have forevery p € P,

(p.q")=p(g-9) = (pg)d = (pg)g-q) =(pg.q9)-

Moreover, we may rewrite (1) as pg = (pg, q)p, and we deduce that p[q’, p] =
(p.q')p = pg, thatis, p{g ® 8} = pl{g ® p'(g)} where § € Homg (P, P) is defined
by p’8 = (p"q)p for all p” € P, and p'(g) is the unique element of Homg (P, P)
corresponding to p(g) € Homg(S, S).

Now by definition of action by homomorphism, we have that for all p € P,
p(g-8) = p(g-p'(g), thatis, g -8 = g - p'(g).

If s € S and p € P are arbitrary, then s = gs for some g2 = g € S, and

ps=p(g-p'(s) =p(g- P (®)W())) = (p(g-8))p'(s)

where p'(s) is the unique element of Homg(P, P) corresponding to p(s) €
Homg(S, S). It therefore follows that g - p'(s) = g6 - p'(s) andso g® g - p'(s) =
g2®g-3p'(s),and we have (¢’ @ ps)u = g @ g8 - p'(s) = g ® g - p'(s), which is the
element of S ® Homg (P, P) corresponding to s € S.

8. Morita context and sufficient conditions for equivalence
DEFINITION. We say that a Morita context (R, S, g Ps, sQr, (. ), [, 1} is unitary if

R and S are semigroups with local units, x P € FR-Act, sQ € FS-Act, and the biacts
& Ps and 5 Qg are unitary.
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As in the module case, we shall now show that the existence of a unitary Morita
context with {, ) and [, ] surjective, is sufficient for the semigroups R and S to be
Morita equivalent. Moreover, it is also possible to recover a great deal of information
from a Morita context. Firstly, we give the following lemma.

LEMMA 8.1. Let (R, S, g Ps, sOr, (, )}, [, 1) be a unitary Morita context with {,)
and [, ] surjective. Then {, ) and |, ] are also injective.

PROOF. Let [, ] : sQ ® g Ps — S be surjective and suppose that [g, p] = [¢', p'].
Let ¢ and f be idempotents in S such thateq = g and p'f = p’, let [¢”, p"] = e and
[q”’, plll] — f. Then

l¢", p"Nq’, P1=1q", p"llg, P = lg, pll¢’, P'].

Now,q®@p=1[q",p"lq®Pp=9"®(p".q)p=9"®p"lq’, pP1=1q9".P"lg ®p =
[¢”. "¢’ ® p'lqg”, p”'1 = ¢’ ® p'. Similarly, we may show that (, ) is also injective.

The proof of the above lemma allows us to give an alternative characterisation of
the category FS-Act.

LEMMA 8.2. A unitary S-act M is inFS-Actifandonly if S@ M = M.

PROOF. Suppose that M € FS-Act. Then by definition S ® Homg(S, M) = M.
By the proof in the above lemma, $ ® § = S, and it follows that S @ M = M. The
converse follows from Lemma 4.8.

THEOREM 8.3. Let (R, S, g Ps, sQr, {, ), [, 1) be a unitary Morita context with {, ) :
P®Q —> Randl[,]: O ® P — S surjective. Then the following hold:

(1) The categories FR-Act and FS-Act are equivalent via the functors sQ ® g :
FR-Act — FS-Actand ;P ® 5 : FS-Act - FR-Act.

(2) &P and 5Q are generators for FR-Act and FS-Act respectively.

(3) S®sHomg(P,R)= sQr and R ® gkHoms(Q, S) = rPs as biacts.

4) R=Z=R®EndsQ and S = S ® sEndg P as semigroups.

PROOF. (1) Let M € FS-Act. Then
sORRPAIMZGOQRrRP)IIMESQM =M.
Similarly if N € FR-Act, then

rP ®sQ ® kN =N.
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(2) We note first that for each ¢ € Q we may define the map (,q) : kP —> zR
by p = (p,q). Since (,) is a left R-morphism, it follows that (, g) is also a left
R-morphism. We have already noted that ¢ R is a generator for FR-Act, and it follows
from the surjectivity of (, ) that z P is also a generator for FR-Act.

Similarly for each p € P we may define the left S-morphism [, p] : sQ — S by
q g, pl

(3) Foreachg € Q and p € P, let (, q) and [, p] be defined as in (2). We have
noted that [, p] € Homg(Q, S). Furthermore, for any n € N where N € FS-Act the
map [, p].-n € Homg(Q, N). Similar remarks apply to the map (, g).

We define amap @ : x Ps — R® zHomg(Q, S) by p— e®|, pl, where ep = p.
We claim that ® is well-defined. Suppose that ¢’ is an idempotent such that ¢'p = p.
Let f be an idempotent in S such that pf = f, and let f = [¢', p']. Then

e®[,pl=eQ[, pllg. pPl=e®L (p.q)p]
=e®(p.¢) .. P1=(p. ¢V ®L P1=€¢QL pl.
It is easy to see that ® is an R-S-biact morphism. We claim that & is also surjective.
Letr ® @ € R ® gkHomg(Q, S) and let r = (p, q). Now, g € S and
p(ga) = e®[, p(qa)] where e(p(qa)) = p(qa).
Letq’ € Q. Then

q'[, p(qa)]l = [q', p(ga)] = [¢’, Pl(ga) = (¢'{p, g = q'(r.a)

and the result follows. It is easy to see that the map &' : R ® xHomg(Q, S) — zPs
defined by r ® o — p(qa), where r = {p, q), is well-defined and the inverse of ¢.
(4) R ® REndQ is indeed a semigroup if we define multiplication by

rR)(rRa)=r®@ar .a.

We identify R with P ® Q and define maps R®Ends @ — PR Q byr®@a — p®qua,
wherer = (p,q),and PR Q > R EndsQ by p®q > e ® p((p, q)). Itis easy
to check that the maps are mutually inverse semigroup morphisms.

9. Semigroups of the form S = SeS, e an idempotent

We now make use of our main theorem to characterise those semigroups with local
units which are Morita equivalent to a monoid. We find that semigroups of the form
S = SeS, for e an idempotent are the only such semigroups. When S is a monoid
satisfying this condition we retrieve Knauer’s main result. We also state some well-
known results of Hotzel (1976), and deduce the Rees theorem for completely 0-simple
semigroups.
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THEOREM 9.1. A semigroup S with local units is Morita equivalent to a monoid if
and only if there exists e = e € S such that S = SeS. If this is the case then S is
Morita equivalent to the monoid eSe.

PROOF. Suppose that an idempotent as described in the statement exists and consider
the six-tuple:

(S, Homg(Se, Se), P = Se, Q = Homs(Se, S)S, T, 1)
where for p € Se and ¢ € Homg(Se, S)S, we define:
7 : Se ® .s.Homg(Se, S) — §, p®q+ (p,q) =pq; and

i : Homg(Se, S) ® sSe = Homg(Se, Se),
q®pvrlq.pl=(q)p:p > (P.q)p,
for p’ € Se.
Clearly 7 is an S-S-morphism and i a Homg(Se, Se)-Homg(Se, Se)-morphism.
We note that for any p € Se and q, ¢’ € Homs(Se, S)S, g¢{(p, ¢’} and [gq, plg’ belong
to Homg(Se, S)S. For p’ € P,

P'p.g)) =(p.q)p.aY(p' . q)p.q")
= (p'lg, Pl q") = (P, lgq, Plq").

It therefore follows that g{p, ¢’} = lq, pl¢’. Also from the definition of 7 and u
we have that (p,q)p’ = plq, p’]. Furthermore, since eSe = Homg(Se, Se) and
eS = Homg(Se, S)S, we have that the above six-tuple defines a unitary Morita
context.

Let M € US-Act. For m € M the map

p=]]em:][P>M
meM meM
is a surjective left S-morphism, for Imp = SeM = Se(SM) = SM = M. Therefore
P = Se is a projective indecomposable generator for US-Act.

Since P is a generator for US-Act and S € US-Act, it follows that for any s € §
there exists p € P and ¢ € Homg(P, §), such that pg = s and we have that 7 is
surjective.

To show that u is surjective, let ® € Homg(Se, Se). Then e® € P = Se.
Moreover, p(e) € Homg(P, S)S, and we have that

pe)@ed i~ (, p(e))(ed) : se € Se > (se)(ed) = (se)P.

By Theorem 8.6 it follows that S is Morita equivalent to Homg(Se, Se) = eSe.
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Conversely, suppose S is Morita equivalent to a monoid R. Then there exists an
inverse equivalence (G, H), such that

G : FS-Act > FR-Act and H : FR-Act — FS-Act.

Since zR is an indecomposable projective generator, we have that P = H(3R) is
also an indecomposable projective generator in FS-Act. It follows that there exists
an e’ = ¢ € S and Q € Homg(Se, P) such that Q is surjective. Thus Se is also a
generator for FS-Act.

Letx € S. Then x = xf for some f2 = f € . Since Sf is an indecomposable
projective there exists a surjective 2 € Homg(Se, Sf) and we have that for some
see Se,x =xf = (se)Q = se(eQ) € SeS.

Since a monoid is a semigroup with local units, we deduce the following from the
above theorem and Corollary 6.2:

COROLLARY 9.2. The monoids A and B are Morita equivalent if and only if there
exists an idempotent e € A such that A = AeA and B = eAe.

If A is a monoid then FA-Act is in fact A-Act as studied by Knauer. Corollary 9.2
is therefore just Knauer’s theorem on Morita equivalence.
We also have the following from Knauer (1972):

COROLLARY 9.3. Morita equivalence of the monoids A and B implies that A and
B are isomorphic monoids in any of the following cases:
(1) A is a commutative monoid.
(2) In A there is at most one element of finite order.
(3) The identity element e of A is externally adjoined, that is, fromab = e, a,b € A,
it follows thata = b = e.
(4) The monoid A is a group.

Morita equivalence and Rees Theorem

DEFINITION. A semigroup S without zero is called simple if it has no proper ideals.
A semigroup with zero is called 0-simple if (1) {0} and § are the only ideals, and (2)
§% #£ {0}.

We have the following well-known characterisation of O-simple semigroups in
terms of elements.

LEMMA 9.4, A semigroup S with zero is O-simple if and only if SaS = S for every
ain S\ {0}.
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DEFINITION. A 0-simple semigroup is said to be completely O-simple if every non-
empty set either of L-classes or of R-classes possesses a minimal member, where L
and R are the Green'’s relations.

It is well-known that a 0-simple semigroup is completely 0-simple if and only if it
contains a primitive idempotent.

The following construction of completely 0-simple semigroups is due to Rees
(1940).

Let G be a group with identity element ¢, and let /, A be non-empty sets. Let
P = (p,;) be a A x I matrix with entries in the 0-group G° (= GU{0}), and suppose
that P is regular, in the sense that no row or column consists entirely of zeros. Let
S = (G x I x A) U {0} and define a composition on S by

. . _ (apx,-b, i, [L) if ij # 0
(aq l» Av)(by ], l'l/) - [ O if le -__0.

(a,i,A)0=0(a,i,A) =00=0.

THEOREM 9.5. [Rees (1940)] S as defined above is a completely 0-simple semi-
group. Conversely, every completely 0-simple semigroup is isomorphic to one con-
structed in this way.

We now proceed to recover the Rees theorem. Firstly, from Lemma 8.1 we have:

COROLLARY 9.6. If S is a completely O-simple semigroup then T and . in Theorem
9.1 are injective.

We have almost proved the Rees theorem for completely 0-simple semigroups. To
deduce the Rees theorem from our work we use an alternative description of Rees
matrix semigroups due to Hotzel (1976), which we now describe.

Let D be amonoid with 0 and let , M be a free unital D-actoverthe set {u; : A € A}
(we suppose that A > u, is one to one), sothat pM = ]_[AE A Du,, (the O-disjoint union
of the subacts Du; of pM) and d > du, is a D-isomorphism between p D and Du;,
forallA € A. Any m € M can be represented by a row-monomial row vector m’ over

D:
m = (dA)AEA with dA =g if m= gu,;, and dA =0 otherwise.
Any D-endomorphism p can be represented by a row-monomial A x A matrix o’
over D:

P'=uuen With ry, =g if w,p=gu,, and r,, =0 otherwise.

Correspondingly, if N, is a free unital D-act with basis {v; : i € I'}thenanyn e N
can be represented by a monomial column vector n’ over D.

https://doi.org/10.1017/51446788700038489 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038489

108 S. Talwar [28]

Any D-endomorphism o of Np can be represented by a column monomial I x /-
matrix over D. Moreover a bilinear mapping [, ] from ;M x N to ,Dp can be
represented by a A x I-sandwich matrix

P = ([us, viDrea,ier-

Now every element n ® m of N @ p M corresponds to the Rees matrix
(n®@m)' = (din)icrrens

with d;, = gif n ® m = v;g ® u, and d;; = 0 otherwise. It can be shown that the
mapping n ® m > (n @ m) is well-defined and bijective. If we define multiplication
on N ® M by

n®m)Y(n,@m,;) =n® [m, nIm,

we have (v;ig @ u)(V;ih ®u,) = viglu,, v;Jh Q@ u,. In N ® pM we have
((Uig ® uk)(vjh ® uu))T = (vig ® uu)TP(vjh ® uu.)t-

Thus N ® pM is just a coordinate free version of the Rees matrix semigroup over
D with sandwich matrix P. Clearly, any Rees matrix semigroup over D can be so
obtained.

We also have the following lemma in Hotzel (1976):

LEMMA 9.7. Suppose that e is an idempotent of S and S is a 0-disjoint union of left
ideals isomorphic with Se. Then .s.eS is a free unital eSe-act.

From Theorem 9.1 and Corollary 9.6 we have that if S is a completely 0-simple
semigroup then § = Se ® .s.eS. It is a well-known fact that a completely 0-simple
semigroup is a 0-disjoint union of right ideals isomorphic with ¢S. It is also well-
known that eSe is a group with zero. Therefore by the above remarks we have the
Rees theorem for completely O-simple semigroups.

We have also proved half of

THEOREM 9.8. A regular semigroup S with zero is completely 0-simple if and only
if S is Morita equivalent to a group G with zero.

PROOF. Suppose that S is Morita equivalent to a group G with 0. Then by Theorem
9.1 there exists an idempotent e in S such that the monoid eSe is Morita equivalent
to S, hence also to G. Let F : eSe’-Act - G°-Act and H : G*-Act — eSe’-Act
be inverse equivalences. Since eSe is an indecomposable projective generator in
eSe’-Act, we have that P = F(eSe) is also an indecomposable projective generator
in G*-Act. Thus there exists an idempotent g in G such that P = Gg. The idempotent
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g cannot be zero, for then P would not be a generator. Hence P = ;G and it follows
by Corollary 6.2 that eSe = EndgP = End;G = G. Let f be an idempotent in S
such that f < e. Then f = efe is an idempotent in the group eSe and so f is either
0 or e. Thus S contains a primitive idempotent.

Let a be a non-zero element of S. Since S is regular, there exists an idempotent g
in S such that Sa = Sg. We shall show that § = SaS. Letx € S. Then x = xf for
some idempotent f in S. Since Sg and Sf are both indecomposable and projective
and all indecomposable projectives in FG’-Act are isomorphic to G we have that Sf
and Sg are isomorphic left S-acts. Let Q : Sg — Sf be an isomorphism. Then there
exist s and ¢ in S such that x = xf = (sg)Q2 = sg(gQ) = ta(gR) € Sas.

Given a group G with 0, we can construct the Rees matrix semigroup S = M°[G].
By Rees’ theorem S is a completely O-simple semigroup and G is isomorphic to eSe,
for each non-zero idempotent e of S. By Theorem 9.1 S is Morita equivalent to eSe
and so also to G.

Bisimple semigroups and Morita equivalence

The following is well-known.

PROPOSITION 9.9. The idempotent elements e, f of a semigroup S are D-related
if and only if the left ideals Se and Sf are isomorphic as left S-acts, where D is the
Green’s relation.

We also have the following from Allen (1991).

LEMMA 9.10. If S is a regular semigroup and if e is any idempotent of S, then eSe
is a regular subsemigroup of S.

THEOREM 9.11. A regular semigroup S with zero is bisimple if and only if S is
Morita equivalent to a regular bisimple monoid with zero.

PROOF. Suppose that S is Morita equivalent to a regular bisimple monoid A with
0. Since all indecomposable projectives are isomorphic in FA®-Act, we have that
all indecomposable projectives are isomorphic in FS®-Act. That is, Se and Sf are
isomorphic for all non-zero idempotents e, f in S.

Conversely let S be a regular bisimple semigroup with 0 and let ¢ be an idempotent
in S such that § = SeS. By Theorem 9.1, S is Morita equivalent to the monoid eSe (=
A). Let f, g be idempotents in A. Then Af and Ag are indecomposable projectives
in FA-Act. These must be isomorphic since all indecomposable projectives are
isomorphic in FS®-Act. It follows that A is a regular bisimple monoid with zero.
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COROLLARY 9.12. A regular semigroup S is bisimple if and only if S is Morita
equivalent to a regular bisimple monoid.

The fundamental regular four spiral semigroup Sp4 is an idempotent generated
bisimple semigroup which is not completely simple. Formally, let X = {a, b, ¢, d}, let
Ao = {(a,a?), (b,b?), (c,c?), d,d?, (a,ba), (b,ab), (b,bc), (c,cb), (c,dc),
(d, cd), (d,da)}, let A be the congruence generated by A on the free semigroup Fy
and let Sp4 = Fx/A

From Byleen, Meakin and Pastijn (1978), we know that Sp, is a bisimple regular
semigroup generated by idempotents a, b, ¢, d in which aSp,a is isomorphic to the
bicyclic semigroup. Clearly Sy, is simple and it follows that Sp, is Morita equivalent
to the monoid aSp;a.
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