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Abstract

Background: Time-dependent Cox proportional hazards regression is a popular statistical
method used in kidney disease research to evaluate associations between biomarkers col-
lected serially over time with progression to kidney failure. Typically, biomarkers of interest
are considered time-dependent covariates being updated at each new measurement using
last observation carried forward (LOCF). Recently, joint modeling has emerged as a flexible
alternative for multivariate longitudinal and time-to-event data. This study describes and
demonstrates multivariate joint modeling using as an example the association of serial bio-
markers (plasma oxalate [POX] and urinary oxalate [UOX]) and kidney function among
patients with primary hyperoxaluria in the Rare Kidney Stone Consortium Registry.
Methods: Time-to-kidney failure was regressed on serially measured biomarkers in two
ways: time-dependent LOCF Cox proportional hazards regression and multivariate joint
models. Results: In time-dependent LOCF Cox regression, higher POX was associated with
increased risk of kidney failure (HR = 2.20 per doubling, 95% CI =[1.38-3.51], p < 0.001)
whereas UOX was not (HR =1.08 per doubling, [0.66-1.77], p = 0.77). In multivariate joint
models, estimates suggest higher UOX may be associated with lower risk of kidney failure
(HR =0.42 per doubling [0.15-1.04], p = 0.066), though not statistically significant, since
impaired urinary excretion of oxalate may reflect worsening kidney function. Conclusions:
Multivariate joint modeling is more flexible than LOCF and may better reflect biological
plausibility since biomarkers are not steady-state values between measurements. While
LOCEF is preferred to naive methods not accounting for changes in biomarkers over time,
results may not accurately reflect flexible relationships that can be captured with multivariate
joint modeling.

Introduction

Cox proportional hazards regression is a popular statistical method used in kidney disease
research to evaluate biomarkers associated with progression to kidney failure [1]. For studies
in which biomarkers are obtained in a longitudinal manner (serially over time), methods such
as time-dependent multivariable Cox models are often used to model time-to-kidney failure,
with the longitudinal biomarkers of interest considered as time-dependent covariates updated
at each new set of measurements. This method allows for modeling of unevenly spaced measures
during follow-up and across patients, and the process utilizes the last observation carried for-
ward (LOCF) method, thus assuming that the biomarker measures remain at a constant level
until the next measurement [2]. These time-dependent Cox model approaches are superior to
time-invariant analyses that instead model combinations of the longitudinal biomarker as fixed
at baseline, leading to incorrect and biased conclusions [3].

While the time-dependent multivariable Cox model is superior to naive time-invariant
analyses, the LOCF assumption, or similar assumptions that result in biomarkers only being
updated at measured times, may be adequate for evaluation of some short-term mechanistic
associations, but may not accurately reflect the true functional relationships of many interre-
lated time-dependent biomarkers and outcomes, particularly when the biomarker measure-
ments are sparsely recorded over an extended period of time [3]. Moreover, as biomarker
measurements throughout follow-up are commonly ascertained based on physician judgement
or in response to patient symptoms rather than fixed by design, it is important that the factor(s)
influencing biomarker measurement be accounted for in the model [4].

Recently, multivariate joint models have received increased interest due to their flexibility for
handling longitudinal and time-to-event data [5,6]. By modeling the joint distribution of bio-
markers obtained over time and the survival event process, both the functional form as well as
the visit process mechanism can be explicitly specified [7], allowing comparison of longitudinal

https://doi.org/10.1017/cts.2022.465 Published online by Cambridge University Press


https://www.cambridge.org/cts
https://doi.org/10.1017/cts.2022.465
https://doi.org/10.1017/cts.2022.465
mailto:Schulte.Phillip@mayo.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6575-4741
https://doi.org/10.1017/cts.2022.465

biomarker measures on the event of interest. In the multivariate
joint model, this is expanded, allowing comparison of multiple
longitudinal biomarkers on the time-to-event. This model
capability can be particularly useful when the biomarker mea-
sures are interdependent and not regularly measured at the
same time points.

The goal of this study was to evaluate plasma oxalate (POX)
and urine oxalate (UOX) as risk factors for developing kidney
failure independent of estimated glomerular filtration rate
(eGFR) among patients with primary hyperoxaluria (PH) type
1 (PH1). PH1 is a rare genetic metabolic disorder characterized
by hepatic overproduction of oxalate due to mutations in the
AGXT gene that encodes alanine glyoxylate transferase. This
excess oxalate cannot be further metabolized by humans and
instead must be eliminated by the kidneys. Thus, UOX reflects
hepatic oxalate production, and since PH1 patients excrete high
concentrations of oxalate in the urine, they are at high risk for
calcium oxalate kidney stones and progressive oxalate nephro-
pathy chronic kidney disease (CKD) (lower eGFR). Patients
with PHI1 often experience kidney failure [8]. Prior literature
suggests that the magnitude of UOX is associated with CKD risk
when renal function remains relatively good (CKD stages 1-3a;
€GFR > 45 ml/min/1.73 m?), but this biomarker may not be use-
ful in latter CKD stages 3b-5 (eGFR < 45 ml/min/1.73 m?) due
to reduced renal oxalate excretion [9]. POX is influenced by
both the amount of hepatic oxalate production and the ability
of the kidneys to clear it, and increases markedly as eGFR falls
below 45 ml/min/1.73 m? [9]. Thus, POX may be more inform-
ative in PH1 patients in the more severe CKD stages 3b-5 due to
its causal role in systemic oxalate deposition (oxalosis), whereas
the utility of monitoring POX in less severe CKD stages remains
to be established [9,10]. In clinical practice, the laboratory mea-
sures POX, UOX, and eGFR are not recorded on a pre-set sched-
ule but are instead measured based on clinical indication during
the patient’s disease course, often driven by patient-specific fac-
tors and events. Further, POX, UOX, and eGFR are often not
measured at the same time, making it difficult to do comparative
assessments across measures. Thus, we apply multivariate joint
modeling to assess the association of UOX and POX with pro-
gression to kidney failure. Results are compared to the time-
dependent Cox regression approach. In this paper, we describe
our data and provide an overview of analytic strategies including
multivariate joint modeling, and compare results describing the
estimated association between POX and UOX biomarkers and
time-to-kidney failure in this cohort.

Methods
Data

We studied PHI1 patients enrolled in the Rare Kidney Stone
Consortium (RKSC) PH Registry [10,11]. Our cohort includes
patients 2 years or older with PH1 who were free of kidney failure
at the time of PHI1 diagnosis and had at least one eGFR measure
available between 1 year prior to PH1 diagnosis and prior to kidney
failure (Supplemental Figure S1). Kidney failure was defined as the
first occurrence of transplant, initiation of dialysis, or
eGFR < 15 ml/min/1.73 m?. Patients were censored at last fol-
low-up or death; death without a kidney failure event is rare in this
population (two events, 1.2%). GFR was estimated from serum cre-
atinine using Pottel’s full age spectrum equation, which allows for
estimation of the GFR across all ages [12].
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This study was approved by the institutional review board at
Mayo Clinic, Rochester.

Analytical Strategies

Two approaches for analysis of time-to-event (kidney failure) data
regressed on multiple serially collected biomarkers (POX, UOX,
eGFR) were compared: time-dependent multivariable Cox propor-
tional hazards models and multivariate joint models for longi-
tudinal and survival data.

Time-dependent multivariable Cox regression

We first assessed the relationship between serial biomarker data
and progression to kidney failure using multivariable Cox regres-
sion, with time-dependent covariates for POX, UOX, and eGFR.
One of the strengths of this modeling approach as compared to
naive methods is the ability to incorporate covariates that change over
time by using “last value carried forward,” such that the last known
value of each covariate is used forward in time until a new value is
measured [2]. Investigators can also use other time-dependent vari-
ables if supported by the study hypothesis, such as time-dependent
cumulative average. However, the underlying assumption of this
stepped function process may not be optimal for estimating an asso-
ciation between a time-dependent covariate and kidney failure, for
example when the biomarker may not remain at a steady state value
between observations (Fig. 1). Moreover, imputation using LOCF
methods may not yield valid inferences when the probability of
observing or not observing a longitudinal biomarker at a particular
time depends on unobserved longitudinal responses, particularly
when more than one time-dependent covariate is being measured [7].

Multivariate joint modeling using a Bayesian approach

We also performed multivariate joint modeling of longitudinal and
time-to-event data. In brief, a joint model is two or more linked
regression submodels [13]. We fit regression submodels for each
serially measured biomarker (POX, UOX, and eGFR) and a sub-
model for the time-to-kidney failure outcome. They are linked
through subject-specific random effects present in both the bio-
marker(s) and time-to-kidney failure submodels [13]. See the
Supplemental Methods section for further details of how these
equations were derived.

We illustrate in Fig. 1 a hypothetical patient with POX mea-
sured serially, with actual observed values plotted as the blue points
at baseline, 2, 5, 6, 8, and 9 years after baseline. In the LOCF
approach illustrated by the red line, the time-dependent biomarker
value used in the model for time-to-kidney failure has jumps when-
ever the biomarker value is updated for the patient but is otherwise
in a steady state between observations. However, the true bio-
marker process is likely smooth, and the black line may represent
subject-specific predicted values from the longitudinal submodel at
every timepoint. In the joint model, those subject-specific pre-
dicted values (black line) may be the time-dependent predictor
for kidney failure, updated continuously over time.

Joint models with subject-specific predicted values allow more
flexibility for inclusion of subjects with missing biomarker values at
baseline, and/or sparse follow-up biomarker assessments. While
power and precision will improve with greater frequency of bio-
marker observation, subjects may be included with as few as
one observation of the biomarker. Joint modeling has been
extended to handle multivariate longitudinal data, which tradition-
ally has been computationally intensive, hence limiting its appli-
cability. Whereas multivariable references a model with many
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Fig. 1. Serially measured plasma oxalate (POX) for a hypothetical primary hyperox-
aluria (PH) patient. Points plotted in blue denote observed POX measures at baseline,
2,5, 6, 8 and 9 years after PH diagnosis. The red line indicates the time-dependent
biomarker value used in the model for time-to-kidney failure using the LOCF approach.
The black line indicates the subject-specific predicted values of POX using the joint
modeling approach. During times when POX is changing rapidly (years 6 through
10 in the hypothetical patient) or measured infrequently, the LOCF approach poorly
approximates the true value.

predictors or covariates, a multivariate model is the analysis of
multiple outcomes (either different outcomes or repeated mea-
sures) in a single fitted model. A model may be neither, one, or both
multivariable and multivariate. A Bayesian approach enables fit-
ting these multivariate joint models with the JMbayes package
in R [14].

Statistical Methods

For time-dependent Cox models using LOCF, univariable Cox
models were separately fit for each biomarker measure, using years
since PH1 diagnosis as the time scale. For multivariable models
including more than one biomarker, follow-up began at the first
instance a patient had measurements available for all biomarkers;
if measurements were taken at different time points, then the pre-
vious biomarker measurement was carried forward in time (LOCF)
until the other biomarkers(s) were first observed. That is, data were
left truncated and subjects without observation of each biomarker
prior to kidney failure were excluded from the model.

For joint models, longitudinal sub-models for each biomarker
were fit along with a survival sub-model to assess the risk for a
kidney failure event. Longitudinal submodels for each bio-
marker used linear mixed effects models with log-transformed
POX, UOX, and eGEFR to satisfy assumptions of normally dis-
tributed residuals. Random intercepts were used to account
for the correlation of repeated observations from the same indi-
vidual. Random slopes were considered but did not improve
model fit. Covariates in the longitudinal models included age,
sex, and time (in years) since PH1 diagnosis. The optimal func-
tional forms for time in each model were assessed using natural
cubic splines. The best functional form identified for time since
PH1 diagnosis modeled for eGFR and POX was a natural cubic
spline with 2 degrees of freedom (internal knot at the 50th per-
centile of the distribution), and for UOX was a natural cubic
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spline with 5 degrees of freedom (internal knots at the 20%,
40%, 60%, and 80% percentiles). Model fit was assessed using
Deviance Information Criterion (DIC) values.

For the joint models, a survival submodel was fit for the out-
come of time-to-kidney failure from PH1 diagnosis. The time-
dependent subject-specific predicted mean biomarker values
(POX, UOX, eGFR) were included as predictors. That is, rather
than use LOCF which assumes a constant value of the biomarker
between measurements, in joint models at any given timepoint the
predictor takes on the value of the subject’s estimated biomarker
value as a function of age, sex, and years since PH1 diagnosis plus
an estimate of the subject-specific intercept. The survival submodel
also adjusted for age and sex, while using years since PH1 diagnosis
as the time scale. In survival submodels of the joint model and in
the time-dependent Cox regression, all biomarkers evaluated
as predictors of kidney failure (POX, UOX, eGFR) were natural
log-transformed; reported hazard ratios (HR) are interpreted as
the increase in hazard of kidney failure per doubling of the lab
value calculated using the formula 2%, Other flexible relationships
for the association between subject-specific longitudinal biomarker
estimates and hazard for kidney failure are available using soft-
ware, but these two (original scale and log-transformation) provide
anatural interpretation and fit our data well. The proportional haz-
ards assumption was checked for variables in survival models by
plotting Schoenfeld residuals over time; no violations were sug-
gested. Correlations of random intercepts - that is, the correlation
of subject-specific random effects from different longitudinal sub-
models - are estimated in the multivariate joint model. We also
examined these associations after restricting to follow-up occur-
ring after a patient entered CKD stage 3a (eGFR < 60 ml/min/
1.73 m?) as a sensitivity analysis.

In the main analysis, we conducted a complete case analysis
under the assumption of baseline biomarkers missing completely
at random, assuming site availability of oxalate testing rather than
patient characteristics is the reason for missing data. However, we
also conducted an analysis using multiple imputation assuming
those without observation of a biomarker were missing at ran-
dom, possibly related to other observed data. POX, UOX, and
eGFR at PH1 diagnosis were imputed in 20 imputed datasets
when data were missing; LOCF time-dependent Cox models
and multivariate joint models were run on each imputed dataset
and results were combined across imputations to reflect uncer-
tainty due to missing data.

R code implementing the main analysis is provided in the
Supplemental Materials. P-values were considered statistically
significant at the two-sided 0.05 alpha level. All analyses were per-
formed using R version 3.6.1 or higher (R Foundation for Statistical
Computing, Vienna, Austria) and SAS 9.4 (SAS Institute Inc.,
Cary, NC).

Results

Baseline characteristics of 166 patients meeting inclusion criteria
are reported in Table 1. During a mean (SD) follow-up of 16.3
(1.4) years, 60 (36.2%) patients developed kidney failure. Only
two patients (1.2%) died without a kidney failure event. There were
1285 eGFR measures throughout follow-up prior to kidney failure;
median [IQR] number of eGFR measures per patient was 5 [2, 11].
Among the 111 patients with a POX measure during follow-up
before kidney failure, 39 kidney failure events and a total of 555
POX values were recorded; median [IQR] number of POX mea-
sures per patient was 2 [1, 7]. Among the 150 patients with a
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Table 1. Patient characteristics at primary hyperoxaluria (PH) diagnosis

Patient characteristic at baseline N = 166
Age at PH diagnosis (years), mean (SD) 14.91 (15.03)
Sex, n (%)
Male 87 (52.4%)
Female 79 (47.6%)
Race/Ethnicity, n (%)
Asian 30 (18.1%)
Non-Hispanic White 110 (66.3%)
Hispanic (any Race) 8 (4.8%)
Other or Not Disclosed 18 (10.8%)

UOX value recorded throughout follow-up prior to kidney failure,
55 kidney failure events occurred and a total of 1091 UOX values
were recorded; median [IQR] number of UOX measures per
patient was 5 [2, 11].

Association between POX, UOX, eGFR, and Risk of Kidney
Failure Using LOCF Time-Dependent Cox Regression

Results of analyses using time-dependent LOCF for biomarkers
(Table 2) are expressed as per doubling of the biomarker. In uni-
variable models, both POX and UOX were positively associated
with risk of kidney failure. Specifically, a doubling of POX was
associated with more than three times higher hazard for kidney
failure (HR 3.27 [95% CI, 2.35-4.55]) and a doubling of UOX
was associated with 74% higher hazard for kidney failure (HR
1.74 [95% CI, 1.30-2.34] per doubling). In multivariable models
including all three biomarkers (POX, UOX, and eGFR), POX
remained statistically significant with more than a two-fold
increase in hazard of kidney failure per doubling of POX while
UOX was no longer statistically significant after adjusting for
POX and eGFR.

Analyses using multiple imputation for missing data yielded
similar conclusions (Supplemental Table S1). In the multivariable
model including POX, UOX, and eGFR, our data suggested POX
was associated with increased hazard for kidney failure (HR 1.49
[95% CI, 1.01-2.18] per doubling) whereas there was little evidence
of an association between UOX and kidney failure, similar to the
complete case analysis.

Association between POX, UOX, eGFR, and Risk of Kidney
Failure Using Joint Modeling

When analyzed individually using univariate joint modeling for
biomarkers on the log scale (Table 3), POX and UOX were both
positively associated with a greater risk of kidney failure (HR
2.78 [95% CI, 1.74-4.98] per doubling of POX and HR 1.74
[95% CI, 1.13-2.77] per doubling of UOX). However, in multivari-
ate joint models, POX was no longer statistically significant after
adjusting for UOX and eGFR (HR 1.91 [95% CI, 0.88-4.79]).
The relationship between UOX and kidney failure was inverted
compared to univariate analyses, although was not statistically sig-
nificant after adjustment for both POX and eGFR (HR 0.42 [95%
CI, 0.15-1.04)).

Results using multiple imputation for missing data led to sim-
ilar qualitative conclusions, though estimated hazard ratios were
attenuated towards the null hypothesis (Supplemental Table S2).
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In the full multivariate joint model including POX, UOX, and
eGFR, UOX was inverted compared to univariate analyses, though
results were not statistically significant (HR=0.62 [95% CI,
0.25-1.52]).

After taking fixed effects into account, UOX was positively cor-
related with POX (correlation of random effects for UOX vs POX:
0.59) and negatively correlated with eGFR (correlation of random
effects: —0.38), while POX was negatively correlated with eGFR
(correlation of random effects: —0.76). Positive correlation of
two random effects suggest that patients that tend to have higher
values of one biomarker also tend to have higher values of the sec-
ond biomarker, while negative correlations suggest that patients
that tend to have higher values of one biomarker tend to have lower
values of the second biomarker (or vice versa).

Association between POX, UOX, eGFR, and Risk of Kidney
Failure at or Below CKD Stage 3a

In a sensitivity analysis, models were refit using time-dependent
covariates and joint modeling after sub-setting to follow-up of
patients starting at eGFR < 60 ml/min/1.73 m? (CKD stage 3a)
(Supplemental Tables S3 and S4). Results were similar to the main
analysis in time-dependent Cox models. However, using joint
modeling, POX was not statistically significant after adjusting
for UOX and eGFR, while UOX was significantly negatively asso-
ciated with risk of kidney failure after adjustment for both POX
and eGFR. Among patients with already reduced kidney function
(eGFR < 60 ml/min/1.73 m?), a doubling of UOX was associated
with a 69% reduction in the hazard for kidney failure (HR 0.31
[95% CI 0.10-0.89]).

Discussion

In this paper, multivariate joint models were employed for longi-
tudinal and time-to-event data as an alternative and preferred
approach for assessing the associations between biomarkers mea-
sured serially over time and time-to-event outcomes. Flexibility
was permitted in model formulation and functional form relating
the longitudinal biomarkers to the kidney failure event. We dem-
onstrate that associations between longitudinal POX, UOX, and
eGFR measures with time-to-kidney failure may vary based on
the analysis approach and assumptions of those methods. In our
analysis, the multivariate joint modeling approach is more flexible
and better reflects biological plausibility than the standard LOCF
method since the underlying biomarkers are not at a steady state
value between observations. In LOCF models, there was a sta-
tistically significant association for POX such that a doubling of
POX was associated with a 2.2 times higher hazard of kidney fail-
ure. However, in multivariate joint models, neither POX nor UOX
demonstrated statistically significant associations with kidney fail-
ure. In a sensitivity analysis among those with reduced kidney
function (lower eGFR), the contrast in results was more promi-
nent. While both LOCF and joint models yielded numerically sim-
ilar estimates for POX, in the multivariate joint model a doubling
of UOX was associated with a statistically significant lower hazard
for kidney failure (HR 0.31).

The biomarkers POX and UOX are both influenced by kidney
function (i.e., eGFR). POX increases as kidney function is lost
due to impaired urinary excretion, while UOX may ultimately
decrease at low eGFR. These relationships are captured by the
multivariate joint modeling approach, which (unlike the
LOCEF analysis) demonstrated an inversion of the relationship
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Table 2. Estimated hazard ratios per doubling of the biomarker (POX, UOX, eGFR [columns]) from univariable and multivariable last observation carried forward (LOCF)
Cox models predicting risk of kidney failure, adjusted for age and sex. POX, UOX, and eGFR are time-dependent variables that update when new measurements are
observed but assume a constant (LOCF) value between measurement. Rows represent models accounting for different biomarkers alone or in combination with one-

another
POX uox eGFR
Model N E HR (95% CI)* P HR (95% CI)* P HR (95% CI)* P
eGFR 166 60 = - - - 0.05 (0.03-0.09) <0.001
POX 111 39 3.27 (2.35-4.55) <0.001 = = = =
UoxX 150 55 - - 1.74 (1.30-2.34) <0.001 - =
eGFR + POX 111 39 1.73 (1.18-2.54) 0.005 = = 0.08 (0.03-0.22) <0.001
eGFR + UOX 150 55 - - 1.25 (0.89-1.75) 0.20 0.05 (0.02-0.09) <0.001
POX 4 UOX 106 38 4.03 (2.71-5.99) <0.001 1.06 (0.69-1.61) 0.81 - -
eGFR + POX + UOX 106 38 2.20 (1.38-3.51) <0.001 1.08 (0.66-1.77) 0.77 0.10 (0.04-0.26) <0.001

N = number of patients; E = number of events; eGFR = estimated glomerular filtration rate; UOX = urine oxalate; POX = plasma oxalate;

LOCF = last observation carried forward.
*HR can be interpreted as per doubling of the biomarker value.
Estimates in bold denote statistical significance at the 0.05 level.

Table 3. Estimated hazard ratios per doubling of the biomarker (POX, UOX, eGFR [columns]) from univariate and multivariate joint models predicting risk of kidney failure,
adjusted for age and sex. Rows represent models accounting for different biomarkers alone or in combination with one-another

POX uox eGFR
Model N E N labs HR (95% CI)* P N labs HR (95% CI)* P N labs HR (95% CI)* P
eGFR 166 60 = = = = = = 1285 0.10 (0.05-0.18) <0.001
POX 111 39 555) 2.78 (1.74-4.98) <0.001 - - - - - -
UoX 150 55 - - - 1091 1.74 (1.13-2.77)  0.016 - - -
eGFR + POX 111 39 555) 1.06 (0.65-1.82) 0.80 - - - 1066 0.04 (0.01-0.15) <0.001
eGFR 4 UOX 150 55 - - - 1091 0.66 (0.38-1.09) 0.10 1250 0.02 (0.01-0.06) <0.001
POX + UOX 106 38 550 5.20 (2.10-14.59) <0.001 890 0.37 (0.10-1.13) 0.09 = = =
eGFR +POX+UOX 106 38 550 1.91 (0.88-4.79) 0.13 890 0.42 (0.15-1.04) 0.066 1057 0.04 (0.01-0.14) <0.001

N = number of patients; E = number of events; eGFR = estimated glomerular filtration rate; UOX = urine oxalate; POX = plasma oxalate.

*HR can be interpreted asper doubling of the biomarker value.
Estimates in bold denote statistical significance at the 0.05 level.

between UOX and kidney failure in advanced kidney disease.
This observation has biological plausibility and may reflect loss
of kidney reserve and reduced ability to excrete oxalate as POX
increases. This highlights a unique advantage to this modeling
framework due to an ability to capture an interdependency of
different biomarker values. This advantage is preserved even
when they are not measured at concurrent intervals or time-
points over time, as is often the case when using retrospective
data from rare disease registries.

There are limitations to our data and analysis. First, this is a
study among patients with a rare genetic metabolic disorder which
limits sample size for analysis. We may be underpowered to detect
clinically meaningful effects. This also limits our ability to model
transitions to death via a multistate modeling approach. The Rare
Kidney Stone Consortium Registry is a voluntary registry and data
availability varies across participating sites. Biomarker assays
(POX) are not available at all sites and data entry practices are
not always consistent, leading to missing data. Additionally, results
may reflect unmeasured confounding as we were not able to adjust
for fluid intake or diet at baseline or changes in these over time.
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Finally, our analyses reflected a hypothesized association between
POX and UOX values and kidney failure. Alternative relationships
not considered here may include time-lagged POX or UOX or area
under the UOX curve over time reflecting an accrued exposure.
Supplemental Materials provides a brief description of alternative
software for implementing joint models and extensions that could
include these alternative relationships.

Our results may have implications for interpreting POX and
UOX in relation to kidney failure risk in PH1. Results from the
joint modeling approach suggest that as eGFR declines, POX
may become a more sensitive indicator of oxalate burden and kid-
ney failure risk, while the decline in eGFR and renal oxalate elimi-
nation may influence UOX and reduce its predictive value
(Table 3). These trends were not as evident using the LOCF
approach (Table 2). These results identified by the joint modeling
approach may also have value when interpreting the prognostic
value of these laboratory measures in an individual PH1 patient.
While LOCF is preferred to naive methods that do not capture
changes in biomarkers over time, we encourage readers to consider
broader alternatives.
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