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Département de Mathématiques, 23 rue du Docteur Paul Michelon,
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1. Introduction

Throughout, K will denote a base field, q a non-zero element of K, and m, n positive
integers. We denote by Oq(Mm,n) the quantization of the ring of regular functions on
m × n matrices with entries in K; it is the K-algebra generated by mn indeterminates
Xij , 1 � i � m and 1 � j � n, subject to the following relations:

XijXil = qXilXij ,

XijXkj = qXkjXij ,

XilXkj = XkjXil,

XijXkl − XklXij = (q − q−1)XilXkj ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.1)

for 1 � i < k � m and 1 � j < l � n.
It will be convenient to use the following notation: setting

X = (Xij)1�i�m, 1�j�n

we will denote Oq(Mm,n) by Kq[X].
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Let A be any K-algebra, we say that an m × n matrix (aij) with entries in A is a q-
quantum matrix if the map Xij �→ aij induces a homomorphism of algebras Kq[X] → A.
If, in addition, this homomorphism is a monomorphism, then we say that the matrix (aij)
is a generic q-quantum matrix ; clearly, X is a generic q-quantum matrix, by definition.

In the case where m = n, the quantum determinant of X is defined by

detq = detq X :=
∑

σ∈Sn

(−q)l(σ)X1,σ(1) · · ·Xn,σ(n);

from [9, Theorem 4.6.1], we know that detq is in the centre of Oq(Mn) := Oq(Mn,n).
Clearly, if I ⊆ Nm := {1, . . . , m} and J ⊆ Nn := {1, . . . , n} with |I| = |J | = t, that
is, I and J both have t elements, then the submatrix obtained from X by keeping the
rows indexed by elements of I and the columns indexed by elements of J is a generic
q-quantum matrix; and so we can speak of its quantum determinant. Such an element
is called a t × t quantum minor of X and is denoted by [I|J ]. In order to simplify the
notation, if I and J are given by the explicit list of their elements, I = {i1 < · · · < it}
and J = {j1 < · · · < jt}, we will use the notation [it, . . . , i1|j1, . . . , jt]. It follows at once
from the above that

for I ⊆ Nm, J ⊆ Nn, with |I| = |J | = t, i ∈ I and j ∈ J, [I|J ]Xij = Xij [I|J ]. (1.2)

We need to use several identities involving quantum minors. Many of these are obtained
from [9]. However, it is worth noting that the conventions used in [9] are slightly different
from ours. In order to make the notation fit we must replace q by q−1 each time we use
a relation from [9]. For convenience, some of the identities we use are collected in an
appendix.

For any positive integer t such that t � min{m, n}, we denote by It(X) the two-sided
ideal of Kq[X] generated by the t × t quantum minors of X; such ideals will be referred
to as quantum determinantal ideals. For each such t, we define the quantum determinantal
ring Rt(X) := Kq[X]/It(X). It has been proved in [1] that Rt(X) is a domain. Here, we
are interested in the question of whether or not Rt(X) is a maximal order in its division
ring of fractions. This has already been established for R2(X) in [10]. We will show that
the localized ring Rt(X)[x−1

1n ], where x1n := X1n +It(X), is a maximal order for each t,
and we are then able to deduce that Rt(X) is a maximal order, in the case where K = C

and q is an element of C transcendental over Q. The question for general K and any q

remains open: we conjecture that all quantum determinantal rings are maximal orders.
The problem is a technical one: it is necessary to show that a certain ideal is a prime
ideal. The restriction to q an element of C transcendental over Q is because the relevant
ideal is shown to be prime in [6] for this case. We can answer the question for general
0 �= q ∈ K for the case of Rn(X) (= Oq(Mn)/〈detq〉), when X is n × n, and also for the
case R3(X) for general m × n. A proof of the former case is included in this paper since
it is relatively short, and of independent interest. The proof of the latter is not given
here, since it is somewhat ad hoc and rather long.
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2. A new set of generators for Kq[X]X1n

It follows at once from (1.1) that X1n is a normal element of Kq[X]. So, {Xi
1n, i ∈ N} is a

right denominator set of Kq[X]; the corresponding localization of Kq[X] will be denoted
Kq[X]X1n .

For the remainder of this section we assume that min{m, n} � 2. In Kq[X]X1n , we
consider the following elements, for 2 � i � m and 1 � j � n − 1:

X ′
ij = Xij − q−1X1jXinX−1

1n = −q−1[i, 1|j, n]X−1
1n . (2.1)

Set

X̃ =

⎛
⎜⎜⎜⎜⎝

X11 . . . X1,n−1 X1n

X ′
21 . . . X ′

2,n−1 X2n

...
...

...
X ′

m1 . . . X ′
m,n−1 Xmn

⎞
⎟⎟⎟⎟⎠ and X ′ =

⎛
⎜⎝

X ′
21 . . . X ′

2,n−1
...

...
X ′

m1 . . . X ′
m,n−1

⎞
⎟⎠

with the convention that the index of a row in X ′ is actually the index of the corre-
sponding row in X̃. So, for instance, X ′

21 · · ·X ′
2,n−1 is referred to as the row of index 2

in X ′.
It is clear that the entries of X̃ together with X−1

1n form a new set of algebra generators
for Kq[X]X1n . Our next aim is to give a description of Kq[X]X1n based on this set of
generators.

In order to do this, we need to know the relations between the entries of the matrix
X̃. This problem is dealt with in Lemma 2.1 and Proposition 2.2, where we obtain a
set of relations. We will show later that the relations obtained in these results give the
complete set of relations between entries of X̃.

Lemma 2.1. The matrix X ′ is a q-quantum matrix, and all its entries commute
with X1n.

Proof. Let 2 � i, k � m and 1 � j, l � n − 1. From (1.2) we see that X1n commutes
with the 2 × 2 quantum minor [i, 1|j, n]. So X ′

ijX1n = X1nX ′
ij follows from the second

equality of (2.1). Moreover, from (2.1) again, we have X ′
ij = −q−1[i, 1|j, n]X−1

1n and
X ′

kl = −q−1[k, 1|l, n]X−1
1n . The desired relations between X ′

ij and X ′
kl are deduced in an

obvious manner from [9, Theorem 5.2.1] applied to the submatrix of X defined by rows
1, i, k and columns j, l, n. �

The following proposition is a list of relations between entries of X̃. Relations between
two elements of the first row or of the last column of X̃ are deduced from the fact that
X is a q-quantum matrix.

Proposition 2.2. The following relations hold between entries of the matrix X̃.

(1) If 1 � j � n − 1 and 2 � i � m, then

X1jXin − q2XinX1j = q(q2 − 1)X ′
ijX1n.
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(2.1) For 1 � j � n − 1 and 2 � k � m,

X1jX
′
kl − X ′

klX1j = (q−1 − q)X1lX
′
kj , for 1 � l � j − 1,

X1jX
′
kj = q−1X ′

kjX1j ,

X1jX
′
kl = X ′

klX1j , for j + 1 � l � n − 1.

(2.2) For 2 � i � m and 1 � l � n − 1,

XinX ′
kl = X ′

klXin, for 2 � k � i − 1,

XinX ′
il = qX ′

ilXin,

XinX ′
kl − X ′

klXin = (q − q−1)XknX ′
il, for i + 1 � k � m.

(3) If 1 � k < l � n and 1 � i < j � m, then

X1kX1l = qX1lX1k and XinXjn = qXjnXin.

Proof. Part (3) is obvious. The other relations are all obtained in the following way.
First, use the definition (2.1) to translate the desired relation into a new one that uses only
the entries of X, by multiplying by X1n. The relation so obtained involves entries coming
from a certain submatrix of X of size at most 3 × 3. Use relation (A 1) and relations (A 2)
to check that the relation holds. Since these are easy but tedious computations we omit
the details. �

The next thing we want to do is to show that X ′ is a generic q-quantum matrix. We
use a computation with Gelfand–Kirillov dimension (GKdim) to do this. The following
lemma is probably well known, but we have not located the exact statement that we
need; and so we include a proof.

Lemma 2.3. Let B be a K-algebra. Suppose A is a subalgebra of B and x is an
element of B such that B is generated by A and x as an algebra. Furthermore, suppose
there exists a finite-dimensional subspace V of A that generates A as an algebra and
such that xV ⊆ V x + A. Then GKdim(B) � GKdim(A) + 1.

Proof. Without loss of generality, we may assume that 1 ∈ V . We denote by W the
subspace of B spanned by x and V . Thus, W is a finite-dimensional subspace of B that
generates B as an algebra. Since xV ⊆ V x + A and V is finite dimensional, there exists
m ∈ N∗ such that xV ⊆ V x + V m. An easy induction then shows that, for n ∈ N,
xV n ⊆ V nx + V m+n.

We claim that
Wn ⊆ V nm + V nmx + · · · + V nmxn, (2.2)

for all n ∈ N. The inclusion (2.2) is trivial for n = 0 (recall the standard convention that
V 0 = W 0 = K). Now, assume (2.2) holds for p ∈ N, that is W p ⊆ V pm + V pmx + · · · +
V pmxp. It follows that

xW p ⊆ xV pm + xV pmx + · · · + xV pmxp

⊆ V pmx + V pm+m + V pmx2 + V pm+mx + · · · + V pmxp+1 + V pm+mxp.
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So xW p ⊆ V m(p+1) + · · · + V m(p+1)xp+1. On the other hand, V W p ⊆ V mp+1 + · · · +
V mp+1xp. We finally obtain

W p+1 = (V + Kx)W p ⊆ V m(p+1) + · · · + V m(p+1)xp+1.

This establishes (2.2) by induction on n.
From (2.2), it follows that dimWn � (n + 1) dimV mn, for all n ∈ N, and thus

lim logn dim Wn � lim logn dim V mn + 1.

This establishes that GKdimB � GKdimA + 1. �

Proposition 2.4. The matrix X ′ is a generic q-quantum matrix.

Proof. In this proof, we denote by A the subalgebra of Kq[X]X1n generated by the
entries of X ′. By Lemma 2.1, there is a surjective morphism φ : Oq(Mm−1,n−1) →
A. We want to prove that kerφ = 〈0〉. Assume that this is not the case. Then, since
Oq(Mm−1,n−1) is a domain, kerφ must contain a regular element of Oq(Mm−1,n−1) and
thus we have GKdimA < GKdimOq(Mm−1,n−1) = (m − 1)(n − 1).

By Lemma 2.1, we see that the subalgebra B of Kq[X]X1n
generated by A and

X1n is an extension of A of the type investigated in Lemma 2.3. Thus, we must have
GKdimB < (m − 1)(n − 1) + 1. Moreover, since X1n is central in B, [4, Proposition 4.2]
shows that GKdimBX1n

< (m − 1)(n − 1) + 1. Now, it is clear that Kq[X]X1n can be
obtained by successive algebra extensions starting from BX1n and adding (in this order)
X11, . . . , X1,n−1 and then Xmn, . . . , X2n (this is because Kq[X]X1n

is generated by the
entries of X̃ and X−1

1n ). Moreover, Proposition 2.2 shows that at each step, the extension
is of the type investigated in Lemma 2.3. Thus, (m − 1) + (n − 1) applications of this
lemma show that we must have

GKdim Kq[X]X1n < (m − 1)(n − 1) + 1 + (m − 1) + (n − 1) = mn.

However, we know that GKdim Kq[X]X1n � GKdim Kq[X] = mn. This is a contradic-
tion and thus we have proved that kerφ = 〈0〉. �

Proposition 2.4 states that the subalgebra of Kq[X]X1n generated by X ′ is isomorphic
to Oq(Mm−1,n−1); for this reason, we denote it by Kq[X ′].

The following remark will be useful in what follows.

Remark 2.5. We denote by F〈X1, . . . , Xp〉 the free K-algebra on p generators
X1, . . . , Xp. Let I be the ideal generated by elements f1, . . . , fs ∈ F〈X1, . . . , Xp〉, and
set A := F〈X1, . . . , Xp〉/I. Finally, let σ be an automorphism of F〈X1, . . . , Xp〉 and δ be
a left σ-derivation of F〈X1, . . . , Xp〉 such that σ(I) = I and δ(I) ⊆ I. We denote by σ̄

the automorphism of A induced by σ and by δ̄ the left σ̄-derivation of A induced by δ.
Then A[x; σ̄, δ̄] is isomorphic to the algebra F 〈X1, . . . , Xp, X〉/J , where J is the ideal
of F 〈X1, . . . , Xp, X〉 generated by f1, . . . , fs and the p elements XXi − σ(Xi)X − δ(Xi)
(here we identify F〈X1, . . . , Xp〉 and the subalgebra of F〈X1, . . . , Xp, X〉 generated by
X1, . . . , Xp).
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We now proceed to show that Kq[X]X1n
can be described as an iterated Ore extension

of a Laurent polynomial extension of its subalgebra Kq[X ′] (recall the notation we fixed
immediately after Proposition 2.4). For this, we first construct an algebra B which is
an iterated Ore extension of Oq(Mm−1,n−1). We then show that B is isomorphic to
Kq[X]X1n .

Let us start with the algebra Oq(Mm−1,n−1). For convenience of notation, we denote
its canonical generators by Y ′

ij for 2 � i � m and 1 � j � n − 1. Thus,

Y ′ = (Y ′
ij)2�i�m, 1�j�n−1

is a generic q-quantum matrix and, following our previous notation, we have

Oq(Mm−1,n−1) = Kq[Y ′].

Now we consider the Laurent polynomial extension A = Kq[Y ′][Y ±1
1n ] obtained from

Kq[Y ′] adding a central indeterminate, denoted by Y1n, and its inverse.
By Remark 2.5, we know how to describe A as a quotient of a free algebra. It is

then easy to see that we can define a (unique) left skew derivation (σ11, δ11) of A such
that δ11 = 0 and such that σ11(Y1n) = qY1n and, for 2 � k � m and 2 � l � n − 1,
σ11(Y ′

k1) = q−1Y ′
k1 and σ11(Y ′

kl) = Y ′
kl. We put A11 = A[Y11; σ11, δ11].

Now, for 2 � p � n − 1, we construct an algebra A1p by induction on p. For 1 � p �
n − 2, by Remark 2.5, we know how to describe A1p as a quotient of a free algebra. It is
then easy to check that we can define a (unique) left skew derivation (σ1,p+1, δ1,p+1) of
A1p such that, for 2 � k � m,

σ1,p+1(Y ′
kl) = Y ′

kl, δ1,p+1(Y ′
kl) = (q−1 − q)Y1lY

′
k,p+1 for 1 � l � p,

σ1,p+1(Y ′
k,p+1) = q−1Y ′

k,p+1, δ1,p+1(Y ′
k,p+1) = 0,

σ1,p+1(Y ′
kl) = Y ′

kl, δ1,p+1(Y ′
kl) = 0 for p + 2 � l � n − 1,

σ1,p+1(Y1n) = qY1n, δ1,p+1(Y1n) = 0,

σ1,p+1(Y1l) = q−1Y1l, δ1,p+1(Y1l) = 0 for 1 � l � p.

Then, for 1 � p � n − 2, we put A1,p+1 = A1,p[Y1,p+1; σ1,p+1, δ1,p+1].
Thus, we now have a first sequence of Ore extensions: A,A11, . . . ,A1,n−1. To finish

the construction of B, we need a second such sequence, which we now define.
By Remark 2.5, we know how to describe A1,n−1 as a quotient of a free algebra. It is

then easy to see that we can define a (unique) left skew derivation (σmn, δmn) of A1,n−1

such that, for 1 � l � n − 1,

σmn(Y ′
kl) = Y ′

kl, δmn(Y ′
kl) = 0, for 2 � k � m − 1,

σmn(Y ′
ml) = qY ′

ml, δmn(Y ′
ml) = 0,

σmn(Y1n) = q−1Y1n, δmn(Y1n) = 0,

σmn(Y1l) = q−2Y1l, δmn(Y1l) = (q−1 − q)Y ′
mlY1n.

We put Amn = A1,n−1[Ymn; σmn, δmn].
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Now, for 2 � s � m − 1, we construct an algebra Asn, by decreasing induction on s.
For 3 � s � m, by Remark 2.5, we know how to describe Asn as a quotient of a

free algebra. It is then easy to check that we can define a (unique) left skew derivation
(σs−1,n, δs−1,n) of Asn such that, for 1 � l � n − 1,

σs−1,n(Y ′
kl) = Y ′

kl, δs−1,n(Y ′
kl) = 0 for 2 � k � s − 2,

σs−1,n(Y ′
s−1,l) = qY ′

s−1,l, δs−1,n(Y ′
s−1,l) = 0,

σs−1,n(Y ′
kl) = Y ′

kl, δs−1,n(Y ′
kl) = (q − q−1)YknY ′

s−1,l for s � k � m,

σs−1,n(Y1n) = q−1Y1n, δs−1,n(Y1n) = 0,

σs−1,n(Y1l) = q−2Y1l, δs−1,n(Y1l) = (q−1 − q)Y ′
s−1,lY1n,

σs−1,n(Ykn) = qYkn, δs−1,n(Ykn) = 0 for s � k � m.

Finally, we get a sequence of Ore extensions: A,A11, . . . ,A1,n−1,Amn, . . . ,A2n, and we
put B = A2n. Iterative applications of Remark 2.5 show that B can be easily described
as the quotient of a free algebra in mn generators. Clearly, we have constructed B in such
a way that the relations between the mn generators of this algebra are exactly the same
as those holding between the generators of X̃ as noted in Proposition 2.2. It follows at
once that we can define a morphism of algebras

ϕ : B → Kq[X]X1n
,

Y ′
kl �→ X ′

kl for 2 � k � m, 1 � l � n − 1,

Y1n �→ X1n,

Y1l �→ X1l for 1 � l � n − 1,

Ykn �→ Xkn for 2 � k � m.

Proposition 2.6. The morphism ϕ is an isomorphism.

Proof. The surjectivity of ϕ is obvious since the entries of X̃ together with X−1
1n form

a set of algebra generators for Kq[X]X1n
. It remains to prove that kerϕ = 〈0〉. Recall

that B is obtained from A = Oq(Mm−1,n−1)[Y −1
1n ] by (m − 1) + (n − 1) successive Ore

extensions that are all extensions of algebras of the type investigated in Lemma 2.3. Thus,
we have GKdim B � GKdimA + (m − 1) + (n − 1). On the other hand, A is a Laurent
polynomial extension of Oq(Mm−1,n−1) thus GKdimA = GKdimOq(Mm−1,n−1) + 1 =
(m − 1)(n − 1) + 1, by [4, Propositions 3.5 and 4.2]. All this together gives

GKdimB � (m − 1)(n − 1) + 1 + (m − 1) + (n − 1) = mn.

On the other hand, we have GKdim Kq[X]X1n � GKdim Kq[X] = mn, since Kq[X] is a
subalgebra of Kq[X]X1n .

Now, B is clearly a domain; and so if we assume that kerϕ �=〈0〉, then GKdimB/ ker ϕ <

GKdimB = mn. But this is a contradiction since B/ ker ϕ ∼= Kq[X]X1n
. Thus, ϕ is

injective. �
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3. Reduction of the size of quantum minors

Using the results of the previous section we are now able to link k × k quantum minors of
X, for k � 2, with (k − 1) × (k − 1) quantum minors of X ′ (provided X1n is invertible,
of course).

Recall from the introduction that the expression [ik, . . . , i1|j1, . . . , jk] stands for a k × k

quantum minor of X, namely the quantum determinant of the submatrix of X obtained
from X using rows i1, . . . , ik and columns j1, . . . , jk. This notation is extended to X ′

adding a ‘ ′ ’ to avoid confusion. Thus, a quantum k × k minor of X ′ will be expressed
by a symbol [ik, . . . , i1|j1, . . . , jk]′. The convention on the index of rows of X ′ (see the
introduction to § 1) is in order; so, in such an expression, we shall always have i1 � 2 and
jk � n − 1.

The results we need will follow from the special case where m = n. In this context,
the role played by (n − 1) × (n − 1) minors is of special importance; thus we use a more
convenient notation for them (coming from [9]). For 1 � i, j � n, the (n − 1) × (n − 1)
quantum minor of X obtained by deleting the ith row and jth column is denoted A(ij).
Moreover, for 2 � i � n and 1 � j � n−1 we also define A′(ij) to be the (n − 2) × (n − 2)
quantum minor of X ′ obtained from X ′ by deleting the ith row and jth column.

Theorem 3.1. Assume that m = n. Then, with the above notation,

(detq X ′)X1n = X1n(detq X ′) = (−q)1−ndetq X.

Proof. Note that (detq X ′)X1n = X1n(detq X ′) is clear from 2.1. The proof is by
induction on n. The case where n = 2 is an obvious consequence of (2.1). We suppose now
that the result is true for any integer less than or equal to n − 1. Because of Lemma 2.1
the relations of [9, Corollary 4.4.4] give us the expansion

detq X ′ =
n−1∑
j=1

(−q)j−1X ′
2jA

′(2j). (3.1)

Now,

X1nX ′
2j = X ′

2jX1n = X2jX1n − q−1X1jX2n for all j ∈ {1, . . . , n − 1};

and so

X1ndetq X ′ =
n−1∑
j=1

(−q)j−1X1nX ′
2jA

′(2j)

=
n−1∑
j=1

(−q)j−1(X2jX1n − q−1X1jX2n)A′(2j)

=
n−1∑
j=1

(−q)j−1X2jX1nA′(2j) − q−1
n−1∑
j=1

(−q)j−1X1jX2nA′(2j).
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By the induction hypotheses we have

X1nA′(2j) = (−q)2−nA(2j) for all j ∈ {1, . . . , n − 1}.

Hence,

X1ndetq X ′ =
n−1∑
j=1

(−q)j−1X2j(−q)2−nA(2j) − q−1
n−1∑
j=1

(−q)j−1X1jX2nX−1
1n (−q)2−nA(2j)

=
n−1∑
j=1

(−q)j+1−nX2jA(2j) − q−1
n−1∑
j=1

(−q)j+1−nX1jX2nX−1
1n A(2j).

Setting

R = −q−1
n−1∑
j=1

(−q)j+1−nX1jX2nX−1
1n A(2j),

we obtain

X1nR =
n−1∑
j=1

(−q)j−nX1jX2nA(2j)

=
n−1∑
j=1

(−q)j−n(X2nX1j + (q − q−1)X1nX2j)A(2j)

=
n−1∑
j=1

(−q)j−nX2nX1jA(2j) + (q − q−1)
n−1∑
j=1

(−q)j−nX1nX2jA(2j).

On the other hand, from [9, Corollary 4.4.4], we have the relation

n∑
j=1

(−q)j−2X1jA(2j) = 0.

Thus,

X1nR = (−q)2−nX2n

n−1∑
j=1

(−q)j−2X1jA(2j)

+ (q − q−1)(−q)2−nX1n

n−1∑
j=1

(−q)j−2X2jA(2j)

= (−q)2−nX2n(0 − (−q)n−2X1nA(2n))

+ (q − q−1)(−q)2−nX1n

n−1∑
j=1

(−q)j−2X2jA(2j).

It follows that

R = (−q)−1X2nA(2n) + (q − q−1)(−q)2−n
n−1∑
j=1

(−q)j−2X2jA(2j).
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Thus,

X1ndetq X ′

=
n−1∑
j=1

(−q)j+1−nX2jA(2j) + (−q)−1X2nA(2n)

+ (q − q−1)(−q)2−n
n−1∑
j=1

(−q)j−2X2jA(2j)

= (−q)2−n
n−1∑
j=1

((−q)j−1 + (q − q−1)(−q)j−2)X2jA(2j) + (−q)−1X2nA(2n)

= (−q)2−n
n−1∑
j=1

((−q)j−1 − (−q)j−1 − q−1(−q)j−2)X2jA(2j) + (−q)−1X2nA(2n)

= (−q)1−n
n−1∑
j=1

(−q)j−2X2jA(2j) + (−q)1−n(−q)n−2X2nA(2n)

= (−q)1−n
n∑

j=1

(−q)j−2X2jA(2j).

Again, by using [9, Corollary 4.4.4], it follows that X1ndetq X ′ = (−q)1−ndetq X. �

Remark 3.2. We thank the referee for pointing out that, when K = C, Theorem 3.1
follows from [5, Theorem 3.5]. To see this, first notice that, in the notation of [5], there
is a surjective morphism of specialization of the indeterminate q of [5] at our scalar q−1:

Aq(Matn) → Kq[X],

q �→ q−1,

tij �→ Xij .

Now, [5, Theorem 3.5] applied with P = {1} and Q = {n} gives that the (n − 1) × (n − 1)
matrix U = (t1jtin − q−1t1ntij) = (−q−1t1n(tij − qt1jtint−1

1n )) (with 2 � i � n and
1 � j � n − 1) is q−1-quantum in our terminology and that detqU = (detqT )tn−2

1n . Since
X1n commutes with all the entries of X ′, applying the specialization morphism gives
us that X ′ is q-quantum (the first part of our Lemma 2.1) and that (detq X ′)X1n =
(−q)1−ndetq X (our Theorem 3.1).

By using Theorem 3.1, we can establish Corollary 3.3, which links (p − 1) × (p − 1)
minors of X ′ with p × p minors of X, for p � 2, that involve the first row and the last
column of X.

Corollary 3.3. Let p � 2. Suppose that

I = {1 = i1 < · · · < ip} ⊆ Nm and J = {j1 < · · · < jp = n} ⊆ Nn

and set
I ′ = {i2 < · · · < ip} and J ′ = {j1 < · · · < jp−1}.
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Then
[I ′|J ′]′ = (−q)1−p[I|J ]X−1

1n = (−q)1−pX−1
1n [I|J ].

Proof. This is an immediate consequence of Theorem 3.1 applied to the square sub-
matrix obtained from X by using rows i1, . . . , ip and columns j1, . . . , jp of X. �

Recall from § 1 that, for 1 � t � min{m, n}, we denote by It(X) the ideal generated
in Kq[X] by the t × t minors of X. Clearly, the ideal generated by the t × t minors of X

in Kq[X]X1n is just Ĩt(X) := It(X)Kq[X]X1n
.

Lemma 3.4. Let 1 � t � min{m, n}.

(i) It(X) coincides with the right ideal of Kq[X] generated by the t × t minors of X.

(ii) Ĩt(X) coincides with the right ideal of Kq[X]X1n generated by the t × t minors
[I|J ] of X such that 1 ∈ I and n ∈ J .

Proof. (i) The case where m = n follows at once from [1, Corollary A.2]. Now, set
s := max{m, n}. There is a surjective algebra morphism

π : Oq(Ms) → Oq(Mm,n),

Xij �→
{

Xij if i � m and j � n,

0 otherwise,

and, for I, J ⊆ Ns such that |I| = |J | = t, a t × t minor [I|J ] of Oq(Ms) is sent to [I|J ]
if I ⊆ Nm and J ⊆ Nn and is sent to 0 otherwise. It follows that the ideal of Oq(Mm,n)
generated by the t × t minors is the image under π of the ideal of Oq(Ms) generated by
the t × t minors. From this, we see that point (i) for arbitrary positive integers m and n

follows from the special case m = n.
(ii) By part (i), Ĩt(X) coincides with the right ideal of Kq[X]X1n generated by the

t × t minors. For the purpose of this proof, denote by S the set of t × t minors [I|J ] of
X such that 1 ∈ I and n ∈ J .

Let [I|J ] be a t × t minor of X such that 1 ∈ I but n �∈ J . We may apply [9,
Corollary 4.4.4] to the subalgebra of Kq[X] generated by those Xij such that i ∈ I and
j ∈ J ∪ {n}. This leads to the equation∑

j∈J∪{n}
(−q)•[I|Jj ]X1j = 0,

where, for j ∈ J ∪{n}, we put Jj = J ∪{n}\{j}, and occurrences of (−q)• denote integer
powers of −q, which it is not necessary to specify exactly. Since Jn = J , it follows that
the equation

[I|J ] = −
∑
j∈J

(−q)•[I|Jj ]X1jX
−1
1n

holds in Kq[X]X1n
. Now, n ∈ Jj for each j ∈ J ; and so we have shown that [I|J ] is in

the right ideal generated by S in Kq[X]X1n . By a similar argument, we prove that a t × t

minor [I|J ] such that 1 �∈ I but n ∈ J is in the right ideal generated by S in Kq[X]X1n .
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It remains to deal with a t × t minor [I|J ] such that 1 /∈ I and n /∈ J . In this case, we
apply [9, Corollary 4.4.4] in the subalgebra of Kq[X] generated by those Xij such that
i ∈ I ∪ {1} and j ∈ J ∪ {n}. This gives us the relation

[I ∪ {1}|J ∪ {n}] =
∑

j∈J∪{n}
(−q)•[I|Jj ]X1j =

∑
j∈J

(−q)•[I|Jj ]X1j + (−q)•[I|J ]X1n, (3.2)

where, for j ∈ J∪{n}, we put Jj = J∪{n}\{j}. Another application of [9, Corollary 4.4.4]
gives

[I ∪ {1}|J ∪ {n}] =
∑

j∈J∪{n}
(−q)•[I ∪ {1} \ {s}|Jj ]Xsj , (3.3)

where s = max I. Equation (3.3) and the results we established above show that the
(t + 1) × (t + 1) minor [I ∪ {1}|J ∪ {n}] is in the right ideal generated in Kq[X]X1n

by
S. Thus, using (3.2), it follows that [I|J ] is also in the right ideal generated in Kq[X]X1n

by S. The proof is now complete. �

Recall that, by Lemma 2.1 and Proposition 2.4 we know that the subalgebra of
Kq[X]X1n

generated by the X ′
ij for 2 � i � m and 1 � j � n − 1 is isomor-

phic to Oq(Mm−1,n−1) and that we denote it by Kq[X ′]. Following our conventions,
if 2 � t � min{m, n}, we denote by It−1(X ′) the ideal of Kq[X ′] generated by the
(t − 1) × (t − 1) minors of X ′. In this notation, we have the following important result.

Proposition 3.5. For 2 � t � min{m, n}, the following equality holds:

Ĩt(X) = It−1(X ′)Kq[X]X1n .

Proof. By Lemma 3.4 (ii), we know that Ĩt(X) coincides with the right ideal of
Kq[X]X1n generated by the t × t minors [I|J ] of X such that 1 ∈ I and n ∈ J . On
the other hand, let [I|J ] be a t × t minor of X such that 1 ∈ I and n ∈ J . Applying
Corollary 3.3, we have (−q)1−t[I|J ] = [I \ {1}|J \ {n}]′X1n. Thus, Ĩt(X) coincides with
the right ideal of Kq[X]X1n generated by the (t − 1) × (t − 1) minors [I|J ]′ of X ′ (such
that I ⊆ {2, . . . , n} and J ⊆ {1, . . . , m − 1}). On the other hand, Lemma 3.4 (i) shows
that It−1(X ′) is the right ideal of Kq[X ′] generated by the (t − 1) × (t − 1) minors of
X ′; so, the proof is complete. �

Recall from the introduction that, for any positive integer t such that t � min{m, n},
we define the quantum determinantal ring Rt(X) := Kq[X]/It(X). This is a domain
by [1, Corollary 2.6]. If we put xij := Xij + It(X), for 1 � i � m and 1 � j � n, then
there is a canonical isomorphism

Rt(X)x1n
∼= Kq[X]X1n/Ĩt(X). (3.4)

We finish this subsection by showing that, for 2 � t � min{m, n}, the ring Rt(X)x1n

can be described as an iterated Ore extension of Rt−1(X ′). To achieve this aim,
we will have to make use of Proposition 2.6, which shows that Kq[X]X1n

can be
obtained from its subalgebra Kq[X ′] by iterated Ore extensions adding successively
X±1

1n , X11, . . . , X1,n−1, Xmn, . . . , X2n.
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Theorem 3.6. For 2 � t � min{m, n}, the ring Rt(X)x1n
is a localization of an

iterated Ore extension of Rt−1(X ′).

Proof. We start by giving a list of relations between a (t − 1) × (t − 1) minor of X ′

and the generators X±1
1n , X11, . . . , X1,n−1, Xmn, . . . , X2n. (Note that, by Lemma 2.1, we

already know that a (t − 1) × (t − 1) minor of X ′ commutes with X±1
1n .)

Let I ′ ⊆ {2, . . . , m} and J ′ ⊆ {1, . . . , n − 1} be sets of indices such that |I ′| = |J ′| =
t − 1. Setting I = I ′ ∪ {1} and J = J ′ ∪ {n}, Corollary 3.3 shows that (−q)1−t[I|J ] =
[I ′|J ′]′X1n. On the other hand, [9, Lemma 4.5.1 and Theorem 4.6.1] give the following
relations, for k ∈ {2, . . . , m} and l ∈ {1, . . . , n − 1}.

(1) X1l[I|J ] = [I|J ]X1l if l ∈ J ′.

(2) X1l[I|J ] − q[I|J ]X1l = q(q − q−1)
∑

j<l,j∈J′(−q)•X1j [I|J ∪ {l} \ {j}] if l �∈ J ′.

(3) Xkn[I|J ] = [I|J ]Xkn if k ∈ I ′.

(4) Xkn[I|J ]−q−1[I|J ]Xkn = q−1(q−1−q)
∑

j>k, j∈I′(−q)•Xjn[I∪{k}\{j}|J ] if k �∈ I ′.

(Points (1) and (3) follow from [9, Theorem 4.6.1], point (2) is the first relation of
Lemma 4.5.1(1) in [9], point (4) is the second relation of Lemma 4.5.1(3) in [9].) Hence,
for k ∈ {2, . . . , n} and l ∈ {1, . . . , n − 1}, Corollary 3.3 gives the following relations.

(1′) X1l[I ′|J ′]′ = q−1[I ′|J ′]′X1l if l ∈ J ′.

(2′) X1l[I ′|J ′]′ − [I ′|J ′]′X1l = q(q − q−1)
∑

j<l,j∈J′

(−q)•X1j [I ′|J ′ ∪ {l} \ {j}]′ if l �∈ J ′.

(3′) Xkn[I ′|J ′]′ = q[I ′|J ′]′Xkn if k ∈ I ′.

(4′) Xkn[I ′|J ′]′−[I ′|J ′]′Xkn = q−1(q−1−q)
∑

j>k, j∈I′

(−q)•Xjn[I ′∪{k}\{j}|J ′]′ if k �∈ I ′.

By Proposition 2.6, Kq[X]X1n can be obtained from its subalgebra Kq[X ′] by iterated Ore
extensions adding successively X±1

1n , X11, . . . , X1,n−1, Xmn, . . . , X2n. The relations (1′)–
(4′) together with the fact that X1n commutes with any element of the subalgebra Kq[X ′]
show that, at each step of this Ore extension, the ideal of the base algebra generated by
the (t − 1) × (t − 1) minors of X ′ is invariant under the corresponding skew derivation.
It follows that Kq[X]X1n/It−1(X ′)Kq[X]X1n is isomorphic to an iterated Ore extension
of Kq[X ′]/It−1(X ′). But Proposition 3.5 shows that Ĩt(X) = It−1(X ′)Kq[X]X1n . The
proof is thus complete. �

4. Quantum determinantal rings are maximal orders

Let R be a noetherian domain with division ring of fractions Q. Then R is said to be
a maximal order in Q if the following condition is satisfied: if T is a ring such that
R ⊆ T ⊆ Q and such that there exist non-zero elements a, b ∈ R with aTb ⊆ R,
then T = R. This condition is the natural non-commutative analogue of normality for
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commutative domains (see, for example, [7, § 5.1]). In this section, we investigate the
maximal order condition for determinantal rings.

Recall that the quantum determinantal ring Rt(X) := Kq[X]/It(X) is a domain
by [1, Corollary 2.6]. Also, recall that R2(X) has been shown to be a maximal order
in [10]. In this section, we prove that Rt(X) is a maximal order in its division ring of
fractions, when K = C and for q an element of C transcendental over Q.

The following lemma from [10] (see [10, Lemma 1.1]) is recalled here for the conve-
nience of the reader.

Lemma 4.1. Let R be a noetherian domain and Q = Frac R its division ring of
fractions. Assume there exists a non-zero normal element x in R such that

(1) xR =
⋂r

i=1 pi, where, for i ∈ {1, . . . , r}, pi is a completely prime ideal of R; and

(2) the localization Rx of R with respect to the set {xi, i ∈ N} is a maximal order
in Q.

Let τ be the automorphism of R associated with x; that is ax = xτ(a) for all a ∈ R.
Suppose that τ(pi) ⊆ pi for i ∈ {1, . . . , r}. Then R is a maximal order in Q.

One case where the above result immediately applies is the case in which the ideal xR

itself is a completely prime ideal. It is this case that we want to use. The applicability of
the above lemma to determinantal rings is a consequence of the results of the previous
section, since we can deduce the following result.

Theorem 4.2. Assume that K = C and let q be an element of C transcendental
over Q. Let t be an integer such that 0 < t � min{m, n}. Then Rt(X) is a maximal
order.

Proof. For t = 1 this is trivial, and for t = 2 it is [10, Théorème 2.3.11]. We proceed
by induction on t. Assume that the result is true for an integer s � 2 and set t = s+1. By
Theorem 3.6, Rt(X)x1n is a localization of an iterated Ore extension of Rt−1(X ′). The
induction hypothesis shows that Rt−1(X ′) is a maximal order in its quotient ring and so
Rt(X)x1n

is a maximal order by [8, V.2.5 and IV.2.1]. However, [6, Corollary 10.7] shows
that 〈x1n〉 is a completely prime ideal of Rt(X). Thus, Lemma 4.1 shows that Rt(X) is
a maximal order. �

We conjecture that this result holds for arbitrary non-zero q in any field K and for all
t. We conclude by proving that Oq(Mn)/〈detq〉 is a maximal order. All that remains to
be proved after the above discussion is that the ideal 〈detq, X1n〉 is a completely prime
ideal. This is what we do next.

5. Oq(Mn)/〈detq〉 is a maximal order

In this section we need to use the preferred bases in Oq(Mu,v) developed in [1], and
we follow the notation of that paper. See, in particular, [1, Corollary 1.11]. We recall
the notation [T |T ′] for the product of quantum minors corresponding to an allowable
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bitableau (T, T ′). We recall also that it is sometimes convenient to label rows of (T, T ′)
in the form (I, J), where I and J are sets of row and column indices, respectively (of
course, I ⊆ {1, . . . , u} and J ⊆ {1, . . . , v}); such a pair is called an index pair (see [1, § 1]).
Many of the results in [1] are stated for the square case Oq(Mu,u), and there are easy
extensions to the rectangular case Oq(Mu,v) (see, for example, [1, 1.11] and [2, § 2] for
more details of this standard procedure).

We aim to prove that the ideal 〈detq, X1n〉 of Oq(Mn) is a completely prime ideal for
each n � 3 by using the following result of Jordan [3].

Proposition 5.1. Let σ be an automorphism and let δ be a σ-derivation of a
domain A. Let R = A[x; σ, δ]. Let c be a normal element of R of the form dx + e,
where d, e ∈ A and d �= 0. Let β be the automorphism of R such that cr = β(r)c for all
r ∈ R. Then β(A) = A, the element d is normal in A and β(a)d = dσ(a) for all a ∈ A.
Furthermore, if e is regular modulo the ideal Ad = dA, then R/Rc is a domain.

Proposition 5.2. The ideal 〈detq, X1n〉 of Oq(Mn) is a completely prime ideal for
each n � 3.

Proof. The idea is first to factor out X1n obtaining a domain and then to factor out
Dn := detq and see that we still have a domain by invoking Jordan’s Domain Theorem.
We use the notation from that theorem. Let T be the subalgebra of Oq(Mn) generated
by all Xij except Xnn. Set A := T/〈X1n〉. Then A is a domain. Let R := A[Xnn; σ, δ] ∼=
Oq(Mn)/〈X1n〉. Let Dn denote the quantum determinant of Oq(Mn) and let Dn−1 denote
the quantum determinant of the copy of Oq(Mn−1) generated by the Xij with i, j < n.
Note that Dn−1 = A(nn) in the notation introduced before Theorem 3.1. Set x :=
Xnn ∈ R and d := Dn−1 ∈ A ⊆ R. Note that d �= 0 in R. Finally, set c := Dn ∈ R. The
quantum Laplace expansion of Dn by the nth column gives Dn =

∑n
i=1 ±q•A(in)Xin so

that c = dx + e, where e is the image in A of
∑n−1

i=1 ±q•A(in)Xin ∈ T .
Note that R/〈c〉 ∼= Oq(Mn)/〈Dn, X1n〉. We show that this is a domain by showing that

Jordan’s Theorem applies. Note that c is normal (in fact, central) in R. All we need to do
is to observe that e is regular modulo the ideal dA = Ad of the ring A. However, A/dA is
isomorphic to an iterated Ore extension of Oq(Mn−1)/〈Dn−1〉. Now Oq(Mn−1)/〈Dn−1〉
is a domain by [1, Theorem 2.5] or by [3, Example 2]; and so A/dA is a domain. Thus,
all we have to do is show that e �∈ dA.

Suppose that e ∈ dA. Then e = Dn−1α for some α ∈ T . Taking preimages, we obtain
n−1∑
i=1

±q•A(in)Xin = A(nn)α + βX1n

for some β ∈ T . Now, each term on the left-hand side is an element of Oq(Mn) of bidegree
(1, . . . , 1; 1, . . . , 1) in the Zn ×Zn grading of Oq(Mn) described in [1, 1.5]. Hence, we may
assume that each term on the right-hand side also has this bidegree. This implies that
α = λXnn for some scalar λ ∈ K. Since Xnn �∈ T , this implies that α = 0. In the resulting
equation

n−1∑
i=1

±q•A(in)Xin = βX1n,
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each of the terms on the left-hand side is a preferred product. However, if we write
β =

∑
λi[Ti|T ′

i ] in terms of the preferred basis, then βX1n =
∑

λi[Ti|T ′
i ]X1n is again in

preferred form. The equation

n−1∑
i=1

±q•A(in)Xin =
∑

λi[Ti|T ′
i ]X1n

then contradicts the independence of the preferred basis.
Thus e �∈ dA and we have all of the hypotheses of Jordan’s Theorem and conclude that

R/〈c〉 ∼= Oq(Mn)/〈Dn, X1n〉 is a domain, as required. �

It is interesting to note that when n = 2 the above result fails. In this case, the ideal
〈detq, X12〉 is semiprime; in fact, it is the intersection of two completely prime ideals, each
of which is fixed by the automorphism determined by X1n, so Lemma 4.1 is applicable.
However, this case has already been dealt with in [10].

Theorem 5.3. Oq(Mn)/〈detq〉 is a maximal order in its division ring of quotients for
each n � 2.

Proof. When n = 2 this is proved in [10, Théorème 2.3.11] (and can be proved
directly from Theorem 4.2 by the reasoning in the previous paragraph). An inductive
argument similar to that used in Theorem 4.2 finishes the proof. �

Appendix A. Some useful relations

In this section we collect some useful relations. They are essentially derived from results
of [9].

Relation A 1. If (
a b

c d

)

is a 2 × 2 quantum matrix, then the following relation holds:

ad − q2da = (1 − q2)(ad − qbc).

Relations A 2. If ⎛
⎜⎝X11 X12 X13

X21 X22 X23

X31 X32 X33

⎞
⎟⎠

is a 3 × 3 quantum matrix, then the following relations hold.

(1) For i = 2, 3,

(1.1) X11[i, 1|1, 3] = [i, 1|1, 3]X11 (see [9, (4.6.1)]);

(1.2) X11[i, 1|2, 3] = q[i, 1|2, 3]X11 (see [9, (4.5.1)(1)]);

https://doi.org/10.1017/S0013091502000809 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000809


Quantum determinantal rings 529

(1.3) X12[i, 1|1, 3] − q[i, 1|1, 3]X12 = (q−1 − q)X11[i, 1|2, 3] (see [9, (4.5.1)(1)]);

(1.4) X12[i, 1|2, 3] = [i, 1|2, 3]X12 (see [9, (4.6.1)]).

(2) For j = 1, 2,

(2.1) X33[3, 1|j, 3] = [3, 1|j, 3]X33 (see [9, (4.6.1)]);

(2.2) X33[2, 1|j, 3] = q−1[2, 1|j, 3]X33 (see [9, (4.5.1)(3)]);

(2.3) X23[3, 1|j, 3] − q−1[3, 1|j, 3]X23 = (q − q−1)X33[2, 1|j, 3] (see [9, (4.5.1)(3)]);

(2.4) X23[2, 1|j, 3] = [2, 1|j, 3]X23 (see [9, (4.6.1)]).
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