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1. Introduction

Throughout, K will denote a base field, ¢ a non-zero element of K, and m, n positive
integers. We denote by Og4(My, ) the quantization of the ring of regular functions on
m X n matrices with entries in K; it is the K-algebra generated by mn indeterminates
Xij, 1 <i<mand 1< j < n,subject to the following relations:

Xij Xu = ¢ XuXij,

X Xy = q X X554,

XuXgj = Xij Xa,

Xij X — XuXij = (0 — ¢ ) XuXkj,
forl<i<k<mand1<j<I<n
It will be convenient to use the following notation: setting

X = (Xij)igigm, 1<gn

we will denote Oy (M,,.,,) by K,[X].
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Let A be any K-algebra, we say that an m x n matrix (a;;) with entries in A is a g-
quantum matric if the map X;; — a;; induces a homomorphism of algebras K,[X]| — A.
If, in addition, this homomorphism is a monomorphism, then we say that the matrix (a;;)
is a generic q-quantum matriz; clearly, X is a generic g-quantum matrix, by definition.

In the case where m = n, the quantum determinant of X is defined by

detq = deth = Z (_q)l(o)Xl,a’(l) T Xn,o‘(n);
og€eS,

from [9, Theorem 4. we know that det, is in the centre of Oy(M,,) = Of(M,..).
Clearly, if I C N,, : yo..,m}and J C N, := {1,...,n} with |I| = |J| = t, that
is, I and J both have ¢ elements, then the submatrix obtained from X by keeping the
rows indexed by elements of I and the columns indexed by elements of J is a generic
g-quantum matrix; and so we can speak of its quantum determinant. Such an element
is called a t x ¢t quantum minor of X and is denoted by [I|J]. In order to simplify the
notation, if I and J are given by the explicit list of their elements, I = {i; < --- < 44}
and J = {j1 < -+ < ji}, we will use the notation [is, ..., 41|j1,...,j¢]. It follows at once
from the above that

6.1],
]

for I CN,,, JCN,, with |[I| =|J|=t, ieTand je J, [I|J]X;; = X;[IJ]. (1.2)

We need to use several identities involving quantum minors. Many of these are obtained
from [9]. However, it is worth noting that the conventions used in [9] are slightly different
from ours. In order to make the notation fit we must replace ¢ by ¢!
a relation from [9]. For convenience, some of the identities we use are collected in an
appendix.

For any positive integer ¢ such that ¢ < min{m,n}, we denote by Z;(X) the two-sided
ideal of K,[X] generated by the ¢ x ¢ quantum minors of X; such ideals will be referred

each time we use

to as quantum determinantal ideals. For each such t, we define the quantum determinantal
ring Ry(X) := K4[X]/Z;(X). It has been proved in [1] that R;(X) is a domain. Here, we
are interested in the question of whether or not R;(X) is a maximal order in its division
ring of fractions. This has already been established for Ry(X) in [10]. We will show that
the localized ring Rt(X)[atfnl], where z1,, := X1, + Z:(X), is a maximal order for each ¢,
and we are then able to deduce that R;(X) is a maximal order, in the case where K = C
and ¢ is an element of C transcendental over Q. The question for general K and any ¢
remains open: we conjecture that all quantum determinantal rings are maximal orders.
The problem is a technical one: it is necessary to show that a certain ideal is a prime
ideal. The restriction to g an element of C transcendental over Q is because the relevant
ideal is shown to be prime in [6] for this case. We can answer the question for general
0 # ¢q € K for the case of R, (X) (= O4(M,,)/(det,)), when X is n x n, and also for the
case R3(X) for general m x n. A proof of the former case is included in this paper since
it is relatively short, and of independent interest. The proof of the latter is not given
here, since it is somewhat ad hoc and rather long.
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2. A new set of generators for K,[X]x,,,

It follows at once from (1.1) that X, is a normal element of K,[X]. So, {X},, i € N} isa
right denominator set of K,[X]; the corresponding localization of K,[X] will be denoted
K[ X]x,,,-

For the remainder of this section we assume that min{m,n} > 2. In K,[X]x,,, we
consider the following elements, for 2 <i<mand 1 <j<n—1:

X} = Xij — "X Xin X3,) = —q7 i, 14, n] X3, (2.1)
Set
X1 oo Xipr X
’ X . ¢4
; X0 X4 Xon 2 2n-1
X = ) ) ] and X' = : :
A I
1/n1 o 1/71,71—1 an ml - m,n—1

with the convention that the index of a row in X’ is actually the index of the corre-
sponding row in X. So, for instance, X5, - - - X3 ,—1 is referred to as the row of index 2
in X'.

It is clear that the entries of X together with X fnl form a new set of algebra generators
for K4[X]x,,. Our next aim is to give a description of K,[X]x,, based on this set of
generators.

In order to do this, we need to know the relations between the entries of the matrix
X. This problem is dealt with in Lemma 2.1 and Proposition 2.2, where we obtain a
set of relations. We will show later that the relations obtained in these results give the
complete set of relations between entries of X.

Lemma 2.1. The matrix X' is a g-quantum matrix, and all its entries commute

Proof. Let 2 < i,k <mand 1 < j,l <n—1. From (1.2) we see that X1, commutes
with the 2 x 2 quantum minor [i, 1|7, n]. So X;; X1, = X1, X]; follows from the second
equality of (2.1). Moreover, from (2.1) again, we have X;; = —q i, 1|j,n) X} and
Xi, = —q [k, 1|I,n)X},}. The desired relations between X;; and X}, are deduced in an
obvious manner from [9, Theorem 5.2.1] applied to the submatrix of X defined by rows
1, ¢, k and columns j, [, n. O

The following proposition is a list of relations between entries of X . Relations between
two elements of the first row or of the last column of X are deduced from the fact that
X is a g-quantum matrix.

Proposition 2.2. The following relations hold between entries of the matrix X.
(1) If1<j<n-—1and 2 <i<m, then

X1 Xin = * Xin X1 = 4(¢* = ) X[ X1
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(2.1) For1<j<n—1land2<k<m,
X1 Xpy — XXy = (¢ — ) XuXp,;, for1<I<j—1,
leX,;j :q_lX]/nglj,
leX]/cl:X]/chle for]+1<l<n—l
(2.2) For2<i<mandl<l<n—1,

Xin X1 = X1 Xin, for2 <k<i-—1,
Xian{l = qX{le,
Xin Xt — X Xin = (¢ — ¢ HXpn X)), fori+1<k<m.

(3) If1<k<l<nandl<i<j<m, then

XuXu=q¢XuXiy and XipnXjn = qXjnXin.

Proof. Part (3) is obvious. The other relations are all obtained in the following way.
First, use the definition (2.1) to translate the desired relation into a new one that uses only
the entries of X, by multiplying by X1,,. The relation so obtained involves entries coming
from a certain submatrix of X of size at most 3 x 3. Use relation (A 1) and relations (A 2)
to check that the relation holds. Since these are easy but tedious computations we omit
the details. d

The next thing we want to do is to show that X’ is a generic g-quantum matrix. We
use a computation with Gelfand—Kirillov dimension (GKdim) to do this. The following
lemma is probably well known, but we have not located the exact statement that we
need; and so we include a proof.

Lemma 2.3. Let B be a K-algebra. Suppose A is a subalgebra of B and x is an
element of B such that B is generated by A and x as an algebra. Furthermore, suppose
there exists a finite-dimensional subspace V of A that generates A as an algebra and
such that 2V C Va 4+ A. Then GKdim(B) < GKdim(A) + 1.

Proof. Without loss of generality, we may assume that 1 € V. We denote by W the
subspace of B spanned by x and V. Thus, W is a finite-dimensional subspace of B that
generates B as an algebra. Since 2V C Va + A and V is finite dimensional, there exists
m € N* such that 2V C Va 4+ V™. An easy induction then shows that, for n € N,
xVn C Vig + Vmin,

We claim that

W CVrm 4 Vi 4 ... 4 Vg™, (2.2)
for all n € N. The inclusion (2.2) is trivial for n = 0 (recall the standard convention that
V9 = WY = K). Now, assume (2.2) holds for p € N, that is WP C VP™ 4 VPg 4 ...
VPmaP It follows that

WP CaVP™ 4 VP 4 - VPP
- VP + V;Dm+m + mex2 + V;l?m—!—mm 4 mexp-‘,-l + me+mxp.
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So aWP C Yt ... 4 yme+theptl On the other hand, VWP C Vmp+l 4. 4
VmetleP We finally obtain

Wwetl — (V + Kx)Wp C pmpt+1) 4ot ymp+L) o+l

This establishes (2.2) by induction on n.
From (2.2), it follows that dim W™ < (n + 1) dim V™", for all n € N, and thus

lim log,, diim W" < limlog,, diim V™" + 1.
This establishes that GKdim B < GKdim A + 1. O
Proposition 2.4. The matrix X' is a generic g-quantum matrix.

Proof. In this proof, we denote by A the subalgebra of K,[X]x,, generated by the
entries of X’. By Lemma 2.1, there is a surjective morphism ¢ : Oy(My—1,n-1) —
A. We want to prove that ker ¢ = (0). Assume that this is not the case. Then, since
Oy(Mp,—1,n—1) is a domain, ker ¢ must contain a regular element of Oy (M,,—1,-1) and
thus we have GKdim A < GKdim Og(M,—1,n-1) = (m —1)(n — 1).

By Lemma 2.1, we see that the subalgebra B of K,[X]x,, generated by A and
X1, is an extension of A of the type investigated in Lemma 2.3. Thus, we must have
GKdim B < (m —1)(n —1) + 1. Moreover, since X1, is central in B, [4, Proposition 4.2]
shows that GKdim Bx,, < (m — 1)(n — 1) + 1. Now, it is clear that K,[X]x,, can be
obtained by successive algebra extensions starting from By, and adding (in this order)
Xi1,...,X1,n—1 and then X, ..., Xo, (this is because K,[X]x,, is generated by the
entries of X and X 1_”1). Moreover, Proposition 2.2 shows that at each step, the extension
is of the type investigated in Lemma 2.3. Thus, (m — 1) + (n — 1) applications of this
lemma show that we must have

GKdimK,[X]x,, <(m—-1)(n—1)+1+(m—1)+ (n—1) =mn.

However, we know that GKdim K, [X]x,, > GKdimK,[X] = mn. This is a contradic-
tion and thus we have proved that ker ¢ = (0). O

Proposition 2.4 states that the subalgebra of K,[X]x,, generated by X' is isomorphic
to Og(My—1,n—1); for this reason, we denote it by K,[X'].
The following remark will be useful in what follows.

Remark 2.5. We denote by F(Xj,...,X,) the free K-algebra on p generators
Xi,...,Xp. Let I be the ideal generated by elements fi,..., fs € F(X1,...,X,), and
set A:=F(Xy1,...,X,)/I. Finally, let ¢ be an automorphism of F(X;,...,X,) and ¢ be
a left o-derivation of F(Xy,...,X,) such that o(I) = I and 6(I) C I. We denote by &
the automorphism of A induced by ¢ and by 6 the left G-derivation of A induced by .
Then Alr;5,6] is isomorphic to the algebra F(Xy,...,X,, X)/J, where J is the ideal
of F(X1,...,X,,X) generated by fi,..., fs and the p elements XX; — o(X;)X — 6(X;)
(here we identify F(X5,...,X,) and the subalgebra of F(Xy,...,X,,X) generated by
Xi,...,X,).
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We now proceed to show that K,[X]x,, can be described as an iterated Ore extension
of a Laurent polynomial extension of its subalgebra K,[X’] (recall the notation we fixed
immediately after Proposition 2.4). For this, we first construct an algebra B which is
an iterated Ore extension of Oy(Mp,_1,-1). We then show that B is isomorphic to
K [X]Xln

Let us start with the algebra Oy(M,,—1,,—1). For convenience of notation, we denote
its canonical generators by YZ’J for2<i<mand 1< j<n—1. Thus,

! !/
Y’ = (Y}})2<i<m, 1<j<n—1
is a generic g-quantum matrix and, following our previous notation, we have
!/
Oq(Mmfl,nfl) = KQ[Y ]

Now we consider the Laurent polynomial extension A = K,[Y'][Y;E!] obtained from
K,[Y'] adding a central indeterminate, denoted by Y1,,, and its inverse.

By Remark 2.5, we know how to describe A as a quotient of a free algebra. It is
then easy to see that we can define a (unique) left skew derivation (o11,d11) of A such
that 017 = 0 and such that 011(Y1,) = ¢Y1, and, for 2 < k <mand 2 <1 < n—1,
Ull(Ykll) = q—lykll and Jll(Yk/l) = Ykll We put .A11 = A[Yn;o’u, (511}

Now, for 2 < p < n — 1, we construct an algebra Ay, by induction on p. For 1 < p <
n —2, by Remark 2.5, we know how to describe Aj;, as a quotient of a free algebra. It is
then easy to check that we can define a (unique) left skew derivation (o1 py1,01,p41) of
Ajp such that, for 2 <k <m

o1 (Vi) =Y, Sipr1 (Vi) = (a7 = @)YuYy oy for 1<I<p,
111 (Yips) =0 Vg 141 (Y i) =0,
o1 (Vi) =Y, d1p+1(Yi) =0 forp+2<i<n—1,
01,p+1(Yin) = ¢Y1n, 01,p4+1(Y1n) =0,
o1 pr1(Yi) =q Y, 91 p+1(Y1) =0 for 1 <I<p.
Then, for 1 <p <n—2, we put Ay pr1 = A1 p[Y1,p+1;01,p+1 01 pt+1]-
Thus, we now have a first sequence of Ore extensions: A, A;1,..., A1 n—1. To finish

the construction of B, we need a second such sequence, which we now define.

By Remark 2.5, we know how to describe A; ,_; as a quotient of a free algebra. It is
then easy to see that we can define a (unique) left skew derivation (0, Omn) 0f A1 n—1
such that, for 1 <l < n—1,

omn(Yi) =Y, Smn (Vi) =0, for2<k<m-—1,
T (Yomt) = @Yo Smn (Y1) = 0,

Omn(Y1n) = ¢ " Yin, Omn(Yin) =0,

Tmn (Y1) = 472V, Smn(Yi) = (@7 = @)Y Vin.

We put An = A1 n—1[Ymn: Tmns Omn)-
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Now, for 2 < s < m — 1, we construct an algebra A, by decreasing induction on s.

For 3 < s < m, by Remark 2.5, we know how to describe A, as a quotient of a
free algebra. It is then easy to check that we can define a (unique) left skew derivation
(0s—1,n,0s—1,n) of Agp such that, for 1 <1< n—1,

os—1..(Y) =Y, ds—1.n(Yy) =0 for 2 <k <s—2,
03—1,n(Ys—1 l) = qu—l,lv 58—1,n(}<9,—1,l) =0,

os—1,0(Yir) = Y, d0s—1,n (Vi) = (@ — DYin Y, 1 fors<k<m,

0s—1,0(Y1n) = ¢ Yin, ds—1,n(Y1n) =0,

os—1..(Y1) = ¢ Y, Ss—1n(Yi) = (¢ — @Y. | Yin,

Os—1,n(Yin) = ¢Yin, 0s—1,n(Yin) =0 fors<k<m.
Finally, we get a sequence of Ore extensions: A, A11,..., A1 n—1,Amn, - .., A2, and we

put B = As,. Iterative applications of Remark 2.5 show that B can be easily described
as the quotient of a free algebra in mn generators. Clearly, we have constructed B in such
a way that the relations between the mn generators of this algebra are exactly the same
as those holding between the generators of X as noted in Proposition 2.2. It follows at
once that we can define a morphism of algebras

v : B =Ky X]x,,,

Yy, — X1, for 2 < k < m, 1<i<n—-1,
Yin = Xin,

Yi— Xy for1<li<n—1,

Yin — Xin for2<k<m

Proposition 2.6. The morphism ¢ is an isomorphism.

Proof. The surjectivity of ¢ is obvious since the entries of X together with X1, ! form
a set of algebra generators for K,[X]x,,. It remains to prove that kerp = (0 > Recall
that B is obtained from A = Oy(M,—1.,-1)[Y7,;!] by (m — 1) + (n — 1) successive Ore
extensions that are all extensions of algebras of the type investigated in Lemma 2.3. Thus,
we have GKdim B < GKdim A + (m — 1) + (n — 1). On the other hand, A is a Laurent
polynomial extension of Oy(Mp,—1,n—1) thus GKdim A = GKdim Oy (M,—1,5-1) + 1 =
(m—1)(n —1) + 1, by [4, Propositions 3.5 and 4.2]. All this together gives

GKdimB< (m—-1)(n—1)+1+(m—1)+ (n—1) =mn.

On the other hand, we have GKdimK,[X]x,, > GKdimK,[X] = mn, since K,[X] is a
subalgebra of Kq[X]x,,, .

Now, B is clearly a domain; and so if we assume that ker ¢ # (0), then GKdim B/ ker ¢ <
GKdim B = mn. But this is a contradiction since B/kery = K,[X]x,,. Thus, ¢ is
injective. |
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3. Reduction of the size of quantum minors

Using the results of the previous section we are now able to link k& x k& quantum minors of
X, for k > 2, with (k — 1) x (k — 1) quantum minors of X’ (provided X, is invertible,
of course).

Recall from the introduction that the expression [ig, ..., 1|1, ..., jx] stands for a k x k
quantum minor of X, namely the quantum determinant of the submatrix of X obtained
from X using rows i1,...,%; and columns ji,...,Js. This notation is extended to X'
adding a ‘’’ to avoid confusion. Thus, a quantum % X k minor of X’ will be expressed
by a symbol [ig,...,i1|j1,...,Jk). The convention on the index of rows of X’ (see the
introduction to § 1) is in order; so, in such an expression, we shall always have 41 > 2 and
Je<n—1

The results we need will follow from the special case where m = n. In this context,
the role played by (n — 1) x (n — 1) minors is of special importance; thus we use a more
convenient notation for them (coming from [9]). For 1 < ¢,j < n, the (n —1) x (n — 1)
quantum minor of X obtained by deleting the ith row and jth column is denoted A(ij).
Moreover, for 2 < i < nand 1 < j < n—1 we also define A’(ij) to be the (n — 2) x (n — 2)
quantum minor of X’ obtained from X’ by deleting the ith row and jth column.

Theorem 3.1. Assume that m = n. Then, with the above notation,
(dety X") X1, = X1p(dety X') = (—q)' "det, X.

Proof. Note that (det, X’)X1,, = Xi,(dety X’) is clear from 2.1. The proof is by
induction on n. The case where n = 2 is an obvious consequence of (2.1). We suppose now
that the result is true for any integer less than or equal to n — 1. Because of Lemma 2.1
the relations of [9, Corollary 4.4.4] give us the expansion

n—1

dety X' = " (—q) " X3, A (2)). (3.1)

j=1
Now,
Xin X, = X5, X105 = XojX1n — ¢ ' X1 X0, forall je{l,...,n—1}

and so
n—1 .
Xlndeth/ = Z(_Q)]ilxlnXéjAl(Zj)
=1
n—1
= Z(_q)j_l(XQlen —q " X1 X00)A'(29)
=1
n—1 , n—1 .
= (=g ' X X1n A'(2) — ¢ D (—q) T X1 Xon A'(2).
=

Jj=1
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By the induction hypotheses we have

X1,A4(2§) = (—q)> "A(25) forallje{1,...,n—1}.

Hence,
n—1 ] n—1 ]
Xindety X' = " (—=q)) "' Xo;(=¢)* " A(25) — ¢~ Y (=) X1, X0n X1, (—)* " A(2))
j=1 j=1
n—1 . n—1 )
=3 (=) X9 A2)) — gt ) (=) X Xan X A(2)).
j=1 j=1
Setting
n—1
R=—¢") (—a)"" " X1 X0 X7, A(2)),
j=1
we obtain

n—1
Xi,R = Z(—q)jfﬂleXQnA(Zj)
Jj=1

= Z_:(—Q)j_n(inxlj + (g — ¢ ") X1, X2)A(2))

n—1 n—1
= (=) " Xon X1;A25) + (g — 7)Y (—0) " X1n Xoj A(29).
Jj=1 j=1

On the other hand, from [9, Corollary 4.4.4], we have the relation

Z(—Q)j_QleA(Qj) =0.
j=1
Thus,
n—1 .
XinR = (—)* " Xan Y _(—q) 2 X1;A(2))
j=1 n—1 )
+(q— ¢ (=) " X1n Y _(—q)’ X2, A(2])
j=1

= (—0)* 7" X2, (0 = (—q)"* X1, A(2n))

(g a0 "X 3 (—) 2 Xy A2)).
j=1
It follows that
R=(—q) " X2,A2n) + (¢ — ¢~ ")(—q)*" i(—Q)j_ZXQjA@j)-
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Thus,
Xpndet, X!
= S (g X AR)) + (—g) Xan A(20)
j=1 n—1
a0 Y 0 X A))
= (Y (P a0 P X AR + (0) X ACR)
=(—q)*™" z_:((—q)J_1 —(=q) " = ¢ N (—q) ) X2 A(2)) + (—q) ' X2, A(20)
n—1
= ( @1‘”22( Q)2 X0;A(2§) + (=) " (—q)" T2 X2 A(2n)
= qf‘”i:(—qy 2 X2, A(2)

Again, by using [9, Corollary 4.4.4], it follows that Xi,det, X' = (—¢)'"det, X. O

Remark 3.2. We thank the referee for pointing out that, when K = C, Theorem 3.1
follows from [5, Theorem 3.5]. To see this, first notice that, in the notation of [5], there

is a surjective morphism of specialization of the indeterminate q of [5] at our scalar ¢~

Aq(Mat,) — K4 [X],

g—q ",
tij ’—)XW

Now, [5, Theorem 3.5] applied with P = {1} and @Q = {n} gives that the (n — 1) x (n — 1)
matrix U = (tljtin — qiltlntij) = (—qiltln(tij — qtljtlntfnl)) (Wlth 2 <1 < nand
1<j<n—1)is ¢ '-quantum in our terminology and that det,U = (det,T)t7 2. Since
X1, commutes with all the entries of X', applying the specialization morphism gives
us that X’ is g-quantum (the first part of our Lemma 2.1) and that (dety X')X;,, =
(—g)'~"det, X (our Theorem 3.1).

By using Theorem 3.1, we can establish Corollary 3.3, which links (p — 1) x (p — 1)
minors of X’ with p X p minors of X, for p > 2, that involve the first row and the last
column of X.

Corollary 3.3. Let p > 2. Suppose that
I={1=i1<--<ip}CN,, and J={j1<---<jp,=n}CN,

and set
I/:{ig <L v <7;p} and J/:{j1 < v <jp_1}.

https://doi.org/10.1017/50013091502000809 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091502000809

Quantum determinantal Tings 523

Then
[T = (=)' PIINX5, = (=)' P XL I

Proof. This is an immediate consequence of Theorem 3.1 applied to the square sub-
matrix obtained from X by using rows iy, ...,%, and columns ji,...,j, of X. |

Recall from §1 that, for 1 < ¢t < min{m,n}, we denote by Z;(X) the ideal generated
in K,[X] by the ¢ x ¢ minors of X. Clearly, the ideal generated by the ¢ x ¢ minors of X
in K;[X]x,, is just Z;(X) := Z;( X)) Ky [ X] x,,.-

Lemma 3.4. Let 1 <t < min{m,n}.
(i) Z4(X) coincides with the right ideal of K,[X] generated by the t x t minors of X.

(i) Z+(X) coincides with the right ideal of K,[X]x,, generated by the t x t minors
[I|J] of X such that 1€ I andn € J.

Proof. (i) The case where m = n follows at once from [1, Corollary A.2]. Now, set
s := max{m,n}. There is a surjective algebra morphism

I Oq(MS) — Oq(Mm,n)v

Xij s Xij ifignlzandjén,
0 otherwise,

and, for I, J C Ny such that |I| = |J| =t, a t x ¢t minor [I|J] of O,(M,) is sent to [I|J]
if I CN,, and J C N,, and is sent to 0 otherwise. It follows that the ideal of Oy (M, 1)
generated by the ¢ X t minors is the image under 7 of the ideal of O, (M) generated by
the ¢ x ¢t minors. From this, we see that point (i) for arbitrary positive integers m and n
follows from the special case m = n.

(ii) By part (i), Z;(X) coincides with the right ideal of K,[X]x,, generated by the
t x t minors. For the purpose of this proof, denote by S the set of ¢ x ¢ minors [I|J] of
X such that 1 € I and n € J.

Let [I|J] be a t x ¢t minor of X such that 1 € I but n ¢ J. We may apply [9,
Corollary 4.4.4] to the subalgebra of K,[X] generated by those X;; such that i € I and
j € JU{n}. This leads to the equation

Z (—q)*[{]J;]X1; = 0,

jeJu{n}

where, for j € JU{n}, we put J; = JU{n}\{j}, and occurrences of (—¢)® denote integer
powers of —g, which it is not necessary to specify exactly. Since J,, = J, it follows that
the equation
[11J) = = > () lI|J;] X1, X3,
jeJ

holds in K,[X]x,,. Now, n € J; for each j € J; and so we have shown that [I|J] is in
the right ideal generated by S in K,[X]x,, - By a similar argument, we prove that a t x ¢
minor [I|J] such that 1 ¢ I but n € J is in the right ideal generated by S in K,[X]x,, -
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It remains to deal with a ¢ x ¢t minor [I|.J] such that 1 ¢ I and n ¢ J. In this case, we
apply [9, Corollary 4.4.4] in the subalgebra of K,[X] generated by those X;; such that
i€ TU{l} and j € JU{n}. This gives us the relation

TUlTu{n}l = > (=) UlJ;]1 Xy =Y (=) [[|J]X1; + (=@)*[[|J] X1, (3.2)

jeJui{n} jeJ

where, for j € JU{n}, we put J; = JU{n}\{j}. Another application of [9, Corollary 4.4.4]
gives

TUQIU) = S (@t U {1\ (s} )X, (33)

jeJUu{n}

where s = max . Equation (3.3) and the results we established above show that the
(t+1) x (t+1) minor [T U{1}|J U {n}] is in the right ideal generated in K,[X]x,, by
S. Thus, using (3.2), it follows that [I|.J] is also in the right ideal generated in K,[X]x,,
by S. The proof is now complete. (I

Recall that, by Lemma 2.1 and Proposition 2.4 we know that the subalgebra of
Ky[X]x,, generated by the Xj; for 2 < @ < mand 1 < j < n — 1 is isomor-
phic to Og(My,—1,—1) and that we denote it by K,[X']. Following our conventions,
if 2 <t < min{m,n}, we denote by Z;_1(X’) the ideal of K,[X'] generated by the
(t —1) x (t — 1) minors of X’. In this notation, we have the following important result.

Proposition 3.5. For 2 < t < min{m,n}, the following equality holds:
Ti(X) = L1 (XK [X] x,, -

Proof. By Lemma 3.4 (ii), we know that Z,(X) coincides with the right ideal of
K4[X]x,, generated by the ¢ x ¢t minors [I|J] of X such that 1 € I and n € J. On
the other hand, let [I|J] be a t x t minor of X such that 1 € I and n € J. Applying
Corollary 3.3, we have (—q)'~*[I|J] = [I \ {1}|J \ {n}]'X1n. Thus, Z;(X) coincides with
the right ideal of K,[X|x,, generated by the (¢t — 1) x (¢t — 1) minors [I]J]" of X’ (such
that T C {2,...,n} and J C {1,...,m — 1}). On the other hand, Lemma 3.4 (i) shows
that Z;_1(X’) is the right ideal of K,[X'] generated by the (¢t — 1) x (¢ — 1) minors of
X’; so, the proof is complete. ([

Recall from the introduction that, for any positive integer ¢ such that ¢ < min{m,n},
we define the quantum determinantal ring R;(X) := K,[X]/Z;(X). This is a domain
by [1, Corollary 2.6]. If we put z;; := X;; + Z;(X), for 1 <i < m and 1 < j < n, then
there is a canonical isomorphism

Ri(X)ay, = Kq[X]x,,/Te(X). (3-4)

We finish this subsection by showing that, for 2 < ¢ < min{m,n}, the ring Ri(X),,,
can be described as an iterated Ore extension of R,_1(X’). To achieve this aim,
we will have to make use of Proposition 2.6, which shows that K,[X]x,, can be
obtained from its subalgebra K,[X’] by iterated Ore extensions adding successively
XEU X1, X1, Xy - -+ Xon.

in >
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Theorem 3.6. For 2 < t < min{m,n}, the ring Ri(X) is a localization of an

iterated Ore extension of Ry_1(X").

Tin

Proof. We start by giving a list of relations between a (¢t — 1) x (¢ — 1) minor of X’
and the generators Xlinl7 X115, X1n-1, Xmns - - -, Xon. (Note that, by Lemma 2.1, we
already know that a (t — 1) x (t — 1) minor of X’ commutes with Xi-!.)

Let I' C{2,...,m} and J' C {1,...,n — 1} be sets of indices such that |I'| = |J'| =
t — 1. Setting I = I’ U {1} and J = J' U {n}, Corollary 3.3 shows that (—q)'~*[I|J] =
[I'|J) X1r,. On the other hand, [9, Lemma 4.5.1 and Theorem 4.6.1] give the following
relations, for k € {2,...,m} and I € {1,...,n —1}.

1 X11[1|J} = [I‘J]Xll ifleJ.

(1)
(2) Xull|lJ] = qlI| T Xu=a(g —a7") X jer () Xy LT UL\ {}] if L & J'.

(3) XpnlI|J] = [I|J) Xpn if k€ T'.

(4) an[I|J]_q71[I|J]an = qil(qil_‘])g:j>k7 je]’(_q).Xjn[Iu{k}\{j}‘J] itk g I'.

(Points (1) and (3) follow from [9, Theorem 4.6.1], point (2) is the first relation of
Lemma 4.5.1(1) in [9], point (4) is the second relation of Lemma 4.5.1(3) in [9].) Hence,
for ke {2,...,n}and l € {1,...,n — 1}, Corollary 3.3 gives the following relations.

1) Xu[l'|J') = ¢~ 1)) Xy it L e J'.

(2) Xull'|JT = [T Xu=alg—¢7") Y (~a)" Xyl U{\ )] i1 g J"

j<l,jeJ’

(3") Xpn[I'|J') = q[I'|J") Xom if ke € I'.

@) Xpal |V =T Xpn = a7 M =0) Y (—@)* Xjul 'O\ (G} itk & 1.
j>k, eI’

By Proposition 2.6, K,[X]x,, can be obtained from its subalgebra K,[X'] by iterated Ore
extensions adding successively Xﬁl, X1, X1n—1, Xmns - - -, Xapn. The relations (1')-
(4’) together with the fact that X;,, commutes with any element of the subalgebra K, [ X']
show that, at each step of this Ore extension, the ideal of the base algebra generated by
the (t — 1) x (t — 1) minors of X’ is invariant under the corresponding skew derivation.
It follows that K,[X]x,, /Zi—1(X")K,[X]x,, is isomorphic to an iterated Ore extension
of K,[X']/Z;—1(X"). But Proposition 3.5 shows that Z;(X) = Z; 1 (X")K,[X]x,,. The
proof is thus complete. O

4. Quantum determinantal rings are maximal orders

Let R be a noetherian domain with division ring of fractions ). Then R is said to be
a maximal order in @ if the following condition is satisfied: if T' is a ring such that
R C T C @ and such that there exist non-zero elements a,b € R with aTb C R,
then T' = R. This condition is the natural non-commutative analogue of normality for
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commutative domains (see, for example, [7, §5.1]). In this section, we investigate the
maximal order condition for determinantal rings.

Recall that the quantum determinantal ring Ri(X) := K,[X]/Z;(X) is a domain
by [1, Corollary 2.6]. Also, recall that R3(X) has been shown to be a maximal order
n [10]. In this section, we prove that R;(X) is a maximal order in its division ring of
fractions, when K = C and for ¢ an element of C transcendental over Q.

The following lemma from [10] (see [10, Lemma 1.1]) is recalled here for the conve-
nience of the reader.

Lemma 4.1. Let R be a noetherian domain and (Q = Frac R its division ring of
fractions. Assume there exists a non-zero normal element x in R such that

(1) @R = (., pi, where, fori € {1,...,7}, p; is a completely prime ideal of R; and

(2) the localization R, of R with respect to the set {z', i € N} is a maximal order
in Q.

Let 7 be the automorphism of R associated with x; that is ax = z7(a) for all a € R.
Suppose that T(p;) C p; for i € {1,...,r}. Then R is a maximal order in Q.

One case where the above result immediately applies is the case in which the ideal xR
itself is a completely prime ideal. It is this case that we want to use. The applicability of
the above lemma to determinantal rings is a consequence of the results of the previous
section, since we can deduce the following result.

Theorem 4.2. Assume that K = C and let q¢ be an element of C transcendental
over Q. Let t be an integer such that 0 < ¢t < min{m,n}. Then R,(X) is a maximal
order.

Proof. For t = 1 this is trivial, and for ¢ = 2 it is [10, Théoréme 2.3.11]. We proceed
by induction on ¢. Assume that the result is true for an integer s > 2 and set t = s+ 1. By
Theorem 3.6, R¢(X),,, is a localization of an iterated Ore extension of R;_;(X"). The
induction hypothesis shows that R;_1(X’) is a maximal order in its quotient ring and so
Ri(X),, is a maximal order by [8, V.2.5 and IV.2.1]. However, [6, Corollary 10.7] shows
that (z1,) is a completely prime ideal of R;(X). Thus, Lemma 4.1 shows that R:(X) is
a maximal order. O

We conjecture that this result holds for arbitrary non-zero ¢ in any field K and for all
t. We conclude by proving that Oy (M,,)/(det,) is a maximal order. All that remains to
be proved after the above discussion is that the ideal (dety, X1,) is a completely prime
ideal. This is what we do next.

5. Oq(M,)/(dety) is a maximal order

In this section we need to use the preferred bases in Oy4(M,,) developed in [1], and
we follow the notation of that paper. See, in particular, [1, Corollary 1.11]. We recall
the notation [T|T"] for the product of quantum minors corresponding to an allowable
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bitableau (7, 7T"). We recall also that it is sometimes convenient to label rows of (T,7")
in the form (I,J), where I and J are sets of row and column indices, respectively (of
course, I C {1,...,u}and J C {1,...,v}); such a pair is called an indez pair (see [1, §1]).
Many of the results in [1] are stated for the square case O4(MM,, ), and there are easy
extensions to the rectangular case O4(M,, ) (see, for example, [1, 1.11] and [2, §2] for
more details of this standard procedure).

We aim to prove that the ideal (dety, X1,,) of O4(M,,) is a completely prime ideal for
each n > 3 by using the following result of Jordan [3].

Proposition 5.1. Let ¢ be an automorphism and let § be a o-derivation of a
domain A. Let R = Alx;0,6]. Let ¢ be a normal element of R of the form dx + e,
where d,e € A and d # 0. Let 8 be the automorphism of R such that c¢r = S(r)c for all
r € R. Then $(A) = A, the element d is normal in A and (3(a)d = do(a) for all a € A.
Furthermore, if e is regular modulo the ideal Ad = dA, then R/Rc is a domain.

Proposition 5.2. The ideal (dety, X1,) of O4(M,,) is a completely prime ideal for
each n > 3.

Proof. The idea is first to factor out X3, obtaining a domain and then to factor out
D,, := det, and see that we still have a domain by invoking Jordan’s Domain Theorem.
We use the notation from that theorem. Let T be the subalgebra of O,(M,,) generated
by all X;; except X,,. Set A :=T/(X1,). Then A is a domain. Let R := A[X,,,;0,0] =
0,(M,,)/(X1n). Let D,, denote the quantum determinant of O,(M,,) and let D,,_; denote
the quantum determinant of the copy of O4(M,,—1) generated by the X;; with ¢,j < n.
Note that D,,_1 = A(nn) in the notation introduced before Theorem 3.1. Set x :=
Xpn € Rand d:= D,,_; € A C R. Note that d # 0 in R. Finally, set ¢ :== D,, € R. The
quantum Laplace expansion of D,, by the nth column gives D,, = 7" | +¢®A(in) X;, so
that ¢ = dz + e, where e is the image in A of Z?:_ll +¢*A(in) X, € T.

Note that R/(c) = Oy(M,,)/{Dy, X1n). We show that this is a domain by showing that
Jordan’s Theorem applies. Note that ¢ is normal (in fact, central) in R. All we need to do
is to observe that e is regular modulo the ideal dA = Ad of the ring A. However, A/dA is
isomorphic to an iterated Ore extension of Oy(M,,—1)/(Dn-1). Now Oy(Mp—-1)/(Dp-1)
is a domain by [1, Theorem 2.5] or by [3, Example 2]; and so A/dA is a domain. Thus,
all we have to do is show that e ¢ dA.

Suppose that e € dA. Then e = D,,_j« for some o € T'. Taking preimages, we obtain

n—1

Z +¢*A(in) X, = A(nn)a + X1,

i=1
for some 8 € T. Now, each term on the left-hand side is an element of O, (,,) of bidegree
(1,...,1;1,...,1) in the Z" x Z™ grading of O,(M,,) described in [1, 1.5]. Hence, we may
assume that each term on the right-hand side also has this bidegree. This implies that
a = AX,, for some scalar A € K. Since X,,,, € T, this implies that a = 0. In the resulting

equation
n—1

i=1
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each of the terms on the left-hand side is a preferred product. However, if we write
B =" N|Ti|T!] in terms of the preferred basis, then X1, = > N [T;|T/] X1, is again in
preferred form. The equation

n—1

Z +q*A(in) X = Z Nl T3 T X 1

i=1

then contradicts the independence of the preferred basis.
Thus e ¢ dA and we have all of the hypotheses of Jordan’s Theorem and conclude that
R/{c) = Oy(My)/(Dn, X1,) is a domain, as required. O

It is interesting to note that when n = 2 the above result fails. In this case, the ideal
(dety, X12) is semiprime; in fact, it is the intersection of two completely prime ideals, each
of which is fixed by the automorphism determined by X7, so Lemma 4.1 is applicable.
However, this case has already been dealt with in [10].

Theorem 5.3. O,(M,,)/{det,) is a maximal order in its division ring of quotients for
each n > 2.

Proof. When n = 2 this is proved in [10, Théoréme 2.3.11] (and can be proved
directly from Theorem 4.2 by the reasoning in the previous paragraph). An inductive
argument similar to that used in Theorem 4.2 finishes the proof. ]

Appendix A. Some useful relations

In this section we collect some useful relations. They are essentially derived from results

of [9].
a b
c d

Relation A 1. If
is a 2 X 2 quantum matrix, then the following relation holds:
ad — ¢*da = (1 — ¢*)(ad — gbc).

Relations A 2. If
X1 X2 X3
Xo1 Xao  Xog
X31 X3z Xs3

is a 3 x 3 quantum matrix, then the following relations hold.
(1) For i = 2,3,

(1.1) Xy1[4,1]1,3] = [4,1]1, 3] X711 (see [9, (4.6.1)]);
(1.2) X11[i,1]2,3] = q[i, 1|2, 3] X1 (see [9, (4.5.1)(1)]);
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(1.3) Xu2[i, 1/1,3] = g[i, 1/1,3]X12 = (¢~ " — @) X113, 1]2, 3] (see [9, (4.5.1)(1)]);
(1.4) X1a[i,1]2,3] = [i,1]2, 3] X12 (see [9, (4.6.1)).

(2) For j =1,2,
(2.1) Xs3[3,1[7,3] = [3,1]j, 3] X53 (see [9, (4.6.1)]);
(2.2) X33(2,117,3] = ¢7'[2, 1], 3] X33 (see [9, (4.5.1)(3)]);
(2.3) X23[3,1]7,3] — ¢~ '[3, 114, 3] Xo5 = (¢ — ¢~ ) X33[2, 1], 3] (see [9, (4.5.1)(3)));
(2.4) X93[2,1|7,3] = [2,1]4, 3] Xa3 (see [9, (4.6.1)]).
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