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Component separation techniques such as non-negative matrix factorization (NMF) have found a 

permanent home in the electron energy-loss spectroscopy (EELS) community due to their ability to 

separate overlapped signals in a hyperspectral dataset. Especially in the field of nanoplasmonic, where 

NMF components can directly represent physical plasmon modes in simple systems [1]. While NMF has 

only been extensively used in EELS over the last decade, it has been an established technique in the signal 

processing community for much longer [2]. We believe there is significant potential application to porting 

other established signal processing techniques to EELS hyperspectral analysis. Here, we will discuss two 

such techniques: a data fusion methodology called pan-sharpening and unsupervised component 

separation methodology using a type of machine-learning network called an autoencoder.  

Pan-sharpening is a class of methodologies developed for satellite imaging, where two datasets with 

different beneficial properties are combined into one dataset with the beneficial properties of both. For the 

application in EELS, we acquire two hyperspectral datasets on the same region: one with a large number 

of pixels (and hence high spatial resolution) and one with a long acquisition time for each spectrum (and 

hence high spectral fidelity). We then perform an NMF decomposition on the high spectral fidelity dataset 

and use the spectral endmembers to solve for abundance maps in the high spatial resolution dataset, 

creating a single dataset with both high spatial resolution and high spectral fidelity [3], as shown in Figure 

1. 

For the autoencoder component separation, it is important to note that NMF itself is a form of unsupervised 

component separation. While for simple systems, NMF is extremely effective at separating and isolating 

individual physical mechanisms, for complex systems the interpretability of the components can become 

highly challenging. In our approach we use the autoencoder to convert the entire hyperspectral dataset 

into a latent space, where all spectra in the dataset can be represented by Cartesian coordinates in latent 

space [4]. By reducing the dimensionality of a hyperspectral dataset in this manner analysis can be 

performed directly in latent space using distance metrics, such as k-means clustering or Gaussian mixture 

modeling (shown in Fig. 2). The latent-space analysis labels the individual pixels in the dataset but does 

not alter them, meaning physical mechanisms are separated spatially without the EELS signal at the 

labeled pixels being altered. This provides an excellent alternative to NMF to unmix components in 

complex systems. 

 

https://doi.org/10.1017/S1431927621001720 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1431927621001720&domain=pdf
https://doi.org/10.1017/S1431927621001720


Microsc. Microanal. 27 (Suppl 1), 2021 323 

 

 

 
 

Figure 1. Figure 1. Example of pan-sharpening. We combine NMF decompositions in a high spatial resolution 

dataset with a high spectral fidelity dataset to achieve one dataset with the beneficial properties of both. The 

images are slices of the hyperspectral dataset at 700 meV (marked with a blac line in the spectra) and the 

spectra are from the white squares in the slices. 

 

 
 

Figure 2. Figure 2. Analysis in latent space generated by autoencoder. (a) A hyperspectral dataset is encoded 

into latent space. Each point represents a spectrum in the dataset, and we use Gaussian mixture modeling to 

break the dataset into three labels. (b) The original dataset can now be shown in terms of the localization of 

the three labels. (c) The average spectra from the labeled pixels in (b). 
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