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MULTIPLE CLOSED ORBITS FOR Af-BODY-TYPE PROBLEMS

SHIQING ZHANG

Using the equivariant Ljusternik-Schnirelmann theory and the estimate of the up-
per bound of the critical value and lower bound for the collision solutions, we
obtain some new results in the large concerning multiple geometrically distinct
periodic solutions of fixed energy for a class of planar JV-body type problems.

1. INTRODUCTION

In recent years, some researchers have applied variations! methods to the study of
the existence and multiplicity of periodic solutions for certain classes of Af-body-type
problems (see for example [3]). But there have been few results in the large concerning
the existence of multiple geometrically distinct periodic solutions of fixed energy. The
.TV-body problem in R k has Sl x O(k) symmetry (where O(k) is the rotational sym-
metry group of order k). In order to obtain multiple geometrically distinct periodic
solutions, we must consider the effects of the group S 1 x O(k). Using the equivari-
ant Ljusternik-Schnirelmann theory and precise estimates on the collision solutions and
critical values for the variational functional, we obtain some new results in the large
concerning with multiple geometrically distinct periodic solutions of fixed energy for
some planar AT-body problems including planar Af-body problems with Keplerian po-
tentials. Under certain conditions, we shall show in Theorem 1.3 that there exist at
least 2(N - l)2Af~2 geometrically distinct noncollision periodic trajectories for the sys-
tem (Ph) as defined below. It should be noted that the authors are unaware of any
published results on the existence of multiple geometrically distinct periodic solutions
for AT-body problem with Keplerian type weak force potentials.

We set fi = R 2 /{0} and consider a potential V of the form:

(1) V(u) \
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where u{ G R 2 , u = (ult . . . , u N ) € ( R 2 ) N and Vy G C ^ f i . R ) . Given T > 0, we
seek periodic solutions of (Ph):

id2Xi d ...

i A
- JjmiliiC*)! + ̂ («i(*). • • •, MO) = &•

DEFINITION 1.1: By a solution of (Ph), we mean x(t) — (xi(t), ..., XN(t)) such
that x is periodic with period T > 0 for all i, j — 1, . . . , iV satisfying:

(i) XiGH^fa
(ii) the set 5 = {t € [0, T] | Xi(t) = Xj(t) for some i ^ j} has measure zero;

(iii) Xi is C2 on [0,T)/S and satisfies (Ph).

A solution x such that 5 ^ 0 (respectively = 0)is called a collision (respectively
noncollision) solution.

DEFINITION 1.2: Let x and ?/ be two periodic solutions of (Ph). If there are
diffeomorphisms (p : S1 —t S1 and R : 0(2) —¥ 0(2) such that y = R- x • <p, then we
call x and y distinct in geometry.

REMARK, X and y are the same in geometry is equivalent to that x and y belong to
the same orbit and have the same period so that there are 6 £ Sl and R € O(2) such
that y(t) = Rx(t + 9).

THEOREM 1 . 3 . Assume V possesses the form of (1.1) and Vij (i, j = 1, 2, . . . , JV)
satisfy, for i ^ j , the following conditions:

(VI) Vi,-(C) = y-i(C)foraUC^O;
(V2) 3a G [1,2) such that V£(C)C > -aV^(C) > 0,VC ^ 0;
(V3) 3P G [0,2) and r > 0 such that t£«)C < -Wij(C)> V0 < |C| ^ r ;
(V4) ^(O-^OaslCl^+oo;
(V5) 3V/. (C)C + K;(C)C • C > 0, for all C # 0 ;
(V6) 3a, 6 > 0 such that

a y < v( ) < y
2 ^ I T - T I 0 v ( x ) ^ 2 2-" | T - r

l a i
l
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(V7) C < m i n { C i , 9 C 3 } where

W

C\ = min

-,(2+a)/a
J2

T.Eiili

2/(2+a)

N
M =

(x) = / tx 1e tdt, Ka — min —-—-
Jo n

(2+a)/a

E mr(i)

("where 5̂ v denotes the group of all the permutations of {I, . . . , N}).

Then for any h < 0, system (Ph) has at least 2(iV - 1)-2W~2 geometrically distinct

noncollision periodic solutions.

COROLLARY 1 . 4 . Assume N = 2, ^-(C) = - 1 / ICI > ^ a t JS> mi = m2 = 1, a =
^3=1 , a = 6 = 1. Then for any /i < 0, system (Ph) has at least two geometrically
distinct noncollision periodic solutions.

PROOF: By the assumptions we have M = 2, A + 3 • 2~3 • (2TT)2/3, £ = 3 • 2~3 •
7T2/3, C2 = 3 • 2-4/3 . 7r2/3j C 3 = 27/128; 7 = r ( l /2 ) / r ( l ) = TT1/2, /f2 = 4, d =
7T2, P = \/2/2, C = TT2/2. Hence C < d and C < 9C3 • D

2. THE PROOF OF THE MAIN RESULTS

Let us introduce the following notations:

(2) H = W1'2(S1,R2)
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(3)

(4) E = {u= (ui, . . . , un) | m 6 ff#, i = 1, . . . , N}

(5) Ao = {u € E | m(i) ^ Ui(t), Vt € R, i ? j}
N N i

(6) I H I ^ V m i l K I I ^ V m i / l^l2^, Vu=(Ul, ...,

Define the subset M of Ao and the following functional / on M:

(7) M = iu e Ao | /" [V(«) + |v'(u)u] df = h\

(8) / ( i i ) = i | | u | | |

The following lemma whose proofs can be found in [2, 8] gives sense to these
definitions.

LEMMA 2 . 1 . Let h< 0, and let F -̂ satisfy (V1)-(V5). Then

(i) M ^ 0, M is a C°° manifold in E and a strong deformation retract of

Ao.
(ii) Let u be a non-constant critical point of f \M ; also let

l ) T2 N i l '
Then x(t) = u(t/T) is a T-periodic noncollision solution of (Ph); conversely if x(t)

is a C2 solution of (Ph) of period T, then u(t) = x(Tt) is critical point of f \M •

LEMMA 2 . 2 .

fT 1

Jo W(t)\

-a/2

» = 1 ' L^O i = 1

(11)

(Hi) (Wirtinger Inequality) ||u||2 ^ — = — - , Vu (

PROOF: (i) By Holder's inequah"ty, we have

rT I rT „ N1/2 / rT „ \ a / 2T / rT \ 1/2

\q\dt^T^^Jo \q\
2dt) ,
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By Chebychev's inequality, we have

f '±-dt- fT\q\2dt>T\
Jo \q\ Jo

So

aT \ a / rT \ -a/2

hi-*) >!*<"(/«•«) •
Using the above results and Jensen inequality, we have

\ q \ ^ £ i y ^'V^» )~al\
The proof of inequality (ii) is similar to that of (i). U

LEMMA 2 . 3 . Let K = inf{ lim inf/(um) I {un} C M, un -^ u € dA0)•

Then, Ve > 0, the (P.S.) condition holds in fK~e = {u 6 M \ f(u) < K - e}.

PROOF: Let {un} be a (P.S.) sequence at level c < K. For F(un) -4 c, we know
that fQ \un\ dt is bounded. Thus {un} is bounded in E. Taking a subsequence if
necessary, we can say un -^4 u. For c < K we have the u € Ao. Similar to the proof
of [1] or [4], f(un) -> 0 and un-^u € Ao imply u n - ^ u 6 M. D

Moreover Vfc < K, fk is complete. In the following, we derive an estimate from
above on minimax levels on a special set with large S1 x O(2) Ljusternik-Schnirelmann
category.

Similar to the proof of [2], if (V1)-(V5) hold, there exists a continuous function
d : AQ -¥ R such that d(u)u € M, Vu € Ao. In fact, we set for u 6 Ao and d > 0

/>1r i i
= / V(du) + -rV'{du)du\ dt

Jo L 2 J
0(d)

From (V1)-(V5), it follows that

0'(d)>O for all d e (0,oo),

0(d) -> -oo as d ->• 0,

0(d) -> 0 as d -^ oo.

Thus there is a unique d — d(u) £ C(Ao, R) such that 0(d) = h for all u € Ao
and /i < 0. Thus a possible homotopy retracting H on M has the for if (A, u) =
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(1 - X)u + \d(u)u. For i = 1, . . . , N, let

Zi = lv(t) = (cos^M(Ccos27rt + 77sin27rt) | C, TJ € R 2 ,

(12)

(13) Z = ZX x . . . x ZN, Z = H(1,Z) C M .

In the following we will estimate the upper bound of / on Z, for this, we note
that for any u = (ui, . . . , u/v) S Z , there are Q, r]i € R 2 such that

(14) |C|= |ifc| = l, C»f?i = O, «i = ( c o a ^ ) ( C i

LEMMA 2 . 4 . IfV satisfies (V6), then

, . . b T—\ niiTn.1
15 - y ( u ) < o E i—,i

P R O O F : By |UJ(£)|2 = (COS(TT«)/(2JV))2 we have

(16) \Ui(t) - Uj(t)\
2 > \Ui(t)\

2 + | U j ( t ) | 2 - 2\ui(t)\ • \Uj(t)\

o ni , nj „ ?ri TT?

^ C 0 S 2N+C0S
 2N-2COS2N-COS2N

Hence the lemma is proved by (V6). D

In the following, we will use Lemma 2.4 to estimate the bound from above on the
functional / constrained on Z.

The following lemma is easily proved

LEMMA 2 . 5 . Let Vij satisfy (V)-(V6), then for any real number d and any fixed

u £ E, the functional f(du) in an increasing functional on d.

By Lemma 2.4 and Lemma 2.5, we have

LEMMA 2 . 6 . If V^ satisfies (V1)-(V6), then we have

( - A )

(17) = D(-h)~1/a,

(18) k

where
N

(19)
~ , 2-/?
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P R O O F : By (V1)-(V6) and Lemma 2.4, we have

h = ( \v{d • u) + ^V'(d • u)dv\ dt^(l-^\ j V(d • u) dt

1 / a\ f1 1 ^->

So the estimate (17) on d(u) holds.

We take u e Z, as u = d{u)u with u € Z and d(u) ̂  D(-h)~1/a. Hence by
|UJ| = cos (TTI)/(2N) , we have

w „! JV . . .
\-2/a

AT
2/a

By (7) and (V3), we have

f V'{u)udt^
Jo

So the upper bound estimate (18) is proved by (8).

Similar to [4] and [12], we have

LEMMA 2 . 7 . Let u € M and let 1/T2 = (ft V(u)udt\/ \\u\\%, also let

u(t/T). Then the following equalities hold:

(20) [ 4 /H ] 1 / 2 =

(21) [AJ{u)}V2=T fv'{u)udt.

Jo

PROOF: By (8) and (9) we have

»1 \ 1/2 pi

V'(u)udt) =T V'{u)udt.
) / Jo
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Hence (21) is proved. By (8) and (9) we have

= | j\'(u)udt

(22) = / V'(q)qdt.
Jo

On the other hand, by (8) and (9) we have

al \ 1/2 , 1 Z"1 _N _

So

(23) [4/(«)]1 / 2 /
Jo

Adding up (22) and (23), we have

u ) ] 1 / 2 = J o H ? m i ' * | 2 + v > i q ) ' q ] d t

We denote Ei = {u € E \ ̂  -V(u)dt < oo}. Then, by (V3), for all ueEi

have also / 0 V'(u)udt < oo. We set

i = j u € £i = I (V{u) + ̂ V"(u)«) dt = h\.

We also denote, for u £ Ei,

Now it is easy to see that from (V1)-(V6) it follows that for all u € Ei we have
{Xu, A > 0} C Ei and there exists a unique X(u) > 0 such that X(u)u e Mi and

(24) I(u) = max/(Au) = f{X{u)u).

We set, for s = 2, . . . , N,

(25) dAs = {U€Ei:3re SN, 3t € 5 1 : ( ) ( ) }
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where Sjv denotes the group of all permutations of {1, . . . , N}. D

LEMMA 2 . 8 . [ l l ] . Let

and

/ \ (2+a)/a

( E fnT(i)mT(j)

(26) Ka - min

Then

(27) inf _ f(u) = inf. J(«) ^ * 7 2 ( ? ) 2 / ° • K. • \h\(a~2)/a .

LEMMA 2 . 9 . If V satisfies (V1)-(V6), then K > C1\h\(a~2)/a, where K is

defined in Lemma 2.3, C\ is defined in Theorem 1.3.

P R O O F : By the definition of K, we take a sequence {un} € M such that un-^-»u 6

dA0 and f{un) —> K. Then u is not a constant. Suppose for a contradiction that u(t) =

constant. By the symmetry u(t + 1/2) = -u(t), we have u(t) = 0, then u n - ^ 4 0 . By

the Sobolev embedding theorem, we have | |un| | -¥ 0 and / 0 V(un)dt ->• - o o . But by

(V2) and (V3), we have

(28)

This is a contradiction. Hence, u is not a constant. Let dA3 = {u € E : 3T €
5 W , 3t e S1 — uT(i)(*) = ••• = u T ( s ) ( t ) } . By the same procedure as in the proof of
[11, Lemma 2.8], we can obtain

N
By <?A0 = U dAs, we have

8=2

(30) K> inf
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D

LEMMA 2 . 1 0 . If u is a critical point of / \M, and (V1)-(V6) hold, then we have

(31) f(u) > Cz{-h)(a-2)/a.

PROOF: AS in Lemma 2.7, let T2 = \\u\\l/(f* V(u)udt) and q(t) = u(t/T).

Then

(32) [ ] £ [| |

Using the symmetry property q(t + (T/2)) = -q(t) and (V6), we deduce that

v m i fT ,2 , oca fT dtl
 * + 7

/ 2 \ r 2

= Y^m.i, A = 4TT2 I 1 + - ) =—-
~ i V « / L(2TT)22(8-

Using the methods of [6] and [8], we can give more explicit estimates about

[4/(u)]1 / 2 . Let

JL / O\ r ^ n i2/(2+a)

<*2(8+a)/2j

Then

(33)

On the other hand, for every u 6 M, we have / 0 [V(u) + F'(u)u/2] dt = h. Prom
this and (V3) we deduce

(34) / V'(u)udt^^^, VueM.
Jo * ~ P

By (21) and (34), we get

05) [ v

Plugging (35) into (33), we get

(36)
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From (35) and (36), it follows that

/ ( ) > \ ( ) ( Q 2 ) /°(37) /(«) > \ ( ^ )

We note that Z is S1 x 0(2) invariant. In fact, for any x(t) = (xi(t), ..., xjv(t))
and T € S1, R e 0 ( 2 ) , H ( T , R) • x(t) = (Rxi(t + r),...,RxN(t + T)) € Z. We
also note that Z is 5 1 x O(2) invariant and the functional / is S1 x O(2) invariant.
Hence in order to obtain multiple distinct S1 x O(2) invariant orbits of the system
(Ph), we need to estimate the S1 x 0(2) equivariant category of the special sets Z and
Z. We note that each Zt (i — 1, . . . , N) is diffeomorphic to TiS1 which is the unit
tangent bundle of S1. Hence cat(Zi) ^ 3. Now Z = Z\ x • • • x ZN is diffeomorphic to
TiS1 ® • • • ® TiS1 (N factors), and Z is diffeomorphic to the set Z(ni,...,n jv) of Coti
Zelati [5], so by [5], we have

LEMMA 2 . 1 1 . i(Z) = cat(Z/S1 xO(2)) ^2{N-1)2N~2.

REMARK. Although the set Z is diffeomorphic to the critical manifold ^(ni,...,nA,) of

Coti Zelati [5], the upper bounds of / on Z and Z are more easily estimated than on

Z(rH,...,nN)-

LEMMA 2 . 1 2 . [10] Let X and Y be two arcwise connected topological spaces.

If the continuous map tp : X —> Y has a left inverse ip : Y —> X, then VJ4 C
X,CatY(f(A)) ^catx(A).

The following lemma is an equivariant version of Ljusternik-Schnirelmann theory.

LEMMA 2 . 1 3 . Let X be a Banach space, A an open subset of X, and f €
C1(A, R) . Let G be a compact Lie group, T(G) a linear continuous representation
with equivariant distance and M a C2~° submanifold of A. Assume M and f both
are invariant under T(G), f satisfies the Palais-Smale condition on some closed subset
ofN of M.

Let i be a T(G)-invariant index. Let cm — inf SupX£zf(x), m = 1, 2, . . . ,
t(A)^(m)

where AcN,Ae^2={BcN\Bis T(G) -invariant and closed in N} . Then

(1) when -oo < Cm < +oo, Cm is critical value of f,
(2) if - o o < c = Cm+i = ••• = Cm+k < + o o , then i{Kc) ^ k, where

(3) Cm

LEMMA 2 . 1 4 . If u is a critical point of f \M , which has minimal period l/l, I

1, then I ^ 3 and v(t) = u(t/l) is also a critical point of f \M and f(v) — (\/l2)f(u)

f(u)/9.
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PROOF: The result follows from the symmetry u(t + 1/2) = -u(t) and the follow-
ing two equalities:

[ \i>(t)\2dt = 1 f \ii(t)\2dt; f V(v)-vdt= f V{u)udt.
Jo ' Jo Jo Jo

We are now ready to prove Theorem 13.

PROOF: Inequality C\ > C implies that K > k. Thus by Lemma 2.3, the Palais-

Smale condition holds in fk. We note that Z c fk C M by the definition of k. Thus

by Lemma 2.11 and Lemma 2.12, we have i/^\ (z) ^ iz(Z) = 2(7V - l)2i V-2. Since

it-zs (z\ ^ 2(/V — 1)2^~2 and (P.S.) condition holds in / * , we are in a position to apply

the S1 x O(2)-equivariant Ljusternik-Schnirelmann theory in N = fk, which yields the
existence of 2(N - 1)2N~2 critical points {u< | i = 1, . . . , 2{N - 1)2N~2} c fk of
F \M , none of which can be brought into the other by the standard S1 x O(2) action of
M. For any u\ € / * we have f(iii) ^ C(—h) . If Ui were not of minimal period
1, from Lemma 2.14, it would follow that there is a critical point Vi of / \M such that
fivi) ^ (C/9)(-h)l~2/a. Lemma 2.10 and estimate C3 > C/9 would then imply a
contradiction, so Theorem 1.3 is proved.

REFERENCES

[1] A. Ambrosetti and V. Coti Zelati, 'Closed orbits of fixed energy for a class of TV-body
problems', Ann. Inst. H. Poincare Anal. Non Lineaire 9 (1992), 187-200; (Addendum to
closed orbits of fixed energy for a class of iV-problems, Ann. Inst. H. Poincare Analyse
Nonlineaire 9 (1992), 337-338).

[2] A. Ambrosetti and V. Coti Zelati, 'Closed orbits of fixed energy for singular Hamiltonian
systems', Arch Rational Mech. Anal. 112 (1990), 339-362.

[3] A. Ambrosetti and V. Coti Zelati, Periodic solutions of singular lagrangian systems
(Birkhauser, Boston, 1993).

[4] U. Bessi and V. Coti Zelati, 'Symmetries and non-collision closed orbits for planar TV-body
type problems', Nonlinear Anal. 16 (1991), 587-598.

[5] V. Coti Zelati, 'A class of periodic solutions of the TV-body problem', Celestial Mech.
Dynam. Astronom. 46 (1989), 177-186.

[6] V. Coti Zelati, 'The periodic solutions of the TV-body problems', Ann. Inst. H. Poincare
Anal. Non Liniaire 46 (1989), 177-186.

[7] E. Fadell and S. Husseini, 'Infinite cuplength in free loop spaces with an application to
a problem of the TV-body type', Ann. Inst. H. Poincare Anal. Non Lineaire 9 (1992),
305-319.

[8] F. Giannoni and M. Degiovanni, 'Dynamical system with Newtonian type potentials',
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 305-319.

https://doi.org/10.1017/S0004972700031968 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031968


[13] Multiple closed orbits 13

[9] E.W. Van Groesen, 'Analytical min-max methods for Hamiltonian break orbits of pre-
scribed energy', J. Math Anal. Appl. 132 (1988), 1-12.

[10] P. Majer and S. Terracini, 'Periodic solutions to some iV-body type problems: The fixed
energy case', Duke Math. J. 60 (1993), 683-697.

[11] E. Vitillaro, 'Noncollision periodic solutions of fixed energy for a symmetric TV-body type
problem', in Proceedings of the Workshop on Variational and Local Methods in the Study
of Hamiltonian Systems (Trieste 1994) (World Scientific, River Edge, NJ, 1995), pp.
202-211.

[12] S.Q. Zhang, 'Multiple closed orbits of fixed energy for JV-body-type problems with grav-
itational potentials', (preprint, 1993).

Department of Applied Mathematics
Chongqing University
Chongqing 630044
People's Republic of China

https://doi.org/10.1017/S0004972700031968 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031968

