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Annihilators for the Class Group of a Cyclic
Field of Prime Power Degree, II

Cornelius Greither and Radan Kučera

Abstract. We prove, for a field K which is cyclic of odd prime power degree over the rationals, that the

annihilator of the quotient of the units of K by a suitable large subgroup (constructed from circular

units) annihilates what we call the non-genus part of the class group. This leads to stronger annihila-

tion results for the whole class group than a routine application of the Rubin–Thaine method would

produce, since the part of the class group determined by genus theory has an obvious large annihilator

which is not detected by that method; this is our reason for concentrating on the non-genus part. The

present work builds on and strengthens previous work of the authors; the proofs are more conceptual

now, and we are also able to construct an example which demonstrates that our results cannot be easily

sharpened further.

1 Introduction and Statement of Results

In this paper we provide a generalization of the results in our paper [GK2]. We begin

with a rapid overview. As in [GK2], we are concerned with a cyclic extension K/Q

of odd prime power degree l = pk; the added generality consists in replacing the
hypothesis that all ramified primes in the cyclic field K have to be totally ramified

by the condition that all ramified primes have full decomposition group. The main
result can be described as follows (the complete statement is given in 1.3 below): Let
E denote the group of units in K; fix a generator σ of the Galois group G of K/Q . We
construct a certain element ε ∈ K by extracting a high (σ − 1)-power root from a

circular unit η; in general ε will not be a unit, but εσ−1 is. We then proved in [GK2]
that the Z[G]-annihilator of E/〈εσ−1〉 annihilates the p-part of (σ−1)Cl(K). We will
reprove it here in greater generality by a different approach.

The proof in [GK2] consisted of two stages: in the first we extracted, as said above,
the deep root from a Sinnott circular unit and proved some important facts about it,
and in the second stage the machinery of Thaine and Rubin was adapted to our pur-
pose, in order to produce annihilators. This two-stage approach remains in force,

but what we redo more generally in this paper is almost exclusively the first stage, by
means of a more conceptual approach which comes from work of Burns and Hay-
ward (see [H]). Not much will have to be said for the second stage because almost all
that is required has already been done in [GK2].

We then conclude the paper by providing evidence that our main result would no
longer be true if the assumptions are weakened further; at the very end we briefly
comment on quite recent work of Burns and Hayward [BH].
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To explain the significance of our main result (for more details and for references,
see [GK2]) we use a bit of not necessarily standard terminology. The “genus part”

Cl(K)p/(σ−1)Cl(K)p is completely known to us as the Galois group of the genus field
of K over K. In particular it is annihilated by (σ−1). Therefore the interesting object
to be annihilated is the “non-genus part” (σ − 1)Cl(K)p ; we succeed in finding an
annihilator of this part which is in some sense best possible. If α ∈ Z[G] annihilates

that module, then (σ − 1)α annihilates the whole of Cl(K)p . Hence our main result
and a little algebra imply that Cl(K)p is annihilated by the annihilator of E/〈ε(σ−1)2

〉.
If at least three primes ramify in K, the latter annihilator is always larger than the
annihilator of E/〈ησ−1〉, which is what the method of Rubin and Thaine, applied

directly, would yield as an annihilator for Cl(K)p . See the precise definition of ε in
Theorem 1.1.

We now discuss our setup and our results in detail.

We suppose that K/Q is a cyclic extension of degree l = pk, where p is an odd

prime, such that the conductor m of K is not a prime power. Let χ be a generator
of the group of Dirichlet characters corresponding to K. Let us decompose χ =

χp1
. . . χps

, where χpi
is a nontrivial Dirichlet character whose conductor is a power

of a prime pi . Let pki be the order of χpi
. We fix an ordering of p1, . . . , ps in such a

way that k1 ≥ · · · ≥ ks ≥ 1, so k1 = k and s > 1. Hence p1, . . . , ps are precisely the
primes which ramify in K and pki is the ramification index of pi . Let ζ be a fixed l-th
primitive root of unity and let σ be the generator of G = Gal(K/Q) satisfying χ(σ) =

ζ (as usual, χ is defined on G via the canonical isomorphism between (Z/m)× and

the Galois group of the m-th cyclotomic field).

Let I = {1, . . . , s}. We define an s × s matrix A = (ai j)i, j∈I over Z/lZ in the

following way: the non-diagonal entries are given by the condition χp j
(pi) = ζai j

and the diagonal entries are chosen such that the matrix A has zero row sums: aii =

−
∑

j∈I, j 6=i ai j . It is clear that the above condition is equivalent to the following
one: Let K j be the abelian field corresponding to χp j

and let σ j be the generator of

Gal(K j/Q) determined by χp j
(σ j) = ζq j with q j = lp−k j . Then for any i 6= j we

have q j |ai j and σai j/q j
j is the Frobenius automorphism of pi in K j .

For any i ∈ I let ζi be a fixed pi-th primitive root of unity if pi 6= p and a fixed
p1+ki -th primitive root of unity if pi = p. Then ζI =

∏

i∈I ζi is a primitive m-th

root of unity and η = NQ(ζI )/K(1 − ζI) is the “Sinnott circular unit of conductor
level” of K. Let Ai ∈ Z be the lift of the (i, i)-th minor of the matrix A satisfying
0 ≤ Ai < l. The first goal of this paper is the following theorem, which gives back
[GK2, Theorem 1] in the case that every ramified prime of K is totally ramified:

Theorem 1.1 There is a unique ε ∈ K satisfying ε(σ−1)s−1

= η and having absolute

norm

NK/Q (ε) =

s
∏

i=1

p(−1)s−1Ai

i .

Moreover, εσ−1 is a unit of K.

This result will be proved in §4. We remark here that the cyclicity of K/Q is
essential; for more on this see §8.
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Let us mention that the existence of such an element ε ∈ K was proved by D. Burns
and A. Hayward under the assumption that the decomposition group for each of the

ramified primes p1, . . . , ps equals G (see [BH]). Theorem 1.1 may be proved by a
modification of the argument in [GK2] with the following advantage: as a by-product
we obtain that ε is a circular number in the m-th cyclotomic field. But we shall use
the approach of Burns and Hayward since it gives a proof which is somewhat more

conceptual and much less technical, see §4. It should also be pointed out that the
proof presented here gives an alternative approach to the results of [GK2].

Let l ′ > 1 be a divisor of l and K ′ be the subfield of K of absolute degree l ′. Let
χ ′

= χl/l ′ , ζ ′ = ζ l/l ′ , and

r = max{i ∈ I; qi < l ′}.

Then p1, . . . , pr are precisely the primes which ramify in K ′. Let us denote I ′ =

{1, . . . , r} and define ζI ′ =
∏

i∈I ′ ζi and η ′
= NQ(ζI ′ )/K ′(1 − ζI ′). Then

NK/K ′(η) = (η ′)
∏ s

i=r+1
(Frob(pi ,K

′)−1),

where Frob(pi ,K
′), for i > r, means the Frobenius automorphism of pi in K ′. So

Frob(pi ,K
′) is the restriction to K ′ of the Frobenius automorphism of pi in the com-

positum K1 · · ·Kr , which is
∏r

j=1 σ
ai j/q j

j . Here, by abuse of notation, we understand
by σ j the extension of the previous σ j which is the identity on all Kt , t 6= j. But the

restriction of σ j to K is σq j , so

Frob(pi ,K
′) = (σ|K ′)ai1+···+air = (σ|K ′)−aii

because l ′|ai j for all j > r, j 6= i. Let ti =
∑bi−1

c=0 σc, where 0 ≤ bi < l ′ is the lift of

−aii modulo l ′. Then Frob(pi ,K
′) − 1 is the restriction of (σ − 1)ti to K ′ and

NK/K ′(ε)(σ−1)s−1

=
(

(ε ′)
∏ s

i=r+1
ti
) (σ−1)s−1

where ε ′ is given by Theorem 1.1 considered for K ′. Notice that we have assumed
in Theorem 1.1 that s > 1 but this remains true also for s = 1 (when ε = η and

A1 = 1). If 0 6= α ∈ K satisfies α(σ−1)2

= 1, then ασ−1
= a ∈ Q , so ασ = αa. Then

ασ
i

= αai for any positive integer i. Thus α = ασ
l

= αal which gives ασ−1
= a = 1.

Therefore
NK/K ′(εσ−1) =

(

(ε ′)σ−1
)

∏ s
i=r+1

ti
.

This formula can be simplified if l ′ divides aii for some r < i ≤ s. Then the corre-
sponding ti = 0 and NK/K ′(εσ−1) = 1. On the other hand, if aii is not divisible by p

for each r < i ≤ s (which is the case if and only if the decomposition group of each

of pr+1, . . . , ps equals G), then all ti are invertible in Z[G] and (ε ′)σ−1 belongs to the
Z[G]-span 〈εσ−1〉 of εσ−1.

Now we may consider all subfields Q = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lk = K with
[Li : Q] = pi . For each 1 ≤ i ≤ k, let si be the number of ramified primes in Li

and let ηi and εi mean η ′ and ε ′ for K ′
= Li . Let κi be ηi if si > 1 and ησ−1

i if
si = 1. Then C ′

= 〈−1,κ1, . . . ,κk〉 is the Sinnott group of circular units of K. Let
C = 〈−1, εσ−1

1 , . . . , εσ−1
k 〉 ⊇ C ′. The following technical result is going to be proved

in §2:
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Proposition 1.2 The index of C in the full group E of units of K is given by the formula

[E : C] = 2l−1hK

k
∏

i=1

p1−si ,

where hK is the class number of K. As a consequence, the p-part of this index is equal to

the cardinality of the non-genus part (σ − 1)Cl(K)p of the p-Sylow subgroup Cl(K)p of

the class group of K:

[E : C]p = |(σ − 1)Cl(K)p|.

In the special case when the decomposition group for each of the ramified primes
p1, . . . , ps equals G (or equivalently if no ramified prime is divisible by two differ-
ent prime ideals of K) we have the following generalization of [GK2, Theorem 2],

provided we also retain the condition that K/Q is tame from [GK2]. Note that this
simply means that p is not among the ramified primes p1, . . . , ps.

Theorem 1.3 Assume that the decomposition group of any prime ramified in K/Q is

equal to G. Then C = 〈−1, εσ−1〉 with ε given by Theorem 1.1. If, in addition, the

extension K/Q is tame, then

AnnR((E ⊗ Zp)/〈εσ−1〉R) ⊆ AnnR((σ − 1)Cl(K)p),

where R = Zp[G]/(NG) and NG =
∑

σ∈G σ is the norm operator.

This is the central result of the present paper; the proof will be given in §5 after

some preparations on Gorenstein rings (§3) and circular units (§4).

Under the same assumption as in Theorem 1.3, we can give the following easy cri-
terion (to be proved in §6) whether the Hilbert p-class field coincides with the genus
field K of K by means of the minors of the matrix A introduced before Theorem 1.1:

Proposition 1.4 Assume that the decomposition group of any prime ramified at K/Q

equals G. Then the non-genus part (σ − 1)Cl(K)p of the p-Sylow subgroup of the class

group of K is trivial if and only if at least one of the Ai (i = 1, . . . , s) is not divisible

by p.

It is natural to ask whether the decomposition assumption in Theorem 1.3 and
Proposition 1.4 can be removed, taking C ⊗ Zp instead of 〈εσ−1〉R in Theorem 1.3.
The following examples and results show that this is not possible. Details of the first

example below will be given in §7.

Example 1.5 There is a cyclic field K of degree 9 with three ramified primes p1 =

19, p2 = 577, p3 = 37 such that E/C ∼= (Z/3)2 with the trivial action of σ, while

(σ − 1)Cl(K)p
∼= R/(σ + 2) as R-modules. Therefore, for this field K, (σ − 1)

annihilates E/C but does not annihilate (σ − 1)Cl(K)p . In this example, 19 and 577
are totally ramified; the prime 37 has ramification degree 3 and is totally split in the
cubic subfield of K.
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Next, in order to show that the non-decomposition hypothesis is essential in Pro-
position 1.4, we shall use the following observation.

Proposition 1.6 If there is a ramified prime whose decomposition group at K/Q is

not equal to G, then all minors Ai (i = 1, . . . , s) are divisible by p.

Proof Let us assume that there is a ramified prime p j whose decomposition group
at K/Q is not equal to G. Let K ′ and K ′ ′ be the fixed fields of the inertia and de-
composition groups of p j , respectively. So d = [K ′ ′ : Q] is divisible by p. We have
computed that

NK/K ′(εσ−1) =
(

(ε ′)σ−1
)

∏ s
i=r+1

ti
,

where ε and ε ′ are given by Theorem 1.1 for K and K ′, respectively, ti =
∑bi−1

c=0 σc,

and 0 ≤ bi < l ′ is the lift of −aii modulo l ′ = [K ′ : Q]. We know that d|a j j

and so d|b j . Let ν =
∑d−1

c=0 σ
c, then t j = ν ·

∑(b j/d)−1

c=0 σcd and we have obtained
∏s

i=r+1 ti = νt for a suitable t ∈ Z[G]. Therefore

NK/K ′ ′(ε)σ−1
= NK ′/K ′ ′(ε ′)(σ−1)νt

=
(

NK ′/Q (ε ′)t
) σ−1

= 1,

because ν acts on K ′ ′ as the absolute norm. Hence, a = NK/K ′ ′(ε) is in Q , and

NK/Q (ε)= ad is a p-th power in Q . Theorem 1.1 gives that all minors Ai (i =

1, . . . , s) are divisible by p.

The following example now demonstrates that the condition concerning full de-
composition groups in Proposition 1.4 may not be omitted.

Example 1.7 The class numbers of both cyclic fields of degree 9 with two ramified
primes p1 = 19 and p2 = 7 are equal to 3, and so the Hilbert class field of either of
them is equal to their common genus field, while the corresponding minors A1 and

A2 are all divisible by 3.

The system PARI was used in checking this example. One should note that 7 splits
in the cubic field of conductor 19, which is the cubic subfield of either of the degree
9 fields in the example, so the assumption of Proposition 1.4 is not satisfied here.

2 Proof of Proposition 1.2

We begin by computing the index [C : C ′]. Let r be the smallest positive integer
satisfying sr > 1. Then εσ−1

i = κi for each i < r. We shall prove by induction on

j = 0, 1, . . . , k that

[

〈εσ−1
1 , . . . , εσ−1

j 〉 : 〈κ1, . . . ,κ j〉
]

=

j
∏

i=r

psi−2.
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The statement is clear for j < r. Let us suppose that j ≥ r and that the statement has
been proved for j − 1. Then

NL j/L j−1
(κ j) ∈ 〈κ1, . . . ,κ j−1〉 ⊆ 〈εσ−1

1 , . . . , εσ−1
j−1 〉

and the previous computations give

NL j/L j−1
(εσ−1

j ) ∈ 〈εσ−1
1 , . . . , εσ−1

j−1 〉.

Moreover, κ j = ε(σ−1)
s j−1

j and so

[

〈εσ−1
1 , . . . , εσ−1

j 〉 : 〈κ1, . . . ,κ j〉
]

=
[

〈εσ−1
1 , . . . , εσ−1

j 〉 : 〈εσ−1
1 , . . . , εσ−1

j−1 , ε
(σ−1)

s j−1

j 〉
]

·
[

〈εσ−1
1 , . . . , εσ−1

j−1 ,κ j〉 : 〈κ1, . . . ,κ j〉
]

.

The norm operator of L j/L j−1 is 1 + σp j−1

+ · · · + σ(p−1)p j−1

. Therefore taking

κ j ,κ
σ
j , . . . ,κ

σ(p−1)p j−1
−1

j together with a Z-basis of 〈κ1, . . . ,κ j−1〉 produces a Z-basis

of 〈κ1, . . . ,κ j〉, and similarly for 〈εσ−1
1 , . . . , εσ−1

j−1 ,κ j〉. Therefore the induction hy-

pothesis gives

[

〈εσ−1
1 , . . . , εσ−1

j−1 ,κ j〉 : 〈κ1, . . . ,κ j〉
]

=

j−1
∏

i=r

psi−2.

Moreover,

[

〈εσ−1
1 , . . . , εσ−1

j 〉 : 〈εσ−1
1 , . . . , εσ−1

j−1 , ε
(σ−1)

s j−1

j 〉
]

=

s j−2
∏

u=1

[

〈εσ−1
1 , . . . , εσ−1

j−1 , ε
(σ−1)u

j 〉 : 〈εσ−1
1 , . . . , εσ−1

j−1 , ε
(σ−1)u+1

j 〉
]

=

s j−2
∏

u=1

∣

∣Z[x]/(1 − x, 1 + xp j−1

+ · · · + x(p−1)p j−1

)
∣

∣ = ps j−2,

which completes the induction step.
Using Sinnott’s formula for the index of the Sinnott group of circular units C ′ [S,

Theorem 4.1, Theorem 5.3], we obtain

[E : C ′] = 2l−1 ·
pr−1

l
· hK ,

hence

[E : C] = [E : C ′]/[C : C ′] = 2l−1hK · pr−1−k

k
∏

i=r

p2−si

i = 2l−1hK

k
∏

i=1

p1−si ,

which was to be proved. The second statement of the proposition follows from the

fact that the absolute degree of the genus field of K is
∏k

i=1 psi .
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3 Algebraic Preliminaries

Throughout this section, let G denote a cyclic group of order l = pk with generator σ,

and let R = Zp[G]/(NG).

Lemma 3.1 The ring R is local and Gorenstein.

Proof The group ring Zp[G] is local with maximal ideal (p, σ − 1), because p is
in the radical and the factor ring (Z/p)[G] is local. The ring R has grade 1 since it

has Krull dimension 1 and p is a nonzerodivisor. Kaplansky [Ka1, Exercise 1, p. 163]
shows that every local ring of grade 1 whose maximal ideal is generated by two ele-
ments is Gorenstein. Alternatively one may also exhibit R as the quotient of a power
series ring Zp[[y]] by a nonzerodivisor and use [Ka1, Exercise 13, p. 164].

Proposition 3.2 Let M be any nonzero R-module without Z-torsion and x ∈ M.

Then x ∈ (σ − 1)M if and only if for all φ ∈ HomR(M,R) we have φ(x) ∈ (σ − 1)R.

Proof “Only if” is obvious. For “if”, let us argue indirectly: let M = M/(σ − 1)M,

write x 7→ x for the canonical map M → M, and assume that x is nonzero. The
ring R = R/(σ − 1)R is Gorenstein and zero-dimensional, hence self-injective (the
self-injectiveness of a zero-dimensional Gorenstein ring is well known and follows,
e.g., from [Ka2, Theorems III.12, III.20].) It is obvious that the finite ring R contains

a minimal nonzero ideal I; this must be simple (i.e., without proper subideal), hence
cyclic, so of the form zR, and I must be isomorphic to R/ J, where J is the maximal
ideal of R. So the annihilator of z is the maximal ideal J. Hence if x is not zero, the
R-homomorphism f : Rx → R sending x to z is well-defined. By self-injectivity, f is

the restriction of some R-homomorphism φ0 : M → R. Let φ1 be the composite of
the canonical map M → M and φ0. Then φ1(x) is nonzero.

We claim: φ1 can be lifted through the canonical surjection π : R → R, i.e., there
is an R-map φ such that πφ = φ1. If this claim can be established, then φ(x) goes to
φ1(x) 6= 0 under reduction modulo (σ − 1), so φ(x) is not in (σ − 1)R, and we will
be done.

Proof of claim: The sequence

· · · → HomR(M,R) → HomR(M,R) → Ext1
R(M, (σ − 1)R) → · · ·

is exact, and R ∼= (σ − 1)R because (σ − 1) is a nonzerodivisor in R, so it suffices to
show that Ext1

R(M,R) is zero. This follows from [Ka1, Theorem 217]: we put A = R

and B = M and we recall that the grade G(M) is the length of a maximal R-sequence

x1, . . . , xg ∈ Rad(R) on M. Here everything is rather simple: M has grade 1 since it is
nonzero and has no Z-torsion, and n = G(R) in [Ka1, Theorem 217] is also 1, so the
statement of “Extr

R(M,R) vanishes for all r > n − G(B)” [Ka1, Theorem 217] gives
exactly what we want.

Corollary 3.3 If M is as in Proposition 3.2, x ∈ M and n is a natural number, then

x ∈ (σ − 1)nM if and only if, for all φ ∈ HomR(M,R), we have φ(x) ∈ (σ − 1)nR.
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Proof One direction is again trivial. The other direction follows from the corre-
sponding implication in Proposition 3.2 by induction on n and using that σ − 1 is a

nonzerodivisor on R.

Proposition 3.4 Let i : R → Zp[G] denote the G-linear injection induced by 1 7→
σ − 1, n a natural number, and M as before. Let N be any Zp[G]-module containing M

such that N/M has no Z-torsion. Let x ∈ M. Then the following three statements are

equivalent:

(a) ∀φ ∈ HomR(M,R) : φ(x) ∈ (σ − 1)nR;
(b) ∀φ ′ ∈ HomZp[G](M,Zp[G]) : φ ′(x) ∈ (σ − 1)n+1Zp[G];
(c) ∀φ ′ ′ ∈ HomZp[G](N,Zp[G]) : φ ′′(x) ∈ (σ − 1)n+1Zp[G].

Proof (a) implies (b): Every φ ′ must be of the form iφ for some φ : M → R, since
M is annihilated by NG and hence the image of φ ′ is automatically contained in
(σ − 1)Zp[G]. The statement φ(x) ∈ (σ − 1)nR immediately translates to φ ′(x) ∈
(σ − 1)n+1Zp[G].

(b) implies (a): Given φ, let φ ′
= iφ, and use that

(σ − 1)n+1
Zp[G] = (σ − 1)nIm(i).

(b) implies (c): Obvious, by looking at φ ′ ′ restricted to M.
(c) implies (b): It suffices to show that every φ ′ extends to a homomorphism

φ ′ ′ : N → Zp[G]. Indeed, the obstruction to extending φ is in Ext1
R(N/M,R), and

this is zero by the same reasoning as in the proof of Proposition 3.2.

Comment The preceding proposition will be applied with M being a module of
units and N a module of S-units in some abelian field.

4 Extracting Roots of Circular Units

We keep all the notation introduced in §1. Our first aim is to prove Theorem 1.1.
Since we intend to use Hayward’s result, we recall his notation first. For any i ∈
I = {1, 2, . . . , s}, let pi be a prime of Q(ζI) above pi and let fpi

(x) denote the Artin

symbol (x,Q(ζI)pi
/Qpi

) for all nonzero x ∈ Z. For i, j ∈ I, i 6= j, the (i, j)-th entry
of Hayward’s group-ring-valued reciprocity matrix AI is equal to fp j

(pi) − 1, while
the diagonal entries of AI are determined by the condition that AI has zero row sums.

For any i ∈ I, AI
i denotes the (i, i)-th minor of AI , while AI

i denotes its image in Z[G].

We need to explain the φ1 notation: φ1(u) is the coefficient of the identity id ∈ G in
the element φ(u) ∈ Z[G] for any G-homomorphism φ : M → Z[G] and any u ∈ M.
Consequently, by G-linearity of φ,

φ(u) =

∑

g∈G

φ1(g−1u)g.

Let S = {p1, . . . , ps} and OK,S be the ring of S-integers of K.
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Proposition 4.1 (Hayward) For all G-linear φ : O∗
K,S → Z[G] we have

φ(η) ≡
s

∑

i=1

φ1(pi)AI
i (mod Is

G),

where IG is the augmentation ideal of Z[G].

Proof This follows from [H, Proposition 5.5] and his “lowering the top field” ar-

gument given in the proof of [H, Proposition 3.2]. Alternatively, one may quote [H,
Proposition 5.7], inserting the expressions for the regulators given by [H, Proposi-
tion 5.6].

Let us now establish the connection with our notation. If j, h ∈ I, j 6= h, then

the restriction of fph
(p j)

−1 to the genus field K of K is σ
a jh/qh

h , with σh, qh and a jh

being defined in §1 (e.g., by [H, Lemma 5.4]). Therefore the restriction of fph
(p j)

to K equals σ−a jh and so the image AI
i in Z[G] of the (i, i)-th minor AI

i is equal to
the (i, i)-th minor of the zero-row-sum matrix that has, for j 6= h, the ( j, h)-th entry

equal to σ−a jh −1 = (σ−1)·
∑b jh−1

t=0 σt , where b jh is a positive representative of −a jh.
Hence we can divide each row of the latter minor by σ − 1. But

∑b jh−1

t=0 σt ≡ b jh

(mod σ − 1) and so

AI
i ≡ (σ − 1)s−1 · (−1)s−1 · Ai (mod (σ − 1)s),

where we have used (σ−1)s−1 ·l ≡ 0 (mod (σ−1)s), which follows from (σ−1)·l ≡
(σ − 1) · (1 + σ + · · · + σl−1) = 0 (mod (σ − 1)2) and s > 1.

Consequently, Proposition 4.1 just reads

(∗) φ(η) ≡
s

∑

i=1

φ1(pi)(−1)s−1Ai(σ − 1)s−1 (mod (σ − 1)s).

We note that an element of the finitely generated Z[G]-module O∗
K is a (σ−1)n-th

power if and only if this is true after p-completion. We let N be the p-completion of
the group O∗

K,S. Now (∗) gives that φ(η) is divisible by (σ − 1)s−1, which, together

with Proposition 3.4, implies that there exists a unit ε1 of K with ε(σ−1)s−2

1 = η.
But NK/Q (ε1) = ±1, so, changing the sign of ε1 if necessary, we can suppose that
NK/Q (ε1) = 1. Using Hilbert’s Theorem 90 we find a nonzero x ∈ K such that
xσ−1

= ε1. Since all ramified primes belong to S, multiplying x by a suitable ratio-

nal number we obtain an S-unit ε with εσ−1
= ε1 and so ε(σ−1)s−1

= η. We even
may suppose that ei , the exponent of pi in NK/Q (ε), has sign (−1)s−1 or zero and
absolute value < l. In order to prove Theorem 1.1, we have only to establish that
ei = (−1)s−1Ai . For this, fix i ∈ I. Let V denote the p-completion of the multi-

plicative span of p1, . . . , ps, so V ⊂ N , and it is easily seen that N/V has no torsion.
By the same reasoning as in the proof of Proposition 3.4, one sees that there exists
φ : N → Zp[G] which maps pi to the norm element NG and all other p j to zero.
Thus φ1(p j) = δi j (Kronecker’s delta). Moreover φ can be chosen as the continuous
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extension of some G-homomorphismφ0 : O∗
K,S → Z[G]; we can apply (∗) to this and

obtain

(σ − 1)s−1φ(ε) = φ(η) ≡ (−1)s−1Ai(σ − 1)s−1 (mod (σ − 1)s).

Now multiplication by (σ − 1)s−1 induces an isomorphism

Zp/lZp
∼= Zp[G]/(NG, (σ − 1)) → (σ − 1)s−1

Zp[G]/(σ − 1)s
Zp[G].

Thus, φ(ε) ≡ (−1)s−1Ai (mod (l, σ − 1)). On the other hand, we can calculate as
follows:

φ(ε) =

∑

g∈G

φ1(g−1ε) g ≡
∑

g∈G

φ1(g−1ε) = φ1(NK/Qε) = ei (mod (l, σ − 1)).

Thus ei ≡ (−1)s−1Ai modulo l, and we get equality since both are in the same range
of length l. This concludes the proof of Theorem 1.1.

Now we shall prove the corresponding generalization of [GK2, Theorem 3]. At
first, let us recall the definition of semispecialness:

Let M be any p-power divisible by ls−1. For any prime q ≡ 1 (mod M) let K(q) be
the compositum of K with the cyclic field Q(q) of absolute degree M and conductor q.
Let

QM = {q prime; q totally split in K, q ≡ 1 + M (mod M2),

pi is an M-th power modulo q for i = 1, . . . , s}.

A number ε ′ ∈ K∗ is called M-semispecial if for all but finitely many q in QM , there

exists εq ∈ O
∗
K(q) satisfying

• NK(q)/K(εq) = 1 (norm condition).
• If q̃ is the product of all primes of K(q) dividing q, then ε ′ and εq have the same

image in (OK(q)/q̃)∗/(M/ls−1) (congruence condition).

Theorem 4.2 The number ε constructed in Theorem 1.1 is M-semispecial for all

p-powers M with ls−1|M.

Proof Let us fix M and take any q ∈ QM and, similarly to [GK2], for a fixed primi-
tive q-th root of unity ζq put

ηq = NQ(ζI ,ζq)/K(q)(1 − ζIζq).

Here one should note that G is naturally a direct factor of Gal(K(q)/Q), so it acts on
all data associated with the extension K(q)/Q . We only need to know that there is

εq ∈ O∗
K(q) such that ηq = ε(σ−1)s−1

q . Indeed, let us show that if such εq exists then
it can be chosen in such a way that it also satisfies the norm condition. From the
standard norm relations for cyclotomic units and the condition “q totally split in K”
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we obtain NK(q)/K(ηq) = 1 and so α = NK(q)/K(εq) ∈ K satisfies α(σ−1)s−1

= 1. We
know (see the paragraph above Proposition 1.2) that this already forces ασ−1

= 1

and so α ∈ Q . But α is a unit and so α = ±1. Then, choosing αεq instead of εq we

have both ηq = ε(σ−1)s−1

q and the norm condition. From this point onward, the proof
of Theorem 4.2 proceeds in the same way as in [GK2, §4, Proof of Theorem 3].

The existence of εq can be proved by a similar approach as Theorem 1.1. It is
enough to show that ηq is an (σ − 1)s−1th power in the p-completion of O∗

K(q). But,

using Proposition 3.4 and Corollary 3.3, this is an easy consequence of the following
Proposition 4.3.

Proposition 4.3 For all φ ∈ HomZp[G](O∗
K(q)⊗Zp,Zp[G]) the value φ(ηq) is divisible

by (σ − 1)s.

Proposition 4.3 is not yet amenable to an induction argument. But we shall show

that Proposition 4.3 is a consequence of the following Proposition 4.4. Let K be the
genus field of K, Γ = Gal(K/Q) and

βq = NQ(ζI ,ζq)/K(q)(1 − ζIζq),

the conductor level Sinnott unit of K(q).

Proposition 4.4 For all φ ∈ HomZp[Γ](O∗
K(q)

⊗ Zp,Zp[Γ]), the value φ(βq) lies in

Is
Γ

, where IΓ is the augmentation ideal of Zp[Γ].

Proof We use induction on s. This is very close to the proof of [H, Proposition 5.5],
but in some sense simpler.

For s = 1 we must show φ(βq) ≡ 0 (mod IΓ). But this is quite easy:

NK(q)/Q(q)(βq) = 1

since the Frobenius automorphism of p1 on Q(q) is trivial, so φ(βq) is annihilated by
this norm NΓ and has to lie in IΓ.

We now copy the inductive step [H, p. 115]. Here K =
∏s

i=1 Ki is the compositum

of the fields Ki introduced in §1, Γi = Gal(Ki/Q), I = {1, . . . , s} corresponds to
Hayward’s B = {1, . . . , d + 1}, gi is a fixed generator of Γi . Hayward uses Eulerian
relations: write β J,q for the conductor level unit in K J(q), where J is any nonempty
subset of {1, . . . , s} and K J is the compositum of the Ki with i ∈ J. Note that for

I = {1, . . . , s} we recover βq = βI,q. All we need is that NΓi
βq equals αiβI\{i}

for some element αi of IΓ, and that the total norm NΓ kills βq. The sum displayed
three lines below formula (11) in [H] then reads with our simplified notation in our
setting:

∑

∅ 6= J⊂I

(−1)s−| J|φ J(β J,q)
∏

j∈I− J

α j .

It is in Is
Γ

exactly as in [H], and the maps φ J are constructed from φ in a quite anal-
ogous fashion to [H]: they are Γ J-linear, defined on O∗

K J(q) with target Z[Γ J]. All
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summands of this term except the one with J = I are then in Is
Γ

, since φ J(β J,q) is in

I
| J|
Γ

, by the induction hypothesis, and the product of the α j is visibly in I
s−| J|
Γ

. The
summand with J = I is exactly φ(βq), and the whole sum is in Is

Γ
. Therefore φ(βq) is

in Is
Γ

and the induction step is complete.

Proof of Proposition 4.3 Now we shall use the “lowering the top field” argument to
prove that Proposition 4.4 implies Proposition 4.3. For any φ ∈ HomZp[G](O∗

K(q)⊗Zp,

Zp[G]) we obtain φ1 ∈ HomZp
(O∗

K(q) ⊗ Zp,Zp). But (O∗
K(q)

⊗ Zp)/(O∗
K(q) ⊗ Zp)

has no torsion, since O∗
K(q)

/O∗
K(q) has no p-torsion (suppose there is x ∈ K(q) such

that x /∈ K(q) but xp ∈ K(q); since K(q) is abelian over K(q), this would force

K(q) to contain a primitive p-th root ζp of unity, and this is not the case, since the
ramification index of p in K(q)/Q is a p-power hence odd). Therefore there is ψ ∈
HomZp

(O∗
K(q)

⊗Zp,Zp), whose restriction to O∗
K(q)⊗Zp is φ1. Now we can defineψ ′ ∈

HomZp[Γ](O∗
K(q) ⊗ Zp,Zp[Γ]) by ψ ′(x) =

∑

ϑ∈Γ
ψ(ϑx)ϑ−1 for any x ∈ O∗

K(q)
⊗ Zp.

Then Proposition 4.4 gives ψ ′(βq) ∈ Is
Γ

, and so resK(q)/K(q)ψ
′(βq) ∈ Is

G. But

resK(q)/K(q)ψ
′(x) =

∑

ϑ∈Γ

ψ(ϑx) resK(q)/K(q)ϑ
−1

=

∑

τ∈G

ψ(NK(q)/K(q)(τx))τ−1

=

∑

τ∈G

φ1(NK(q)/K(q)(τx))τ−1
= φ(NK(q)/K(q)(x)),

and so Proposition 4.3 follows from NK(q)/K(q)(βq) = ηq and from the obvious fact
that Is

G is generated by (σ − 1)s.

Hence, Proposition 4.3 is proved, and we are done with the proof of Theorem 4.2.

5 Proof of Theorem 1.3

Concerning Theorem 1.3, the fact C = 〈−1, εσ−1〉 has been proved by a direct com-

putation in the first section. If we show that [GK2, Theorem 4] carries over to the
setup of the present paper, then this theorem and Theorem 4.2 will give Theorem
1.3 just in the same way as [GK2, Theorem 4] plus [GK2, Theorem 3] imply [GK2,
Theorem 2].

When we proved [GK2, Theorem 4], we worked under the assumption that all
ramification in K/Q was total and tame. The only place in the proof of that the-
orem which actually uses these hypotheses on ramification is [GK2, Lemma 18].
We just have to explain why the lemma remains true if we allow non-total ramifi-

cation (wild ramification still being excluded). In the proof of part (a), we used that
Gal(K(ζM2 )/K) ∼= (Z/M2)∗. This remains true since p is unramified in K, so K and
Q(ζM2 ) are linearly disjoint over Q . We are even able to say that K(ζM2 )/K is totally
ramified at all places above p. This shows that the claim in the proof of part (c) that

“K(ζM2 ) and the Hilbert class field H of K are disjoint over K” also remains true.
Since part (b) is quite analogous to part (a), we now have checked the validity of
[GK2, Lemma 18] completely in our setting.

As was said before, this suffices to establish Theorem 1.3.
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6 Proof of Proposition 1.4

In this section we assume that the decomposition group of any prime ramified at

K/Q equals G. Let us say “K belongs to the genus case” if the non-genus part (σ −
1)Cl(K)p is trivial. (Equivalently: the Hilbert p-class field of K is equal to the genus
field of K. In looser terms: Cl(K)p is just as large as forced by genus theory.) We show
next that K belongs to the genus case if and only if at least one of Ai is not divisible

by p.
At first, let us suppose that all Ai are divisible by p. Let ε be as in Theorem 1.1.

From Proposition 1.2 and Theorem 1.3 we know that

|(σ − 1)Cl(K)p| = [E : 〈εσ−1〉]p,

where E is the group of units of K. Let us distinguish two cases:

• ε ∈ E: It is easy to see that εl
= ε(σ−1)∆ ∈ 〈εσ−1〉, where ∆ =

∑l−1

a=1 aσa. We
have p | [E : 〈εσ−1〉] since ε /∈ 〈εσ−1〉. Indeed, if γ ∈ Z[G] satisfies ε = ε(σ−1)γ ,

for a suitable t ∈ Z we obtain 1 = (σ − 1)γ + tN , where N =
∑l−1

a=0 σ
a, and by

considering the augmentation map we get 1 = tl, which is a contradiction.

• ε /∈ E: Let us denote ρ = εl/p ·
∏s

i=1 p
(−1)sAi/p
i . Theorem 1.1 gives that

ρp
= εl ·

s
∏

i=1

p(−1)sAi

i = εl · NK/Q (ε)−1
= ε(σ−1)∆ ∈ 〈εσ−1〉.

Therefore ρ ∈ E. We shall prove that ρ /∈ 〈εσ−1〉. Indeed, supposing the contrary
gives the existence of γ ∈ Z[G] such that ρ = ε(σ−1)γ . Then ε(σ−1)pγ

= ρp
=

ε(σ−1)∆ which means (σ− 1)pγ = (σ− 1)∆ = l − N , giving p|N in Z[G], which

is a contradiction. Again we have p|[E : 〈εσ−1〉].

In both cases we have obtained that p divides |(σ − 1)Cl(K)p| and so K does not
belong to the genus case.

We shall suppose now that at least one of Ai , say At , where 1 ≤ t ≤ s, is not
divisible by p. Let K be the genus field of K. Let ϕ be the isomorphism mapping

Cl(K)p/(σ − 1)Cl(K)p onto the Galois group of K/K induced by the Artin map. Let
Cl(K)p[σ− 1] mean the subgroup of Cl(K)p killed by σ− 1 and let ι be the mapping
from Cl(K)p[σ − 1] to Cl(K)p/(σ − 1)Cl(K)p induced by the inclusion. It is easy to
see that |Cl(K)p[σ − 1]| = |Cl(K)p/(σ − 1)Cl(K)p| by considering the kernel and

the cokernel of the mapping Cl(K)p → Cl(K)p given by the action of σ − 1. It is
enough to show that ι is surjective, since then ι is an isomorphism. But then for any
x ∈ Cl(K)p such that (σ−1)x 6= 0 there is a positive integer n such that (σ−1)nx 6= 0
and (σ − 1)n+1x = 0, which gives 0 6= (σ − 1)nx ∈ (σ − 1)Cl(K)p ∩ Cl(K)p[σ − 1],

a contradiction. Hence (σ − 1)Cl(K)p is trivial and K belongs to the genus case.
So it remains to prove that ι is surjective. We shall actually prove that ϕ ◦ ι is

surjective. At first, let us recall some notation. For any i = 1, . . . , s, the ramification
index of pi is pki . Due to our assumption, the decomposition group of pi is G and
so the inertia degree of pi is qi = lp−ki . Recall that the cyclic field of absolute degree
pki ramified only at pi is denoted by Ki . Then the genus field K is the compositum
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of K1, . . . , Ks. We have chosen generators σ1, . . . , σs of the Galois group Gal(K/Q)
such that σ j |Ki

is the identity if i 6= j and σ j |K = σq j . Any ν ∈ Gal(K/K) is of the

form ν =
∏s

j=1 σ
x j

j , where the integers x j are well-defined modulo pk j and we have

l |
∑s

j=1 q jx j .
Let pi be the prime of K above pi . Its class [pi] lies in Cl(K)p[σ−1] and ϕ◦ι([pi])

is the Artin symbol (pi ,K/K). We define integers bi j by ϕ ◦ ι([pi]) =
∏s

j=1 σ
bi j
j .

Hence the bi j are well-defined modulo pk j and satisfy l |
∑s

j=1 q jbi j for each i. We
will relate the integers bi j to the entries ai j of A. Let i 6= j, then

σ
bi j

j = (pi ,K/K)|K j
= (pi ,KK j/K)|K j

= (NK/Q (pi),K j/Q) = (pi ,K j/Q)qi .

But (pi ,K j/Q) is the Frobenius automorphism of pi on K j , so it is equal to σ
ai j/q j

j

due to the definition of A. Therefore bi j ≡ qi
ai j

q j
(mod pk j ), which gives q jbi j ≡ qiai j

(mod l), assuming i 6= j. But A has zero row sums, hence qibii ≡ −
∑

j 6=i q jbi j ≡

−
∑

j 6=i qiai j = qiaii (mod l). Thus aii ≡ bii (mod pki ). We have obtained that
the matrix B = (bi j ) can be obtained from the matrix A by the following procedure:

multiply each row (the i-th row is multiplied by qi) and divide each column (the
j-th column is divided by q j). The described procedure does not change the (i, i)-
th minors of the matrix, so we are assuming that there is t ∈ {1, . . . , s} such that
the (t, t)-th minor of B is not divisible by p. Let x1, . . . , xs be any integers satisfying

l |
∑s

j=1 q jx j . To prove that ϕ ◦ ι is surjective we will show that there are integers
y1, . . . , ys such that

s
∑

i=1

yibi j ≡ x j

(

mod
l

q j

)

is satisfied for each j = 1, . . . , s. For a moment, let us forget the congruence for j = t

and put yt = 0. The obtained system of congruences is solvable since the matrix of
the system is invertible over Zp as its determinant, which is the (t, t)-th minor of B,
is invertible. But then the congruence for j = t is also satisfied:

qt xt ≡ −
∑

j 6=t

q jx j ≡ −
∑

j 6=t

q j

s
∑

i=1

yibi j = −
s

∑

i=1

yi

∑

j 6=t

q jbi j

≡
s

∑

i=1

yiqt bit = qt

s
∑

i=1

yibit (mod l)

and the proposition is proved.

7 Construction of Example 1.5

In presenting our example which disproves the validity of Theorem 1.3 without the
decomposition hypothesis, one option would be to throw it at the reader and state
that it has all required properties, checked by PARI. We feel however that this would
not be very enlightening. At the expense of a few extra pages we prefer to explain how
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we found our way to the counterexample, sticking to a general framework as long as
possible. A little PARI calculation is only needed at the end when giving numeri-

cal values to our parameters. It appears that our construction should give infinite
families of counterexamples, but it also appears that a rigorous proof, replacing the
computer verification, would be very difficult. In view of this we proceed as follows.

We keep the notation K, l, s, and G from the beginning. At first no restrictions
will be imposed; then we will set k = 2 (that is, degree p2) and s = 3 (three ramified
primes), also assuming a certain decomposition pattern. In this setting we will give

a list of five conditions that imply (taken together) that K is a counterexample of
the desired kind. It can be shown using Chebotarev’s theorem that the first four
conditions can be satisfied infinitely often for any fixed p. The fifth condition is more
subtle. For a concrete example we will take p = 3, give explicit values to everything,

and verify the validity of the fifth condition by computation.

We need an analog of Theorem 7 (a version of the Rédei–Reichardt theorem) in

[GK1], in order to control the size of (σ − 1)Cl(K)p in terms of a certain matrix. We
have to redo some of the basics. Let us change notation slightly: the group of units
of K will be written O∗

K , and E will mean Zp ⊗ O∗
K . Likewise C will stand for the

Zp[G]-span of εσ−1
1 , . . . , εσ−1

s .

Lemma 7.1 For i = 1, . . . , s, let pi be a prime ideal of K above pi , and let ai be the

product of all G-conjugates of pi without repetition. Then:

(a) Cl(K)G
p is generated by the classes [ai], i = 1, . . . , s.

(b) Let ι : Z/(pk1 )×· · ·×Z/(pks ) → Cl(K)G
p be defined by mapping (0, . . . , 1, . . . , 0)

(the 1 at position i) to [ai]. Then the kernel of ι has order |G| = l = pk.

Proof We note to begin with that a
pki

i is the ideal piOK , so the map ι makes sense
(cf. also [RW, Lemma 2.1]).

Since E has no nontrivial G-fixed elements, the Tate cohomology group Ĥ0(G, E)
is zero. Since QE ∼= Qp[G]/(NG), the Herbrand quotient of E is 1/|G|, and therefore
(by cyclicity of G) the order of H1(G, E) is |G|. Let IK be the ideal group of K tensored

with Zp, and PK the subgroup of principal ideals, tensored with Zp. From 0 → E →
K∗ ⊗ Zp → PK → 0 and Hilbert’s Theorem 90 we obtain H1(G, PK ) = 0. Thus
0 → PK → IK → Cl(K)p → 0 remains exact on taking G-invariants. Visibly,
IG

K is generated by the ai and all ideals extended from Q , but the latter ones are all

principal. Therefore part (a) follows. Taking G-invariants in the other sequence we
get 0 → EG → Q∗ ⊗ Zp → PG

K → H1(G, E) → 0. Give the label α to the map with
target PG

K in this sequence; so coker(α) has order |G|. The map (0, . . . , 1, . . . , 0) 7→ ai

gives an identification of Z/(pk1 ) × · · · × Z/(pks ) with the quotient IG
K/Im(α), and

then PG
K/Im(α) gets identified with the kernel of ι. This proves (b).

The genus field K is the compositum of the fields K1, . . . ,Ks. The group Gal(K/Q)
is the direct product of the cyclic groups 〈σi〉 = Gal(Ki/Q); moreover, the canonical
epimorphism Gal(K/Q) → Gal(K/Q) sends σi to σqi for i = 1, . . . , s. If we identify
Gal(K/Q) with W := Z/(pk1 ) × · · · × Z/(pks ) via its generators σ1, . . . , σs, then
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∆ := Gal(K/K) becomes identified with the kernel of the mapping W → Z/(pk),
(c1, . . . , cs) 7→

∑s
j=1 q jc j .

Proposition 7.2 If we use the above description of ∆, then the Frobenius of pi in K/K

is the row vector ( fiai j/q j) j , where fi is the inertia degree of pi in K. (The matrix

A = (ai j) over Z/(pk) was defined in §1.) The Frobenius of ai is gi times this row vector,

with gi the number of prime ideals above pi in K.

Proof The second statement is an easy consequence of the first, so it suffices to show

that the Frobenius of pi in K/K is
∏s

j=1 σ
fi ai j/q j

j . We have by construction of A that

the Frobenius of pi in K j/Q is σai j/q j
j ; from this one deduces the desired formula

exactly as in §6. The factor qi coming up there corresponds to the factor fi here.

From now on we assume that all inertia degrees f1, . . . , fs are 1, that is, every
prime pi is fully decomposed in a subfield K ′ of K and fully ramified in K/K ′. Thus
we can forget about the factors fi in the preceding proposition.

We now consider the map f : IG
K/PG

K → W , f ([ai]) = (gi · ai j/q j) j . The im-
age of f is contained in V which is by definition the set of all (c1, . . . , cs) such that
∑

j q jc j = 0. So |V | = pk1+···+ks−k. From Lemma 7.1 one sees that IG
K/PG

K = Cl(K)G
p

has exactly the same order. We recall that there is also a canonical identification

V = Gal(K/K). Since f is essentially the Artin map according to the last proposi-
tion, we get a commutative diagram

Cl(K)G
p

f
//

f ′

  A
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

V

∼=

��

∆

��

Cl(K)p/(σ − 1)Cl(K)p

where f ′ is induced by the inclusion Cl(K)G → Cl(K) and the lower vertical map is
the isomorphism from genus field theory. Moreover,

ker( f ′) = Cl(K)G
p ∩ (σ − 1)Cl(K)p =

(

(σ − 1)Cl(K)p

)G
.

We are interested in cases where the latter module is “minimal nonzero”, that is,
of order p. The point in this is as follows: We recall from §3 that R denotes the ring

Zp[G]/(NG), and we define a finite R-module X to be taut (not standard terminol-
ogy!) if |X| = [R : AnnR(X)]. If XG is a cyclic Zp-module, then the socle of X is
simple. Therefore the Pontryagin dual X∨ has simple radical-factor module, so it is
cyclic. Therefore [R : AnnR(X∨)] = |X∨| = |X|; and by dualizing again one sees that
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AnnR(X∨) = AnnR(X), so the outcome of this reasoning is: Whenever XG is cyclic
over Zp, then X is taut. This, applied to X = (σ − 1)Cl(K)p , will be instrumental in

finding our counterexample.

From here on we fix k = 2, s = 3 and assume k1 = k2 = 2; k3 = 1. The choice of
p is left open for yet awhile. Thus K is cyclic over Q of degree p2. Let K ′ denote the
subfield of degree p.

Theorem 7.3 Suppose that K and K ′ satisfy the following list of conditions:

(1) All 2 × 2 principal minors of the matrix A are zero modulo p2.

(2) All 1 × 1 principal minors of the matrix A ′ are zero modulo p, where A ′ is the

analogous matrix to A for the degree p subfield K ′; note that A ′ is a 2 × 2 matrix.

(3) The prime p3 splits (totally) in K ′.

(4) The image of f has order p2.

(5) The only units in K ′ that are norms from K are p-th powers.

Then (σ−1)Cl(K)p is a taut module, and AnnR(E/C) does not annihilate (σ−1)Cl(K)p .

Remark 7.4 The map f is essentially given by the matrix A, with the following mod-
ifications: the last column is divided by p (this is because q3 = p), and the last row is

multiplied by p (this is because g3 = p).

Proof For the proof of Theorem 7.3 we first show that (σ − 1)Cl(K)p is taut. For

this it suffices, by the above, to have ((σ− 1)Cl(K)p)G cyclic over Zp, and we actually
claim it is of order p. Indeed, it is identified with the kernel of f ′. The image of f ′ is
of order p2 by condition (4), and the domain of definition of f ′ has order p2+2+1−2

as previously remarked in greater generality, which gives p3, so we are done here.

We next show that the integral closure of R acts on E in a natural way. Let ν =

1 + σp + · · · + σ(p−1)p; this is the relative norm from K to K ′. The Qp-algebra QR

has two primitive idempotents e ′ = ν/p and e ′ ′ = 1 − e ′. The maximal order T in
QR is e ′R ⊕ e ′ ′R, a product of two discrete valuations rings, the former isomorphic

to Zp[ζp], the latter isomorphic to Zp[ζp2 ]. Now T acts naturally on the torsion-free
module E if and only if e ′ acts, that is, if and only if every norm ην of a unit η ∈ O∗

K

is a p-th power. But this holds, by our fifth condition. We claim that this implies:
The index of the annihilator J of E/C over R is strictly smaller than the order of E/C.

Once this is proved, it will follow at once that J is not contained in the R-annihilator
of (σ − 1)Cl(K)p because the latter module has the same order as E/C and is taut.

We now justify the claim and begin by noting a few simple facts: T is a product
of two discrete valuation rings and E is T-free cyclic for reasons of rank. Moreover,
C is contained in (σ − 1)E by conditions (1) and (2) and Theorem 1.1. Thus E/C is

T-isomorphic to T/ J ′ where J ′ is some T-ideal contained in the radical of T, and J ′

is the exact T-annihilator of E/C . Of course we then have J = J ′ ∩ R. We also know
that |E/C| = |T/ J ′|. To establish the claim we therefore must just show [R : J] <
[T : J ′]. This inequality is equivalent to [ J ′ : J] < [T : R]. But J is the kernel of the
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obvious map j : J ′ → T/R, so [ J ′ : J] is the order of the image of j, and j cannot
be surjective since its image is in the radical of the nonzero module T/R. Thus the

above claim and the theorem are proved.

In order to arrive at a concrete counterexample, it only remains to realize all the
conditions in the last theorem, and for this purpose we take p = 3. For the sake of
simplicity let us agree that whatever pi is, we take for χi the character that maps the
least positive primitive root mod pi to ζ9 for i = 1, 2, respectively to ζ3

9 for i = 3. It

is straightforward to find many triplets (p1, p2, p3) satisfying conditions (1)–(4). We
give just one here which seems to be about as small as it can get, without having done
an extensive search: (p1, p2, p3) = (37, 433, 97). The matrix A is:





0 6 3

3 6 0
6 6 6



 .

The matrix A ′ is derived from A as follows: take the left upper 2 × 2 submatrix of A

without the diagonal entries, fill the diagonal so as to make the row sums vanish, and
reduce mod 3. The result is clearly the zero matrix. So condition (2) in the theorem
is satisfied. Condition (1) is an easy consequence of the fact that every entry of A

is a multiple of 3. Condition (3) (which will be needed below again) holds since p3

already splits in the two cubic fields of conductor p1 and p2 individually, hence also
in K ′. The image of the map f is the span of the vectors (0, 6, 1) and (3, 6, 0) in
Z/9 × Z/9 × Z/3, hence of order 9 = p2, so condition (4) is satisfied.

The most interesting point is checking condition (5). This goes as follows. Us-
ing PARI one finds a pair of fundamental units η1, η2 for K ′: a generating polyno-
mial is f (x) = x3 − x2 − 5340x + 59337, and the fundamental units are given by
η1 =

1
5
(866265946ξ2 + 68116106252ξ+ 662120160917) and η2 =

1
9
(4041368488ξ2−

41877962210ξ − 21105076828281) where ξ is the image of x in K ′. (Note: A little
care is necessary in order to get the correct field of conductor p1 p2, since there are
two of them.) Then one verifies that the natural map

O
∗
K ′/3 → (OK ′/97OK ′)∗/3

is injective, as follows: Note that 97 is split in K ′, so any η ∈ O
∗
K ′ gives rise to a triple

of elements of (Z/97)∗ (indeed η1 maps to (8, 92, 17) under some labeling of the three
primes above 97 in K ′), and the index map modulo any fixed primitive root g mod 97,
g = 5 say, provides an isomorphism

(

(Z/97)∗ × (Z/97)∗ × (Z/97)∗
)/

3 → (Z/3)3;

the triple (8, 92, 17) maps to (0, 1, 2). Likewise, if we start with η2, we obtain (2, 0, 1).
The three primes above 97 are totally and tamely ramified in K/K ′. Therefore,

every norm from K to K ′ of an element prime to 97 maps to a cube modulo these
three primes. From the above we infer that any unit which is a cube modulo these

three primes is a cube itself. This establishes condition (5), and the construction of
one counterexample is complete. Note that Example 1.5 given in the first section
uses different prime numbers, but it was found by the same method, and as a double
check, we calculated the two R-modules in question explicitly. Among the examples
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we found, the field given in Example 1.5 is of smallest conductor, but we did not do
an extensive search. A search without guidance from theory probably would not have

led to any counterexample.

8 A Final Comment

In a recent preprint [BH], Burns and Hayward prove that in a different setting (K/Q

noncyclic) the whole approach systematically fails because the conductor level Sin-
nott unit ηK is often not “divisible” at all, that is, not contained in O∗

K,S to the power
IG. We will give a short argument here why this is so. (The point is not so much the
shortness but that we use simpler ingredients.)

Let p be odd, K the compositum of K1 and K2 where Ki is cyclic of order p,
(tamely) ramified exactly in pi , and neither of the pi splits in K. Let E = Zp ⊗Z O∗

K ,
and ES = Zp⊗Z O∗

K,S with S = {∞, p1, p2}. Because of the non-splitting of the pi , ηK

generates the full group of Sinnott units of K (maybe up to −1 which is irrelevant).
Since Fröhlich [F, Theorem 5.2 II(b)] showed that p does not divide hK , we know by
Sinnott’s class number formula (see [S, Theorem. 4.1, Theorem. 5.1]) that p does not
divide the index of the Sinnott unit group in the full unit group. (There are no extra

rational factors in that class number formula because K is its own genus field.) This
implies, of course, that ηK generates E, so it cannot be contained in EIG . So we are
almost done; it remains to show that ηK cannot even lie in EIG

S .

The ideal above pi in K is principal (i = 1, 2), generated by ηi = NQ(ζpi
)/Ki

(1 −
ζpi

). Thus ES is generated by E, η1, and η2. This shows that (switching to additive
notation and letting Ei = Zp ⊗Z O∗

Ki
)

IG · ES ⊂ IG · E + E1 + E2.

Now E is free cyclic over R = Zp[G]/(NG). Hence it has a unique maximal submod-

ule (the Jacobson radical). Clearly E1 and E2 are proper submodules of E. It is equally
obvious that IG · E is a proper submodule of E. Therefore the sum IG · E + E1 + E2 is a
proper submodule of E again, which means that ηK , which generates E, cannot lie in
this proper submodule, and therefore cannot be in IG · ES.

References

[BH] D. Burns and A. Hayward, Explicit units and the Equivariant Tamagawa number conjecture. II.
Preprint: http://www.mth.kcl.uk/staff/dj burns/gk3/ps
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