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The Position and Orientation System (POS) is a special Strapdown Inertial Navigation
System (SINS)/Global Positioning System (GPS) integrated system, widely employed in
airborne remote sensing. In-Flight Alignment (IFA) is an effective way to improve the
accuracy and speed of initial alignment for an airborne POS. IFA is normally accomplished
with references from the position and velocity of GPS for SINS, so that unstable GPS
measurements will result in poor alignment accuracy. To improve alignment accuracy under
unstable GPS conditions, an adaptive filtering algorithm of the Second-order Divided
Difference filter (DD2) based on adaptive innovation estimation is proposed, which
introduces calculated innovation covariance directly into computation of the filter gain
matrix. Then, the adaptive DD2 algorithm is used for the IFA of the POS with a large initial
heading error. To validate the proposed algorithm, simulations are undertaken, followed by
IFA experiments for the prototype of the airborne POS (TX-F30) under a turning manoeuvre
in a car-mounted experiment, and under an “8” manoeuvre in-flight. The simulations and
experimental results show that the proposed algorithm can reach better alignment accuracy
under unknown statistical characteristic of GPS measurement noises.
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1. INTRODUCTION. The Position and Orientation System (POS) is a special
Strapdown Inertial Navigation System (SINS)/Global Positioning System (GPS).
Compared with the conventional SINS/GPS integrated system, POS can provide
position and orientation with greater accuracy and frequency from the airborne
sensor; thus, it has become one of the key technologies in airborne remote sensing.
SINS alignment is an important process in determining the angular relationship

between the navigation frame and body frame. Thus, initial alignment is critical if
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precision navigation is to be achieved. In-Flight Alignment (IFA) is defined as in-flight
estimates of attitude errors between navigation frame and body frame.
In a number of cases, an Inertial Navigation System (INS) is to be aligned under

conditions where external course information is unstable, which makes it necessary to
take account of the nonlinear character of the problem. Therefore, the large-heading-
error-model is adopted to describe nonlinearity during IFA (Kong et al., 1999;
Scherzinger, 1996; Scherzinger and Reid, 1994).
In recent years, the problems of IFA based on nonlinear filter of INS alignment

algorithms have been considered in a great number of publications (Dmitriyev et al.,
1997; Fang and Yang, 2011; Han and Wang, 2009; Park et al., 2006).
The Extended Kalman Filter (EKF) linearises the nonlinear models by first-order

Taylor approximations of state transition, so that the traditional linear Kalman filter
can be applied. Further, an EKF is employed in IFA (Fang and Yang, 2011).
However, its inadequacies, such as a vast calculation of matrix differentiation and
higher-order truncation errors, restrict its wide application. In addition, the larger the
initial heading error, the more inaccurate is the performance of the EKF.
These EKF drawbacks can be overcome by using an Unscented Kalman Filter

(UKF) (Park et al., 2006). A UKF is based on the Unscented Transformation (UT),
which is founded on the concept that an approximation of a probability distribution is
easier than that of an arbitrary nonlinear function (Julier and Uhlmann, 2004).
However the UT has both a local and a global sampling problem. So, modified UKFs
are proposed to solve this issue (Hong et al., 2004; Kim and Park, 2006; Kim and
Park, 2010). The more advanced techniques generally improve estimation accuracy,
but they often perform at the expense of further complications in implementation
and an increased computational burden (NØrgaard et al., 2000). Meanwhile, other
technologies are also applied in an IFA (Han and Wang, 2009; Hao et al., 2006; Hong
et al., 2010; Wang et al., 2011; Yu et al., 2004), but with a complex procedure.
The Divided Difference Filter (DDF), which is based on polynomial approxi-

mations of the nonlinear transformations, obtained with particular multidimensional
extension of Stirling’s interpolation formula, is simple to implement as no derivatives
are needed and it can achieve better covariance estimates compared to EKF (Ali and
Ullah Baig Mirza, 2011; Setoodeh et al., 2007).
However, the estimation performance depends on correct statistical characteris-

ation of the process and measurement noise covariance matrices (Q and R,
respectively). For IFA of POS, GPS measurement noise will change with aircraft
manoeuvre or electromagnetic interference and other factors. Unstable GPS
measurement disturbance will inevitably degrade the performance of the filter with
the fixed R matrix (Fang and Yang, 2011).
In this paper, an Adaptive Second-Order Divided Difference filter (ADD2) based

on innovation covariance estimation is proposed which introduces the covariance
estimation of innovation into the calculation of the Second-order Divided Difference
filter (DD2) gain matrix directly, instead of adjusting the R matrix. Then, the pro-
posed ADD2 is applied in the IFA of the airborne POS with a large initial heading
error. Moreover the accuracy of EKF and DD2 are analysed. Finally, experiments are
carried out to validate the effectiveness of ADD2 compared with Adaptive Extended
Kalman Filter (AEKF) with large heading error under unstable GPS measurement.
The remainder of this paper is organized as follows. Section 2 presents the proposed

ADD2 algorithm based on innovation covariance estimation. Section 3 extends the
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application of the ADD2 to the IFA of airborne POS, and then the performance of the
proposed scheme is evaluated in Section 4. The Conclusions are set out in Section 5.

2. ADAPTIVE DD2 ALGORITHM BASED ON INNOVATION
COVARIANCE ESTIMATION. The innovation of the filter can be observed
directly. So by observing the covariance of the innovation sequence, the filter perfor-
mance can be corrected to some extent. Generally, the innovation of the filter should
be a white noise sequence with zero mean. However, an inexact knowledge of the pro-
cess and/or measurement noise will lead to complex statistical characteristics of the
innovation sequence. Therefore, through the innovation covariance estimation, the
process noise covariance matrixQ and/or measurement noise covariance matrixR can
be adjusted adaptively to prevent the divergence of the filter (Bian et al., 2006). In this
paper, an adaptive DD2 algorithm based on Innovation-based Adaptive Estimation
(IAE) is discussed, considering the incomplete or change information of the measure-
ment noise. Consider a nonlinear system with a nonlinear state model and a linear
measurement model:

ẋ(t) = f x, t( ) + w(t)
y(t) = H(t)x(t) + v(t)

{
(1)

where:

x(t) is the state vector.
f is the nonlinear function.
w(t) is the system noise with covariance Q(t).
y(t) is the measurement vector.
H is the linear function.
v(t) is the measurement noise with covariance R(t).

2.1. The Basic Structure of the DDF. The DDF adopts an alternative lineariz-
ation method, called a divided difference approximation, in which derivatives are
replaced by functional evaluations and an easy expansion of the nonlinear functions to
higher order terms is possible.
The basic DD2 filter is described as follows (NØrgaard et al., 2000).
2.1.1. Initialization. The initial state vector x̂0 and the square root matrix Ŝx of

its covariance P0 are given as:

P0 = ŜxŜ
T
x , Q0 = ŜwŜ

T
w (2)

2.1.2. The a priori Update. For the a priori update of the state estimate, the
improved state estimate is obtained:

x̄k = h2 − nx − nw
h2

f(x̂k−1) + 1
2h2

∑nx
p=1

f(x̂k−1 + hŝx,p) + f(x̂k−1 − hŝx,p)
[ ] (3)

where:

nx and nw are dimension of state and process noise, respectively.
h is the selection of interval length, and assuming that the estimation errors are

Gaussian and unbiased, one should set h2=3.
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The triangular Cholesky factor of the a priori covariance is obtained by
Householder transformation of the following compound matrix:

S̄x(k) = S(1)
xx̂ (k − 1) S(1)

xw(k − 1) S(2)
xx̂ (k − 1) S(2)

xw(k − 1)
[ ] (4)

S(1)
xx̂ (k) = S(1)

xx̂ (k)(i,j)
{ }

= f i(x̂k + hŝx,j) + f i(x̂k − hŝx,j)
( )

/2h
{ }

S(1)
xw(k) = S(1)

xw(k)(i,j)
{ } = f i(x̂k + hŝw,j) + f i(x̂k − hŝw,j)

( )
/2h

{ }
S(2)
xx̂ (k) =

�������
h2 − 1

√
f i(x̂k + hŝx,j) + f i(x̂k − hŝx,j) − 2f i(x̂k)
( )

/2h2
{ }

S(2)
xw(k) =

�������
h2 − 1

√
f i(x̂k + hŝw,j) + f i(x̂k − hŝw,j) − 2f i(x̂k)
( )

/2h2
{ }




(5)

where:

subscript j denotes the jth column of related matrix, and similarly for the other
factors.

2.1.3. The a posteriori Update. The a priori estimate of the output and its
covariance is calculated by the following equations:

x̂k = x̄k + Kk(yk − ȳk) (6)

ȳk = h2 − nx − nv
h2

Hk · x̄k + 1
2h2

∑nx
p=1

Hk · (x̄k + hŝx,p) +Hk · (x̄k − hŝx,p)
( ) (7)

where:

nv is the dimension of measurement,

and:

Kk = Pxy(k) Sy(k)ST
y (k)

[ ]−1
(8)

Pxy(k) = S̄x(k)S(1)
yx̄ (k)T (9)

The correlative parameters are obtained using the following equations:

Sy(k) = S(1)
yx̄ (k − 1) S(1)

yv (k − 1) S(2)
yx̄ (k − 1) S(2)

yv (k − 1)
[ ]

(10)

S(1)
yx̄ (k) = S(1)

yx̄ (k)(i,j)
{ }

= Hi · (x̄k + hs̄x,j) +Hi · (x̄k − hs̄x,j)
( )

/2h
{ }

S(1)
yv (k) = S(1)

yv (k)(i,j)
{ }

= Hi · (x̄k + hsv,j) +Hi · (x̄k − hsv,j)
( )

/2h
{ }

S(2)
yx̄ (k) =

�������
h2 − 1

√
Hi · (x̄k + hs̄x,j) +Hi · (x̄k − hs̄x,j) − 2Hi · (x̄k)
( )

/2h2
{ }

S(2)
yv (k) =

�������
h2 − 1

√
Hi · (x̄k + hsv,j) +Hi · (x̄k − hsv,j) − 2Hi · (x̄k)
( )

/2h2
{ }




(11)

R = SvST
v (12)
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The a posteriori update of the estimation error covariance is:

P̂x(k) = S̄x(k) − KkS
(1)
yx̄ (k) S̄x(k) − KkS

(1)
yx̄ (k)

( )T
+KkS(1)

yv (k) KkS(1)
yv (k)

( )T
+ KkS

(2)
yx̄ (k) KkS

(2)
yx̄ (k)

( )T
+KkS(2)

yv (k) KkS(2)
yv (k)

( )T (13)

This has the Cholesky factor:

Ŝx(k) = S̄x(k) − KkS
(1)
yx̄ (k) KkS(1)

yv (k) KkS
(2)
yx̄ (k) KkS(2)

yv (k)
[ ]

(14)

2.2. Adaptive DD2 Algorithm Based On Innovation Covariance Estimation.
Innovation information is defined as zk = yk − ȳk, and according to Shademan and
Sharifi, (2005), its covariance estimation can be obtained as follows:

D(zk) = 1
N

∑k
i=i0

zkzTk
[ ] (15)

where:

N is the window size over which the moving average of zkzk
T is taken as the estimation

of the innovation covariance.

The theoretical innovation covariance of DD2 with a fixed R should be
Py(k)=Sy(k)Sy(k)

T, where Sy(k) is calculated as Equation (10); however, it cannot
reflect the variations of the external measurement noise with a fixed R and will
decrease the filter performance when the statistical characteristic of the measurement
noise is changed.
An adaptive strategy based innovation covariance estimation is introduced. When

the innovation covariance estimation differs from the theoretical value, this hints
that the statistical characteristic of the measurement noise is changed. Then, the
dissimilarity between them can be used to adjust the measurement noise covariance
matrix R.

Py(k) = E zkzTk
[ ] = 1

N

∑k
i=i0

zkzTk
[ ] (16)

The calculation of Kk is:

Kk = Pxy(k) Sy(k)ST
y (k)

[ ]−1
= Pxy(k) Py(k)

[ ]−1 (17)

Then, if measurement noise increases, the estimated innovation covariance will also
increase. Moreover, the filter gain Kk will decrease, which means that it depends less
on measurement information.
In this paper, estimation of innovation covariance is introduced into the calculation

of the gain matrix Kk directly, and the ADD2 algorithm is as follows:
2.2.1. Initialization. The initial state vector x̂0 and the square root matrix Ŝx of

its covariance P0 are given as:

P0 = ŜxŜ
T
x , Q0 = ŜwŜ

T
w (18)
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2.2.2. The a priori Update. For the a priori update of the state estimate, the
improved state estimate is obtained as:

x̄k = h2 − nx − nw
h2

f(x̂k−1) + 1
2h2

∑nx
p=1

f(x̂k−1 + hŝx,p) + f(x̂k−1 − hŝx,p)
[ ] (19)

2.2.3. The a posterior Update. The a posterior update is:

ȳk = h2 − nx − nv
h2

Hk · x̄k + 1
2h2

∑nx
p=1

Hk · (x̄k + hŝx,p) +Hk · (x̄k − hŝx,p)
( ) (20)

zk = yk − ȳk (21)
then:
the estimation of the innovation covariance is:

Py(k) = E zkzTk
[ ] = 1

N

∑k
i=i0

zkzTk
[ ] (22)

and:
the gain Kk is obtained as:

Kk = Pxy(k) Sy(k)ST
y (k)

[ ]−1
= Pxy(k) Py(k)

[ ]−1

x̂k = x̄k + Kkzk

(23)

In the next section, the proposed ADD2 is used in the IFA of POS with large initial
heading error.

3. IFA WITH LARGE INITIAL HEADING ERROR USING ADD2
3.1. Main Coordinate Frames.
3.1.1. i-frame (Inertial Frame). The inertial frame located at the centre of the

Earth (point O) is non-rotating with respect to the fixed stars. Its xi-axis is in the
equatorial plane and points to the vernal equinox, its zi-axis is normal to that plane,
and its yi-axis completes the right-handed system.

3.1.2. e-frame (Earth frame). The Earth frame located at the centre of the Earth
has its ze-axis through the true North pole and its xe-axis through the intersection of
the prime meridian (0° longitude) and the Equator (0° latitude).

3.1.3. n-frame (Navigation Frame). The navigation frame is a local-level frame,
located at the surface of the Earth (point P). Its xn-axis points eastward, its yn-axis
points northward, and its zn-axis is parallel to the upward vertical.

3.1.4. b-frame (Body Frame). The body frame is fixed to the vehicle and is
located at the centroid of the vehicle. Its yb-axis along the longitudinal axis of the
vehicle points forward, and its xb-axis points to the right side. Its zb-axis completes the
right-handed system.

3.1.5. p-frame (Platform Frame). The platform frame is also located at point P
and has an angle error with respect to the n-frame.

3.2. State Model. In this paper, a state vector of 13 dimensions is chosen,
including level position error δP = δL δ λ

[ ]
, level velocity error δV = δVE δVN

[ ]
,
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attitude error ϕ = ϕE ϕN ϕU
[ ]

, and inertial sensors error ε = εx εy εz
[ ]

,
∇ = ∇x ∇y ∇z

[ ]
.

Subscripts E, N, U denote the East, North, and Up components in the n-frame,
respectively, and subscripts x, y, and z denote the right, front, and up components in
the b-frame, respectively.
The large heading error model (Yu et al., 1999) of the SINS will be used in this

paper for nonlinear IFA, which can be separated into a linear part and a nonlinear
part as follows:

δṖ

δV̇

ϕ̇

ε̇

∇̇







=

F1 F2 0 0 0

0 F3 0 0 Cp
b

0 0 0 Cp
b 0

0 0 0 0 0

0 0 0 0 0







δP

δV

ϕ

ε

∇






+

0

(Cp
n − I)Cn

bf
b − δωn

en × V

(I− Cp
n)ωn

in − δωn
en

0

0







(24)

where:

F1 =
0 0

VE tanL/ (RN + h) cosL( ) 0

[ ]
,

F2 =
0 1/ RM + h( )

secL/ RN + h( ) 0

[ ]
,

F3 is the first two rows of − (2Ω ie
n +Ωen

n ).
The definition of some other parameter and constant are referenced in Yu et al.

(1999).
3.3. Measurement Model. The level position and velocity errors are taken

as observations for the filter. This can be obtained from the errors between
the SINS and the GPS. Therefore, the measurement model is linear and can be
written as:

z(t) =
LINS − LGPS

λINS − λGPS

VE INS − VEGPS

VN INS − VNGPS





 = Hx(t) + v(t) (25)

where:

H = I4×4 04×9
[ ]

is the observation matrix.

When applying the proposed ADD2 in IFA, the dimension effect of accelerometers
is compensated first, then the position and velocity differences between the SINS and
the GPS after lever-arm compensation are taken as the measurements for the filter.
The estimated errors of position, velocity and attitude are fed back directly. However,
for the inertial sensor errors, feeding them back directly may cause additional errors to
the filter due to their poor observability. Since the manoeuvre during the IFA can
improve the observability of these states, inertial sensor errors are simply fed back to
the SINS when the IFA is finished. A block diagram of IFA based on ADD2 is shown
in Figure 1.
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3.4. Attitude Error Based on EKF and DD2. The DD2 is able to achieve better
estimation accuracy of IFA under large heading error than EKF. Using the indirect
feedback Kalman filter, the estimated values of the states tend to be always zero (Park
et al., 2006). Thus, there exists linearised error. However, we show that the DD2 has
less linearized error than EKF.
The attitude error model is given as:

Cn
p =

cos ϕU sin ϕU ϕN cos ϕU + ϕE sin ϕU
− sin ϕU cos ϕU ϕN sin ϕU − ϕE cos ϕU
−ϕN ϕE 1





 (26)

where:

Cp
n is the direction cosine matrix from the p-frame to the n-frame.

Cb
p is the direction cosine matrix from the b-frame to the p-frame.

Assuming Cb
p= I3×3:

ΔC =
1− cos ϕU − sin ϕU −ϕN cos ϕU − ϕE sin ϕU
− sin ϕU 1− cos ϕU −ϕN sin ϕU + ϕE cos ϕU

ϕN −ϕE 0





 (27)

As the linearized point of EKF is ϕE=ϕN=ϕU=0, the EKF attitude error from
Equation (27) is represented as (Park et al., 2006):

ΔCEKF =
0 0 0

0 0 0

0 0 0





 (28)

And using the matrix trace in Equations (27) and (28), the results are as follows:

tr(ΔC) = 2− 2 cos ϕU (29)

tr(ΔCEKF) = 0 (30)
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Figure 1. Block diagram of IFA based on ADD2.
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The trace difference of EKF is calculated as:

δCEKF = tr(ΔC) − tr(ΔCEKF) = 2− 2 cos ϕU = 2
ϕ2U
2!

− ϕ4U
4!

+ ϕ6U
6!

− · · ·
( )

(31)

The ΔCDD2 of DD2 can be deduced as follows:
Considering the attitude covariance matrix pA for convenience:

ΔCDD2 = 1
6

1− cos
������
3pϕU

√
sin

������
3pϕU

√
0

− sin
������
3pϕU

√
1− cos

������
3pϕU

√
0

0 0 0







+ 1
6

1− cos − ������
3pϕU

√( )
sin − ������

3pϕU
√( )

0

− sin − ������
3pϕU

√( )
1− cos − ������

3pϕU
√( )

0

0 0 0







= 1
3

2− 2 cos
������
3pϕU

√
0 0

0 2− 2 cos
������
3pϕU

√
0

0 0 0







(32)

tr(ΔCDD2) = 2− 2 cos
������
3pϕU

√( )
/3 (33)

δCDD2 = tr(ΔC) − tr(ΔCDD2)
= 2− 2 cos ϕU

( )− 2− 2 cos
������
3pϕU

√( )
/3

= δCUKF ≈ − 2
4!

ϕ4U − 3P2
ϕU

( )
+ 2

6!
ϕ6U − 9P4

ϕU

( )
− · · ·

(34)

Equations (31) and (34) show that DD2 error is introduced into the fourth and
higher order terms, while the EKF is second and higher. Therefore compared with
EKF, the accuracy estimated by DD2 is better with the larger heading error.

4. SIMULATION AND EXPERIMENT. To evaluate the proposed
method, simulations and experiments are carried out, then the data are processed
using ADD2 and AEKF.The window size in filters isN=10 (Wang, 2000; Wang et al.,
2000).

4.1 Simulation and Analysis. Simulations are designed based on high precision
inertial unit and GPS. The specifications of the system are at Table 1.

Table 1. Specifications of POS.

Sensors Random constant White noise Output frequency

IMU gyroscope 0·02°/h 0·01°/h (1σ) 100Hz
accelerometer 100 ug 50 ug(1σ) 100Hz
GPS position: 1·5 m (1σ) 1 Hz

velocity: 0·03 m/s (1σ) 1 Hz
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A general flight trajectory is designed as part of a practical flight with a turning
manoeuvre. The trajectory is composed of several segments of flying in line and
turning with an attitude manoeuvre. The initial simulation information is listed in
Table 2 and the simulation trajectory is shown in Figure 2.

To test the validity of ADD2, keep the statistical characteristic of GPS noise normal
for the first 20 seconds, change it four times during the manoeuvre and then revert to
normal. The estimation results of ADD2 and AEKF are shown in Figure 3 through
Figure 5. Comparison of attitude errors and time consumption in MATLAB® are
shown in Table 3.

It can be concluded that ADD2 performance can provide a substantial perfor-
mance increase over AEKF when measurement noise is changed. Consistent with

Table 2. Simulation Specifications.

Initial attitude Initial velocity Initial position

heading pitch roll Horizontal velocity Vertical velocity Longitude Latitude Altitude

300° 0·3° 0·1° 80 m/s 0 m/s 116° 40° 1000m

Figure 2. Planning track.

Figure 3. Estimation of the heading error. Figure 4. Estimation of the roll error.
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the preceding analysis, because of the large linearized error of EKF, the
estimation errors of AEKF are much higher than ADD2, particularly for the
heading error. It can be concluded that the two filters have almost the same
computational burden. Thus, it would be effortless for the proposed method to be
used in real time.

4.2. Experiment and Analysis. To further validate the algorithm, experiments
are carried out with the prototype of the high-accuracy airborne POS (designated
TX-F30) developed by BeiHang University, which is comprised of the high-
accuracy Fibre Optic Gyro (FOG) Inertial Measurement Unit (IMU) and the
NovAtel DL-V3 GPS OEM board. The specifications are listed in Table 4, and the
POS is shown in Figure 6. The GPS is adopted in real time processing, while
the Carrier-phase Differential GPS (CDGPS) is employed for post processing.
Forward filter and backward smoothing is used in post-processing, to gain higher
accuracy.

Figure 5. Estimation of the pitch error.

Table 3. Attitude Accuracy Comparison.

FILTER heading(°) pitch(°) roll(°) time used(s)

DD2 0·014 0·0016 0·0018 6·8505
AEKF 0·031 0·0019 0·0022 7·6235

Table 4. Specifications for TX-F30.

sensors
random
constant white noise

output
frequency

gyroscope 0·02°/h 0·01°/h (1σ) 100Hz
accelerometer 100 ug 50 ug(1σ) 100Hz
GPS position: 1·5 m (1σ) 1 Hz

velocity: 0·03 m/s (1σ) 1 Hz
CDGPS position: 0·15 m (1σ) 20 Hz

velocity: 0·01 m/s (1σ) 20 Hz
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4.2.1. Car-Mounted Experiment. The experiments were carried out on the 5th
ring road of Beijing; the trajectory is shown in Figure 8, in which the thick line in green
of 200 s duration represents the segment used for IFA.

The alignment results are given in Figures 9 and 10. The results of ADD2 converge
more quickly than AEKF, and with higher accuracy.

Figure 6. POS TX-F30.

Figure 7. Configuration and car-mounted experiment.

Figure 8. Ground trajectory and segment for IFA.
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The alignment results are given in Table 5. The attitude of ADD2 is more precise
than that of AEKF.

Other than comparison with true initial attitude, there is another way to validate
attitude precision. The CDGPS output is taken as a reference to calculate the level
position error of SINS with 20 s after IFA with the same initial position. The position
differences between the strapdown navigations with different IFA and GPS are in
Figure 11.

Figure 11. SINS error of plan position of car-mounted experiment.

Figure 9. Curve of attitude during IFA. Figure 10. Error of attitude during IFA.

Table 5. Alignment Results of IFA in Car-mounted Experiment.

heading Pitch roll

ADD2 290·2001 −0·5608 1·4667
AEKF 290·2147 −0·5643 1·4642
post-process 290·1744 −0·5612 1·4661
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The result means that the proposed IFA method can improve the alignment
accuracy and reduce the positioning errors (for the SINS only).

4.2.2. Flight Experiment. The POS is used for motion compensation of the X-
band airborne InSAR. The aircraft and flight trajectory are shown in Figures 12 and
13, respectively. The thick line in green, which lasts for 450 s, represents the segment
used for IFA.

The alignment results are given in Figures 14 and 15.

Figure 12. Citation II and equipment installation.

Figure 13. 3-D flight trajectory and Plan Flight-Path of Mapping Area.

Figure 14. Attitude during IFA. Figure 15. Error of attitude during IFA.
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These experimental results show that both AEKF and ADD2 filters can be adjusted
with changes in measurement noise through innovation covariance estimation.
However, the ADD2 filter yields the better accuracy. The alignment results are given
in Table 6. The ADD2 filter also shows better results.

The CDGPS output is taken as a reference to calculate the level position error of
SINS with 20 s after IFA with the same initial position. The position differences
between the strapdown navigation with different IFA and the CDGPS are shown in
Figure 16.

This result means that the proposed IFA method based on ADD2 can improve
alignment accuracy and reduce positioning errors (for SINS only).

5. CONCLUSIONS. To resolve the issue that incorrect knowledge of
measurement noise will cause degradation of filter performance, an innovation-
covariance estimation-based Adaptive Second-order Divided Difference filter
(ADD2) algorithm is proposed. The proposed method is applied to the In-Flight
Alignment (IFA) of Fibre Optic Gyro (FOG) - Position and Orientation System
(POS) with large initial heading error. The flight experimental results show excellent
performance of the filter under the condition variation of characteristic of
measurement noise. Compared with an Adaptive Extended Kalman Filter (AEKF),
the proposed ADD2 can effectively suppress the impact of unstable Global
Positioning System (GPS) measurement noise on state estimation and improve

Table 6. Alignment Result of IFA in the Flight.

heading pitch roll

ADD2 213·4400 4·1411 −0·3288
AEKF 213·4396 4·1385 −0·3140
post-processing 213·4493 4·1402 −0·3245

(a)  SINS error of latitude (b)  SINS error of longitude

Figure 16. SINS error of plan position of the flight.
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attitude accuracy. Further, the proposed ADD2 has an almost identical compu-
tational burden, but much higher estimation precision than AEKF.
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