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Abstract

This paper presents new results concerning the structure of SI-groups and refines and purifies the results
obtained in this field by Shalom Feigelstock [‘Additive groups of rings whose subrings are ideals’, Bull.
Aust. Math. Soc. 55 (1997), 477–481]. The structure theorem describing torsion-free SI-groups is proved
in the associative case. Numerous examples of SI-groups are given. Some inconsistencies in Feigelstock’s
article are noted and corrected.
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1. Introduction

The inspiration to write this paper was some unfortunate wording in Feigelstock’s
interesting article entitled Additive groups of rings whose subrings are ideals [7]. In
the introduction of that paper Feigelstock wrote: ‘Rings are assumed to be associative,
but need not possess a unity. Most of the results which will be obtained remain true for
non-associative rings.’ However, the proof of [7, Corollary 11] contradicts the declared
assumption of that article. The author, performing an indirect proof, constructed a ring
multiplication which is not associative (cf. Remark 4.4). Therefore, that proof shows
the validity of [7, Corollary 11] for the class of additive groups of rings which need
not be associative. Also, [7, Lemma 13] has been proven only in the general case (cf.
Remark 4.6). We show that [7, Corollary 11 and Lemma 13] are false in the class of
additive groups of associative rings. Moreover, we present new results on the structure
of SI-groups in both the cases of associative and general rings. To avoid inconsistencies
in the wording of the theorems, we introduce terminology and symbols allowing us to
distinguish between the two cases. Where it does not lead to misunderstandings, we
retain the notation introduced in [7].

We bring further clarification of [7, Theorem 10], provide numerous examples
of associative rings in which every ring is an ideal and prove the structure theorem
describing torsion-free SI-groups in the associative case. In addition, we give examples
of mixed SI-groups for both the associative and general cases which are not given
in [7].

c© 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 $16.00

92

https://doi.org/10.1017/S0004972714000641 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000641


[2] On SI-groups 93

Many algebraists have conducted research into various aspects of the structure of
the additive groups of rings (see, for example, [1–4, 6, 7]).

Symbols Q, Z, P and N stand for the field of rationals, the ring of integers, the set of
all prime numbers and the set of all natural numbers understood as the set of all positive
integers, respectively. In this paper, only abelian groups with the traditional additive
notation will be considered. By Z(n), we denote the cyclic group of order n. The
exponent of the abelian group A is denoted by ω(A). If n ∈ N, we will use symbols
⊕n and �n to denote addition and multiplication in the ring Zn. The least common
multiple of integers k and l is denoted by LCM (k, l). The symbol R+ stands for the
additive group of the ring R. The (two-sided) ideal I of a ring R is denoted by I C R.
The (two-sided) annihilator of a nonempty subset X of the ring R is denoted by a(X).
If a is an element of the ring R, then symbols [a], (a), 〈a〉 and o(a) stand for the ring
generated by a, the ideal generated by a in R, the cyclic subgroup of the group R+

generated by a and the order of a in the group R+, respectively. If {Ai : i ∈ I}, where
I , ∅, is a family of abelian groups and x ∈

⊕
i∈I Ai, then the support of x is denoted

by supp (x). If i ∈ I and supp (x) ⊆ {i}, then we will write xi instead of x.
For background knowledge of divisible groups and the tensor product of abelian

groups, we refer the reader to [8, 9].

2. Preliminaries

2.1. Definitions and notation. For an arbitrary abelian group A and a prime number
p, we define a p-component Ap of the group A:

Ap = {a ∈ A : pna = 0 for some n ∈ N}.

Often we will use the designation

P(A) = {p ∈ P : o(a) = p for some a ∈ A}.

The torsion part of A is denoted by T (A). Of course, T (A) =
⊕

p∈P(A) Ap.

Definition 2.1. Let (A,+, 0) be an abelian group. An operation ∗ : A × A→ A is called
a ring multiplication if, for all a, b, c ∈ A,

a ∗ (b + c) = a ∗ b + a ∗ c and (b + c) ∗ a = b ∗ a + c ∗ a.

The algebraic system (A,+, ∗, 0) is called a ring.

Definition 2.2. A ring in which every subring is an ideal (two-sided) is called an SI-
ring. An abelian group A is called an SI-group if every ring R with R+ = A is an
SI-ring. The associative SI-rings are called hamiltonian rings or H-rings, because these
structures are somewhat analogous to the hamiltonian groups.

The H-rings play a significant role in ring theory and they were systematically
studied by many authors. The most valuable results were achieved by Rédei and others
(see [5, 10, 11]). This work motivates the following definition.
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Definition 2.3. An abelian group A is called an SIH-group if every associative ring R
with R+ = A is an H-ring.

Remark 2.4. Every SI-group is an SIH-group. Corollaries 11 and 12, Lemma 13
and Theorem 16 of [7] are proven for SI-groups in the sense of Definition 2.2 (cf.
Remark 4.4, Corollaries 4.5 and 4.6 and Remark 4.7 in this paper). All other results
obtained by Feigelstock in [7] are true both in the class of SIH-groups and in the class
of SI-groups. There exist mixed SIH-groups which are not SI-groups (cf. Remark 4.3).

Definition 2.5. Let A be an abelian group. If on A there does not exist any nonzero ring
multiplication, then A is called a nil-group. If on A there does not exist any nonzero
associative ring multiplication, then we say that A is a nila-group.

Remark 2.6. Every nil-group is a nila-group. Every torsion nila-group is a nil-group,
by [6, Theorem 3.4] and [9, Theorem 120.3]. By [6, Theorem 4.1], a mixed nila-
group does not exist. It is easily seen that every ring multiplication on an arbitrary
subgroup of the group Q+ is associative and every abelian torsion-free group of rank
one can be embedded in the group Q+. Thus, the concepts of nila-group and nil-group
are equivalent also in the class of abelian torsion-free groups of rank one. To the best
of our knowledge, it is not known whether there exists a torsion-free nila-group A of
rank more than one such that A is not a nil-group.

2.2. Ring multiplication on some specific abelian groups. Every abelian group
(A,+, 0) can be provided with a ring structure in a trivial way by defining a · b = 0 for
all a, b ∈ A; such a ring is called a null ring and it is denoted by A0.

Remark 2.7. Let p be a prime number. It is a well-known fact that up to isomorphism
there exist only two rings of cardinality p: the zero ring Z(p)0 and the field Zp. So,
if s > 1 is a square-free number, R is a ring with R+ = Z(s) and r is the product of all
prime divisors p of s for which Rp � Zp, then the ring R satisfies the condition Rn � Zr

for all n ∈ N such that n ≥ 2.

Proposition 2.8. Let A and H be abelian groups such that A = T (A), ω(Ap) < ∞,
H = pH and Hp = {0} for all p ∈ P(A). Then every ring multiplication ∗ on the group
G = A ⊕ H satisfies the following conditions:

(i) A ∗ H = H ∗ A = {0};
(ii) A ∗ A ⊆ A;
(iii) H ∗ H ⊆ H.

Proof. (i) This follows from the p-divisibility of H for every p ∈ P(A), and the
distributivity of multiplication with respect to addition. In fact, take any a ∈ A and
h ∈ H. Since o(a) = n, for some n ∈ N, and H = pH, for every p ∈ P(A), we infer that
there exists h′ ∈ H such that h = nh′. Thus, a ∗ h = a ∗ (nh′) = (na) ∗ h′ = 0 ∗ h′ = 0
and analogously h ∗ a = 0.

(ii) Take any a1, a2 ∈ A. Then a1 ∗ a2 = a3 + h for some a3 ∈ A, h ∈ H. Let m =
LCM (o(a1), o(a2), o(a3)). Then 0 = m(a1 ∗ a2) = m(a3 + h) = mh and hence h ∈ T (H).
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Let p ∈ P. If p | o(h), then p | m; thus, from the definition of m, it follows that p ∈ P(A).
But Hp = {0} for every p ∈ P(A) and hence h = 0.

(iii) Take any h1, h2 ∈ H. Then h1 ∗ h2 = a + h for some a ∈ A, h ∈ H. So, there
exists a nonempty finite subset P of the set P(A) such that a ∈

⊕
p∈P Ap. Moreover,

n(
⊕

p∈P Ap) = {0} for n =
∏

p∈P ω(Ap). But H = pH for every p ∈ P(A), so h1 = nh′1,
h2 = nh′2 and h = n2h′ for some h′1, h

′
2, h
′ ∈ H. Therefore, n2(h′1 ∗ h′2) = a + n2h′ and

hence a = n2((h′1 ∗ h′2) − h′) ∈ n2G =
⊕

q∈P(A)\P(n2Aq) ⊕ H. Since a ∈
⊕

p∈P Ap, we
have a = 0. Therefore, h1 ∗ h2 ∈ H. �

Proposition 2.9. Let p be a prime number and n be a positive integer. Let H be
a nontrivial nila-group with Hp = {0}. If R is an associative ring such that R+ =
Z(pn) ⊕ H, then R2 ⊆ Z(pn). In particular, if n = 1 and R2 , {0}, then R2 = Z(p).

Proof. As Hp = {0}, we have Rp = Z(pn). Hence, I = Z(pn) is an ideal of the ring R.
Suppose, contrary to our claim, that H2 * Z(pn). Then (R/I)2 , {I}. Since (R/I)+ � H,
there is a nonzero associative ring multiplication on the group H. Therefore, H is not
a nila-group, which is a contradiction. �

Remark 2.10. If we strengthen the assumptions of the foregoing proposition, assuming
that H is a nil-group, then the proposition remains true in the general class of rings.

2.3. H-rings. Relying on important results obtained by Kruse in [10], we prove
a proposition which plays a key role in the description of torsion-free SIH-groups
(cf. Theorem 3.10).

Proposition 2.11. A torsion-free ring R is an H-ring if and only if either R2 = {0} or
R � nZ for some n ∈ N.

Proof. Suppose that R is a torsion-free H-ring such that R2 , {0}. Then the set N(R)
of all nilpotent elements of the ring R is an ideal in R. Take any a ∈ N(R). Then
o(a2) ∈ N, by [10, (1.5)], so a2 = 0. Let x, y ∈ N(R) be arbitrary. Then 〈x〉 = [x] C R,
so xy = kx for some k ∈ Z. As y2 = 0, we have 0 = xy2 = kxy = k2x. Thus, kx = 0
and xy = 0. Therefore, N(R)2 = {0} and R , N(R). Hence, by [10, (3.3)], we have
N(R) = {0}, and the ring R is reduced. Thus, by [10, (1.3) and (1.4)], we obtain R � nZ
for some n ∈ N.

The opposite implication is obvious. �

Proposition 2.12. Let A be an abelian group and let s be a positive integer. If s is
square-free, then R = Zs ⊕ A0 is an H-ring.

Proof. Take any α ∈ R \ {0}. Then α = (k, a) for some k ∈ Zs and a ∈ A such that k , 0
or a , 0. If k = 0, then [α] = {0} ⊕ 〈a〉 C R. If a = 0, then [α] = 〈k〉 ⊕ {0} C R, because Zs

is an H-ring. Now suppose that k , 0 and a , 0. Then α2 = (k2, 0) , (0, 0) and hence,
by a simple induction argument, we get αn = (kn, 0) = kn−2α2 ∈ 〈α2〉 for every n ∈ N
such that n ≥ 2. Therefore, [α] = 〈α〉 + 〈α2〉. Moreover, 〈α2〉 = 〈k2(1, 0)〉 = 〈k(1, 0)〉,
because o((1, 0)) is square-free. Hence, [α] = 〈(k, a)〉 + 〈(k, 0)〉 = 〈k〉 ⊕ 〈a〉 C R. �
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Proposition 2.13. If A is an H-ring satisfying A = pA for some p ∈ P, then
R = Z(p)0 ⊕ A is an H-ring.

Proof. Let α, β ∈ R. Then α = (k, a), β = (l, b) for some k, l ∈ Z(p)0 and a, b ∈ A.
Since A = pA, there exists c ∈ A such that b = pc. Moreover, [a] C A, so there exist
n ∈ N and k1, k2, . . . , kn ∈ Z such that ac =

∑n
i=1 kiai. Hence, ab = a(pc) = p(ac) =

p
∑n

i=1 kiai. It is clear that αm = (0, am) for every m ∈ N such that m ≥ 2. Notice
further that p(0, a) = (0, pa) = p(k, a) = pα. Hence, p(0, am) = pαm for all m ∈ N.
Therefore, αβ = (0, ab) = (0, p

∑n
i=1 kiai) =

∑n
i=1 ki(p(0, ai)) =

∑n
i=1(pki)αi ∈ [α]. Thus,

[α] C R. �

Lemma 2.14. Let A be an H-ring satisfying A = pA for some p ∈ P. If R = Zp ⊕ A, then
(0, a) ∈ [(1, a)] for all a ∈ A.

Proof. Take any a ∈ A. Then a = pb for some b ∈ A and [a] C A. So, there
exist s ∈ N and k1, k2, . . . , ks ∈ Z such that ab = k1a + k2a2 + · · · + ksas. Hence,
a2 = a(pb) = p(ab) = (pk1)a + (pk2)a2 + · · · + (pks)as. Therefore, a = (pk1 + 1)a
+ (pk2 − 1)a2 + (pk3)a3 + (pk4)a4 + · · · + (pks)as. Moreover, p | (pk1 + 1) + (pk2 −

1) + pk3 + pk4 + · · · + pks and hence (0, a) = (pk1 + 1)(1, a) + (pk2 − 1)(1, a)2 +

pk3(1, a)3 + pk4(1, a)4 + · · · + pks(1, a)s. Thus, (0, a) ∈ [(1, a)]. �

Proposition 2.15. If A is an H-ring satisfying A = pA for some p ∈ P, then R = Zp ⊕ A
is an H-ring.

Proof. Take any α ∈ R. Then α = (k, a) for some k ∈ Zp, a ∈ A. If k , 0, then
there exists l ∈ Zp satisfying k �p l = 1. Since p - l, there exist x, y ∈ Z such that
(0, a) = x(0, pa) + y(0, la). It is evident that (0, pa) = pα. Moreover, (0, la) ∈ [(1, la)],
by Lemma 2.14, and (1, la) = (k �p l, la) = l(k, a) = lα. Thus, (0, a) ∈ [α]. As (k, 0) =
α − (0, a) ∈ [α], we have (k) ⊕ [a] ⊆ [α]. Moreover, α ∈ (k) ⊕ [a], so [α] ⊆ (k) ⊕ [a].
Therefore, [α] = (k) ⊕ [a] C R. �

Proposition 2.16. Let P be an infinite subset of the set P. Then there does not exist an
H-subring S of the ring

∏
p∈P Zp such that

⊕
p∈P Zp ( S .

Proof. Suppose that the assertion of the proposition is false. Take any a ∈ S \
⊕

p∈P Zp

and p ∈ supp (a). Let εp = (0, 0, . . . , 0,
p
1, 0, 0, . . .). Then |supp (εp)| < ∞ and hence

εp ∈ S . Moreover, [a] C S , so εpa ∈ [a] and [a] is an H-ring. Therefore, [εpa] C
[a]. Hence, I =

⊕
p ∈ supp (a) Zp C [a]. Since the ring [a] is finitely generated and

commutative, [a] is a noetherian ring. Thus, the ideal I is finitely generated. As
|supp (a)| =∞, we have a contradiction. �

Proposition 2.17. Let p be a prime number and n be a positive integer. Let A be an
abelian group such that Ap , {0} or T (A) , A. If n ≥ 2, then R = Zpn ⊕ A0 is not an
H-ring.
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Proof. Take any a ∈ A. Let α = (pn−1, a). Then α2 = 0, because n ≥ 2. Therefore,
[α] = 〈α〉. Suppose, contrary to our claim, that (1, 0)α ∈ [α]. Then there exists k ∈ Z
such that (pn−1, 0) = k(pn−1, a). Hence, pn−1 = kpn−1 and 0 = ka. If o(a) = ∞, then,
from the equality ka = 0, it follows that k = 0. Thus, pn−1 = 0 in Zpn , which is
a contradiction. If o(a) = p, then p | k. So, there exists l ∈ Z such that k = lp. Therefore,
pn−1 = kpn−1 = lpn = 0 in Zpn , which is a contradiction. Thus, (1, 0)α < [α]. �

To end these preliminaries, we prove a surprising fact about subgroups of the
group Q+ which we will apply in describing mixed SIH-groups (see Theorem 3.8
and Example 3.9).

Lemma 2.18. If A is a subgroup of the group Q+ satisfying A , pA for some p ∈ P, then
A/pA � Z(p). In particular, A = pA + 〈a〉 for all a ∈ A \ pA.

Proof. Suppose, contrary to our claim, that dimZp A/pA ≥ 2. Then there exist a1, a2 ∈

A \ pA such that a1 + pA, a2 + pA are linearly independent over the field Zp. Let
n = min{m ∈ N : ma1 ∈ 〈a2〉}. Then na1 = ka2 for some k ∈ Z. Thus, n(a1 + pA) −
k(a2 + pA) = pA and hence p | n and p | k. Therefore, n = pn1 and k = pk1 for
some n1 ∈ N, k1 ∈ Z. Moreover, A is torsion-free and, consequently, n1a1 = k1a2,
which contradicts the minimality of the number n. Therefore, dimZp A/pA = 1 and
A/pA � Z(p). �

3. SIH-groups

First observe that [7, Lemma 1] can be somewhat generalised, not assuming the
commutativity of the ring R, in the following lemma.

Lemma 3.1. Let R be an associative ring and let A = R+. Let M be a left-sided R-
module satisfying R ◦ M , {0}. Then A ⊕ M is not an SIH-group.

Proof. Let S =
(R M

0 0
)
. Then S is an associative ring with S + � A ⊕ M and T =

(R 0
0 0

)
is

a subring of S . As T · S =
(R2 R◦M

0 0
)

and R ◦ M , {0}, we have T · S * T . Hence, T 6C S .
Therefore, A ⊕ M is not an SIH-group. �

It follows from [7, Theorem 10] that if G is a mixed SIH-group, then the torsion part
T (G) of G satisfies T (G) =

⊕
p∈P(G) Z(pnp ), where np ∈ N for all p ∈ P(A). Hence, by

[7, Lemma 8] and Proposition 2.17, we get a more accurate version of [7, Theorem 10].

Theorem 3.2. If G is a mixed SIH-group, then T (G) =
⊕

p∈P(G) Z(p).

Proposition 3.3. Let A be an SIH-group satisfying A = pA and Ap = {0} for some p ∈ P.
Then G = Z(p) ⊕ A is an SIH-group.

Proof. Let R be an arbitrary associative ring with R+ = G. Then it follows from
Proposition 2.8 that Z(p)2 ⊆ Z(p), A2 ⊆ A and Z(p) · A = A · Z(p) = {0}. Thus, R =
R1 ⊕ R2, where R1 and R2 are rings such that R+1 = Z(p) and R+2 = A. So, the assertion
follows from Remark 2.7 and Propositions 2.13 and 2.15. �
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Theorem 3.4. Let ∅ , P ⊆ P and let A be an SIH-group satisfying A = pA and Ap = {0}
for all p ∈ P. Then G =

(⊕
p∈P Z(p)

)
⊕ A is an SIH-group.

Proof. If |P| < ∞, then the assertion follows from Lemma 3.3 by a simple induction
argument. Now suppose that |P| = ∞. Let R be an arbitrary associative ring with
R+ = G. Take any α, β ∈ R. Then α = (k, a), β = (l, b) for some k, l ∈

⊕
p∈P Z(p) and

a, b ∈ A. Let Pkl = supp (k) ∪ supp (l). There exists a subgroup H of the group G such
that H �

⊕
p∈Pkl

Z(p) ⊕ A. Of course, α, β ∈ H. Moreover, |Pkl| <∞; thus, H is an SIH-
group, by the first part of the proof. It follows from Proposition 2.8 and Remark 2.7
that H is a subring of the ring R. Therefore, [α] C H and αβ, βα ∈ [α]. Hence, by the
arbitrary choice of the element β of the ring R, we obtain [α] C R. Since α has also
been chosen arbitrarily, R is an H-ring. Therefore, G is an SIH-group. �

Proposition 3.5. Let H be an abelian group satisfying Hp = {0} and H , pH for some
p ∈ P. If dimZp H/pH ≥ 2, then G = Z+p ⊕ H is not an SIH-group.

Proof. Consider the diagram

G
π1
−→ H

π2
−→ H/pH

ϕ
−→

⊕
i∈I

Z+p ,

where π1 is a natural projection of the group G on the group H, π2 is the canonical
epimorphism and ϕ is an isomorphism. Let f = ϕ ◦ π2 ◦ π1. From the assumptions, it
follows that there exists x ∈ H \ pH such that |supp ϕ(x + pH)| ≥ 2. Take any i1, i2 ∈
supp ϕ(x + pH) such that i1 , i2. Let c = (ϕ(x + pH))i1 . Then ϕ−1(c) = y + pH for
some y ∈ H \ pH. For t = 1, 2, the epimorphisms µt :

⊕
i∈I Z

+
p → Z

+
p can be defined by

µ1((ki)i∈I) = ki1 , µ2((ki)i∈I) = ki2 .

Let ∗ : G ×G→ G be given by

g1 ∗ g2 = (µ1( f (g1)) �p µ2( f (g2)), 0).

Since the functions used in the definition of the function ∗ are homomorphisms of
groups and �p is a ring multiplication, we infer that the operation ∗ is distributive
with respect to addition. Moreover, f (Z+p) = {0}, so G ∗ Z+p = Z

+
p ∗G = {0}. Therefore,

R = (G, +, ∗, 0) is the ring satisfying R3 = {0}. Next, [(0, y)] = 〈(0, y)〉 and (0, y) ∗
(0, x) = (k, 0) for some 0 , k ∈ Z+p . Thus, (0, y) ∗ (0, x) < [(0, y)] and hence [(0, y)] 6 R.
Therefore, R is not an H-ring. Hence, G is not an SIH-group. �

Theorem 3.6. Let G be a mixed SIH-group and let p ∈ P(A). Then there exists H ≤ G
such that G = Gp ⊕ H, where H = 〈h〉 + pH for some h ∈ H.

Proof. It follows from [7, Lemma 8] that there exists H ≤ G such that G = Gp ⊕ H.
If H = pH, then H = 〈h〉 + pH for all h ∈ H. If H , pH, then dimZp H/pH = 1, by
Proposition 3.5. Hence, H = 〈h〉 + pH for all h ∈ H \ pH. �
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Remark 3.7. It follows from Theorem 3.2 that Gp = Z(p) and hence pG = pH. If
H , pH, then the subgroup H is not uniquely determined. In fact, let K = 〈(a,h)〉 + pH
for some 0 , a ∈ Gp, h ∈ H \ pH. Then G = Gp + K. Suppose that k(a, h) + (0, ph1) =
l(a, 0) for some k, l ∈ Z, h1 ∈ H. Then ka = la and kh + ph1 = 0; hence, k ≡ l (mod p)
and kh = −ph1 ∈ pH. As h ∈ H \ pH, we have p | k. Therefore, Gp ∩ K = {0}.
Moreover, (a, h) < H, so K , H.

Notice that it follows directly from [7, Theorem 6 and Lemma 8] that if G is
a nontrivial torsion SIH-group, then for every p ∈ P(G) there exists a p-divisible
subgroup H of the group G such that G = Gp ⊕ H.

Proposition 3.8. Let H be a nila-group with Hp = {0} for some p ∈ P. If there exists
h0 ∈ H such that H = 〈h0〉 + pH, then G = Z(p) ⊕ H is an SIH-group.

Proof. Let R = (G,+, ∗, 0) be an arbitrary associative ring. If R2 = 0, then R is an H-
ring. Now suppose that R2 , {0}. Since Hp = {0}, we obtain Rp = Z(p). Hence,
I = Z(p) C R. Moreover, R2 = I, by Proposition 2.9. Take any 0 , a ∈ I. Then o(a) = p
and 〈a〉 = I. We have two cases.

(i) a2 , 0. Then I � Zp, by Remark 2.7. Thus, the ring I has a unity. So, there exists
J C R such that R = I ⊕ J. Hence, H � (R/I)+ � J+. Moreover, H is a nila-group, so
J2 = {0}. Therefore, R � Zp ⊕ H0. Hence, from Proposition 2.12, we infer that R is an
H-ring.

(ii) a2 = 0. Then R4 = I2 = 〈a2〉 = {0}. Suppose, contrary to our claim, that
R3 , {0}. Since R2 C R, R3 ⊆ R2. As R3 ≤ R, R2 = I and |I| = p, we have R3 = R2.
Hence, R3 = R2 · R = R3 · R = R4 = {0}, which is a contradiction. Therefore, R3 = {0}.
Take any h ∈ H. Then a ∗ h ∈ I, so there exists k ∈ Z such that a ∗ h = ka. Thus,
(a ∗ h) ∗ h = (ka) ∗ h = k(a ∗ h) = k(ka) = k2a. As R3 = {0}, we have k2a = 0. Therefore,
p | k2 and hence p | k. Thus, ka = 0 and, consequently, a ∗ h = 0. Hence, a ∗ H = {0}.
Analogously, H ∗ a = {0}. Moreover, a2 = 0, so a ∈ a(R). Next, (pH) ∗ R = p(H ∗ R) ⊆
pR2 = pI = {0} and hence (pH) ∗ R = {0}. Similarly, R ∗ (pH) = {0}. Therefore,
pH ⊆ a(R). From the assumption, it follows that H = 〈h0〉 + pH for some h0 ∈ H.
Thus, R = 〈h0〉 + a(R). Moreover, R2 , {0}, so h2

0 , 0. Hence, by the equality R2 = I,
we obtain o(h2

0) = p. Take any x, y ∈ R. Suppose that x ∗ y , 0. Then x = αh0

and y = βh0 for some α, β ∈ Z. Hence, x ∗ y = αβh2
0 ∈ 〈αh2

0〉 ∩ 〈βh2
0〉. Since o(h2

0)
is a square-free number, we have 〈αh2

0〉 = 〈α
2h2

0〉 and 〈βh2
0〉 = 〈β

2h2
0〉. Therefore,

x ∗ y ∈ 〈x2〉 ∩ 〈y2〉. Moreover, pR2 = R3 = {0}, so the ring R is almost null (cf. [10,
Definition (2.1)]). Thus, R is an H-ring. �

Example 3.9. Let H be a nil-subgroup of the group Q+ such that H , pH for some
p ∈ P. Then there exists h0 ∈ H \ pH and hence H = 〈h0〉 + pH, by Lemma 2.18.
Moreover, Hp = {0}, so it follows from Proposition 3.8 that Z(p) ⊕ H is an SIH-group.

Theorem 3.10. Let A be an abelian torsion-free group. Then A is an SIH-group if and
only if either A is a nila-group or A � Z+.
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Proof. Suppose that A is an SIH-group which is not a nila-group. Then there exists
an H-ring R satisfying R2 , {0} and R+ = A. It follows from Proposition 2.11 that
R � nZ for some n ∈ N. Therefore, A � Z+. The opposite implication is obvious. �

Corollary 3.11. The converse theorem to Theorem 3.6 is not true. In fact, take any
distinct prime numbers p and q. Let H = [1/q]+. Then H , pH, by [6, Lemma 2.5],
so H = 〈h〉 + pH for some h ∈ H \ pH, by Lemma 2.18. But H is not an SIH-group, by
Theorem 3.10, so it follows from [7, Lemma 3] that G = Z(p) ⊕ H is not an SIH-group.

4. SI-groups

Lemma 4.1. Let both A and H be abelian groups. If A is not a nil-group and A is
a homomorphic image of H, then A ⊕ H is not an SI-group.

Proof. Let f : H → A be an epimorphism. Let (R,+, ·) be a ring such that R+ = A
and R2 , {0}. It is easy to check that the operation ∗ : (A ⊕ H) × (A ⊕ H)→ (A ⊕ H)
defined by

(a1, x1) ∗ (a2, x2) = (a1 · f (x2) + a2 · f (x1), 0) for all a1, a2 ∈ A, x1, x2 ∈ H

is a ring multiplication on the group A ⊕ H. Since R2 , {0}, there exist a, b ∈ A such
that a · b , 0. Let y ∈ H be such that f (y) = b. Then (0, y)2 = (0, 0), so [(0, y)] = 〈(0, y)〉
and (a, 0) ∗ (0, y) = (a · f (y), 0) = (a · b, 0) < [(0, y)]. Therefore, [(0, y)] is not an ideal
in the ring (A ⊕ H,+, ∗). �

Corollary 4.2. Let H be an abelian group such that H , pH for some p ∈ P. Then
Z(p) ⊕ H is not an SI-group.

Proof. Since H , pH, it follows that H/pH is a nonzero linear space over the field Zp.
Hence, there exists an epimorphism f : H → Z(p). Therefore, the assertion follows
directly from Lemma 4.1. �

Remark 4.3. From the above corollary and Example 3.9, it follows that the class of all
SI-groups is a proper subclass of the class of all SIH-groups.

Remark 4.4. The ring multiplication in [7, Corollary 11] is not associative. In fact,
((a, 0)(0, h))(0, h) = (a, 0)(0, h) = (a, 0) , (0, 0) and (a, 0)((0, h)(0, h)) = (a, 0)(0, 0) =
(0, 0). Therefore, Feigelstock’s proof provides the truth for this corollary for SI-groups
referred to in Definition 2.2. Example 3.9 shows that Corollary 11 is false in the
class of SIH-groups. In addition, Gp = Z(p), by Remark 2.4 and Theorem 3.2; hence,
H = pG.

Corollary 4.5. Corollary 12 of [7] is true only for SI-groups (in the sense of
Definition 2.2).
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Remark 4.6. Lemma 13 of [7] is true only in the class of SI-groups. In fact, let
G1 be a nil-subgroup of the group Q+ satisfying G1 , pG1 for some p ∈ P, and let
G2 = Z(p). Then G1 ⊗G2 � G1/pG1 and hence Hom (G1 ⊗G2,G2) , {0}. Therefore,
the assumptions of [7, Lemma 13] are valid. But G = G1 ⊕G2 is an SIH-group, by
Lemma 2.18 and Proposition 3.8.

Since the ring multiplication constructed by Feigelstock for the case (1) is
associative, [7, Lemma 13] will be true in the class of SIH-groups if we strengthen
the assumptions by requiring that the elements i, j, k are pairwise distinct.

Corollary 4.7. Theorem 16 of [7] has been proved for SI-groups (in the sense of
Definition 2.2).

Proposition 4.8. Let s be a positive integer not less than 2 and let H be a torsion-
free nil-group satisfying H = pH for every p ∈ P such that p | s. If s is a square-free
number, then A = Z+s ⊕ H is an SI-group.

Proof. Let R be an arbitrary ring with R+ = A. Then it follows from Proposition 2.8
that R = S ⊕ H0, where S is some ring with S + = Z+s . If R2 = {0}, then R is an
SI-ring. If R2 , {0}, then, by Remark 2.7, we obtain R2 � Zr, where r is the product
of all prime divisors p of s for which S p � Zp. In particular, it follows that the ring R
is commutative and associative. Take any α ∈ R. Then α = (k, x) for some k ∈ S and
x ∈ H. If k = 0, then [α] = 〈(0, x)〉 and [α] · R = {0} ⊆ [α], so [α] C R. Now suppose that
k , 0. Then α2 = (k2, 0) and hence αn ∈ 〈α2〉 for every n ∈ N satisfying n ≥ 2. Thus,
[α] = 〈α〉 + 〈α2〉. Notice that α2 = (k, 0)2 = (k(1, 0))2 = k2(1, 0)2. Moreover, o((1, 0)2)
is a square-free number, so 〈α2〉 = 〈k(1, 0)2〉. Therefore, k(1, 0)2 = lα2 for some l ∈ Z.
Take any t ∈ S . Then α · (t, 0) = (k, 0) · (t, 0) = kt(1, 0)2 = t(k(1, 0)2) = tlα2 ∈ 〈α2〉 and
α2 · (t, 0) = α · (α · (t, 0)) = tlα3 ∈ 〈α2〉. Thus, α · R ⊆ 〈α2〉 and α2 · R ⊆ 〈α2〉. Hence,
[α] C R. �

Example 4.9. Let p < p1 < p2 < p3 < · · · be primes, let A = Z(p) and let H = [1/p]+ +
〈1/p1, 1/p2, 1/p3, . . .〉. It follows from [6, Lemma 2.5] and [6, Example 3.2] that H is
a p-divisible nil-group. Hence, G = A ⊕ H is an SI-group, by Proposition 4.8.

Lemma 4.10. Let A be a mixed SI-group and let H =
⋂

p∈P(A) pA. Then T (H) = {0} and
H = pH for all p ∈ P(A).

Proof. Suppose, contrary to our claim, that T (H) , {0}. Then there exist q ∈ P(A)
and a ∈ H such that o(a) = q. From the definition of the group H, it follows that
a ∈ Aq ∩ qA. But Aq = Z(q), by Theorem 3.2 and Remark 2.4, so (qA)q = {0}. Hence,
a = 0, which is a contradiction.

Take any p ∈ P(A) and h ∈ H. Then h ∈ pA. Corollary 11 of [7] implies the existence
of a subgroup H(p) of the group A such that A = Ap ⊕ H(p) and H(p) = pH(p). Moreover,
Ap = Z(p), by Theorem 3.2 and Remark 2.4. Hence, pA = pH(p) = H(p). Therefore,
pA = p2A. Thus, h = px for some x ∈ pA. Take any q ∈ P(A) \ {p}. Then x =
k(px) + l(qx) for some k, l ∈ Z. Moreover, px = h ∈ qA, by the definition of the group
H. Therefore, x ∈ qA. In this way, we have shown that x ∈ rA for all r ∈ P(A).
Therefore, x ∈ H. Thus, H = pH for all p ∈ P(A). �
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Remark 4.11. If A is an SI-group with P(A) = P, then A can be embedded in the group∏
p∈P Z(p). In fact, it follows from Lemma 4.10 that H =

⋂
p∈P pA is a torsion-free

divisible subgroup of the group A. Hence, by [7, Corollary 4], we obtain H = {0}. It is
easy to check that the function f : A→

∏
p∈P(A/pA) defined by

f (a) = (a + pA)p∈P for all a ∈ A

is a homomorphism. If a ∈ ker f , then a ∈ H and hence a = 0. Thus, f is
a monomorphism. Moreover, [7, Corollary 11] and Remark 4.4 imply that A =
Z(p) ⊕ pA for all p ∈ P. Hence, A/pA � Z(p) for all p ∈ P. Thus, there exists a
monomorphism ϕ : A→

∏
p∈P Z(p). Let B = ϕ(A). Then B is a mixed SI-subgroup of

the group
∏

p∈P Z(p) with P(B) = P. Hence, by Theorem 3.2, we obtain
⊕

p∈P Z(p) ≤
B ≤

∏
p∈P Z(p).

Proposition 4.12. Let A be a mixed SI-group with |P(A)| < ∞. Then there exists
a subgroup H of the group A such that T (H) = {0}, H = pH for all p ∈ P(A) and
A = T (A) ⊕ H. In particular, H is an SI-group.

Proof. Let H =
⋂

p∈P(A) pA. Then T (H) = {0} and H = pH for all p ∈ P(A), by
Lemma 4.10. Take any a ∈ A. Let s =

∏
p∈P(A) p. Then sA =

⋂
p∈P(A) pA = H and

hence sa ∈ H. Moreover, H = sH, by the first part of the proof, so there exists
h ∈ H satisfying sa = sh. Therefore, s(a − h) = 0 and hence a − h ∈ T (A). Thus,
a = (a − h) + h ∈ T (A) + H. Hence, A ⊆ T (A) + H. The inverse inclusion is obvious.
Moreover, by the first part of the proof, we have T (H) = {0}, so T (A) + H = T (A) ⊕
H. Therefore, A = T (A) ⊕ H. Hence, from [7, Lemma 3], we infer that H is an
SI-group. �

Theorem 3.2 together with the following proposition gives a partial description of
the structure of mixed SI-groups whose torsion part is a direct summand (modulo the
description of the structure of torsion-free SI-groups).

Proposition 4.13. Let A be a mixed SI-group. If there exists H ≤ A such that
A = T (A) ⊕ H, then H =

⋂
p∈P(A) pA.

Proof. Take any p ∈ P(A). Since A/T (A) � H, it follows from [7, Corollary 12] that
H = pH. Moreover, pH ⊆ pA, so H ⊆ pA. In view of the arbitrary choice of p ∈ P(A),
we have shown that H ⊆

⋂
p∈P(A) pA. Hence, by modularity of the lattice of subgroups

of an abelian group, we have H + (T (A) ∩
⋂

p∈P(A) pA) = (H + T (A)) ∩
⋂

p∈P(A) pA. As
T (

⋂
p∈P(A) pA) = {0} (cf. Lemma 4.10) and H + T (A) = A, we have H =

⋂
p∈P(A) pA. �
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