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The new generation energy storage materials such as Li-ion, Li-Sulfur, Li-Air etc. has generated the 
need for novel experimental techniques that provide real-time information on the dynamic structural 
changes and processes occurring locally at the electrode/electrolyte interface during battery operation (in 
operando).  One of the most promising means to increase the energy density for example in case of 
state-of-the-art lithium Li-ion batteries is to replace the graphite anode with a Li metal anode. While the 
direct use of Li metal has many advantageous, at present issues related to dendrite growth and low 
Coulombic efficiency, CE, limit its practical application.  Additionally, existing theory/models fall short 
of predicting emergent behaviors of heterogeneous electrochemical interfaces such as electrode-
electrolyte interfaces. This knowledge gap impedes the ability to design and control optimal interfaces 
for energy storage applications, which can lead to breakthrough discoveries in the energy storage field.  

Here operando electrochemical scanning transmission electron microscopy (STEM) [1, 2] is used to 
directly image the deposition/stripping of Li at the anode/electrolyte interface in a Li-S battery.  Lithium 
sulfur batteries are currently one of the most attractive battery systems for high capacity energy storage 
applications, potentially meeting a large demand by giving 3-5 fold higher energy densities  (from 2600 
Wh kg-1 to 2800 Wh kg-1) than state-of-the-art Li-ion batteries [3].  However, the practical application is 
still challenging due to the insulating nature of the elemental sulfur cathode, dissolution of intermediate 
discharge products (polysulfides, Li2Sn, 3	 ≤	 n	 ≤ 6) into the electrolyte, the “shuttle effect” and the 
formation of a passivating Solid Electrolyte Interphase (SEI) layer at the Li anode contributing to self-
discharge [4]. The multi-step electrochemical reduction and oxidation reactions involving polysulfides 
are very complex and require an increased fundamental understanding to bring Li-S technology to wide-
spread commercialization.  There are many strategies to improve the interfacial stability of the Li anode 
and control/suppress Li dendrite growth, which is highly dependent on nature of electrolyte itself, such 
as mixture of different electrolyte solvents, salts and additives.  Here we demonstrate the changes in the 
Li dendrite growth mechanism in a Li-S battery in the presence of lithium nitride (LiNO3) additive 
characterized by the multi-modal approach of in-situ TEM with compressive sensing [5,6] and operando 
electrochemistry, XPS and NMR.  As an example of the results obtained, Figure 1 shows a comparison 
of two different Li dendrite growth mechanism in the presence/absence of the additive in a 
commercially available Li-sulfur electrolyte.  These results indicate that the mechanism is strictly related 
to the changes in coordination chemistry of Li in the two electrolyte solutions.  In this presentation the 
origin and details of this reaction mechanism will be discussed [7]. 
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Figure 1. BF STEM images of Li dendrite deposits from Li-based electrolyte in (A) the absence  
of additive and (B) presence of additive showing the difference in dendrite growth mechanism.  
These phenomena demonstrate direct correlation between the heterogeneous dendrite growth and 
chemical composition of battery electrolyte as parameters controlling degradation process of Li-S 
battery. 
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