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Abstract. Given a countable group G and two subshifts X and Y over G, a continuous,
shift-commuting map φ : X → Y is called a homomorphism. Our main result states that
if G is locally virtually nilpotent, X is aperiodic, and Y has the finite extension property,
then there exists a homomorphism φ : X → Y . By combining this theorem with the main
result of [1], we obtain that if the same conditions hold, and if additionally the topological
entropy of X is less than the topological entropy of Y and Y has no global period, then X
embeds into Y.
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1. Introduction
Consider a countable group G and two subshifts X and Y over G. We are interested in
conditions that guarantee the existence of a continuous, shift-commuting map φ : X → Y ,
known as a homomorphism. The study of subshifts via the homomorphisms between them
has played a central role in symbolic dynamics (see [20] for an introduction). Indeed, when
G is the group of integers, the coding results known as Krieger’s embedding theorem
[17, Theorem 3] and Boyle’s lower entropy factor theorem [3, Theorem 2.5] serve as
cornerstone results in the study of subshifts of finite type (SFTs).

Several more recent results have developed the coding theory of SFTs over increasingly
general classes of groups (see, for example, [1, 5, 14, 18, 19, 23]), and the present work can
be viewed as continuing in this direction. More specifically, we are largely motivated by
recent efforts to generalize Krieger’s embedding theorem to more general groups. The first
such result, due to Lightwood [18], holds for G = Zd . For notation, we let h(X) denote
the topological entropy of a subshift X.
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THEOREM 1.1. (Lightwood [18]) If X is an aperiodic Zd subshift, Y is a Zd square-mixing
SFT which contains a finite orbit, and there exists a homomorphism φ : X → Y , then there
exists an embedding of X into Y if and only if h(X) < h(Y ).

Observe that in addition to the structural assumptions on X (aperiodicity) and Y
(square-mixing SFT with a finite orbit), this result contains the hypothesis that there
exists a homomorphism φ : X → Y . In an effort to find sufficient conditions to guarantee
that this hypothesis holds, Lightwood went on to establish the following complementary
theorem for G = Z2.

THEOREM 1.2. (Lightwood [19]) If X is an aperiodic Z2 subshift and Y is a Z2

square-filling mixing SFT, then there exists a homomorphism φ : X → Y .

Combining these two theorems, Lightwood obtained a Z2 generalization of Krieger’s
result in the setting where X is aperiodic and Y is square-filling mixing. We are not aware
of any other results that address the case G = Zd for d ≥ 3.

In more recent work, the first author established the following theorem for all countable
amenable groups with the comparison property [10, Definition 6.1], an algebraic property
based on the idea of dynamical comparison [15, Definition 3.2]. Many groups have
been shown to have the comparison property, including all countable ‘subexponential’
groups (that is, those not containing a finitely generated subgroup of exponential growth)
[10, Theorem 6.33].

THEOREM 1.3. (Bland [1]) Let G be a countable amenable group with the comparison
property. Let X be a non-empty aperiodic G subshift, and let Y be a strongly irreducible
SFT with no global period. If h(X) < h(Y ) and there exists a homomorphism φ : X → Y ,
then there exists an embedding of X into Y.

Observe that this theorem also contains the hypothesis that there exists a homomorph-
ism φ : X → Y . In an effort to establish sufficient conditions for this hypothesis to hold,
we establish the following theorem, which is our main result. For definitions, see §2.

THEOREM 1.4. Let G be a countable locally virtually nilpotent group. Let X be a
non-empty aperiodic G-subshift, and let Y be a non-empty G-subshift with the finite
extension property. Then there exists a homomorphism φ : X → Y .

The proof of this result appears in §5. We remark that this theorem provides conditions
for the existence of homomorphisms when G = Zd , for all d ∈ N, and in this sense it
can be viewed as a generalization of Lightwood’s result for Z2 (Theorem 1.2 above). We
remark that although the finite extension property (FEP) is similar in spirit to Lightwood’s
square-filling mixing property, the FEP is a stronger condition, and therefore Theorem 1.4
is not a proper generalization of Lightwood’s result.

By combining Theorem 1.4 with Theorem 1.3, we obtain the following embedding
theorem.
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COROLLARY 1.5. Let G be a countable locally virtually nilpotent group. Suppose X is a
non-empty aperiodic G-subshift and Y is a G-subshift with the finite extension property
and no global period. If h(X) < h(Y ), then X embeds into Y.

We note that the condition that Y has no global period is equivalent to the condition
that the shift action on Y is faithful. Additionally, we mention that if Y is a strongly
irreducible subshift with at least two points, then Y can only have a finite subgroup of
global periods (indeed, if K is a finite set witnessing the strong irreducibility of Y, then
{g ∈ G : for all y ∈ Y , σg(y) = y} ⊂ K).

The FEP has previously been defined for Zd subshifts [5], and it may be viewed as a
particularly strong mixing condition. Indeed, if X has the FEP, then X must be a strongly
irreducible SFT (Proposition 3.2). Nonetheless, there are many previously considered
systems that have the FEP, including full shifts, SFTs with a safe symbol, and SFTs with
single-site fillability (such as ‘checkerboard’ systems with sufficiently many colors). See
[4, 5, 21] for additional examples and discussion. It is known in general that if G is a
countable amenable group and X is a strongly irreducible SFT, then X is entropy minimal
(see [7, Proposition 1.2]). As a result, one may replace the last sentence of Corollary 1.5
with the following statement: X is conjugate to a strict subsystem of Y if and only if
h(X) < h(Y ).

Let us briefly discuss our hypotheses on the group G. It is a classical theorem of Gromov
that a finitely generated group G is virtually nilpotent if and only if G has polynomial
growth [12]. In our proofs, we use that a finitely generated virtually nilpotent group has
polynomial growth, and therefore it satisfies a property known as the doubling property
(see §2.1 for details). Although the doubling property appears similar in spirit to the
Tempelman condition [13, Definition 1.1], we do not know how to make our proofs work
with only the Tempelman condition in place of the doubling property. Additionally, we
do not know whether the conclusion of Theorem 1.4 holds for groups that are not locally
virtually nilpotent.

Finally, we mention that Meyerovitch has recently established an embedding theorem
for a class of subshifts of finite type over countable abelian groups [23]. In particular,
[23] defines a property called the map extension property and then gives necessary and
sufficient conditions for embedding an arbitrary G-subshift into a G-SFT with the map
extension property. We note that by results of Poirier and Salo [25], the finite extension
property is strictly more general than the map extension property (that is, the map extension
property implies the finite extension property, but the reverse is not true).

The paper is organized as follows. In §2 we provide all necessary definitions and
background. Section 3 contains our results concerning systems with the FEP. In §4 we
prove several preliminary results, in §5 we present the proof of Theorem 1.4, and in §6 we
provide a short proof of Corollary 1.5.

2. Background and notation
2.1. Countable groups. Let G be a countable group. If K ⊂ G is a finite, symmetric set,
then we let ρK denote the standard left-invariant word metric on the subgroup generated
by K, denoted by 〈K〉, and we let Bn(K) denote the ball of radius n centered at the identity
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4 R. Bland and K. McGoff

with respect to ρK . Note that if K contains the identity, then Bn(K) = Kn. We extend
ρK to all of G by setting ρK(g, h) = ρK(e, g−1h) if g−1h ∈ 〈K〉 and ρK(g, h) = ∞
otherwise. For any g ∈ G and any non-empty finite set S ⊂ G, we also define

distK(g, S) = min{ρK(g, s) : s ∈ S}.
A group G is finitely generated if there exists a finite subset K such that G = 〈K〉, in

which case we say that K is a generating set. Furthermore, a finitely generated group G
is said to have polynomial growth if there exist a finite generating set K and constants
C, d > 0 such that |Bn(K)| ≤ Cnd for all n ≥ 1. The infimum d0 ≥ 0 of all such d
for which this holds is called the order of the polynomial growth of G. Though the
growth function f (n) = |Bn(K)| depends on the generating set K, neither the property
of having polynomial growth nor the order of growth depends on the specific choice of
generating set.

As a consequence of Gromov’s theorem characterizing finitely generated groups with
polynomial growth as virtually nilpotent, it follows that the order d0 must be an integer
and, moreover, there exists a C > 0 such that nd0/C ≤ |Bn(K)| ≤ Cnd0 for all n ≥ 1.

Definition 2.1. Suppose G is finitely generated. We say that G has the doubling property
if for any finite symmetric generating set K ⊂ G, there exists a constant C depending on
K such that for any n ≥ 1, we have

|B2n(K)| ≤ C|Bn(K)|.
Remark 2.2. It is easy to see that if G has polynomial growth, then G satisfies the doubling
property. Indeed, if nd/C ≤ |Bn(K)| ≤ Cnd for all n, then

|B2n(K)| ≤ C(2n)d = 2dC2(nd/C) ≤ 2dC2|Bn(K)|.
In fact, the converse is also true: if G satisfies the doubling property, then G must
have polynomial growth, by the following argument. Suppose |B2n(K)| ≤ C|Bn(K)|
for all n ≥ 1, and suppose without loss of generality that C ≥ |B1(K)|. By induction,
|B2n(K)| ≤ Cn+1 for all n ≥ 0. Now let m ≥ 1 be arbitrary and set n = 
log2 m�. We then
have that

|Bm(K)| ≤ |B2n+1(K)| ≤ Cn+2 = C2(2n)log2 C ≤ C2mlog2 C .

This demonstrates that G must have polynomial growth of order at most 
log2 C�.
We conclude that the doubling property is equivalent to polynomial growth.

We conclude this subsection with a final bit of notation. For any countable group G, if
K ⊂ G is finite and E ⊂ G, then we let

intK(E) = {g ∈ E : gK ⊂ E}.

2.2. Symbolic dynamics. Let G be a countable group. For any finite non-empty set A
endowed with the discrete topology, we endow �(A) = AG with the product topology
and refer to it as the full shift on alphabet A. This makes �(A) into a compact, metrizable
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space. For each g ∈ G, we define σg : �(A) → �(A) by the following rule: for all
x ∈ AG and h ∈ G, let

σgx(h) = x(g−1h).

For each g ∈ G the map σg : �(A) → �(A) is a homeomorphism, and this collection
of maps {σg : g ∈ G} defines an action of G, called the shift action. Note that we use the
left action, which differs from some other work in symbolic dynamics on groups, such as
[1, 2, 8]. All results cited in this work can be stated equivalently in terms of right actions
or left actions. A set Z ⊂ �(A) is a subshift if it is closed and shift-invariant (meaning
that σg(Z) = Z for all g ∈ G).

For S ⊂ G, we refer to elements of AS as patterns, and if w ∈ AS , then we say that
w has shape S. If S′ ⊂ S ⊂ G and w ∈ AS , then we let w(S′) denote the pattern u ∈ AS′

such that u(s) = w(s) for all s ∈ S′. Additionally, for patterns u ∈ AE and v ∈ AF such
that u(g) = v(g) for all g ∈ E ∩ F , we let u ∪ v be the pattern in AE∪F such that
(u ∪ v)(g) = u(g) for all g ∈ E and (u ∪ v)(g) = v(g) for all g ∈ F . If E ∩ F = ∅, then
we may write u � v.

Let Z be a subshift. For a given pattern w ∈ AS we define the cylinder set [w] = {z ∈
Z : z(S) = w}. Next we define

LS(Z) = {z(S) : z ∈ Z}
and

L(Z) =
⋃
S⊂G

LS(Z).

We refer to L(Z) as the language of Z. Note that we allow S = ∅, so that the empty word
λ is in L(Z), and we allow S to be infinite, which differs from some definitions of the
language of a subshift. We also define an action of G on L(Z) as follows: for g ∈ G and
w ∈ AS , we let g · w be the element of AgS such that (g · w)(gs) = w(s) for all s ∈ S.

Let A and B be alphabets, and let Z be a subshift on A. For any non-empty finite subset
R ⊂ G, a block map with shape R is any function � : LR(Z) → B. To ease notation, if
S ⊂ G and u ∈ ASR , then we may let �(u) denote the pattern with shape S such that
�(u)(s) = �(s−1 · u(sR)) for all s ∈ S. A function φ : Z → �(B) is called a sliding
block code if there exists a block map � with some shape R such that for all z ∈ Z and all
g ∈ G, we have

(φ(z))(g) = �((g−1 · z)(R)).

If a block map � can be selected with shape R = {e} (in other words, if � may be viewed
as a function on the alphabets � : A → B), then φ is said to be a 1-block code.

A map φ : Z → �(B) is shift-commuting if σg ◦ φ = φ ◦ σg for all g ∈ G. By
the Curtis–Hedlund–Lyndon theorem [6, Theorem 1.8.1], a map φ : Z → �(B) is a
homomorphism (continuous and shift-commuting) if and only if φ is a sliding block code.

Suppose X and Y are subshifts and φ : X → Y is a homomorphism. We say that φ is
a factor map whenever it is surjective, and we say that φ is an embedding whenever it is
injective.
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For a finite shape K ⊂ G and a collection F ⊂ AK , we let

XF = {x ∈ AG : for all g ∈ G, σgx(K) /∈ F}.
A subshift X ⊂ AG is a shift of finite type if there exist a finite shape K ⊂ G and a
collection F ⊂ AK such that X = XF .

A subshift X is strongly irreducible if there exists a finite set K ⊂ G such that for
all shapes E, F ⊂ G and all patterns u ∈ LE(X) and v ∈ LF (X), if EK ∩ F = ∅, then
u ∪ v ∈ LE∪F (X).

For any point x ∈ AG and any g ∈ G \ {e}, we say that x has g as a period if σgx = x.
On the other hand, if σgx = x implies that g = e, then we say that x is aperiodic.
Furthermore, if a subshift X consists entirely of aperiodic points, then we refer to the
subshift as aperiodic. We note that some authors refer to such subshifts as strongly
aperiodic. Lastly, if there exists g ∈ G \ {e} such that every point of x has g as a period,
then we say that X has a global period.

Next we define the FEP for subshifts over countable groups G. We note that this
definition extends the definition of the FEP for Zd -subshifts given in [5, Definition 2.11].

Definition 2.3. Suppose G is a countable group. A G-subshift X with alphabet A has the
finite extension property if there exists a finite set K ⊂ G containing the identity element e
and a collection F ⊂ AK such that X = XF and for any F ⊂ G and any pattern w ∈ AF ,
if there exists w′ ∈ AFK such that w′(F ) = w(F) and g−1 · w(gK) /∈ F for all g ∈ F ,
then there exists x ∈ X such that x(F ) = w(F).

The FEP is a very strong property. Indeed, if X has the FEP, then X must be a strongly
irreducible G-SFT (Proposition 3.2). Additionally, we note that the FEP is invariant under
conjugacy (Proposition 3.1).

Remark 2.4. Here we mention a useful restatement of the FEP. Suppose G is a countable
group, the set K ⊂ G is finite and contains the identity element e, F ⊂ AK , and X = XF .
Then the following assertions are equivalent:
(i) X has the finite extension property with shape K and forbidden set F ;

(ii) for any S ⊂ G and any w ∈ AS , if w(S) contains no patterns from F (meaning
g−1 · w(gK) /∈ F for all g ∈ intK(S)), then w(intK(S)) ∈ L(X).

2.3. Entropy and invariant measures. Let G be an amenable group, and fix a Følner
sequence {Fn}∞n=1. Then for any non-empty G-subshift X, the topological entropy of X is
given by

h(X) = lim
n→∞

1
|Fn| log |LFn(X)|.

We note that this limit exists and is independent of the choice of Følner sequence (see the
book [16]). A subshift X is entropy minimal if all of its proper subsystems have strictly less
entropy, that is, for all subshifts Y � X, we have h(Y ) < h(X).

Let X be a G-subshift. We let M(X, σ) denote the set of Borel probability measures μ

on X such that μ(σg(A)) = μ(A) for all g ∈ G and all Borel sets A. Recall that for any
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pattern u ∈ LF (X), we let [u] denote the cylinder set defined by the condition x(F ) = u.
For such a measure μ, the entropy of μ is given by

h(μ) = lim
n→∞

1
|Fn|

∑
u∈LFn (X)

−μ([u]) log μ([u]),

where again the limit exists and is independent of the choice of Følner sequence (see [16]).
By the variational principle (see [16]), we have

h(X) = sup
μ∈M(X,σ)

h(μ).

Moreover, since X is a subshift, it is known that there exists μ ∈ M(X, σ) such that
h(μ) = h(X) (see [16]). Such measures are called measures of maximal entropy.

3. Properties of subshifts with the finite extension property
In this section we establish some basic properties of subshifts with the FEP. First, we show
that the FEP is invariant under conjugacy.

PROPOSITION 3.1. Suppose G is a countable group, X and Y are G-subshifts, and X and
Y are topologically conjugate. Then X has the finite extension property if and only if Y has
the finite extension property.

Proof. Suppose X has the FEP with shape K and forbidden set F ⊂ AK
X . Suppose

φ : X → Y is a topological conjugacy. Suppose φ has a block map �0 with block shape R0

and φ−1 has a block map �1 with block shape R1. We suppose without loss of generality
that R0 and R1 each contain the identity.

Let K ′ = R0KR1, and let F ′ ⊂ AK ′
Y be the set of all patterns u such that there exists

g ∈ R0 with the property that �1(g
−1 · u(gK)) ∈ F . We claim that Y has the FEP with

shape K ′ and forbidden set F ′.
To establish this claim, let E ⊂ G, and suppose that u ∈ AEK ′

Y has the property that for
all g ∈ E, we have g−1 · u(gK ′) /∈ F ′. Let v = �1(u) ∈ AER0K

X . By the definition of F ′
and our assumption on u, for all g ∈ ER0, we have g−1 · v(gK) = �1(g

−1 · u(gK ′)) /∈ F .
Since X has the FEP with shape K and forbidden set F , there exists a point x ∈ X

such that x(ER0) = v(ER0). Now let y = φ(x) ∈ Y . Furthermore, observe that
y(E) = �0(v(ER0)) = �0(�1(u(ER0R1))) = u(E), where we have used that �0 and
�1 are the block codes for the inverse maps φ and φ−1, respectively. Hence u(E) ∈ L(Y ),
and thus we have established that Y has the FEP, which concludes the proof.

Next we establish that any subshift with the FEP is a strongly irreducible SFT.

PROPOSITION 3.2. If X is a G-subshift with the finite extension property, then X is a
strongly irreducible G-SFT.

Proof. Suppose X has the FEP witnessed by a shape K (containing the identity) and a
set of forbidden patterns F ⊂ AK . Passing to a larger shape (with a corresponding set of
forbidden patterns) if necessary, we assume without loss of generality that K is symmetric.
Note that X is a G-SFT since X = XF .
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Next we claim that X is strongly irreducible with shape K4. Let E, F ⊂ G be shapes
such that EK4 ∩ F = ∅. Let u ∈ LE(X) and v ∈ LF (X). Since u and v are in the
language of the subshift, there exist extensions u′ ∈ LEK(X) and v′ ∈ LFK(X). Note that
EK ∩ FK = ∅, since EK2 ∩ F = ∅. Therefore w = u′ ∪ v′ is a well-defined pattern on
EK ∪ FK = (E ∪ F)K . We claim that every pattern in w of shape gK is in the language
of X, and therefore w contains no (translates of) patterns from F . Let gK ⊂ EK ∪ FK . If
gK ⊂ EK , then w(gK) = u′(gK) ∈ L(X), and similarly if gK ⊂ FK , then w(gK) =
v′(gK) ∈ L(X). If gK ∩ EK �= ∅ and gK ∩ FK �= ∅, then g ∈ EK2 and there exists
f ∈ F such that f ∈ gK2 ⊂ EK4, which is impossible since EK4 ∩ F = ∅. Thus, w
contains no (translates of) forbidden patterns from F . By the FEP, u ∪ v = w(E ∪ F) ∈
L(X), and hence there is a point x ∈ X such that x(E) = u and x(F ) = v, as desired.

Next we turn our attention to entropy minimality. It is known that strongly irreducible
SFTs are entropy minimal in great generality [7, Proposition 1.2]. However, in our setting
we only need the following case.

PROPOSITION 3.3. If G is a countable amenable group and X is a strongly irreducible
G-SFT, then X is entropy minimal. In particular, if X has the finite extension property, then
X is entropy minimal.

4. Preliminary quasi-tiling results
Quasi-tilings have played a significant role in recent work on symbolic dynamics (see,
for example, [1, 2, 8–11, 14, 22]). Here we present the following general definition of
quasi-tilings, which is suitable for our purposes.

Definition 4.1. Let S = {S1, . . . , Sr} be a finite collection of non-empty, finite subsets
of G, referred to as shapes. A quasi-tiling of G is an assignment of each shape
S ∈ S to a subset CS ⊂ G, referred to as the center set for S, such that the collection
of sets {CS : S ∈ S} is pairwise disjoint and the map (S, c) → cS is injective over
{(S, c) : S ∈ S and c ∈ CS}. For S ∈ S and c ∈ CS , the set cS is called the tile with
center c and shape S.

In this work we only require quasi-tilings with a single shape, and therefore we introduce
some more specific notation. Recall that there is a standard bijection between subsets
of G and elements of the full shift �({0, 1}), given by mapping a subset C ⊂ G to
its characteristic function χC (viewed as an element of �({0, 1})). Also, we note that
max(χA, χB) = χA∪B and min(χA, χB) = χA∩B , and therefore the operations of taking
unions or intersections of sets can be viewed as 1-block codes from � × � to �.

Definition 4.2. Let F be a finite subset of G. For any z = χC ∈ �({0, 1}), we say that
z is F-disjoint if the collection {cF }c∈C is pairwise disjoint, and z is F-covering if the
collection {cF }c∈C covers G. Furthermore, for any subshift Z ⊂ �({0, 1}), we say that
Z is F-disjoint if each element of Z is F-disjoint, and similarly Z is F-covering if each
element of Z is F-covering.

The use of quasi-tilings for the purposes of studying the dynamics of amenable
group actions dates back to the fundamental construction of Ornstein and Weiss
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[24, I.§2 Theorem 6]. A dynamical version of this construction was recently obtained
by Downarowicz and Huczek [8, Lemma 3.4], which derives a system of quasi-tilings as a
factor of a given aperiodic subshift. In the following proposition we construct quasi-tilings
suitable for our purposes, adapting the first part of the proof of [8, Lemma 3.4] (here we
require strict disjointness of the tiles, whereas in [8] some small overlap is allowed). We
provide a detailed proof for clarity and convenience.

PROPOSITION 4.3. Let G be a countable group. Suppose X is a non-empty aperiodic
G-subshift and F ⊂ G is a non-empty finite subset. Then there exists a homomorphism
φ : X → �({0, 1}) such that φ(X) is F-disjoint and FF−1-covering.

Proof. Let x0 ∈ X be arbitrary. Since x0 is aperiodic, there must exist a finite subset S0

such that x0(S0) �= σf x0(S0) for all f ∈ FF−1 \ {e}. Then choose S1 = FF−1S0 and let
ux0 = x0(S1). For any x1 ∈ [ux0 ] it must therefore hold that x1(S0) �= σf x1(S0) for all
f ∈ FF−1 \ {e}, and hence [ux0 ] ∩ σf −1

[ux0 ] = ∅ for all f ∈ FF−1 \ {e}. Repeat this
construction for all possible x = x0; the collection {[ux] : x ∈ X} is an open cover of X,
and therefore by compactness we may find a finite subcover U = {[u1], . . . , [un]} for some
n ≥ 1.

Now let x ∈ X be fixed. We shall construct a corresponding point z ∈ �({0, 1}). Let
C0 = ∅ and for each i ∈ [1, n] inductively define

Ci = {g ∈ G : σg−1
x ∈ [ui] and gFF−1 ∩ Ci−1 = ∅} ∪ Ci−1.

Let z = χCn
∈ �({0, 1}). We claim that the map φ : X → �({0, 1}) given by φ(x) = z

satisfies the conditions in the conclusion of the theorem. It remains to prove that z is
F-disjoint, z is FF−1-covering, and φ is a sliding block code.

To prove that z is F-disjoint, let g1 �= g2 ∈ Cn be arbitrary. We claim that
g1F ∩ g2F = ∅. Suppose to the contrary that there exist some f1, f2 ∈ F such
that g1f1 = g2f2 (note that f1 �= f2). Given that g1, g2 ∈ Cn, there must exist a
minimal n1, n2 ≥ 1 such that g1 ∈ Cn1 and g2 ∈ Cn2 . Without loss of generality,
assume that n1 ≤ n2. If n1 < n2 (in which case Cn1 ⊂ Cn2−1 by construction), then by
construction it must hold that g2FF−1 ∩ Cn2−1 = ∅, but this contradicts the fact that
g2f1f

−1
2 = g1 ∈ Cn1 . Otherwise, if n1 = n2, then σg−1

1 x, σg−1
2 x ∈ [un1 ]. Moreover, from

g1f1 = g2f2 we see that g−1
2 = f2f

−1
1 g−1

1 . Set x0 = σg−1
1 x ∈ [un1 ], and notice that

σf2f
−1
1 x0 = σg−1

2 x ∈ [un1 ]; however, this contradicts the fact that [un1 ] ∩ σf −1
[un1 ] = ∅

for all f ∈ FF−1 \ {e} by construction of U . We derive a contradiction in either case, and
therefore g1F ∩ g2F = ∅ must hold. We conclude that z is F-disjoint.

To prove that z is FF−1-covering, let g ∈ G be arbitrary. Because U covers X, there
must exist an i ∈ [1, n] such that σg−1

x ∈ [ui]; choose and fix a minimal such i. If g ∈ Cn,
then note that g ∈ gFF−1 (since e ∈ FF−1), and hence g ∈ ⋃

c∈Cn
cFF−1, as desired.

Otherwise, we must have that σg−1
x ∈ [ui] and gFF−1 ∩ Ci−1 �= ∅. In this case, there

exists a c ∈ Ci−1 such that c ∈ gFF−1, which gives g ∈ cFF−1, as desired. In either
case, we see that there must exist a c ∈ Cn such that g ∈ cFF−1, and we conclude that z
is FF−1-covering.
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Finally, let us show that φ : X → �({0, 1}) is a sliding block code. Suppose the
patterns {u1, . . . , un} that make up U have corresponding shapes S1, . . . , Sn ⊂ G. Let
R0 = ∅, and for each i ∈ [1, n], inductively define Ri = Si ∪ FF−1Ri−1. We shall argue
inductively that for each i ≥ 1, there is a block map �i : LRi

(X) → {0, 1} that witnesses
the sliding block code property for the map x �→ χCi

. We note that the existence of such a
block map is equivalent to the existence of a procedure which correctly decides, for each
fixed x and g, whether g ∈ Ci based solely on the pattern σg−1

x(Ri). Below we describe
such a procedure.

For i = 1, note that g ∈ C1 if and only if σg−1
x ∈ [u1], which can be determined

from the pattern σg−1
x(R1) = σg−1

x(S1). Now suppose for induction that i > 1 is
fixed and there is a procedure to decide whether g ∈ Ci−1 from σg−1

x(Ri−1) for each
x and g. Note that g ∈ Ci if and only if σg−1

x ∈ [ui] and gFF−1Ci−1 = ∅. The first
condition can be decided from σg−1

x(Si). To decide the second, it is sufficient to
check whether gf1f

−1
2 ∈ Ci−1 for each f1, f2 ∈ F . By induction, this condition can

be determined from σ (gf1f
−1
2 )−1

x(Ri−1), and therefore knowledge of σg−1
(FF−1Ri−1)

suffices. Hence it is possible to determine whether g ∈ Ci based on knowledge of
σg−1

x(Ri) = σg−1
x(Si ∪ FF−1Ri−1), completing the induction and the proof.

The following key lemma uses the doubling property to control the number of balls with
large disjoint interiors that can intersect at a single group element. We apply this lemma
in our proof of Theorem 1.4 to bound the number of stages necessary for our inductive
argument.

LEMMA 4.4. Suppose G is a countable group and K is a finite symmetric set that contains
the identity and satisfies the doubling property (for the subgroup 〈K〉) with constant
C0 = C0(K). Let m0 ≥ C2

0 and n0 ∈ N. Suppose Z ⊂ �({0, 1}) is a subshift that is
Kn0-disjoint. Then for all z = χC ∈ Z, for all n ∈ [0, n0], and for all g ∈ G, we have

|{c ∈ C : distK(g, cK2n0) ≤ n}| ≤ m0.

Proof. Let S = {c ∈ C : distK(g, cK2n0) ≤ n}, and suppose |S| = m. Then for each
c ∈ S, we have ρK(g, c) ≤ 2n0 + n ≤ 3n0 (where we have used the hypothesis that
n ≤ n0). Since z is Kn0 -disjoint, the collection {cKn0}c∈S is a disjoint collection of balls
of radius n0 with respect to ρK , and they are contained in the ball gK4n0 . Hence we have

m|Bn0(K)| ≤ |B4n0(K)|.
Dividing by |Bn0(K)| and using the hypotheses on C0 and m0, we conclude that

m ≤ |B4n0(K)|
|Bn0(K)|

≤ |B2n0(K)|
|Bn0(K)| · |B4n0(K)|

|B2n0(K)|
≤ C2

0

≤ m0.
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5. Proof of Theorem 1.4
Here we begin the proof of Theorem 1.4. For convenience, we provide a restatement of the
theorem.

THEOREM 1.4. Let G be a countable locally virtually nilpotent group. Let X be a
non-empty aperiodic G-subshift, and let Y be a non-empty G-subshift with the finite
extension property. Then there exists a homomorphism φ : X → Y .

Suppose G, X and Y satisfy the hypotheses of the theorem. Let K ⊂ G be a finite
symmetric set containing the identity and witnessing both the FEP and the strong
irreducibility of Y. Let F ⊂ AK be a set of forbidden patterns witnessing the FEP
of Y. Since the group generated by K is a finitely generated subgroup of G, it has
polynomial growth (by Gromov’s theorem) and therefore satisfies the doubling property.
Let C0 = C0(K) be a constant witnessing the doubling property on 〈K〉. Choose a natural
number m0 such that m0 ≥ C2

0 , and let n0 = 3m0.
Let F = Kn0 , and note that by the symmetry of K we have F−1 = Kn0 . By

Proposition 4.3, there exists a homomorphism φ0 : X → �({0, 1}) such that φ0(X) is
Kn0 -disjoint and K2n0 -covering. Let Z = φ0(X).

The remainder of the proof involves constructing a homomorphism φ1 : Z → Y ,
which we organize as follows. First, given z ∈ Z, we inductively construct pairs
of sets (U1, V1), . . . , (Um0 , Vm0), where Um, Vm ⊂ G for each m = 1, . . . , m0 and
Um0 = Vm0 = G. Then we use the FEP to construct patterns on each Um and Vm, and
we define φ1(z) to be the pattern constructed on Vm0 .

5.1. The sets Um and Vm. The construction of the sets Um and Vm proceeds by induction
on m, with m0 stages in total, but first we define some helpful notation. For each
z = χC ∈ Z, g ∈ G, and n ≥ 0, let

degz
n(g) = |{c ∈ C : distK(g, cK2n0) ≤ n}|.

We easily observe that degz
n(g) ≤ degz

n+1(g), and since z is K2n0 -covering, we have
degz

0(g) ≥ 1 for all g ∈ G. Next, for each n ≥ 0 and m ≥ 0, we define the set

Ez
m,n = {g ∈ G : degz

n(g) ≤ m}.
Observe that by Lemma 4.4, we have Ez

m0,n0
= G for all z ∈ Z.

Now let z = χC ∈ Z be fixed, and let us inductively construct some sets Um = Um(z)

and Vm = Vm(z) for m = 1, . . . , m0. To ease notation, let Em,n = Ez
m,n and degn = degz

n.
For all c ∈ C, we let

Tc = cK2n0 ∩ E1,2.

For m = 1, we set

U1 =
⋃
c∈C

Tc
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and

V1 = intK(U1).

Now suppose by induction that 1 < m ≤ m0 and Um−1 and Vm−1 have been defined. For
notation, let Cm = Cm(z) denote the set of subsets of C of cardinality exactly m. For each
S ∈ Cm, we let

T̃S =
⋂
c∈S

cK2n0+3m−3

and

TS = T̃S ∩ Em,3m−1.

Then we define

Um =
( ⋃

S∈Cm

TS

)
∪ Vm−1

and

Vm = intK(Um).

This completes the inductive definition of the sets Um and Vm for m = 1, . . . , m0. For an
illustration of the construction, see Figure 1. The following three lemmas describe some
properties of these sets.

LEMMA 5.1. For each m ∈ [1, m0], the collection {TSK}S∈Cm
is pairwise disjoint.

Proof. Suppose 1 ≤ m ≤ m0 and we have TSK ∩ TS′K �= ∅ for some S, S′ ∈ Cm.
Then there exists g ∈ TS such that g ∈ TS′K2. Since g ∈ TS ⊂ T̃S , we see that
distK(g, cK2n0) ≤ 3m − 3 for all c ∈ S, and thus m ≤ deg3m−3(g) ≤ deg3m−1(g).
Furthermore, since g ∈ TS ⊂ Em,3m−1, we have that deg3m−1(g) ≤ m, and therefore
deg3m−1(g) = m. By definition, this means that there are exactly m elements c ∈ C
such that dist(g, cK2n0) ≤ 3m − 1. Now since g ∈ TS′K2, for each c ∈ S′, we get
distK(g, cK2n0) ≤ (3m − 3) + 2 = 3m − 1. Since |S| = |S′| = m and dist(g, cK2n0) ≤
3m − 1 for all c ∈ S ∪ S′, we must have that S = S′.

LEMMA 5.2. For each m ∈ [1, m0], we have

Um ⊃ Em,3m−1 (1)

and

Vm ⊃ Em,3m. (2)

Proof. We proceed by induction on m. For the base case (m = 1), since {cK2n0}c∈C
covers G, we get

U1 =
⋃
c∈C

Tc =
⋃
c∈C

cK2n0 ∩ E1,2 =
( ⋃

c∈C
cK2n0

)
∩ E1,2 = E1,2.
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a b

dc

e f

FIGURE 1. An illustration of the construction of U1, V1, U2, V2, and U3 in a hypothetical case where G = Z2 is
tiled by circles.

Furthermore, for each c ∈ C, we have

intK(cK2n0 ∩ E1,2) ⊃ cK2n0 ∩ E1,3.

Then we obtain that

V1 = intK(U1)

⊃
⋃
c∈C

intK(cK2n0 ∩ E1,2)

⊃
⋃
c∈C

cK2n0 ∩ E1,3
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=
( ⋃

c∈C
cK2n0

)
∩ E1,3

= E1,3,

where we have again used that {cK2n0}c∈C covers G.
Now assume by induction that (1) and (2) hold for some m < m0. Then

Um+1 =
( ⋃

S∈Cm+1

TS

)
∪ Vm ⊃

( ⋃
S∈Cm+1

T̃S ∩ Em+1,3m+2

)
∪ Em,3m, (3)

where we have used the inductive hypothesis (2).
Let g ∈ Em+1,3m+2. If deg3m(g) ≤ m, then g ∈ Em,3m ⊂ Um+1 by (3). Suppose

instead that deg3m(g) > m. Then we have that deg3m(g) = m + 1, since deg3m(g) ≤
deg3m+2(g) ≤ m + 1. Then there exists S ∈ Cm+1 such that

g ∈
( ⋂

c∈S

cK2n0+3m

)
∩ Em+1,3m+2 = T̃S ∩ Em+1,3m+2 ⊂ Um+1,

where we have again used (3). This verifies (1) for m + 1.
Finally, let g ∈ Em+1,3m+3. Then gK ⊂ Em+1,3m+2 ⊂ Um+1. Hence g ∈ intK(Um+1),

which establishes (2) for m + 1 and completes the induction.

LEMMA 5.3. Vm0 = G.

Proof. By Lemma 5.2 and our choice of n0, we have Vm0 ⊃ Em0,3m0 = Em0,n0 . By
Lemma 4.4, for all g ∈ G, we have degn0

(g) ≤ m0. Hence G = Em0,n0 ⊂ Vm0 .

5.2. The homomorphism φ1 : Z → Y . In this section we describe how to use the FEP
and the sets constructed in the previous section to define the desired homomorphism. To
begin, we construct a type of block map to be used in the construction that follows. Let
D be the set of all tuples (A, F , v) such that e ∈ A ⊂ K6n0 , F ⊂ K6n0 , and v ∈ LF (Y ).
Note that we allow tuples of the form (A, ∅, λ), where λ is the empty word. We now
construct a map that extends globally allowed patterns on F to globally allowed patterns
on A ∪ F . More precisely, we claim that there is a map � : D → L(Y ) satisfying the
following conditions:

(i) if (A, F , v) ∈ D, then �(A, F , v) is in LA(Y );
(ii) the concatenation �(A, F , v) ∪ v is well defined and contained in LA∪F (Y );

(iii) if (A, F , v) and (gA, gF , g · v) are both in D, then �(gA, gF , g · v) = g ·
�(A, F , v).

Let us construct such a map. First note that K10n0 is a finite set, and therefore D is
a finite set. Next, define an equivalence relation on D as follows: for (A1, F1, v1) and
(A2, F2, v2) ∈ D, we set (A1, F1, v1) ∼ (A2, F2, v2) whenever there exists g ∈ G such
that (A1, F1, v1) = (gA2, gF2, g · v2). Note that this is indeed an equivalence relation. Let
{C1, . . . , Cr0} be the partition of D into equivalence classes. For each r ∈ {1, . . . , r0},
choose (Ar , Fr , vr) from Cr arbitrarily. Since vr ∈ L(Y ), there exists a point yr ∈ Y

such that yr(Fr) = vr . Define �(Ar , Fr , vr) = yr(Ar). Now let (gAr , gFr , g · vr) be an
arbitrary element of Cr . We define �(gAr , gFr , g · vr) = g · �(Ar , Fr , vr). This defines
� on all of D, and we note that properties (i)–(iii) hold by construction.
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Now we define a map φ1 : Z → Y . For each z = χC ∈ Z, the map is defined inductively
in m0 stages. At stage m, we first define a configuration on Um = Um(z) that contains no
forbidden patterns from Y (that is, it is locally allowed), and then we define a configuration
on Vm = Vm(z) that appears in a point in Y (that is, it is globally allowed).

To begin the induction, let m = 1. Note that for each c ∈ C, we have e ∈ c−1Tc ⊂ K2n0 .
Let Ac = c−1Tc. Then (Ac, ∅, λ) ∈ D, and we let pc = c · �(Ac, ∅, λ) ∈ LTc (Y ). By the
disjointness of {TcK}c∈C (Lemma 5.1), the concatenation u1 = �pc is well defined and
contains no forbidden patterns. Note that u1 has domain U1 and V1 = intK(U1). Then
by the FEP there is a point y1 ∈ Y such that y1(V1) = u1(V1) (where we have used the
equivalent characterization of the FEP in Remark 2.4). Let v1 = u1(V1), and note that
v1 ∈ LV1(Y ).

Now suppose by induction that for some 1 < m ≤ m0 we have constructed a configura-
tion vm−1 ∈ LVm−1(Y ). Consider an arbitrary non-empty TS with S ∈ Cm. Choose g ∈ TS

arbitrarily. (We argue below that the definition of the pattern pS does not depend on this
choice.) Let AS = g−1TS , and let

FS =
( ⋃

c∈S

cK2n0+3m−3
)

∩ Vm−1.

Let wS = vm−1(FS). We claim that (AS , g−1FS , g−1 · wS) ∈ D. To prove the claim, first
note that by definition of TS , for all g′ ∈ TS and c ∈ S, we have ρK(g′, c) ≤ 2n0 + 3m −
3 ≤ 3n0. Then by the triangle inequality for ρK , for all g′ ∈ TS we have ρK(g, g′) ≤ 6n0,
and hence ρK(e, g−1g′) ≤ 6n0. This inequality gives that AS ⊂ K6n0 . Now let g′ ∈ FS .
Then there exists c ∈ S such that ρK(c, g′) ≤ 2n0 + 3m − 3 ≤ 3n0. Again using the
triangle inequality for ρK , we get ρK(g, g′) ≤ 6n0, and therefore ρK(e, g−1g′) ≤ 6n0.
This inequality gives that FS ⊂ K6n0 . Since wS is in LFS

(Y ), we have now verified our
claim that (AS , g−1FS , g−1 · wS) ∈ D.

Now let pS = g · �(AS , g−1FS , g−1 · wS), and note that the concatenation pS ∪ wS

is well defined and contained in LTS∪FS
(Y ) by properties (i) and (ii) of �.

Furthermore, we claim that pS is independent of the choice of g ∈ TS . To prove
the claim, first observe that for h ∈ TS , the argument in the previous paragraph
gives that (h−1TS , h−1FS , h−1 · wS) ∈ D. Then by property (iii) of �, we get
�(h−1TS , h−1FS , h−1 · wS) = h−1g · �(g−1TS , g−1FS , g−1 · wS), and therefore h ·
�(h−1TS , h−1FS , h−1 · wS) = g · �(g−1TS , g−1FS , g−1 · wS) = pS .

Now observe that the concatenation

um =
⋃

S∈Cm

pS ∪ wS =
( ⋃

S∈Cm

pS

)
∪ vm−1

is well defined and contains no forbidden patterns (using Lemma 5.1). Also, the shape
of um is Um and we have Vm = intK(Um). Then by the FEP, there exists ym ∈ Y such
that ym(Vm) = um(Vm). Let vm = um(Vm), and note that vm ∈ L(Y ). This completes the
induction.

Finally, to define the map φ1 : Z → Y at the point z, we set φ1(z) = vm0 , which is
defined on all of G by Lemma 5.3 and contained in Y by construction. It remains to show
that φ1 is continuous and shift-commuting.
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LEMMA 5.4. The map φ1 : Z → Y constructed in this manner is a homomorphism.

Proof. First, observe that for all n ∈ [0, n0], we have distK(g, cK2n0) ≤ n if and only if
c ∈ gK2n0+n, and therefore the map z �→ degz

n can be written as a sliding block code
with shape K3n0 . Hence, for all m ∈ [1, m0] and n ∈ [0, n0], the map z �→ χEz

m,n
can be

written as a sliding block code with shape K3n0 . Next, since σgz = χgC , we have that
Cm(σgz) = g Cm(z). Furthermore, for all n ∈ [0, n0] and all g ∈ G, for any collection of
m ≤ m0 group elements g1, . . . , gm ∈ G, we have

g ∈
m⋂

j=1

gjK
2n0+n ⇐⇒ for all j = 1, . . . , m, gj ∈ gK2n0+n.

Since the latter condition is determined by gK3n0 , we conclude by induction on m that the
maps z �→ χUm(z) and z �→ χVm(z) can be written as sliding block codes. Finally, we note
that at each stage of the induction, any symbol defined in um and vm at g ∈ G is determined
in a shift-commuting manner by the sets Cm, Um, and Vm, along with the pattern vm−1,
all restricted to the shape gK6n0 . Since there are only m0 stages of the induction (for all
z ∈ Z), we obtain that the map φ1 is a sliding block code and hence a homomorphism.

6. Proof of Corollary 1.5
Finally, we present a short proof of Corollary 1.5 by combining Theorems 1.3 and 1.4.
We only need to quickly check that the hypotheses of Theorem 1.3 are implied by the
hypotheses and the conclusion of Theorem 1.4. For convenience, we provide a restatement
of Corollary 1.5.

COROLLARY 1.5. Let G be a countable locally virtually nilpotent group. Suppose X is a
non-empty aperiodic G-subshift and Y is a G-subshift with the finite extension property
and no global period. If h(X) < h(Y ), then X embeds into Y.

Proof. We claim first that the hypotheses imply that G is amenable. First, note that a
group is amenable if and only if all of its finitely generated subgroups are amenable, since
amenability is preserved under taking subgroups and directed unions; and that any finitely
generated group of subexponential growth is amenable. Thus, G is amenable since every
finitely generated subgroup of G is of subexponential growth (by Gromov’s theorem).
Furthermore, since every finitely generated subgroup of G has subexponential growth, G
also satisfies the comparison property [10, Theorem 6.33].

Next we note that since Y satisfies the FEP, it follows that Y is a strongly irreducible
SFT (Proposition 3.2). Given that X is aperiodic, Theorem 1.4 gives a homomorphism
φ : X → Y . Given also that h(X) < h(Y ) and Y has no global period, we see that every
hypothesis of Theorem 1.3 is satisfied. Thus, there exists an embedding of X into Y.
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