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Abstract: The water quality index (WQI) has emerged as a central way to convey 
water quality information to policy makers and the general public and is regu-
larly used in US EPA regulatory impact analysis. It is a compound indicator that 
aggregates information from several water quality parameters. Several recent 
studies have criticized the aggregation function of the EPA WQI, arguing that it 
suffers from “eclipsing” and other problems. Although past papers have com-
pared various aggregation functions in the WQI (usually looking at correlation), 
this is the first paper to examine these functions in the context of benefit-cost 
analysis. Using data from the 2003 EPA CAFO rule, the present paper examines 
four aggregation functions and their impact on estimated benefits. Results indi-
cate that the aggregation method can have a profound effect on benefits, with 
total benefit estimates varying from $82 million to $504 million dollars. The net 
benefits of the rule vary from negative to positive over this range of estimates. 
Furthermore, a sensitivity analysis does not find convincing evidence to substi-
tute the current aggregation function, although several changes to the underlying 
WQI methodology may be warranted.
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1  Introduction
There are several laws and regulations that require the quantification of water 
quality changes. For instance, the EPA is required to do benefit-cost analysis on 
economically significant rules, which requires quantification and monetization.1 
Additionally, Section 303(d) of the Clean Water Act requires states to report water 

1 See OMB’s Circular A-4 for additional information: http://www.whitehouse.gov/omb/circu-
lars_a004_a-4/.
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quality conditions to the EPA. The quantification of water quality changes is inher-
ently problematic; however, since there are a range of water quality indicators to 
choose from, which can vary in importance over geographic regions and repre-
sent different aspects of quality. Furthermore, it can be difficult to convey relevant 
water quality information to policy makers and the general public, who do not 
always have technical knowledge about the components of waterbody health.

To overcome these obstacles, analysts developed a Water Quality Index 
(WQI) (Brown, McClelland, Deininger and Tozer, 1970) to transmit complex water 
quality information. The EPA has used the WQI for the past few decades to quan-
tify and monetize water quality changes in several of its Regulatory Impact Analy-
ses (RIAs). It has also been used in multiple stated preference studies of water 
quality precisely because it easily communicates water quality information to a 
wide range of people.

The WQI is a composite indicator that combines information from multiple 
water quality parameters into a single overall value (on a 0–100 scale). This indi-
cator has seen widespread use since its inception and is employed by multiple 
states and countries (Ott, 1978; Pesce and Wunderlin, 2000; Prakirake, Chaipra-
sert and Tripetchkul, 2009; Taner Üstün and Erdinçler, 2011). Creating the WQI 
involves three main steps (U.S. EPA, 2009): [1] obtain measurements on individual 
water quality indicators, [2] transform measurements into “subindex” values to 
represent them on a common scale, [3] aggregate the individual subindex values 
into an overall WQI value.

Given the widespread use of the WQI over three decades, it is surprising 
that more attention has not been paid to the construction of the index. A few 
sources have criticized EPA’s current approach to step [3] (Dojlido et al., 1994; 
Cude, 2001), where the geometric mean is used to aggregate the subindex values, 
and others have proposed variations of the WQI (Landwehr and Deininger, 1976; 
Smith, 1990; Swamee and Tyagi, 2000; Gupta, Gupta and Patil, 2003). However, 
no past papers have examined the impact of WQI construction on benefit-cost 
analysis. The present paper demonstrates the effect of using four different WQI 
aggregation functions – the geometric, arithmetic, and harmonic means, and the 
minimum operator – on a benefit-cost analysis of a past EPA rule. Data from the 
EPA CAFO Rule (U.S. EPA, 2003a) is used to calculate national benefits under the 
four variations. Results indicate that the aggregation function can have a pro-
found impact on the estimated benefits of the rule; yielding a range of $82 million 
to $504 million dollars. In fact, the choice of indicator determines whether the 
net monetized benefits of the CAFO Rule are negative or positive. Additionally, 
a sensitivity analysis supports the continued use of the geometric mean, while 
recognizing that several steps in the construction of the WQI need to be updated.
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2  Background
In the latter half of the 20th century the United States initiated an expansive effort 
to protect and improve the nation’s clean water, including the passage of the 
Federal Water Pollution Control Act (1948), the Clean Water Act (1972, with major 
amendments in 1977), and the Safe Drinking Water Act (1974). In order to justify 
the billions of dollars to be spent on water pollution programs and maintain 
public and private support, it quickly became clear that a method of communicat-
ing progress on program goals was needed (McClelland, 1974). Although several 
indices had been in use by state and regional entities already, the National Sani-
tation Foundation (NSF) was tasked with developing a tool that could be used 
more broadly, with the following objective: the method was to have a uniform, 
comprehensible format, which transparently conveyed progress in attaining 
program objectives. The main purpose of the tool was to communicate “water 
quality information to the lay public and to legislative decision makers.” It was 
not intended to be used as a technical or scientific predictive model (McClelland, 
1974). The NSF WQI was officially defined in Brown et al. (1970).

2.1  Use of the WQI in valuation

The WQI has since become one of the chief ways to communicate information 
about water quality, and is regularly used in the economic valuation literature. 
The WQI was regularly employed by early stated preference valuation studies 
because it can communicate complex water quality information to the general 
public. Pretesting and focus groups have indicated that survey participants 
can understand the WQI more easily than when individual pollutants are used 
(Carson and Mitchell, 1981; Eom and Larson, 2006).2

The WQI was first applied in water quality valuation studies by Mitchell and 
Carson (1989) and Smith and Desvousges (1986).3 Both of these studies relied on 
Vaughan’s (1981) transformation of the WQI into the water quality ladder (WQL) as 
an aid to respondents in their surveys. The WQL divides the 0–100 WQI range into 

2 While there is only limited evidence regarding how the general public perceives individual 
water quality measures, the evidence that does exist suggests that the linkage between objec-
tive water quality measures and perceived water quality is not always strong (see Binkley and 
Hanemann, 1978; Pendleton, Martin and Webster, 2001; Hoyer, Brown and Canfield Jr, 2004; 
Jeon, Herriges Kling and Downing, 2005). The adaptation of indexes to summarize water quality 
for the general public hopefully helps fill this gap.
3 In stated preference surveys administered in 1980 and 1981, respectively.
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five “designated use” classifications and was designed to better connect water 
quality information to policy goals.4 Since these surveys, the WQI and the WQL 
have continued to be used in valuation surveys (Eom and Larson, 2006), while 
similar compound indices have been used in other stated preference studies 
(Johnston, Schultz, Segerson, Besedin and Ramachandran, 2012). The WQI has 
been used so often in stated preference studies that it has been applied to organ-
ize meta-analyses (Johnston, Besedin and Wardwell, 2003; van Houtven, Powers 
and Pattanayak, 2007) and benefit transfers (van Houtven, Pattanayak, Patil and 
Depro, 2011).

2.2  Indicators in the WQI

Over several iterations of the WQI since the 1970s, multiple water quality param-
eters have been used. Ideally, parameters which are both targeted by policy and 
representative of waterbody health would be used in the index. Under the Clean 
Water Act, states are required to biennially assess the attainment of designated 
uses in their waters and identify the sources of any impaired waterbodies.5 Water 
quality problems from non-point sources, such as oxygen depletion, nutrients, 
and pathogens have consistently been cited in these reports as the primary causes 
of water quality impairment in the U.S. since the late 1970s.6

In light of the variety of state and national standards on water pollution, an 
assortment of water quality parameters have been used in past WQIs. Table 1 con-
tains descriptions of the main water quality parameters commonly encountered, 
including dissolved oxygen (DO); biological oxygen demand (BOD); nutrients; 
sediment, silt and total suspended solids (TSS); pH; bacteria and pathogens; and 
temperature. The WQI is normally applied at a relatively fine spatial scale. For 
instance, McClelland (1974) calculated the WQI at individual monitoring stations. 
Recent EPA studies evaluate it at a similar spatial scale, normally the “reach” 
level (essentially an individual segment of a river or stream). Applying the WQI 
at this fine geographic level allows it to better account for spatial heterogeneity 
in quality.

4 Designated uses are frequently used by states in water quality policy. The five designated uses 
in the WQL are: (1) acceptable for boating, (2) acceptable for rough fishing, (3) acceptable for 
game fishing, (4) acceptable for swimming, and (5) acceptable for drinking.
5 The EPA website http://water.epa.gov/lawsregs/guidance/cwa/305b/index.cfm has these  
assessments since 1992. Earlier reports are available from EPA’s National Service Center for  
Environmental Publications at http://www.epa.gov/nscep/index.html.
6 A lack of a consistent reporting method in these reports prevents a quantitative presentation.
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Table 1 Parameters used in past WQIs.

Pollutant 
class

Measured as Description

Low oxygen Dissolved 
oxygen (DO),  
biological 
oxygen 
demand 
(BOD)

Oxygen in the water column is necessary for fish and other 
aquatic organisms and is generally measured in two ways; 
the first is dissolved oxygen (DO), a direct measurement. 
Some species can tolerate low DO but most desirable fish 
species need 3 or 4 mg/l while larvae and juveniles even 
more sensitive. Adults and juveniles can usually tolerate 
short time periods of low DO but prolonged episodes of low 
DO can create dead zones. The other measurement of oxygen 
is biological oxygen demand (BOD). Organic wastes (such as 
sludge and biosolids) are broken down in water by oxygen 
using-microorganisms; BOD is the amount of oxygen needed 
by these organisms. Water polluted by organic waste (or the 
creation of organic waste by toxics killing aquatic vegetation) 
will lead to growth in the population of the microorganisms 
as they feed, increasing BOD (and denying oxygen to other 
species). Low DO and high BOD can be caused by agricultural 
runoff (fertilizers and manure), municipal sewage, and other 
organic wastes

Temperature Temperature Not only do fish species require water in a certain temperature 
range to live, higher temperature can also increase BOD by 
stimulating microorganisms and fish respiration

Nutrients Nitrogen (N), 
phosphorus 
(P)

Excess nutrients (nitrogen and phosphorus) can overstimulate 
the growth of aquatic vegetation and algae, which can clog 
waters, choke off submerged aquatic vegetation, and lead to 
oxygen depletion. Excess nutrients can come from agricultural 
and urban runoff (e.g., fertilizer from lawns); and municipal 
wastewater treatment plants

Sediment, 
Clarity

Total 
suspended 
solids (TSS), 
Clarity

Too much sediment (and silt) can suffocate eggs and larvae, 
interfere with recreational activities by reducing water clarity 
and filling in waterbodies, and may carry attached nutrients 
and toxic pollutants. Sediment and silt can be measured 
as total suspended solids, total dissolved solids, or their 
sum, total solids. Clarity can also be measured directly in 
turbidity units or via a Secchi disk, a standardized tool used 
to measure clarity depth. Sediments result from erosion of 
agricultural and urban nonpoint sources

Bacteria and 
pathogens

Fecal  
coliform,  
E. coli

Bacteria and pathogens such as fecal coliform and E. coli 
cause illnesses in humans (through direct contact or ingestion 
of water or shellfish). These pathogens come from municipal 
wastewater treatment plants, combined sewer overflows, 
urban stormwater, and livestock runoff. Because there are 
numerous pathogens, fecal coliform or E. coli are often used 
as an indicator of the presence of other pathogens
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2.3  WQI construction

There are currently two main types of WQI: relative and absolute. Relative indices 
focus on the achievement of legislated thresholds or criteria. For example, Car-
ruthers and Wazniak (2004) formulate a WQI based on the achievement of eco-
system criteria. Several binary variables, indicating criteria achieved or not, are 
averaged together to form their WQI. Absolute indices, on the other hand, are 
independent of criteria or thresholds, and wholly based on water quality meas-
urements. The present paper focuses on absolute indices, since they can be 
applied more broadly than relative indices and are more commonly used by the 
EPA and other environmental agencies.

Ott (1978) reviewed the existing indices and literature and formulated a list of 
20 criteria for an ideal WQI, which are contained in Table 2. Although no index is 
expected to meet all 20 (particularly since some of them could be contradictory), 
they provide a set of dimensions along which WQIs can be evaluated. The criteria 
are relatively expansive, and different weight should be given to different criteria. 
Consequently, they do not provide an objective method of evaluation, but they 
at least provide a model to aspire towards, where a wide number of violations 
indicate distance from the ideal.

One of the earliest WQIs appeared in Horton (1965), which developed a com-
pound index of 10 water quality variables. This was the first paper to outline the 
three main steps for WQI construction discussed earlier: [1] select quality char-
acteristics and obtain measurements, [2] establish a rating scale for each charac-
teristic and transform observations into subindex values, and [3] select a weight-
ing method and aggregate individual subindex values into one index number. 
Horton’s approach to steps [1] and [2] was rather arbitrary, so the index was not 
useful for policy analysis. For step [3], Horton used the arithmetic aggregation 

Pollutant 
class

Measured as Description

pH 0–14 Scale The pH scale measures how acidic or basic (or alkaline) a 
water body is. A low score indicates acidity, a high score  
indicates basic, and a score of seven is neutral. Many  
biological processes cannot occur in excessively acidic or 
basic conditions. Problems with pH can be typically caused by 
mine drainage and tailings; and atmospheric deposition

(Table 1 Continued)
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function (or mean), but with temperature and “obvious pollution” entering mul-
tiplicatively, as seen in equation (1)7:

			   WQIHorton=WQIA*T*O� (1)

where temperature is T, obvious pollution is O, and WQIA is the arithmetic weight-
ing of the other water quality variables, illustrated in equation (2):

1

n
A i ii

WQI q w
=

=∑ �
(2)

In (2), qi is the 0–100 rating for each variable, n is the total number of water quality 
parameters, and wi are the weights, where 

1
1n

ii
w

=
=∑ .

Table 2 Ott (1978) criteria.

No. Criteria

1. Relatively easy to apply
2. Strikes a reasonable balance between oversimplification and technical complexity
3. Imparts an understanding of the significance of the data it represents
4. Includes variables that are widely and routinely measured
5. Includes variables that have clear effects on aquatic life, recreational use, or both
6. Includes toxic substances
7. Can easily accommodate new variables
8. Based on recommended limits and water quality standards
9. Developed from a logical scientific rationale or procedure

10. Tested in a number of geographical areas
11. Shows reasonable agreement with expert opinion
12. Shows reasonable agreement with biological measures of WQ
13. Dimensionless
14. Has a clearly defined range
15. Exhibits desirable statistical properties permitting probabilistic interpretations to 

be made
16. Avoids eclipsing
17. Shows sensitivity to small changes in WQ
18. Applicable for showing trends over time, for comparisons of different locations, 

and for public information purposes
19. Includes guidance on how to handle missing values
20. Limitations of the index are clearly documented

7 “Obvious pollution” indicates areas with conditions that are offensive to sight and smell, such 
as oil slicks, debris, and scum and sludge deposits. Horton had obvious pollution and tempera-
ture enter multiplicatively because they “cannot readily be rated to show gradations in quality 
but fall more into the category of ‘yes’ or ‘no’ indicators.” However, obvious pollution is some-
what subjective (and temporally dependent), and was not included in later WQIs.
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Following the work of Horton, the NSF created the seminal WQI several years 
later, as published in Brown et al. (1970). To accomplish steps [1] and [2] of WQI 
construction in a less arbitrary way than Horton, a Delphi survey of 142 water 
quality experts was performed, with the composition of this group appearing in 
Table 3.8 The experts were asked to evaluate the importance of a wide variety 
of water quality indicators, with chances to re-evaluate their scores in addi-
tional rounds of mailings. Once the expansive list of indicators was reduced to 
nine, respondents were asked to create graphs that translated variable concen-
trations into 0–100 values, with higher values indicating healthier water. The 
final versions of these graphs were used to produce the subindex values used 
in step [3] of the WQI construction – the focus of the present paper. An example 
of the dissolved oxygen (DO) subindex curve from Brown et al. (1970) appears 
in Figure 1. This graph shows the non-linear relationship between DO satura-
tion and water quality (the subindex values were originally called “Q-values”, 
which appear on the y-axis). The subindex curves from Brown et al. (1970) are 
still used in current EPA analysis, as well as in other studies that use the WQI 
(Johnston et al., 2005). In the third round of the Delphi survey, after the field of 
most preferred parameters was reduced to nine, respondents were asked to rate 
the parameters on a scale of 1–5. This information was used to create the subin-
dex weights used in the aggregation functions. The subindex weights in recent 
EPA RIA’s were derived directly from the nine-parameter weights in Brown et al. 
(1970).

Table 3 Professional fields of invited panelists for NSF WQI.

Regulatory officials (federal, interstate, state, territorial and regional) 101
Local public utilities managers 5
Consulting engineers 6
Academicians 26
Others (industrial waste control engineers and representatives of professional 
organizations)

4

Total 142

Source: (Brown et al., 1970).

8 The Delphi method is a structured interview of experts used to quantify uncertainty, which 
was developed by the Rand Corporation (Dalkey, 1968; Morgan and Henrion, 1990). In the three-
round Brown et al. (1970) Delphi survey, the first round presented 35 water quality indicators to 
respondents for evaluation, and gave them a chance to recommend other indicators. The second 
round included these new indicators, as well as the evaluation results from the first round, and 
asked participants to indicate their opinion of the “most important” indicators. The third round 
involved rating the importance of each indicator.
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Similar to Horton (1965), Brown et  al. (1970) also employed basic arithme-
tic weighting (WQIA), although without the multiplicative T and O variables. The 
arithmetic weighting is the most transparent, and is still used today in several 
countries as the official method, including Turkey (Taner et al., 2011) and Argen-
tina (Pesce and Wunderlin, 2000). In fact, the full NSF WQI developed in Brown 
et al. (1970) was adopted by the Thai Ministry of Natural Resources and Environ-
ment in 1995 as the main tool for water assessment (Prakirake et al., 2009).

Several years after Brown et al.’s (1970) study, McClelland (1974) introduced 
a different form of weighting to the WQI: the geometric mean. McClelland was 
concerned that the arithmetic mean lacked sensitivity to low value parameters, 
a characteristic later deemed “eclipsing” (16 in Ott’s list). Eclipsing can cause 
problems with the original WQI objective of “conveying progress in program 
objectives.” For instance, if a water quality program successfully targets a low 
value parameter and the WQI is not sensitive to the resulting improvement, 
policy makers may erroneously shift funds and efforts away from that program. 
McClelland instead proposed the weighted geometric mean appearing in (3), 
where qi and wi are as defined before:

1
i

n w
G ii

WQI q
=

=∏ �
(3)

To compare the arithmetic WQI to the geometric WQI, McClelland obtained 
survey responses from over 100 water quality experts – with 30 of them having 
participated in the original Brown et  al. (1970) survey. The experts were given 
data from actual stream samples and asked to rate them in three iterations similar 
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Figure 1 Subindex curve for DO. 
Source: (U.S. EPA, 2003b).
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to a Delphi procedure. When compared to the experts’ ratings of waterbodies, 
the arithmetic WQI averaged 10–15 units higher than the experts’ evaluation, 
whereas the geometric WQI averaged only 6 units different, distributed above and 
below the experts. Using a similar process, Landwehr and Deininger (1976) also 
found that the geometric mean matched experts’ ratings better than several other 
WQI variations. Although it violates a few of the lesser criteria from Ott (6, and 
potentially 15, 17, and 19), it satisfies the majority of them. The geometric mean 
has been used in all EPA RIA’s that employ a WQI, including: the CAFO rule (U.S. 
EPA, 2003a), the Concentrated Aquatic Animal Production rule (U.S. EPA, 2004a), 
the Meat and Poultry Processing Rule (U.S. EPA, 2004b), the Construction and 
Development Rule (U.S. EPA, 2009), and the Florida Numeric Nutrient Criteria 
Rule (U.S. EPA, 2010).

The third WQI aggregation method explored in this paper uses the square 
root of the harmonic mean of squares, and was first popularized in Dojlido et al. 
(1994). This mean, appearing in equation (4), does not use weights for the indi-
vidual indicators.9

21
1nH

i i

nWQI
q=

=
∑ �

(4)

Dojlido et  al. (1994) found that this specification was more sensitive to 
the most impaired indicator than the arithmetic or geometric means – reduc-
ing eclipsing – while still accounting for the influence of other indicators. One 
concern with (4), however, is that it may result in “ambiguity,” a situation where 
all subindices indicate good water quality but the overall indicator does not 
(Swamee and Tyagi, 2000). So although the harmonic variation makes potential 
improvements in Ott’s 16th criteria, it may fall short on numbers 8–12, and 17–19. 
The harmonic mean was also recommended by Cude (2001), who developed a 
WQI for the State of Oregon. Drawing from Dunnette (1979), Cude (2001) also  
popularized ecoregion-specific subindex curves, allowing the WQI to be tailored 
to local conditions. This regional approach to the subindex curves was used in 
the analyses for EPA’s Construction and Development Rule (U.S. EPA, 2009) and 
the Florida Numeric Nutrients Rule (U.S. EPA, 2010). However, the harmonic 
mean itself has not been used in EPA regulatory analysis.

The final subindex aggregation method is the minimum operator, which has 
been proposed as another method to eliminate eclipsing. As shown in equation 
(5), the overall WQI in this variation is simply the lowest subindex value:

		  WQIM=min(q1,q2,…qn)� (5)

9 WQIH = 0 if qi=0 for any i.
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Smith (1990) established widespread interest in this method; arguing that the 
limiting indicator is critical information hidden by other aggregation methods. It 
has been popular with government environmental organizations in New Zealand 
(Nagels, Davies-Colley and Smith, 2001) and Canada (Khan, Husain and Lumb,  
2003). Nagels et al. (2001) argue that it is particularly important for certain des-
ignated uses, like primary contact recreation. However, the minimum operator 
is totally insensitive to changes in the other variables, and so is not useful for 
monitoring purposes or for comparing two waterbodies (Swamee and Tyagi, 
2000). Returning again to the WQI objective of “conveying progress in obtaining 
program objectives”, the WQIM approach fails unless the program solely targets 
the minimum indicator (and, similar to the harmonic variation, may not fully 
satisfy criteria 8–12 and 17–19 from Table 2). Other papers that use or support the 
minimum operator include Pesce and Wunderlin (2000), Flores (2002), Parparov, 
Hambright, Hakanson and Ostapenia (2006), Simões, Moreira, Bisinoti, Gimenez 
and Yabe (2008), and Prakirake et al. (2009).

If a normal harmonic mean had been used – as opposed to the square root 
of the harmonic mean of squares – all of these aggregation functions could be 
derived from the generalized mean (also called the power mean or Hölder mean), 
appearing in (6):

1

1

pn
p

p i i
i

M w q
=

 
=  ∑ �(6)

When p takes the value of 1, the mean is arithmetic, when p=0 it is the geo-
metric mean (using L’Hopital’s Rule as p approaches 0), when p=-1 the normal 
harmonic mean appears, and finally when p=-∞ it is the minimum operator.10 
The arithmetic (MA), geometric (MG), and harmonic (MH) means also have the fol-
lowing property,

				    MA  ≥  MG  ≥  MH,� (7)

However, the harmonic variation from Dojlido et al. (1994) does not fit into 
this inequality (Mercer, 2003), leaving us with WQIA  ≥  WQIG.

Other, more exotic, aggregation methods have also been proposed. For 
instance, Kung, Ying and Liu (1992) and Chang, Chen and Ning (2001) support 
the use of “fuzzy” evaluation tools to account for uncertainty in data sampling 
(from things like uneven weather patterns or infrequent sampling) and com-
plexity in decision-making. Chang et  al. (2001) evaluate their approach on a 

10 The generalized mean has been used extensively in economics, in particular in the field of 
price indices. Diewert (1993) provides background on how various means have been used in eco-
nomic applications, with a focus on symmetric means.

https://doi.org/10.1515/jbca-2012-0005 Published online by Cambridge University Press

https://doi.org/10.1515/jbca-2012-0005


92      Patrick J. Walsh and William J. Wheeler

Taiwanese river system and find that the traditional WQI provides a more  
pessimistic vision of water quality. However, the study does not provide suffi-
cient evidence in favor of the fuzzy techniques over the traditional WQI.

Walski and Parker (1974) and Bhargava (1983) use “sensitivity functions” 
along with parameter weights to aggregate variables in WQI variations. These 
approaches are motivated by a desire to better connect the WQI value to the des-
ignated use of the water. However, Walski and Parker’s approach only considered 
recreational water quality, and their sensitivity functions had difficulty reflecting 
the proper weightings for each variable (Bhargava, 1983). Bhargava’s approach 
was designed to assess water quality and assign designated uses to different parts 
of a waterbody. The development of the WQL by Vaughan (1981) is favored in the 
literature for the latter purpose, without adding the complexity of the sensitivity 
functions. Overall, these more exotic types of indicators have not gained as much 
traction in the literature or in applied policy settings as the four WQI variations 
discussed here. While it is not completely clear why these and other (e.g., Sarkar 
and Abasi, 2006) approaches to the WQI have not been widely adopted, they add 
considerable complexity without significant demonstrated improvement. They 
therefore stray from the original goals of the WQI, since their construction is not 
easily communicated to policy makers or the general public.

The WQI was first applied by the EPA in benefit-cost analysis in U.S. EPA 
(2000), in a study examining the value of reductions in conventional pollutants 
(BOD, TSS, DO, and fecal coliform) arising from the Clean Water Act. It has since 
been used by EPA in several rules, as recently as 2010 (U.S. EPA, 2010).11 Origi-
nally, EPA applied the Mitchell and Carson (1989) (or the later version, Carson 
and Mitchell, 1993) values directly to modeled changes in WQI, but now relies 
on meta-analyses of valuation studies (U.S. EPA, 2009). The next two sections 
present a more thorough examination of past EPA approaches.

3  Data
This paper uses water quality data from the EPA RIA for the 2003 CAFO rule (U.S. 
EPA, 2003a). The rule uses National Pollutant Discharge Elimination System 
(NPDES) permits, effluent limitations, and technology standards to protect water 
quality from manure, wastewater, and other process waters generated by CAFOs. 
The data contain baseline and projected measures of six water quality variables: 
biological oxygen demand (BOD), dissolved oxygen (DO), fecal coliform bacteria 

11 See Griffiths et al. (2012) for more background on the approaches to benefits estimation in 
EPA water rules.
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(FEC), total suspended solids (TSS), nitrogen (NO3), and phosphorous (PO4).12,13 
These six variables were used by U.S. EPA (2003a) to create a six parameter WQI, 
with weights rescaled from the nine-variable McClelland (1974) WQI.14 The water 
quality data are geocoded at the RF3 Lite network level, and include 1,817,988 
reaches totaling 2,655,437 miles within the contiguous 48 states.15 The projected 
values were obtained through several water quality models, based on local condi-
tions and projected impacts of the policy.16

4  Analysis
This exercise is aimed at measuring the sensitivity of estimated benefits to the 
specification of the aggregation function. First, the baseline and projected water 
quality parameters are transformed into subindex values. Next, the subindex 
values are fed to the four different aggregation functions to calculate WQIs. The 
weights for the geometric and arithmetic functions are directly from U.S. EPA 
(2003a), and appear in Table 4. Figure 2 illustrates the distribution of national 
WQI scores for baseline water quality before the CAFO rule, for each WQI vari-
ation. The graphs exhibit considerably different pictures of water quality, illus-
trating the importance of the aggregation function to the WQI. For instance, the 
distributions of the harmonic mean and minimum index portray a much bleaker 
state than the arithmetic and geometric WQI variations. The distributions of the 
geometric and arithmetic WQIs illustrate the result from equation (7), with the 
arithmetic distributed higher than the geometric. The forecast of the change in 

12 Note that these are the baseline and projected values at the time of the rule, so have not been 
updated or changed since the rulemaking.
13 We follow the terminology of the CAFO rule and refer to “baseline” water quality as the water 
quality before the policy, and refer to the water quality after the policy as the “projected” water 
quality.
14 Three variables from McClelland’s analysis were therefore omitted: pH, temperature, and 
total solids. The weights are rescaled so that the ratios of the weights are retained and the 
weights still sum to one.
15 RF3 lite, or Reach File 3 lite, is a subset of the Reach File 3 hydrologic database. The Reach 
File databases contain data on US surface waters, and are inputs to several large scale hydrologic 
models. The RF3 lite subset contains streams longer than 10 miles, as well as the small streams 
needed to connect those (>10 mile) segments. For additional information, see U.S. EPA (2003b).
16 For additional information about the 2003 CAFO rule, see http://www.epa.gov/npdes/regula-
tions/cafo_fedrgstr.pdf and for the water quality benefits estimation in particular, http://cfpub.
epa.gov/npdes/docs.cfm?view=allprog&program_id=7&sort=name#cafofinalrule_nation-
aleconbenefits_2003.

https://doi.org/10.1515/jbca-2012-0005 Published online by Cambridge University Press

https://doi.org/10.1515/jbca-2012-0005


94      Patrick J. Walsh and William J. Wheeler

water quality is also heavily influenced by the aggregation function. Table 5 con-
tains summary statistics on the change in WQI from baseline to projected for each 
WQI variation. The harmonic mean, which is designed to be most sensitive to the 
lowest parameter, shows the greatest change, while the arithmetic WQI shows a 
smaller change that is concentrated around zero. The different response by these 
two functions provides an example of eclipsing.

Another important policy consideration is the ranking of waterbodies. 
While the absolute level of the water quality index is important, state planning 
typically involves targeting the lowest performing waterbodies for cleanup. 
If the ranking from the different indices varies substantially, they could result 
in significantly different cleanup actions. At the national level, the CAFO base-
line ranking changes considerably between indices. When the waterbodies are 
ranked from best to worst, the average absolute change in ranking from the geo-
metric index to the arithmetic index is 33,375, to the harmonic index is 17,039, and 
to the minimum index is 37,023. However, due to the large number of waterbodies 
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Figure 2 National WQI distributions in CAFO baseline.

Table 4 WQI weights.

Parameter Weight

BOD 0.15
DO 0.24
FEC 0.23
TSS 0.1
NO3 0.14
PO4 0.14
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nationally, a small index change can result in a large ranking change, so it may 
be best to compare rankings at the state level. In Ohio, for example, which has 
11,838 reaches, the average difference in waterbody ranking between the geomet-
ric index and the arithmetic, harmonic, and minimum indices is 797, 322 and 884, 
respectively.17 So even at the state level there is still considerable movement. If the 
ordinal ranking of waterbodies is a determinant of pollution control budgets, the 
choice of index could affect the distribution of funds and programs.

The next step in the analysis is the monetization of the WQI changes. The 
CAFO rule was projected to yield “moderate” changes in the six WQI variables. 
Table 6 contains the changes in loadings to the agricultural cells in the water 
quality model used in the CAFO analysis (U.S. EPA, 2003a).18 Following the CAFO 
RIA, the projected change in water quality is valued for each state using the 
following benefit transfer function estimated by Carson and Mitchell (1993) in 
their national contingent valuation study of water quality, appearing in equation 
(8).19,20

1

0

exp[ 0.8341 0.819*log( / 10) 0.959*log( )]
exp[ 0.8341 0.819*log( / 10) 0.959*log( )]

TOTWTP WQI Y
WQI Y

∆ = + +

− + + �
(8)

Table 5 Policy forecast for change in WQI.

WQI Mean Std. dev. Min Max

Geometric 0.2983 1.4793 -46.4499 52.0442
Harmonic 0.4577 2.5227 -75.0607 77.2153
Arithmetic 0.1004 0.5325 -25.8412 23.2690
Minimum 0.3072 1.9282 -69.1100 65.9200

(n=577,068).

17 We thank an anonymous reviewer for pointing out this important consideration.
18 These represent the total national CAFO loadings actually distributed to agricultural cells and 
production area loads input directly into the reaches. The model uses these loads to estimate 
the various water quality parameters in each area. DO was not directly reported in the CAFO 
documentation since the water quality model derives it from the other parameters. See U.S. EPA 
(2003b) for more detail.
19 As in the CAFO RIA, the WQI for each state is calculated by weighting each reach by its length 
as a proportion of the total reach miles in the state. Once the statewide change in water quality is 
calculated, that value is plugged into the benefit transfer function in equation (7).
20 Carson and Mitchell (1993) used a national, in-person stated preference survey to ask re-
spondents to value changes in the WQI anchored to achievement of the goals of the Clean Water 
Act (that is, fishable and swimmable water). The focus of the survey was a national change in 
water quality, similar to the CAFO rule.
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where ΔTOTWTP is the change it total household willingness-to-pay for a change 
in water quality, WQI1 is projected WQI, WQI0 is baseline WQI, and Y is statewide 
annual household income.21 The state values are aggregated to obtain the national 
estimate of benefits.

Table 7 contains the total estimated benefits of the CAFO rule for each WQI 
variation. These benefits vary from a low of $82 million for the arithmetic WQI to 
a high of $504 million for the harmonic WQI, exhibiting a six-fold difference.22 
EPA’s favored geometric mean actually has the second-smallest estimated bene-
fits, although the ordinal relationships in magnitudes might not hold in different 
places on the marginal benefit curve. The aggregation function therefore has a 

Table 6 Estimated loadings and reductions to RF3 lite network, CAFO rule.

Nitrogen 
(lbs/yr)

Phosphorus 
(lbs/yr)

Sediment 
(lbs/yr)

BOD 
(lbs/yr)

Fecal coliforms 
(MPN/yr)

Baseline loads 165.7 
million

243.5 
million

47.54 
billion

60.93 
million

6.46 E+23

Post-regulatory loads 149.4 
million

209.1 
million

46.61 
billion

46.10 
million

5.676 E+21

Removals 16.27 
million

34.41 
million

933.4 
million

14.74 
million

7.8 E+20

Source: U.S. EPA (2003a).
Note: Numbers may not add due to rounding.

Table 7 National benefits, CAFO rule.

WQI Benefits

Geometric $287,400,162.45
Harmonic $503,741,769.09
Arithmetic $81,913,882.61
Minimum $358,633,241.42

21 The approach follows the CAFO analysis, with figures inflated to 2001 dollars using the CPI. 
Note also that the published version of (8) includes covariates for household use and the impor-
tance of controlling pollution, as expressed by respondents. In the CAFO analysis, EPA used the 
Carson and Mitchell sample averages as a scalar value for the entire sample and incorporated the 
scalar value times the coefficient (for each variable) into the constant term.
22 Note that the monetized benefit figures in Table 7 are not proportional to the mean WQI 
changes from the previous Table. This is due to the nonlinearity of the TOTWTP function  
appearing in (8).
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surprisingly large impact on estimated benefits, which could have a large impact 
on policy recommendations derived from the benefit-cost analysis. Although pre-
vious papers have shown differences in the calculated WQI values as a result of 
the aggregation function, this paper is the first to estimate the impact on esti-
mated benefits.

4.1  Sensitivity exercise

To further investigate the four aggregation methods, a hypothetical sensitivity 
analysis is performed on the Ohio water quality data from the CAFO Rule. Ohio is 
used because the state has relatively good monitoring data covering the majority 
of areas in the state.23 Concentrating on one state should isolate subindex aggre-
gation issues from other concerns with population, income, and heterogeneity in 
water quality monitoring.

A hypothetical water quality improvement is instituted in all waterbodies 
in the state to gauge the impact on estimated benefits for the four versions 
of WQI. Two different changes are analyzed for each water quality variable: a 
5% increase and a five point increase in the subindex value.24 The change in 
WQI is then monetized using the benefit transfer function from equation (8).

Figure 3 shows the change in benefits from increasing each variable by five 
points. The graph is dominated by the improvement in fecal coliform, valued at a 
maximum of over $160 million using the harmonic WQI. The substantial benefits 
of fecal coliform occur because it is the most impaired indicator in the majority 
of waterbodies, with an average subindex value of around two (out of 100). A five 
point jump is therefore a comparatively large improvement. Since the harmonic 
mean was designed to better account for the lowest value indicator, it is expected 
to place a higher value on this change. The eclipsing problem can be seen in 
this Figure with the arithmetic function. While the geometric, harmonic, and 
minimum WQIs experience a large jump in Figure 3, the arithmetic response is 
much more muted (or, eclipsed). Note that the geometric WQI does not appear to 

23 Furthermore, the state has a diverse set of waterbodies. “Ohio is a water-rich state with more 
than 25,000 miles of streams and rivers, a 451 mile border on the Ohio River, more than 5,000 
lakes, ponds, and reservoirs (>1 acre), and 236 miles of Lake Erie shoreline. Ohio has 10 scenic 
rivers comprising more than 629 river miles, the fourth largest total of any state in the nation,” 
from http://www.epa.ohio.gov/dsw/general.aspx.
24 Each variable is increased individually, not compounded on top of the changes in other vari-
ables. Other changes in magnitude were also analyzed. However, the results were qualitatively 
similar to the 5% and 5 point changes, so are not presented.
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be susceptible to eclipsing in this Figure, as it is relatively responsive to changes 
in FEC.

The more realistic five percent changes appear in Figure 4. The harmonic and 
minimum WQI are still quite sensitive to the improvement in FEC, and the arith-
metic WQI still exhibits eclipsing. However, the minimum and harmonic WQIs 
are not particularly responsive to variables other than FEC. For example, since 
there were no reaches with nitrogen and phosphorous as the most impaired vari-
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Figure 3 Five point increase in each variable.
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Figure 4 Five percent increase in each variable.
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able, the minimum WQI assigns their improvements a value of zero. This is an 
unattractive quality for benefit cost analysis, since considerable efforts to reduce 
nutrient pollution would not be represented by corresponding increases in the 
WQI.25

Not only does the arithmetic mean WQI eclipse the change in FEC, it places 
a very high value on the change in DO. Figure 5 contains a graph of the distribu-
tion of DO subindex values in Ohio. The DO variable has the most right-skewed 
distribution of all indicators, with most reaches containing subindex values 
above 90. This highlights a particularly undesirable property of the arithmetic 
function: the level of the subindex value matters. This issue is further magni-
fied for DO, since its subindex value is assigned the highest weight (Table 4), 
at 0.24.

The geometric WQI does not appear to suffer from eclipsing, and does not 
depend on the numerical level of the subindex value. Also, the ordering of the 
benefit values in the Figure aligns exactly with the parameter weights from 
Table 4. DO has the highest weight (0.24), so increases in it produce the greatest 
benefits – although only slightly higher than FEC (with a weight of 0.23). Improve-
ments in individual parameters therefore yield benefits that are proportional to 
the weights assigned by the original panel of experts, following the important 
characteristic 11 from Ott’s (1978) list.
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Figure 5 Ohio DO subindex value distribution.

25 Particularly considering the millions of dollars currently being spent on combating nutrient 
pollution. For example, in Florida (U.S. EPA, 2010) and in the Chesapeake Bay (http://www.epa.
gov/chesapeakebaytmdl/).
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5  Conclusion
The WQI has become a central part of many EPA RIAs and is also widely used by 
environmental agencies in other countries (Nagels et al., 2001; Khan et al., 2003; 
Liou, Lo and Wang, 2004). However, the specification of the WQI and its impact 
on policy analysis has previously received scant attention. The present paper 
analyzes an important step in WQI construction, where several water quality vari-
ables are standardized and then aggregated into an overall value. Several recent 
studies (Dojlido et al., 1994; Cude, 2001) have criticized the use of the geomet-
ric mean – which is currently used in EPA RIAs – as the aggregation function. 
Although other papers have previously compared the statistical properties of dif-
ferent aggregation functions, this is the first paper to analyze the problem in the 
context of benefit-cost analysis.

Four aggregation functions were analyzed, which were selected because they 
have been used or supported in regulatory analysis for national or state enti-
ties. They include the arithmetic, geometric, and harmonic means, as well as the 
minimum operator. Data from the EPA CAFO Rule (U.S. EPA, 2003a) was used to 
estimate the benefits of a proposed water quality change for all four WQI varia-
tions. Additionally, two hypothetical changes in water quality were instituted to 
further examine the behavior of the four aggregation functions.

From the CAFO data, it is clear that estimated benefits are quite sensitive to 
the subindex aggregation function. Over the four different functions, benefits 
range from $82 million to $504 million. The geometric mean, which is used in 
EPA RIAs, sits near the middle of that range at $287 million. Although these mon-
etized benefits need to be added to other monetized benefits, such as the value of 
reduced nitrification of private wells ($30.9–$45.7 million), reduced public water 
treatment costs ($1.1–$1.7 million), and reduced livestock mortality ($5.3 million), 
they represent the lion’s share of monetized benefits. Since the total social costs 
of the rule were estimated to be $335 million (U.S. EPA, 2003a), the choice of the 
aggregation function could move the rule from positive monetized net benefits to 
negative. Policy recommendations from the benefit-cost analysis could therefore 
vary drastically depending on the aggregation function used.

The sensitivity analysis did not support a switch from the geometric mean. 
With the geometric WQI, the importance of individual parameters to estimated 
benefits is a good reflection of the weights provided by a panel of hydrology 
experts. Also, the geometric mean does not inflate high valued indicators or 
eclipse the most impaired indicator as much as the other aggregation functions. 
The harmonic and minimum functions were found to be extremely sensitive to 
the most impaired variable, at the cost of others, while the arithmetic mean was 
subject to eclipsing and is dependent on the numeric level of water quality.
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One of the main goals of the WQI is to communicate progress in achieving 
water quality program objectives, providing a signal to policy makers and the 
public. The aforementioned problems of eclipsing and sensitivity to the most 
impaired variable could provide the wrong signal and result in a misallocation of 
resources. On the one hand, a WQI that suffers from eclipsing would direct funds 
and project efforts away from the lowest valued indicator, since its improvement 
would not likely be reflected in the WQI. On the other hand, the harmonic and 
minimum indicators could potentially divert disproportionate funds to the lowest 
valued indicator, since a small improvement in its value would result in large 
increases in the WQI. If there is a strong desire to appropriately consider the low 
valued parameters (such as in Oregon where the harmonic indicator is favored), 
a more balanced approach would use the geometric WQI but also report the value 
of the most impaired indicator.26

Although this paper does not support a move from the geometric mean, the 
results highlight two pressing issues in the field. First, an updating of the WQI 
weights and subindex curves may be in order. The weights had a relatively strong 
influence on estimated benefits in the sensitivity analysis. Since the weights pres-
ently used by the EPA are based on a survey from the 1970s (Brown et al., 1970); 
an update may be needed. The biology, ecology, and limnology underlying water 
quality analysis have all improved in the last 40 years and expert opinion has 
likely evolved as well. Furthermore, most state and national water quality cri-
teria have become more refined to different uses and there are now additional 
criteria for different pollutants.27 Some of the criticism of the current WQI may be 
assuaged by developing new weights and subindex curves. Because WQI weights 
and subindex curves can be expected to be spatially-variant due to local condi-
tions and preferences, a regional approach to the subindex curves, popularized 
by Cude (2001), represents a promising future path. That approach has already 
been used in the Construction and Development (2009) and Florida Numeric 
Nutrients (2010) rules, and has been met with widespread approval.

The second issue deals with comparisons across different WQI formulations. 
Although the literature and RIA’s treat a unit change in WQI as the same, no matter 
the aggregation function, these variations may be measuring different things. The 
minimum aggregation function, for instance, is most concerned with the most 
degraded indicator. Individuals may value an improvement in the worst indicator 
in a stream differently than they value a change in the average of values across 

26 Thanks to an anonymous reviewer for pointing out this approach.
27 It may also be desirable to convene a more diverse set of experts for a Delphi survey, since the 
previous panel represented in Table 3 is heavily influenced by regulatory officials.
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indicators. In the field of hedonic analysis, Michael, Boyle and Bouchard (2000) 
find that different representations of water clarity – such as summer minimum, 
ten year average minimum, or maximum – yield different implicit prices. Future 
research should explore whether the different versions of the WQI are valued dif-
ferently by survey respondents. Comparisons across the WQI variations may be 
affected by this issue, and a better understanding could improve future discus-
sions about the WQI.

Author note: The views expressed in this paper are those of the author(s) and 
do not necessarily represent those of the U.S. Environmental Protection Agency. 
Thanks to comments from Charles Griffiths, Matt Massey, Julie Hewitt, and Todd 
Doley, as well as participants at the 2010 NAREA Annual conference and the 2010 
Benefit-Cost Analysis Conference.

References
Bhargava, D. S. (1983). Use of water quality index for river classification and Zoning of Ganga 

river. Environmental Pollution Series B, Chemical and Physical, 6(1), 51–67.
Binkley, C. S., & Hanemann, W. M. (1978). The recreation benefits of water quality improvement: 

analysis of day trips in an urban setting. Report No. EPA-600/5-78-010. Washington, DC: 
U.S. Environmental Protection Agency.

Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index – 
do we dare? Water and Sewage Works, 11, 339–343.

Carruthers, T., & Wazniak, C. (2004). Development of a water quality index for the Maryland 
Coastal Bays. In: C. E. Wazniak & M. R. Hall (Eds.), Maryland’s Coastal Bays: Ecosystem 
Health Assessment 2004. DNR-12-1202-0009. Annapolis, MD: Maryland Department of 
Natural Resources Tidewater Ecosystem Assessment.

Carson, R. T., & Mitchell, R. C. (1993). The value of clean water: the public’s willingness to pay 
for boatable, fishable, and swimmable quality water. Water Resources Research, 29(7), 
2445–2454.

Chang, N. -B., Chen, H. W., & Ning, S. K. (2001). Identification of river water quality using 
the fuzzy synthetic evaluation approach. Journal of Environmental Management, 63(3), 
293–305.

Cude, C. G. (2001). Oregon water quality index: a tool for evaluating water quality management 
effectiveness. JAWRA Journal of the American Water Resources Association, 37(1), 125–137.

Dalkey, N. C. (1968). The Delphi method: an experimental survey of group opinion. RAND 
Corporation Paper Series RM-5888-PR. Available at: http://www.rand.org/pubs/research_
memoranda/RM5888.html.

Diewert, W. E. (1993). Symmetric means and choice under uncertainty. Essays in Index Number 
Theory (Vol. 1), North Holland, London.

Dojlido, J., Raniszewski, J., & Woyciechowska, J. (1994). Water quality index applied to rivers in 
the vistula river basin in Poland. Environmental Monitoring and Assessment, 33(1), 33–42.

https://doi.org/10.1515/jbca-2012-0005 Published online by Cambridge University Press

https://doi.org/10.1515/jbca-2012-0005


Water quality indices and benefit-cost analysis      103

Dunnette, D. A. (1979). A geographically variable water quality index used in Oregon. Journal of 
the Water Pollution Control Federation, 51(1), 53–61.

Eom, Y. S., & Larson, D. M. (2006). Improving environmental valuation estimates through 
consistent use of revealed and stated preference information. Journal of Environmental 
Economics and Management, 52, 501–516.

Flores, J. C. (2002). Comments to the use of water quality indices to verify the impact of 
Cordoba City (Argentina) on Suquia river. Water Research, 36(18), 4664–4666.

Griffiths, C., Klemick, H., Massey, D. M., Moore, C., Newbold, S., Simpson, R. D., .....  Wheeler, 
W. (2012). EPA valuation of surface water quality improvements. Review of Environmental 
Economics and Policy, 6(1), 130–146.

Gupta, A. K., Gupta, S. K., & Patil, R. S. (2003). A Comparison of Water quality indices for 
coastal water. Journal of Environmental Science and Health, Part A, 38(11), 2711–2725.

Horton, R. K. (1965). An index-number system for rating water quality. Journal of the Water 
Pollution Control Federation, 37(3), 300–305.

Hoyer, M. V., Brown, C. D., & Canfield, D. E., Jr. (2004). Relation between water chemistry and 
water quality as defined by lake users in Florida. Lake and Reservoir Management, 20, 
240–248.

Jeon, Y., Herriges, J. A., Kling, C. L., & Downing, J. (2005). The role of water quality perceptions 
in modeling lake recreation demand. Iowa State University, Department of Economics 
Working Paper #05032.

Johnston, R. J., Besedin, E. Y., Iovanna, R., Miller, C. J., Wardwell, R. F., & Ranson, M. H. 
(2005). Systematic variation in willingness to pay for aquatic resource improvements 
and implications for benefit transfer: a meta-analysis. Canadian Journal of Agricultural 
Economics/Revue canadienne d’agroeconomie, 53(2–3), 221–248.

Johnston, R. J., Besedin, E. Y., & Wardwell, R. F. (2003). Modeling relationships between use 
and nonuse values for surface water quality: a meta-analysis. Water Resources Research, 
39(12), 1363.

Johnston, R. J., Schultz, E. T., Segerson, K., Besedin, E. Y., & Ramachandran, M. (2012). 
Enhancing the content validity of stated preference valuation: the structure and function 
of ecological indicators. Land Economics, 88, 102–120.

Khan, F., Husain, T., & Lumb, A. (2003). Water quality evaluation and trend analysis in selected 
watersheds of the atlantic region of Canada. Environmental Monitoring and Assessment, 
88(1), 221–248.

Kung, H., Ying, L., & Liu, Y. (1992). A complementary tool to water quality index: fuzzy clustering 
analysis. JAWRA Journal of the American Water Resources Association 28(3), 525–533.

Landwehr, J. M., & Deininger, R. A. (1976). A comparison of several water quality indices. 
Journal of the Water Pollution Control Federation, 48(5), 954–958.

Liou, S. M., Lo, S. L., & Wang, S. H. (2004). A generalized water quality index for Taiwan. 
Environmental Monitoring and Assessment, 96(1), 35–52.

McClelland, N. I. (1974). Water quality index application in the Kansas river basin. EPA-907/9-
74-001. Kansas City, MO: US EPA Region VII.

Mercer, P. (2003). Refined arithmetic, geometric, and harmonic mean inequalities. Rocky 
Mountain Journal of Mathematics, 33(4), 1459–1464.

Mitchell, R. C., & R. T. Carson. (1981). An experiment in determining willingness to pay for 
national water quality improvements, report to the US Environmental Protection Agency. 
Washington, D.C: Resources for the Future.

Mitchell, R. C., & Carson, R. T. (1989). Using surveys to value public goods: the contingent 
valuation method. Washington, D.C.: Resources for the Future.

https://doi.org/10.1515/jbca-2012-0005 Published online by Cambridge University Press

https://doi.org/10.1515/jbca-2012-0005


104      Patrick J. Walsh and William J. Wheeler

Morgan, M. G., & Henrion, M. (1990). Uncertainty: a guide to dealing with uncertainty in 
quantitative risk and policy analysis. Cambridge, UK: Cambridge University Press.

Michael, H. J., Boyle, K. J., & Bouchard, R. (2000). Does the measurement of environmental 
quality affect implicit prices estimated from hedonic models? Land Economics, 76(2), 
283–298.

Nagels, J. W., Davies-Colley, R. J., & Smith, D. G. (2001). A water quality index for contact 
recreation in New Zealand. Water Science and Technology, 43(5), 285–292.

Ott, W. R. (1978). Water quality indices: a survey of indices used in the United States (pp. 
1–138). Washington DC: US Environmental Protection Agency. EPA-600/4-78-005.

Parparov, A., Hambright, K., Hakanson, L., & Ostapenia, A. (2006). Water quality quantification: 
basics and implementation. Hydrobiologia, 560(1), 227–237.

Pendleton, L., Martin, N., & Webster, D. G. (2001). Public perceptions of environmental quality: 
a survey study of beach use and perceptions in Los Angeles county. Marine Pollution 
Bulletin, 42, 1155–1160.

Pesce, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the impact of 
Córdoba City (Argentina) on Suquía River. Water Research, 34(11), 2915–2926.

Prakirake, C., Chaiprasert, P., & Tripetchkul, S. (2009). Development of specific water quality 
index for water quality supply in Thailand. Songklanakarian Journal of Science and 
Technology, 31(1), 91–104.

Sarkar, C., & Abbasi, S. A. (2006). Qualidex – a new software for generating water quality 
indice. Environmental Monitoring and Assessment, 119(1), 201–231

Simões, F. S., Moreira, A. B., Bisinoti, M. C., Gimenez, S. M. N., & Yabe, M. J. S. (2008). Water 
quality index as a simple indicator of aquaculture effects on aquatic bodies. Ecological 
Indicators, 8(5), 476–484.

Smith, D. G. (1990). A better water quality indexing system for rivers and streams. Water 
Research 24(10), 1237–1244.

Smith, V. K., & Desvousges, W. H. (1986). Measuring water quality benefits. Boston: Kluwer 
Nijhoff.

Swamee, P. K., & Tyagi, A. (2000). Describing water quality with aggregate index. Journal of 
Environmental Engineering, 126(5), 451–455.

Taner, M. Ü., Üstün, B., & Erdinçler, A. (2011). A simple tool for the assessment of water quality 
in polluted lagoon systems: a case study for Küçükçekmece Lagoon, Turkey. Ecological 
Indicators, 11(2), 749–756.

U.S. EPA. (2000). A benefits assessment of water pollution control programs since 1972: Part 
1, the benefits of point source controls for conventional pollutants in rivers and streams., 
Washington, DC: Final report to the U.S. EPA, Office of Water. EPA-68-C6-0021.

U.S. EPA. (2003a). Environmental and economic benefit analysis of the final revisions to the 
national pollutant discharge elimination system regulation and the effluent guidelines for 
concentrated animal feeding operations. Washington, DC: Office of Water. EPA-821-R-03-
003.

U.S. EPA. (2003b). Estimation of national economic benefits using the national water pollution 
control assessment model to evaluate regulatory options for Concentrated Animal Feeding 
Operations (CAFOs). Washington, DC: Office of Water. EPA-821-R-03-009.

U.S. EPA. (2004a). Economic and environmental benefits analysis of the final effluent 
limitations guidelines and new source performance standards for the concentrated aquatic 
animal production IndU.S.try point source category. Washington, DC: Office of Water. 
EPA-821-R-04-013.

https://doi.org/10.1515/jbca-2012-0005 Published online by Cambridge University Press

https://doi.org/10.1515/jbca-2012-0005


Water quality indices and benefit-cost analysis      105

U.S. EPA. (2004b). Economic and environmental benefits analysis of the final meat and poultry 
products rule.  Washington, DC: Office of Water. EPA-821-R-04-010.

U.S. EPA. (2009). Environmental impact and benefits assessment for final effluent guidelines 
and standards for the construction and development category. Washington, DC: EPA Office 
of Water. EPA-821-R-09-012.

U.S. EPA. (2010). Economic analysis of final water quality standards for nutrients for lakes and 
flowing waters in Florida. Washington, DC: Office of Water.

Van Houtven, G., Powers, J., & Pattanayak, S. K. (2007). Valuing water quality improvements 
in the united states using meta-analysis: is the glass half-full or half-empty for national 
policy analysis? Resource and Energy Economics, 29(3), 206–228.

Van Houtven, G., Pattanayak, S. K., Patil, S., & Depro, B. (2011). Benefits transfer of a third 
kind: an examination of structural benefits transfer. In: J. Whitehead, T. Haab, & J.-C. 
Huang (Eds.), Preference data for environmental valuation: combining revealed and stated 
approaches (pp. 303–321). New York: Routledge.

Vaughan, W. J. (1981). The water quality ladder. In: R. C. Mitchell, & R. T. Carson (Appendix II), 
An experiment in determining willingness to pay for national water quality improvement, 
draft report. (Available at: http://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0011-04.
pdf/$file/EE-0011-04.pdf).

Walski, T. M., & Parker, F. L. (1974). Consumers water quality index. Journal of the 
Environmental Engineering Division, 100(3), 593–611.

https://doi.org/10.1515/jbca-2012-0005 Published online by Cambridge University Press

https://doi.org/10.1515/jbca-2012-0005

