
EXTENDING SURJECTIVE MAPS PRESERVING THE NORM OF
SYMMETRIC KUBO-ANDO MEANS

EMMANUEL CHETCUTI AND CURT HEALEY

Abstract. In [4], the authors addressed the question of whether surjective maps preserving the
norm of a symmetric Kubo-Ando mean can be extended to Jordan ∗-isomorphisms. The question was
affirmatively answered for surjective maps between the positive definite cones of unital C∗-algebras
for certain specific classes of symmetric Kubo-Ando means. Here, we give a comprehensive answer
to this question for surjective maps between the positive definite cones of AW ∗-algebras preserving
the norm of any symmetric Kubo-Ando mean.

1. Introduction

Recently, in [4], considerable attention was given to the problem of characterizing those maps
between the positive definite cones of unital C∗-algebras that preserve the norm of a given Kubo-
Ando mean. We recall that a binary operation σ on the positive definite cone B(H)++ of the
algebra B(H) of bounded operators on the Hilbert space H, is called a Kubo-Ando connection if it
satisfies the following properties:

(i) If A ≤ C and B ≤ D, then AσB ≤ CσD.
(ii) C(AσB)C ≤ (CAC)σ(CBC).
(iii) If An ↓ A and Bn ↓ B, then AnσBn ↓ AσB (We write An ↓ A when (An) is monotonic

decreasing and SOT-convergent to A).

A Kubo-Ando mean is a Kubo-Ando connection with the normalization condition IσI = I. The
most fundamental connections are:

• the sum (A,B) 7→ A+B,

• the parallel sum (A,B) 7→ A : B = (A−1 +B−1)
−1
,

• the geometric mean

(A,B) 7→ A♯B = A
1
2

(
A− 1

2BA− 1
2

) 1
2

A
1
2 .

The domain of definition can easily be extended from B(H)++ to the positive semi-definite cone
B(H)+. For details, refer to the introduction section in [3].

In [7, Theorem 3.2], it is shown that there is an affine order isomorphism from the class of Kubo-
Ando connections onto the class of operator monotone functions via the map f(xI) = Iσ(xI) for
x > 0. Moreover, it is also shown that f(A) = IσA for every A ∈ B(H)+, which implies that

AσB = A
1
2 f

(
A− 1

2BA− 1
2

)
A

1
2 , ∀A ∈ B(H)++, B ∈ B(H)+.

The function f is called the representing function of σ. We further recall that if σ is a Kubo-Ando
connection with representing function f , then the representing function of the ‘reversed’ Kubo-
Ando connection (A,B) 7→ BσA is the transpose f ◦, defined by f ◦(x) := xf(x−1). The Kubo-Ando
connection is said to be symmetric if it coincides with its reverse; that is, a Kubo-Ando connection
is symmetric if and only if the representing function f satisfies f = f ◦ as shown in [7, Corollary
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2 EMMANUEL CHETCUTI AND CURT HEALEY

4.2]. The Kubo-Ando means are precisely the Kubo-Ando connections whose representing function
satisfy the normalizing condition f(1) = 1.
Since every finite Borel measure on [0,∞] is regular (i.e a Radon measure), we have that operator

monotone functions correspond to positive finite Borel measures on [0,∞] by Löwner’s Theorem
(see [5]): To every operator monotone function f corresponds a unique positive and finite Borel
measure m on [0,∞] such that

(1) f(x) =

∫
[0,∞]

x(1 + t)

x+ t
dm(t) = m({0}) + xm({∞}) +

∫
(0,∞)

1 + t

t
(t : x) dm(t) (x > 0).

It is easy to see that f(0+) = m({0}), f ◦(0+) = m({∞}). Finally, by [7, Theorem 3.4], there is
an affine isomorphism from the class of positive finite Borel measures on [0,∞] onto the class of
Kubo-Ando connections. This is given by the formula

(2) AσB = αA+ βB +

∫
(0,∞)

1 + t

t
(tA : B) dm(t) A,B ∈ B(H)+

where α = m({0}) and β = m({∞}). In the case of a symmetric Kubo-Ando connection, α = β.
For further details on the provenance of the integral representation (2), the reader is referred to [7,
Theorem 3.2].

After the exposition on general Kubo-Ando means, we can now define the property under study
for symmetric Kubo-Ando means.

Definition 1. Let σ be a Kubo-Ando mean and let A and B be unital C∗-subalgebras of B(H).
A surjective map ϕ between the positive definite cones of A and B is said to preserve the norm of
σ if

∥AσB∥ = ∥ϕ(A)σϕ(B)∥ , ∀A,B ∈ A ++.

A natural question to ask is whether a surjective map ϕ : A ++ → B++ preserving the norm of a
symmetric Kubo-Ando mean is an order isomorphism. By an order isomorphism, we mean a map ϕ
such that A ≤ B ⇐⇒ ϕ(A) ≤ ϕ(B) where A,B ∈ A ++. Let A,B ∈ A ++. Then by [3, Theorem
6],

A ≤ B ⇐⇒ ∥AσX∥ ≤ ∥BσX∥ , ∀ X ∈ A ++

⇐⇒ ∥ϕ(A)σϕ(X)∥ ≤ ∥ϕ(B)σϕ(X)∥ , ∀ X ∈ A ++

⇐⇒ ϕ(A) ≤ ϕ(B).

(3)

Moreover, ϕ is norm preserving. This can be seen by recalling [7, Theorem 3.3] and noting that

(4) ∥A∥ = ∥AσA∥ = ∥ϕ(A)σϕ(A)∥ = ∥ϕ(A)∥ , ∀A ∈ A ++.

The question we now tackle is whether a surjective map preserving the norm of a symmetric Kubo-
Ando mean extends to a Jordan ∗-isomorphism. Let us recall that a Jordan ∗-isomorphism is a
bijective linear map J : A → B such that J(A∗) = J(A)∗ and J(AB+BA) = J(A)J(B)+J(B)J(A)
for A,B ∈ A . The problem under study has been stated explicitly in the open problem section of
[9], and we reformulate it here to its most general form.

Problem 1. Do surjective maps between positive cones of unital C∗-subalgebras of B(H) that
preserve the norm of a symmetric Kubo-Ando mean extend to Jordan ∗-isomorphisms?

The above problem has been solved for the arithmetic mean [4, Theorem 2.4] and the geometric
mean [2, Theorem 1], but for the harmonic mean, it has been solved in the case of AW ∗-algebras
[4, Theorem 2.16]. Our aim is to provide a complete answer for to the above problem for general
symmetric means in the setting of AW ∗-subalgebras of B(H).
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2. Preliminary Considerations

Let us first recall [4, Lemma 2.3] and provide the proof here for completeness’ sake.

Lemma 2. Let A ,B be unital C∗-algebras and ϕ : A ++ → B++ a surjective norm preserving
order isomorphism. Then ϕ(tI) = tI for t > 0.

Proof. Given that ∥ϕ(tI)∥ = ∥tI∥ = t, it follows that ϕ(tI) ≤ tI. Furthermore, there exists
A ∈ A ++ such that ϕ(A) = tI. Since ∥A∥ = ∥ϕ(A)∥ = t, we have that A ≤ tI. Hence, we have
tI = ϕ(A) ≤ ϕ(tI). This proves the lemma. □

Moreover, by [4, Lemma 2.8], ψϵ(A) = ϕ(A + ϵI) − ϵI is a surjective norm preserving order
isomorphism between the positive semi-definite cones of A and B for some ϵ > 0 such that ψϵ(tI) =
tI for all t > 0. Let us provide the proof here for completeness’ sake.

Lemma 3. Let A ,B be unital C∗-algebras and ϕ : A ++ → B++ a surjective norm preserving
order isomorphism. Define ψϵ : A + → B+ by ψϵ(A) = ϕ(A + ϵI) − ϵI where ϵ > 0, then ψϵ is a
surjective norm preserving order isomorphism such that ψϵ(tI) = tI for all t > 0.

Proof. Let A,B ∈ A +, and ϵ > 0. Then

A ≤ B ⇐⇒ A+ ϵI ≤ B + ϵI

⇐⇒ ϕ(A+ ϵI) ≤ ϕ(B + ϵI)

⇐⇒ ϕ(A+ ϵI)− ϵI ≤ ϕ(B + ϵI)− ϵI

⇐⇒ ψϵ(A) ≤ ψϵ(B)

which implies that ψϵ is an order isomorphism. We next show that ψϵ is surjective. Let B ∈ B+.
Then there is some A ∈ A ++ such that ϕ(A) = B + ϵI. Since ϕ(A) ≥ ϵI = ϕ(ϵI), we have A ≥ ϵI,
which allows us to conclude that ψϵ(A − ϵI) = ϕ(A) − ϵI = B. Therefore, ψϵ is surjective. Since
∥ψϵ(A)∥ = ∥ϕ(A+ ϵI)− ϵI∥ = ∥ϕ(A+ ϵI)∥ − ϵ = ∥A+ ϵI∥ − ϵ = ∥A∥, we have that ψϵ is norm
preserving. Finally, ψϵ(tI) = ϕ((t+ ϵ)I)− ϵI = (t+ ϵ)I − ϵI = tI.

□

Before recalling [10, Lemma 3.1], let us provide some definitions. For a unital C∗-algebra A we
define Et(A ) := {0 ≤ A ≤ tI}, where t is a positive real number. We recall that E1(A ) is called
the effect algebra associated with A . Let

∆t(A ) := {(a, b) ∈ Et(A )× Et(A ) : a ∧ b = 0}
where a ∧ b denotes the infimum of a, b in A +. Endow ∆t(A ) with the order relation (a1, a2) ≤
(b1, b2) ⇐⇒ a1 ≤ b1 and b2 ≤ a2, where (a1, a2), (b1, b2) ∈ ∆t(A ). Finally, denote the set of
projections of A by P (A ). We recall that for any non-empty family of projections in A , if the
infimum in P (A ) exists, then this will be also the infimum of the family, taken in A +.

Lemma 4. Let A be a unital C∗-algebra. Then the following conditions are equivalent:

(1) P is a projection.
(2) The pair (P,Q) is maximal in ∆1(A ) for some Q ∈ E1(A ).

Proof. (1) ⇒ (2). Suppose that P is a projection. Consider the pair (P, I − P ). Let A ∈ A + such
that A ≤ P and A ≤ I − P . Then (I − P )A(I − P ) ≤ (I − P )P (I − P ) = 0. Similarly, PAP = 0
which implies A = (I−P )AP +PA(I−P ), but since (I−P )A = A, and PA = A, we have A = 2A,
so A = 0.

Suppose (P, I − P ) ≤ (A,B) where (A,B) ∈ ∆1(A ). Since P ≤ A ≤ I, we have AP = P . Thus,
(I−P )AP = 0 and PA(I−P ) = 0. Since A = P +(I−P )A(I−P ), we have (I−P )A(I−P ) ≤ A
and (I − P )A(I − P ) ≤ (I − P ) ≤ B which implies that (I − P )A(I − P ) = 0. Therefore, A = P ,
and, similarly, it can be concluded that B = I − P .

https://doi.org/10.4153/S0008439525000116 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000116


4 EMMANUEL CHETCUTI AND CURT HEALEY

(2) ⇒ (1). Suppose (P,Q) is maximal in ∆1(A ). The function f : [0, 1] → [0, 1] defined
by f(0) := 0 and f(t) = 2(1 + t−1)−1 is strictly increasing and surjective. In particular, f is
continuous. The function A → f(A) is an order isomorphism of E1(A ) onto itself. Therefore,
(f(P ), f(Q)) ∈ ∆1(A ). Since t ≤ f(t) for every t ∈ [0, 1], we have (P,Q) ≤ (f(P ), f(Q)). This
implies that (P,Q) = (f(P ), f(Q)). By the Spectral Mapping Theorem, sp(P ) ⊆ {0, 1}, so P is a
projection. □

Remark 1. Let A ,B be unital C∗-algebras and let ψ : A + → B+ be a surjective order isomorphism
such that ψ(tI) = tI. Then (A,B) is maximal in ∆t(A ) iff (ψ(A), ψ(B)) is maximal in ∆t(B). In
particular, P ∈ P (A ) iff ψ(P ) ∈ P (B) by Lemma 4.

Lemma 5. Let A ,B be unital C∗-algebras. If ψ : A + → B+ is a surjective order isomorphism
such that ψ(tI) = tI for all t > 0, then for any projection P in A , ψ(tP ) = tψ(P ) for all t > 0.

Proof. We claim that (P1, P2) is maximal in ∆1(A ) if and only if (tP1, tP2) is maximal in ∆t(A ).
Let (P1, P2) be maximal in ∆1(A ). That P1 ∧ P2 = 0 ⇐⇒ tP1 ∧ tP2 = 0 is clear. Suppose
(A,B) ∈ ∆t(A ) such that (tP1, tP2) ≤ (A,B), then (P1, P2) ≤ (t−1A, t−1B) and (t−1A, t−1B) ∈
∆1(A ) which by maximality of (P1, P2) implies that (P1, P2) = (t−1A, t−1B), so (tP1, tP2) = (A,B).
Similar arguments are used to prove the reverse implication.

Let t > 0. Since (P, (I − P )) is maximal in ∆1(A ), we have that (tP, t(I − P )) is maximal in
∆t(A ) which implies that (ψ(tP ), ψ(t(I − P ))) is maximal in ∆t(B) by Remark 1. Subsequently,
(t−1ψ(tP ), t−1ψ(t(I − P ))) is maximal in ∆1(B), so (t−1ψ(tP ), t−1ψ(t(I − P ))) ∈ P (B)× P (B).

If t > 1, then (ψ(P ), ψ(I − P )) ≤ (ψ(tP ), ψ(t(I − P ))). Since rng(ψ(P )) ⊆ rng(ψ(tP )) =
rng(t−1ψ(tP )) and rng(ψ(I −P )) ⊆ rng(t−1ψ(t(I −P ))), we can conclude that (ψ(P ), ψ(I −P )) ≤
(t−1ψ(tP ), t−1ψ(t(I − P ))), so by maximality ψ(P ) = t−1ψ(tP ).

If t < 1, then (ψ(tP ), ψ(t(I − P ))) ≤ (ψ(P ), ψ(I − P )). Since rng(t−1ψ(tP )) = rng(ψ(tP )) ⊆
rng(ψ(P )) and rng(t−1ψ(t(I−P ))) ⊆ rng(ψ(I−P )), we have (t−1ψ(tP ), t−1ψ(t(I−P )) ≤ (ψ(P ), ψ(I−
P )), so by maximality ψ(P ) = t−1ψ(tP ). □

Let A be a unital C∗-algebra, and let 0 < ϵ1 < ϵ2. Consider maps ψϵ1 , ψϵ2 of the type stated in
Lemma 3. Let ϕ also denote the map as specified in Lemma 3. Then

ϕ(tP + ϵ1I) ≤ ϕ(tP + ϵ2I), ∀P ∈ P (A ), t > 0.

By Lemma 5,
tψϵ1(P ) + ϵ1I ≤ tψϵ2(P ) + ϵ2I, ∀P ∈ P (A ), t > 0.

As t→ ∞,

(5) ψϵ1(P ) ≤ ψϵ2(P ), ∀P ∈ P (A ).

Moreover, we claim that ψϵ1(P ) = ψϵ2(P ). Let Q = ψϵ2(P ) − ψϵ1(P ). Then Q is a projection
which is orthogonal to ψϵ1(P ). Furthermore, ψ−1

ϵ2
(Q) = R ≤ P , which implies that ψϵ1(R) ≤ ψϵ1(P ).

By Remark 1, R is a projection, so (5) implies ψϵ1(R) ≤ ψϵ2(R) = Q which implies that ψϵ1(R) = 0.
Since ψϵ(0) = 0 for any ϵ > 0, we have Q = 0, and the claim is proved.

Let P ∈ P (A ). Then∥∥Aσ(P + ϵI
)∥∥ =

∥∥ϕ(A)σ(ψϵ(P ) + ϵI
)∥∥ , ∀ ϵ > 0.

Since ψϵ(P ) = S for all ϵ > 0, we can use [3, Remark 1 (i)] to conclude that as ϵ→ 0, we have

∥AσP∥ = ∥ϕ(A)σS∥ .
This implies that the above can be written as

(6) ∥AσP∥ = ∥ϕ(A)σψϵ(P )∥ , ∀ ϵ > 0.

Furthermore, if A = T + δI for some T ∈ P (A ) and δ > 0, then

(7)
∥∥(T + δI

)
σP

∥∥ =
∥∥(ψϵ(T ) + δI

)
σψϵ(P )

∥∥ , ∀ ϵ > 0.
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3. Results

Let A ,B be AW ∗-subalgebras of B(H), and ϕ : A ++ → B++ be a surjective map which
preserves the norm of a symmetric Kubo-Ando mean σ. We shall show that there exists a Jordan
∗-isomorphism J : A → B which extends ϕ, i.e. ϕ(A) = J(A) holds for all A ∈ A ++. If f is
the representing function of σ, then the proof shall be split into the cases when f(0+) = 0 and
f(0+) > 0. The proof for when f(0+) = 0 requires the characterization of surjective positive
homogenous order isomorphisms. By ϕ being positive homogenous, we mean that ϕ(tA) = tϕ(A)
for A ∈ A ++ and t > 0.

Theorem 6. [8, Theorem 13] Let A , B be unital C∗-algebras. The map ϕ : A ++ → B++ is a
surjective positive homogenous order isomorphism if and only if it is of the form

(8) ϕ(A) = CJ(A)C, ∀A ∈ A ++

where C ∈ B++ and J : A → B is a Jordan ∗-isomorphism.

It is clear in this theorem that if ϕ(I) = I then C = I. We further recall the following character-
isation of Kubo-Ando connections with representing function f satisfying f(0+) = 0.

Proposition 7. [9, Lemma 2] Let f : (0,∞) → (0,∞) be a non-trivial (i.e. not affine) operator
monotone function satisfying f(0+) = 0 and let σ denote the Kubo-Ando connection associated to
f . For A ∈ B(H)++ and non-zero projection P ∈ B(H)

∥AσP∥ = f ◦
(

1

max{λ ≥ 0 : λP ≤ PA−1P}

)
.

Since the geometric mean is a symmetric mean with representation function f such that f(t) =
t1/2, we have

(9) ∥A#P∥2 = 1

max{λ ≥ 0 : λP ≤ PA−1P}
.

Therefore,

(10) ∥AσP∥ = f ◦(∥A#P∥2).
We shall also require the following result.

Proposition 8. [2, Lemma 11] Let A be an AW ∗-algebra and σ a symmetric Kubo-Ando connection
with corresponding representation function fsuch that f(0+) = 0. For A,B ∈ A ++, we have

A ≤ B ⇐⇒ ∥AσP∥ ≤ ∥BσP∥ , ∀P ∈ P (AW ∗(I, A−1 −B−1)).

Proof. Let T = A−1−B−1 and consider AW ∗(I, T ). Let us first recall that any commutative AW ∗-
algebra is algebra ∗-isomorphic to some C(X) where X is compact, Hausdorff, and extremally
disconnected. By an extremally disconnected set we mean a set such that the closure of every open
set is open. [1, Theorem 1 Section 7].

Therefore, let fT be the corresponding function of T in C(X). If T is not positive then the spec-
trum σ(T ) contains some negative number, so there is some ϵ such that σ(T )∩]−∞,−ϵ[ ̸= ∅. Con-
sider the projection Pϵ associated with f−1

T (−∞,−ϵ). Since fT (f−1
T (−∞,−ϵ)) ⊆ fT (f

−1
T (−∞,−ϵ)) ⊆

(−∞,−ϵ], we have PϵTPϵ ≤ −ϵPϵ, so PϵA
−1Pϵ + ϵPϵ ≤ PϵB

−1Pϵ. Therefore, for λ > 0

λPϵ ≤ PϵA
−1Pϵ =⇒ (λ+ ϵ)Pϵ ≤ PϵB

−1Pϵ.

Furthermore, since ∥A#P∥ ̸= 0 for any P ∈ P (A ), by (9), (10), and the injectivity of f , it can
be concluded that ∥BσPϵ∥ < ∥AσPϵ∥ which is a contradiction. □

For f(0+) > 0, we shall require the characterisation of order isomorphisms which are norm
preserving and orthogonality preserving in both directions. A map ψ : A + → B+ is said to be
orthogonality preserving in both directions when AB = 0 ⇐⇒ ψ(A)ψ(B) = 0 for A,B ∈ A +.
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Lemma 9. [4, Lemma 2.3] Let A ,B be C∗-algebras such that at least one is unital, and let ψ :
A + → B+ be a surjective order isomorphism such that ψ is norm preserving and orthogonality
preserving in both directions. Then ψ extends to a Jordan ∗-isomorphism J : A → B.

Before proceeding with the proof, let us recall [3, Lemma 1].

Lemma 10. Let f : (0,∞) → (0,∞) be an operator monotone function and let m denote the positive
and finite Borel measure associated to f via (1). For every Borel subset ∆ of [0,∞] satisfying
m(∆) > 0, the function f∆ defined on (0,∞) by

f∆ : x 7→
∫
∆

x(1 + t)

x+ t
dm(t)

is operator monotone. In particular, if m((0,∞)) ̸= 0, the function h defined by

h(x) :=

∫
(0,∞)

x(1 + t)

x+ t
dm(t) = f(x)− f(0+)− f ◦(0+)x (x > 0)

is operator monotone. If f is symmetric, then so is h.

We are now in a position to prove the main result of this paper.

Theorem 11. Let A ,B be AW ∗-subalgebras of B(H). A surjective map ϕ : A ++ → B++

preserves the norm of a symmetric Kubo-Ando mean σ if and only if there is a Jordan ∗-isomorphism
J : A → B which extends ϕ, i.e. ϕ(A) = J(A) holds for all A ∈ A ++.

Proof. Sufficiency is trivial. The proof shall be split into two cases depending on the behaviour of
the representation function f at 0.

Case 1: f(0+) = 0. Let A ∈ A ++, P ∈ P (A ), and ϵ > 0. Then by (6)

∥AσP∥ = ∥ϕ(A)σψϵ(P )∥ .
By (10) and the fact that f is injective,

(11) ∥A#P∥ = ∥ϕ(A)#ψϵ(P )∥ .
Let t > 0,

(12) ∥tA#P∥ = t1/2 ∥A#P∥ = t1/2 ∥ϕ(A)#ψϵ(P )∥ = ∥tϕ(A)#ψϵ(P )∥ .
By (11) and (12),

∥ϕ(tA)#ψϵ(P )∥ = ∥tϕ(A)#ψϵ(P )∥ .
By Proposition 8, we can then conclude that tϕ(A) = ϕ(tA) which proves that ϕ is positive ho-
mogenous. Therefore, by Theorem 6, we conclude that ϕ extends to a Jordan ∗-isomorphism.
Case 2: f(0+) > 0. Let P,Q ∈ P (A ) be two orthogonal projections, and consider (Q + δI)σP

where δ > 0. By (7), for maps of the type in Lemma 3 the following equation is obtained

(13)
∥∥(Q+ δI

)
σP

∥∥ =
∥∥(ψϵ(Q) + δI

)
σψϵ(P )

∥∥ , ∀ ϵ > 0.

We shall show that ψϵ is orthogonality preserving in both directions. Ifm((0,∞)) ̸= 0, by Lemma 10
we can denote by σh the symmetric Kubo-Ando connection corresponding to h(x) = f(x)−α−αx
where α = f(0+). Let τ denote the Kubo-Ando connection on B(H)+ × B(H)+ defined by the
equation

AτB =

∫
(0,∞)

1 + t

t
(tA : B) dm(t).

Since

h(xI) =

∫
(0,∞)

x(1 + t)

(x+ t)
I dm(t) =

∫
(0,∞)

1 + t

t
(tI : xI) dm(t) = Iτ(xI),

we have σh = τ by [7, Theorem 3.2]. Therefore, by (2) we can decompose (Q + δI)σP in the
following way

(Q+ δI)σP = α(Q+ δI + P ) + (Q+ δI)σhP.
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Since P (Q+δI)−1P = P
(
(1+δ)−1Q+δ−1(I−Q)

)
P = δ−1P , by Proposition 7 it can be concluded

that ∥∥(Q+ δI
)
σhP

∥∥ = h(δ) since max{λ ≥ 0 : λP ≤ P (Q+ δI)−1P} = δ−1.

Therefore,

∥(Q+ δI)σP∥ = ∥α(Q+ δI + P ) + (Q+ δI)σhP∥
≤ ∥α(Q+ δI + P ) + ∥(Q+ δI)σhP∥ I∥
≤ ∥α(Q+ δI + P ) + h(δ)I∥ .

(14)

Furthermore,∥∥(ψϵ(Q) + δI
)
σψϵ(P )

∥∥ =
∥∥α(ψϵ(Q) + δI + ψϵ(P )

)
+ (ψϵ(Q) + δI)σhψϵ(P )

∥∥
≥∥α(ψϵ(Q) + ψϵ(P ))∥

(15)

where the above follows because (ψϵ(Q) + δI)σhψϵ(P ) is a positive operator. Therefore, by using
the inequalities (14) and (15) in equation (13),

∥α(Q+ δI + P ) + h(δ)I∥ ≥ ∥α(ψϵ(Q) + ψϵ(P ))∥ .
By letting δ → 0 and using the fact that h(0+) = 0, it can be concluded that

(16) 1 ≥ ∥Q+ P∥ ≥ ∥ψϵ(Q) + ψϵ(P )∥ .
Since by Remark 1 ψϵ(Q) and ψϵ(P ) are projections, we have that they are orthogonal to each

other. Moreover, if m((0,∞)) = 0, then σ is the arithmetic mean and it is clear that (16) holds.
Let A,B ∈ A + be such that AB = 0 and max{∥A∥ , ∥B∥} = t. Furthermore, denote by PA and

PB the range projections corresponding to A and B. The range projections are elements of P (A )
by [6, Theorem 7]. Since img(B) ⊆ ker(A), we can conclude that APB = 0; similarly, PAPB = 0.
Since these are orthogonal, we have ψϵ(PA)ψϵ(PB) = 0. Furthermore, A ≤ tPA, so ψϵ(A) ≤ tψϵ(PA)
by Lemma 5. Thus, rng(ψϵ(A)) ⊆ rng(ψϵ(PA)) ⊆ ker(ψϵ(PB)) ⊆ ker(ψϵ(B)), so ψϵ(A)ψϵ(B) = 0.
By Remark 1, similar arguments can be used to show that if ψϵ(A)ψϵ(B) = 0, then AB = 0. Thus,
by Lemma 9, ψϵ extends to a Jordan ∗-isomorphism.
Let A ∈ A +, and ϵ2 > ϵ1 > 0. Then

ψϵ2(A) = ϕ
(
(A+ (ϵ2 − ϵ1)I) + ϵ1I

)
− ϵ2I

= ψϵ1

(
(A+ (ϵ2 − ϵ1)I)

)
+ ϵ1I − ϵ2I

= ψϵ1(A)

where we used the fact that ψϵ1 is linear and unital. Therefore, the family of maps {ψϵ}ϵ>0 is just
one map ψ which extends to a Jordan ∗-isomorphism. Let A ∈ A ++ be such that A ≥ ϵI. Then

ψ(A) = ψ(A− ϵI) + ψ(ϵI) = ϕ(A),

so ϕ extends to a Jordan ∗-isomorphism. □
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