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EXTENDING SURJECTIVE MAPS PRESERVING THE NORM OF
SYMMETRIC KUBO-ANDO MEANS

EMMANUEL CHETCUTI AND CURT HEALEY

ABSTRACT. In [4], the authors addressed the question of whether surjective maps preserving the
norm of a symmetric Kubo-Ando mean can be extended to Jordan *-isomorphisms. The question was
affirmatively answered for surjective maps between the positive definite cones of unital C*-algebras
for certain specific classes of symmetric Kubo-Ando means. Here, we give a comprehensive answer
to this question for surjective maps between the positive definite cones of AW *-algebras preserving
the norm of any symmetric Kubo-Ando mean.

1. INTRODUCTION

Recently, in [4], considerable attention was given to the problem of characterizing those maps
between the positive definite cones of unital C*-algebras that preserve the norm of a given Kubo-
Ando mean. We recall that a binary operation ¢ on the positive definite cone Z(H)*" of the
algebra Z(H) of bounded operators on the Hilbert space H, is called a Kubo-Ando connection if it
satisfies the following properties:

(i) f A< C and B < D, then AcB < CoD.
(ii) C(AocB)C < (CAC)o(CBC).
(ii) If A, | A and B, | B, then A,0B, | AcB (We write 4, | A when (4,) is monotonic
decreasing and SOT-convergent to A).

A Kubo-Ando mean is a Kubo-Ando connection with the normalization condition ol = I. The
most fundamental connections are:

e the sum (A,B) — A+ B,
e the parallel sum (A,B)+— A: B=(A"'+ B,
e the geometric mean

(A, B) — AtB = A} (A%BA%fA%.

The domain of definition can easily be extended from %(H)*" to the positive semi-definite cone
PB(H)*. For details, refer to the introduction section in [3].

In [7, Theorem 3.2], it is shown that there is an affine order isomorphism from the class of Kubo-
Ando connections onto the class of operator monotone functions via the map f(zl) = Io(zI) for
x > 0. Moreover, it is also shown that f(A) = IoA for every A € #(H)", which implies that

AoB = Ab f (A*%BA*%> AY, VAe B(H)™, Be B(H)

The function f is called the representing function of o. We further recall that if ¢ is a Kubo-Ando
connection with representing function f, then the representing function of the ‘reversed’ Kubo-
Ando connection (A, B) — Bo A is the transpose f°, defined by f°(z) := zf(z™'). The Kubo-Ando
connection is said to be symmetric if it coincides with its reverse; that is, a Kubo-Ando connection
is symmetric if and only if the representing function f satisfies f = f° as shown in [7, Corollary
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4.2]. The Kubo-Ando means are precisely the Kubo-Ando connections whose representing function
satisfy the normalizing condition f(1) = 1.

Since every finite Borel measure on [0, oo] is regular (i.e a Radon measure), we have that operator
monotone functions correspond to positive finite Borel measures on [0, oc] by Lowner’s Theorem
(see [5]): To every operator monotone function f corresponds a unique positive and finite Borel
measure m on [0, oo such that

1) f(a:):/[o }""”Sjtt) dm(t) = m({0}) + wm({och) + [ At a)dmlt) (> 0)

(0,00)

It is easy to see that f(0+) = m({0}), f°(0+) = m({oo}). Finally, by [7, Theorem 3.4], there is
an affine isomorphism from the class of positive finite Borel measures on [0, co] onto the class of
Kubo-Ando connections. This is given by the formula
1+t
(2) AoB = oA+ B +/ %(t/} : B)dm(t) A,Be B(H)*
(0,00)

where @ = m({0}) and 5 = m({oo}). In the case of a symmetric Kubo-Ando connection, oo = f.
For further details on the provenance of the integral representation (2), the reader is referred to [7,
Theorem 3.2].

After the exposition on general Kubo-Ando means, we can now define the property under study
for symmetric Kubo-Ando means.

Definition 1. Let 0 be a Kubo-Ando mean and let &7 and # be unital C*-subalgebras of Z(H ).
A surjective map ¢ between the positive definite cones of .7 and £ is said to preserve the norm of
o if

|Ao Bl = [[6(A)op(B)||, VA,Be .

A natural question to ask is whether a surjective map ¢ : & — 2" preserving the norm of a
symmetric Kubo-Ando mean is an order isomorphism. By an order isomorphism, we mean a map ¢
such that A < B <= ¢(A) < ¢(B) where A,B € &/**. Let A, B € &/*. Then by [3, Theorem
6],

A< B < ||AoX| < ||BoX|, VXewtt
(3) = [¢(A)op(X)| < [[¢(B)op(X)||, VX e
> ¢(4) < ¢(B).
Moreover, ¢ is norm preserving. This can be seen by recalling [7, Theorem 3.3] and noting that
(4) IA]l = [|[AcAll = [[6(A)ad(A)]| = le(A)l], VA€o

The question we now tackle is whether a surjective map preserving the norm of a symmetric Kubo-
Ando mean extends to a Jordan x-isomorphism. Let us recall that a Jordan x-isomorphism is a
bijective linear map J : &/ — % such that J(A*) = J(A)* and J(AB+BA) = J(A)J(B)+J(B)J(A)
for A, B € /. The problem under study has been stated explicitly in the open problem section of
9], and we reformulate it here to its most general form.

Problem 1. Do surjective maps between positive cones of unital C*-subalgebras of %(H) that
preserve the norm of a symmetric Kubo-Ando mean extend to Jordan x-isomorphisms?

The above problem has been solved for the arithmetic mean [4, Theorem 2.4] and the geometric
mean [2, Theorem 1], but for the harmonic mean, it has been solved in the case of AW *-algebras
[4, Theorem 2.16]. Our aim is to provide a complete answer for to the above problem for general
symmetric means in the setting of AW *-subalgebras of Z(H).
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2. PRELIMINARY CONSIDERATIONS
Let us first recall [4, Lemma 2.3] and provide the proof here for completeness’ sake.

Lemma 2. Let &/, % be unital C*-algebras and ¢ : /T — BT a surjective norm preserving
order isomorphism. Then ¢(tI) =tI fort > 0.

Proof. Given that ||¢(tl)|| = ||¢tI]| = t, it follows that ¢(¢I) < tI. Furthermore, there exists
A € &/t such that ¢(A) = tI. Since ||A]| = ||¢(A)]| = t, we have that A < ¢tI. Hence, we have
tI = ¢(A) < ¢(tI). This proves the lemma. O

Moreover, by [4, Lemma 2.8], ¥.(A) = ¢(A + eI) — el is a surjective norm preserving order
isomorphism between the positive semi-definite cones of &7 and £ for some ¢ > 0 such that ¢ (t/) =
tl for all t > 0. Let us provide the proof here for completeness’ sake.

Lemma 3. Let &7, % be unital C*-algebras and ¢ : o+ — BT a surjective norm preserving
order isomorphism. Define v : T — B+ by v (A) = ¢(A+ el) — el where € > 0, then 1), is a
surjective norm preserving order isomorphism such that ¥ (tI) = tI for all t > 0.

Proof. Let A,B € &/", and € > 0. Then
A<B < A+el <B+e€l
= P(A+el) < p(B+el)
== G(A+el)—el <G(B+el)—el
> te(A) < ¢e(B)

which implies that 1), is an order isomorphism. We next show that 1), is surjective. Let B € 7.
Then there is some A € &/ such that ¢(A) = B + el. Since ¢p(A) > el = ¢(el), we have A > el,
which allows us to conclude that ¢.(A — el) = ¢(A) — el = B. Therefore, 1. is surjective. Since
[Ve(A)| = l[9(A +el) —el|| = [[¢(A+el)|| —€ = [|[A+el|| —e = [[A]l, we have that ¢ is norm
preserving. Finally, ¢ (t]) = ¢((t+€)I) —el = (t +¢)] — el =t1.

O

Before recalling [10, Lemma 3.1], let us provide some definitions. For a unital C*-algebra </ we
define Fy(o/) := {0 < A < tI}, where t is a positive real number. We recall that F;(</) is called
the effect algebra associated with 7. Let

Ay() :={(a,b) € E(H) x E(H):aNb=0}

where a A b denotes the infimum of a,b in &/*. Endow A(«/) with the order relation (ai,as) <
(b1,b2) <= a1 < by and by < ag, where (ay,as), (by,b2) € Ay(7). Finally, denote the set of
projections of o/ by P(<f). We recall that for any non-empty family of projections in 7, if the
infimum in P(&7) exists, then this will be also the infimum of the family, taken in &/,

Lemma 4. Let o/ be a unital C*-algebra. Then the following conditions are equivalent:

(1) P is a projection.
(2) The pair (P, Q) is mazimal in Ay(<f) for some Q € Ey(<).

Proof. (1) = (2). Suppose that P is a projection. Consider the pair (P,I — P). Let A € &/ such
that A< P and A<I—P. Then (I — P)A(I — P) < (I — P)P(I — P) = 0. Similarly, PAP =0
which implies A = (I — P)AP+ PA(I — P), but since (I — P)A = A, and PA = A, we have A = 2A,
so A=0.

Suppose (P, I — P) < (A, B) where (A, B) € Ay(/). Since P < A < I, we have AP = P. Thus,
(I—P)AP = 0and PA(I—P) = 0. Since A = P+ (I — P)A(I — P), we have (I — P)A(I— P) < A
and (I — P)A(I — P) < (I — P) < B which implies that (I — P)A(I — P) = 0. Therefore, A = P,
and, similarly, it can be concluded that B =1 — P.
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(2) = (1). Suppose (P,Q) is maximal in Ay(«7). The function f : [0,1] — [0, 1] defined
by f(0) := 0 and f(t) = 2(1 + t7')~! is strictly increasing and surjective. In particular, f is
continuous. The function A — f(A) is an order isomorphism of FEj(</) onto itself. Therefore,
(f(P), f(Q)) € Ay(). Since t < f(t) for every t € [0, 1], we have (P,Q) < (f(P), f(®Q)). This
implies that (P, Q) = (f(P), f(Q)). By the Spectral Mapping Theorem, sp(P) C {0,1}, so P is a
projection. 0]

Remark 1. Let o7 , B be unital C*-algebras and let ) : o/ — BT be a surjective order isomorphism
such that Y(tI) =tI. Then (A, B) is maximal in A(2) iff (Y(A),¥(B)) is mazimal in Ay(AB). In
particular, P € P() iff Y(P) € P(#) by Lemma 4.

Lemma 5. Let o/, A be unital C*-algebras. If ¢ : o/ — B is a surjective order isomorphism
such that ¥ (tl) = tI for allt > 0, then for any projection P in <f , (tP) = ty(P) for all t > 0.

Proof. We claim that (Py, P,) is maximal in A;(%7) if and only if (¢P;,tP;) is maximal in A;(<).
Let (P, P,) be maximal in Ay(%7). That P, AP, =0 <= tP, ANtP, = 0 is clear. Suppose
(A, B) € Ay(&) such that (tPy,tP;) < (A, B), then (P, P2) < (t7'A,t7'B) and (t'A,t7'B) €
A1 (/) which by maximality of (P, P») implies that (P, ) = (t71A,t7'B), so (tP,tP,) = (A, B).
Similar arguments are used to prove the reverse implication.

Let ¢t > 0. Since (P, (I — P)) is maximal in A;(%7), we have that (¢tP,t(I — P)) is maximal in
Ay(«7) which implies that (¢ (tP),¥(t(I — P))) is maximal in A;(#) by Remark 1. Subsequently,
(t71(tP), t7 " (t(I — P))) is maximal in A;(AB), so (t~'(tP),t 4 (t(I — P))) € P(B) x P(AB).

I > 1, then (4(P),0(T = P) < (6(tP), o(t(T = P))).” Since me(u(P)) € mglu(tP)) =
g (t 1 (tP)) and rng(y (I — P)) C rng(t~ o (t(I — ))) we can conclude that (¢(P), (I — P)) <
(t71(tP),t™"(t(I — P))), so by maximality ¢ (P) =t~ (tP).

I ¢ < 1, then (4(tP), 9(t(I — P))) < ((P), p{I — P)). Since me(t-"4(tP)) = mg(y(tP)) C
rng(t)(P)) and rg(t ¢ (t(I—P))) € mg(Y(I—P)), we have (1 (tP), =" (t(I=P)) < (b(P), v (I~
P)), so by maximality ¢ (P) = t 14 (tP). O

Let o/ be a unital C*-algebra, and let 0 < €; < €. Consider maps v, , 1., of the type stated in
Lemma 3. Let ¢ also denote the map as specified in Lemma 3. Then

G(tP + e 1) < $(tP + &), VP e P(), t> 0.

By Lemma 5,

e, (P) + 1l <th,(P)+ eI, VP e P(d), t>0.
Ast — oo,
() Ve (P) <9 (P), VP e P(d)

Moreover, we claim that ¢, (P) = ¢, (P). Let Q = 1, (P) — ¥ (P). Then @ is a projection
which is orthogonal to ¢, (P). Furthermore, ¥_'(Q) = R < P, which implies that ¢, (R) < ¥, (P).
By Remark 1, R is a projection, so (5) implies ¢, (R) < 9, (R) = () which implies that ¢, (R) = 0.
Since ¥(0) = 0 for any € > 0, we have Q = 0, and the claim is proved.

Let P € P(4/). Then

|Ac (P +el)|| = [|¢(A)a (ve(P) + el)||, Ve>o0.
Since ¥ (P) = S for all € > 0, we can use [3, Remark 1 (i)] to conclude that as ¢ — 0, we have
[AcP[| = [l¢(A)aS] -

This implies that the above can be written as

(6) [AoP|| = [[¢(A)oe(P)]|, Ve>0.
Furthermore, if A =T + 61 for some T € P(</) and § > 0, then
(7) (T +61)oP|| = || (¥e(T) + 61)ope(P)||, Ve>0.
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3. RESULTS

Let o/, % be AW*-subalgebras of Z(H), and ¢ : &/t — %' be a surjective map which
preserves the norm of a symmetric Kubo-Ando mean o. We shall show that there exists a Jordan
s-isomorphism J : &/ — % which extends ¢, i.e. ¢(A) = J(A) holds for all A € &+, If f is
the representing function of o, then the proof shall be split into the cases when f(0+) = 0 and
f(0+) > 0. The proof for when f(0+) = 0 requires the characterization of surjective positive
homogenous order isomorphisms. By ¢ being positive homogenous, we mean that ¢(tA) = tp(A)
for A€ o/t and t > 0.

Theorem 6. [8, Theorem 13| Let o/, BB be unital C*-algebras. The map ¢ : A7 — BT is a
surjective positive homogenous order isomorphism if and only if it is of the form

(8) $(A)=CJ(A)C, VAecagtr
where C € BT and J : o — B is a Jordan *-isomorphism.

It is clear in this theorem that if ¢(1) = I then C' = I. We further recall the following character-
isation of Kubo-Ando connections with representing function f satisfying f(0+) = 0.

Proposition 7. [9, Lemma 2] Let f : (0,00) — (0,00) be a non-trivial (i.e. not affine) operator
monotone function satisfying f(04+) = 0 and let o denote the Kubo-Ando connection associated to
f. For A e B(H)™ and non-zero projection P € B(H)

. 1
lAoPl =1 (max{)\ >0:\P < PAlP}> ‘

Since the geometric mean is a symmetric mean with representation function f such that f(t) =
t1/2, we have

1
9 A#P|? = .
9) 14# P max{\ > 0: AP < PA-'P}
Therefore,
(10) |AcP|| = fo(|[A#P|?).

We shall also require the following result.

Proposition 8. [2, Lemma 11| Let & be an AW*-algebra and o a symmetric Kubo-Ando connection
with corresponding representation function fsuch that f(0+) =0. For A, B € &/, we have

A< B <= ||AoP|| <|BoP|, YPeP(AW*(I,A™' —B™)).

Proof. Let T = A~' — B™! and consider AW*(I,T). Let us first recall that any commutative ATV*-
algebra is algebra -isomorphic to some C(X) where X is compact, Hausdorff, and extremally
disconnected. By an extremally disconnected set we mean a set such that the closure of every open
set is open. [1, Theorem 1 Section 7].

Therefore, let fr be the corresponding function of 7" in C(X). If T' is not positive then the spec-
trum o(7") contains some negative number, so there is some € such that o(T)N] — oo, —e[# (. Con-
sider the projection P. associated with f.(—o0, —€). Since fr(f7'(—00, —€)) C fr(f3' (=00, —€)) C
(—o0, —¢|, we have P.TP, < —eP., so P.A™'P. + ¢P. < P.B™'P.. Therefore, for A > 0

AP. < PA'P. — (A+¢)P. < P.B™'P..

Furthermore, since ||A#P|| # 0 for any P € P(</), by (9), (10), and the injectivity of f, it can
be concluded that ||BoP|| < ||Ao P.|| which is a contradiction. O

For f(04+) > 0, we shall require the characterisation of order isomorphisms which are norm
preserving and orthogonality preserving in both directions. A map v : &/ — %7 is said to be
orthogonality preserving in both directions when AB =0 <= (A)Y(B) =0 for A,B € &/ *.
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Lemma 9. [4, Lemma 2.3] Let o/, % be C*-algebras such that at least one is unital, and let 1 :
At — BT be a surjective order isomorphism such that v is norm preserving and orthogonality
preserving in both directions. Then 1 extends to a Jordan x-isomorphism J : of — 2.

Before proceeding with the proof, let us recall [3, Lemma 1].

Lemma 10. Let f : (0,00) — (0,00) be an operator monotone function and let m denote the positive
and finite Borel measure associated to f wia (1). For every Borel subset A of [0,00] satisfying
m(A) > 0, the function fa defined on (0,00) by
14+t
fa: x}—>/ Mdm(t)

A T +t

is operator monotone. In particular, if m((0,00)) # 0, the function h defined by
(141 o
h(x) ::/ ( ) dm(t) = f(z) — f(0+) — f°(0+)z (x> 0)
(0,00) T+

1s operator monotone. If f is symmetric, then so is h.

We are now in a position to prove the main result of this paper.

Theorem 11. Let o/, B be AW*-subalgebras of B(H). A surjective map ¢ : /1 — B+
preserves the norm of a symmetric Kubo-Ando mean o if and only if there is a Jordan x-isomorphism

J A — B which extends ¢, i.e. p(A) = J(A) holds for all A € /7.

Proof. Sufficiency is trivial. The proof shall be split into two cases depending on the behaviour of
the representation function f at 0.
Case 1: f(0+) =0. Let A€ o™+, P € P(«), and € > 0. Then by (6)

[AoP|| = [|p(A)aibe(P)]| -
By (10) and the fact that f is injective,

(11) [A#P|| = [lo(A)##e(P)]l -
Let t > 0,
(12) [tA#P|| =t/ || A#P|| = ' [6(A)#pe(P)I| = to(A)#p(P)l.

By (11) and (12),
[o(tA)#V(P)|| = [[tp(A)#e(P)]] -
By Proposition 8, we can then conclude that t¢(A) = ¢(tA) which proves that ¢ is positive ho-
mogenous. Therefore, by Theorem 6, we conclude that ¢ extends to a Jordan x-isomorphism.
Case 2: f(0+) > 0. Let P,Q € P(</) be two orthogonal projections, and consider (Q + dI)o P
where 6 > 0. By (7), for maps of the type in Lemma 3 the following equation is obtained

(13) (@ + 6I)oP|| = || (¥e(Q) + 6I)ope(P)||, Ve>0.

We shall show that v is orthogonality preserving in both directions. If m((0,c0)) # 0, by Lemma 10
we can denote by oj the symmetric Kubo-Ando connection corresponding to h(z) = f(z) — o — ax
where o« = f(0+). Let 7 denote the Kubo-Ando connection on B(H)* x Z(H)" defined by the

equation
ArB = / LYy A . Bydm().
(0.00) 1
Since (1+1) -
(1l + +
hx]:/ ]dmt:/ —(tl - xl)dm(t) = IT(x1),
en= [ rptam@= [ Sterenan = e

we have o, = 7 by [7, Theorem 3.2]. Therefore, by (2) we can decompose (@ + §/)oP in the
following way

(Q+61)oP = a(Q+ 0l + P)+ (Q + 6I)o, P.
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Since P(Q+61)"'P = P((146)'Q+6"'(I—Q)) P = 6~' P, by Proposition 7 it can be concluded
that
|(Q+dI)oyP|| = h(6) since max{A>0:AP < P(Q+dI)"'Py=5".

Therefore,
1@+ 61)oP|| = la(@ + 61 + P) + (Q + 1), P
(14) < (@ + I + P) + |[(Q + 8Dy P|| 1|
<|la(Q+ 1+ P) + h(d)I].
Furthermore,

“(@ZJE( + 51 UQ/JE H = ||04 e Q) + 6I+¢6(P>) + (¢6(Q) +5[)0h¢e(P)H
> [|a(e(Q) + ve(P))]

where the above follows because (¢.(Q) + 61)opb(P) is a positive operator. Therefore, by using
the inequalities (14) and (15) in equation (13),

|(Q + 01 + P) + h(0) ]| = [la(¢e(Q) + ¢e(P))]| -
By letting § — 0 and using the fact that h(0+) = 0, it can be concluded that

(16) 12 Q+ Pl = [[9:(Q) + ve(P)]] -

Since by Remark 1 9.(Q) and v.(P) are projections, we have that they are orthogonal to each
other. Moreover, if m((0,00)) = 0, then o is the arithmetic mean and it is clear that (16) holds.

Let A, B € &/ be such that AB = 0 and max{||A||, || B||} = t. Furthermore, denote by P4 and
Pg the range projections corresponding to A and B. The range projections are elements of P(47)
by [6, Theorem 7]. Since img(B) C ker(A), we can conclude that APp = 0; similarly, P,Pg = 0.
Since these are orthogonal, we have ¥.(P4)Y.(Pg) = 0. Furthermore, A < tPy, so .(A) < ti.(Pa)

by Lemma 5. Thus, rng(1.(A)) C rng(ve(Pa)) C ker(ve(Pg)) C ker(w(B)), so ¥(A)(B) =0
By Remark 1, similar arguments can be used to show that if ¢.(A)w(B) = 0, then AB = 0. Thus,
by Lemma 9, 1. extends to a Jordan x-isomorphism.

Let A€ &/, and €5 > ¢ > 0. Then

Yer (A) = Cb((A + (2 —€e1)]) + 61]) — €l
= wq ((A + (62 - 61)[)) + 61[ - 621
= ¢, (4)

where we used the fact that 1, is linear and unital. Therefore, the family of maps {,}eso is just
one map v which extends to a Jordan *-isomorphism. Let A € &/ be such that A > eI. Then

P(A) = P(A = el) + y(el) = o(A),

so ¢ extends to a Jordan *-isomorphism. O

(15)
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