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Summary

Birds are often used as ecological indicators because they are widely distributed across diverse
habitats and display distinct behavioural responses to environmental changes. The Endangered
Grey Crowned Crane Balearica regulorum is regarded as a flagship species of Africa’s wetland
and grassland habitats, both of which are undergoing substantial transformation to alternative
land uses. The delayed reproductive strategies and habitat specialisation of this crane species
makes themmore vulnerable to extinction, but this risk is further compounded by data paucity.
We employed traditional and contemporary survey methods to collect breeding metrics to
calculate stage transition probabilities (i.e. egg–hatchling, hatchling–juvenile) and to identify
possiblemacro-environmental factors that either promote or hinder their reproductive output in
a key agricultural area in KwaZulu-Natal, South Africa. We found that Grey Crowned Cranes
have a low hatching rate of 38.4% (95% confidence interval 29.3–48.4%) and show that this low
hatching rate is exacerbated under high rainfall intensity.Multivariate analyses andmulti-model
inference revealed that successful nest-sites were generally associated with larger open water-
bodies, greater distances from shore, and increased proximity to secondary roads, buildings, and
natural grasslands. Although increased agricultural activities might promote greater foraging
opportunities, the overall breeding outcomes of this species were poor in this key agricultural
region. Our findings stress the urgent need for further fine-scale data collection and monitoring
activities to better inform conservation strategies for this species. We also encourage future
studies to focus on aspects affecting Grey Crowned Crane breeding in regions where proximity
to human activities is inevitable.

Introduction

Birds are an exceptionally diverse class, occupying almost all habitats on Earth (Lees et al. 2022).
However,many species are threatened due to anthropogenic activities, associated habitat loss and
resulting competition between humans and birds for the same resources (Amulike et al. 2020;
Fakarayi et al. 2016; Harris and Mirande 2013; Tilman et al. 2017). Birds display distinct
behavioural changes in response to environmental changes, making them valuable ecological
indicators (Fraixedas et al. 2020; Lees et al. 2022; Marcelino et al. 2020). For example, some
environmental changes result in amismatch of important resources or optimal conditions during
key life stages, forcing migratory species to adjust their migration patterns (Sillett et al. 2000;
Visser et al. 2015; Zurell et al. 2018), whilst non-migratory bird species attempt to shift their home
ranges (Santisteban et al. 2012). Furthermore, delayed insect emergence and reduced food
availability associated with climatic changes disrupt hatchling growth and extend the time it
takes for adults to replenish the energetic costs incurred during breeding (Charmantier and
Gienapp 2014; Møller et al. 2008; Pearce-Higgins et al. 2010).

Larger birds with longer generation times and delayed reproduction, as well as those that
rely on specialised habitats, face a higher extinction risk, especially if they cannot adapt to
changing environments (Bird et al. 2020; Brown and Orians 1970; Owens and Bennett 2000;
Toussaint et al. 2021). Cranes (Gruidae) are among the most long-lived bird species, with
generational lengths of approximately 12 years (vs the average of approximately three years
for all bird species) (Bird et al. 2020; Zelelew et al. 2019). This, together with their habitat
specialisations, magnifies their extinction risk (Edwards et al. 2022; Owens and Bennett
2000), making cranes among the most threatened bird families globally (Beilfuss et al. 2007;
Harris and Mirande 2013). The Grey Crowned Crane Balearica regulorum is sub-Saharan
Africa’s most vulnerable crane species and was uplisted to “Endangered” on the International
Union for Conservation of Nature (IUCN) Red List in 2012 (Harris and Mirande 2013). Grey
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Crowned Cranes have a strong reliance on wetlands for breeding
and grasslands for foraging (Beilfuss et al. 2007); however,
commercial afforestation and agricultural intensification
now expose this species to the risk of habitat loss (Fakarayi
et al. 2016; Morrison and Bothma 1998; Wamiti et al. 2022;
Weyer et al. 2015). The resulting close association of cranes
and agriculture (Olupot 2016) is linked to increasing reports of
breeding failures following damming and drainage of wetlands,
powerline collisions, disease, and predation; while poisoning,
hunting, and illegal trading of these birds are also increasing
(Amulike et al. 2020; Galloway-Griesel et al. 2022; Harris and
Mirande 2013).

The long-term persistence of a population, particularly in
response to climate change, is directly related to an individual’s
reproductive output per breeding event or lifetime, as well as the
probability that their offspring will reach sexual maturity (Assersohn
et al. 2021). Grey Crowned Cranes breed during the summer rainy
season when seeds and insects are abundant, a strategy which
improves parent condition and chick survival (Austin et al. 2018;
Gichuki 2000; Wamiti et al. 2022). Grey Crowned Cranes lay large
clutches compared to other cranes (Wamiti et al. 2022), and their
strategy of synchronised parental incubation assists with protecting
eggs from aerial predators while nesting in tall, inaccessible
wetlands offers concealment from terrestrial predators (Wamiti
et al. 2020; Wen et al. 2021). These reproductive behaviours and
nest-site preferences havemade traditional on-foot data collection
of breeding metrics challenging, resulting in data paucity and
ineffective conservation planning for this species (Morrison
1998). More detailed metrics are needed to better understand
the factors that directly or indirectly impact adults, eggs or chicks
(e.g. through fluctuating incubation temperatures, food quality,
and availability or protection from predators; Wu et al. 2014),
ultimately impacting breeding success (Soriano-Redondo et al.
2023; Wamiti et al. 2022; Wu et al. 2009).

To our knowledge, no study has investigated how surrounding
macro-environmental characteristics influence the reproductive
outcomes of Grey Crowned Cranes, and the absence of extensive
breeding data hinders our ability to determine the breeding out-
comes of this species. Therefore, our study aimed to (1) determine
the general breeding outcomes of this species in a key agricultural
area in South Africa, (2) identify the stage where reproductive
failure is most likely by assessing the transition probabilities
between early life stages, and (3) understand how specific macro-
environmental factors (both human-related and natural) affect
reproductive outcomes.

Methods

Study area

Nest-site monitoring took place during the 2022/3 Grey Crowned
Crane breeding season in the Underberg, Himeville, Franklin, and
Kokstad regions of KwaZulu-Natal, South Africa (Figure 1). This
summer-rainfall region (650–1,000mmper annum) has large areas
of open grasslands and wetlands while agriculture (intensive crop-
ping and dairying, extensive beef and sheep) and commercial
forestry (Pinus spp. and Eucalyptus spp.) are the primary land-
use types occurring in these regions. Rainfall records supplied by
farmers in each study region showed that rainfall during the 2022/3
breeding season exceeded the yearly average captured in previous
years (Supplementary material Table S1), likely resulting from a
La Niña event (Jones 2022).

Data collection

General breeding outcomes and transition probabilities
We identified potential Grey Crowned Crane breeding pairs
using behavioural cues following Wamiti et al. (2022) – a lone
crane foraging close to a water-body usually implied that its
partner was nesting nearby. As Grey Crowned Cranes nest in
areas that are difficult to access, we used a standard Mavic Air 2S
drone (DJI Technology Co., Shenzhen, China) (595 g, 1-inch
20 MP sensor, 8 × zoom, 65 dB low noise propeller) to monitor
all nests following the nest-site approaching methodology
detailed in Demmer et al. (2024) (Figure S1). Drone flights were
kept to a minimum to decrease disturbance and lower the risk of
nest or chick abandonment by parents. When monitoring fam-
ilies with chicks, the small size and cryptic colouring of Grey
Crowned Crane hatchlings required closer and lower flights for
accurate counts. During these flights, the pilot cautiously man-
oeuvred the drone, approaching the grouping at a diagonal angle,
without hovering, to capture breeding metrics (spending
approximately 20 seconds at the nest). Video recording was
enabled throughout all approaches to facilitate post hoc record-
ing of breeding metrics.

We considered a nest-site “active” if eggs were present or a
crane was incubating on an identified nest (i.e. incubating;
Figure 2B and D). Locations where courting pairs were observed
without nests were revisited every two to three weeks. During each
breeding site observation, we counted the number of eggs, hatch-
lings, juveniles, and fledglings and differentiated between these
stages based on their size and plumage. Distinguishing juveniles
from fledglings depended on whether chicks could fly (commonly
takinge place 55–100 days after hatching; Gichuki 2000). Each
nest-site was revisited at 2–3-week intervals from incubation until
the offspring could fly or until there was no evidence of the family
after two subsequent monitoring events. If a nest-site was not
monitored from incubation, it was excluded from our analyses as
missing the initial nesting stage results in biases towards identi-
fying nest-sites that successfully hatch chicks (Jehle et al. 2004).
Monitoring families after fledging was sometimes challenging due
to the family’s increasedmobility. For this reason, we considered a
breeding attempt successful when the offspring reached the juven-
ile stage. This usually included fledged chicks, but in other cases,
families had moved off to join nearby flocks soon after chicks
became more mobile, making it nearly impossible to identify
specific families.

Breeding outcomes were measured in three ways: (1) total
counts of offspring at each stage; (2) probability of offspring tran-
sitioning from one stage to another (total count in subsequent stage
divided by total count in the previous stage); and (3) nest-site
success when at least one juvenile or fledgling was observed.

Macro-environmental impacts
Daily rainfall data for the 2022/3 breeding season were sourced from
local farmers known to keep accurate records by measuring milli-
metres of rainfall with standard 10 cm2 circular rain gauges. These
data were collected for each of the five regions where nest-sites were
situated.We also collectedmacro-environmental data describing the
broader patch and landscape-scale habitat type aroundeachnest-site,
further details of which are provided in Table 1.

We used GIS software to measure direct distances between each
nest-site and important environmental descriptors (i.e. nearest
building, road, agricultural land, and water-body) and to determine
the dam and wetland surface areas (measured in m2) (Table 1). The
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only categorical descriptor, vegetation height, was categorised
through post hoc assessments using drone photographs taken
within 1 m of each nest-site. The five vegetation height categories
included “short” for grass, “medium” for reeds, and “tall” for
bulrushes. Nest-sites with a combination of these vegetation types
were labelled as “short to medium” or “medium to tall”.

Statistical analyses

All statistical analyses were conducted in R version 4.3.1 (R Core
Team 2022). To assess whether there was bias in our observations
towards a particular study region, we compared the number of
observations at each nest-site across regions with a Poisson general-
ised linear model (GLM) and a log link function.

General breeding outcomes
The date at which each developmental stage was most likely to be
detected (an integer with 1 representing the first observation in the
breeding season) was determined using a log-linear mixed effects
model using the “lmer” function from the lme4 package (Bates et al.
2015). Developmental stage (eggs, hatchlings, juveniles, and fledg-
lings), breeding outcome (success or failure), and the interaction of

these two factors as independent variables were included as fixed
effects.

The number of offspring observed for a breeding attempt was
assessed using a Poisson generalised linear mixed effects model
(GLMM), implemented using the “glmer” function from the lme4
package, with developmental stage as the independent variable.
Changes in the number of offspring over time (used to describe
how and when stage transitions took place) were assessed with a
generalised additive mixed model with a Poisson error distribution
and a log link function, using the “gamm” function from the mgcv
package (Wood 2011). Here, the number of offspring in each stage
was allowed to vary as a function of days since nest-site detection.
Since repeated observations took place at each nest-site throughout
the breeding season, we controlled for this in all the above-
mentioned mixed effects models by including a random intercept
of the nest-site itself.

Transition probabilities
We used a binomial GLM with a logit link function to assess the
probability of transitioning from one stage to the next. The transi-
tion types that we assessedwere the three sequential transition types
(eggs–hatchlings, hatchlings–juveniles, juveniles–fledglings), the
egg-to-juvenile transition as a measure of nest-site success (the

Figure 1. Distribution of the four main study sites within the southern Drakensberg, highlighting land-cover within surroundings. Specific nest-site locations have been omitted
because this is potentially sensitive information and we do not have the landowner’s permission to share this information publicly. Land-cover is based on a provincial land-cover
map produced by the provincial conservation authority, Ezemvelo KwaZulu-Natal Wildlife (Ezemvelo KZN Wildlife 2008).
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chance that an egg will survive to a juvenile), and the chance of
obtaining 100% success (whether all eggs would transition to
juveniles). In a second model we assessed the change in transition
probability of two transition types (eggs–hatchlings and hatch-
lings–juveniles) across a gradient of rainfall intensity using a bino-
mial GLMM with a logit link function. We calculated rainfall
intensity (mm/day) as the sum of the daily rainfall during each
transition divided by the number of days the transition took to
complete where higher values indicate greater rainfall over a shorter
time period. Here, we included a random intercept of “region” to
control for differences in total rainfall between the regions
(Table S1). There was also a difference in themean rainfall intensity
experienced during these two transition types (χ2 = 17.366, df = 1,
P <0.001) and across months (F7,1236 = 340.34, P <0.001, Table S1),
with greater rainfall intensity observed earlier in the breeding
season. We controlled for this by incorporating a random slope
effect of rainfall intensity within months to capture the variable
rainfall intensity observed between the months. Juvenile fledgling
transitions did not occur in all the regions and so this transition was

excluded from this analysis. Unless otherwise stated, all results from
these regression models are presented as means (± 95% confidence
interval [CI]).

Macro-environmental impacts
We used a Principal Components Analysis (PCA) to explore trends
in Grey Crowned Crane breeding outcomes across biophysical
descriptors collected for each nest-site. Since the environmental
descriptors differed by orders of magnitude, these measurements
were log(x + 1) transformed and then standardised by dividing each
measurement by the maximum transformed distance recorded for
that measurement type, scaling each measurement between zero
and one. We conducted the PCA using the “rda” function from the
vegan package (Oksanen et al. 2022).We tested for the separation of
centroids between successful and unsuccessful hatching (hatching
success) and the production of juveniles (overall success) by imple-
menting two analyses of variance, using Euclidean distance matri-
ces, with the “adonis2” function in the vegan package. For both the

Figure 2. Drone photographs depicting: (A) the view of a nest-site from afar; (B) a close-up of a Grey Crowned Crane Balearica regulorum nest-site; (C) a flooded nest-site;
(D) incubating parent; (E) parents with two hatchlings and one egg at their nest-site; (F) parent foraging with juveniles.
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multivariate and themulti-model inference analyses, a nest-site was
considered to have successfully hatched offspring if at least one egg
hatched. Similarly, a nest-site was considered successful overall if at
least one juvenile was observed at the nest or with the monitored
family.

We identified the most important environmental descriptors
using multi-model inference to complement the multivariate
analyses. A binomial GLM including all main effects was fitted
initially. Models with all possible combinations of predictor vari-
ables were then assessed using the “dredge” function from the
MuMIn package (Bartoń 2023). From these we selected all models
within two Akaike information criterion (AIC) units of the best-
performing model (ΔAIC ≤2). To reduce the influence of poten-
tially non-significant parameters included in these selected
models, we applied a model averaging procedure, using the
“model.avg” function from the MuMIn package to produce the
final model (Arnold 2010).

There is a strong correlation between likelihood ratio tests and
ΔAIC. A ΔAIC <2 (indicating that there is little evidence that
models are significantly different) translates to P <0.157, approxi-
mating the 85%CI (Arnold 2010). As a result of this, we report both
the 95% and 85% CIs in the final averaged model’s presentation for
these analyses (Arnold 2010; Sutherland et al. 2023). Effects sig-
nificant at the 85% but not at the 95% level were referred to as
“moderately significant”.

Results

A total of 95 nests were identified and monitored across the five
regions during the 2022/3 breeding season (Table S1). On average,
each nest-site was observed 3.72 (3.44; 4.00) times, totalling
351 observations across all 95 nest-sites. The number of observa-
tions per nest-site did not differ between regions (χ2 = 3.238,
df = 4, P = 0.519; Table S1), indicating no monitoring bias between
regions. Rainfall intensity did vary across regions, with Himeville
recording the highest and Kokstad the lowest rainfall intensity
respectively (F4,1239 = 2.523, P = 0.039; Table S1).

The average dates where observations of the different stages
were made are illustrated in Figure 3. These dates were significantly
different between developmental stages (F1,618.43 = 106.14,
P <0.001), but did not differ between successful and unsuccessful
nests (F1,110.00 = 0.01, P = 0.913). The interaction between these two
variables was also non-significant (F1,946.65 = 0.41, P = 0.666).

Table 1. Macro-environmental descriptors measured for each nest-site

Category Unit Description

Primary road (tar) m Distance to nearest tar road

Secondary (dirt) m Distance to nearest secondary
road

Farm (dirt) m Distance to nearest farm road

Open water m Distance to nearest open water-
body

River m Distance to nearest river

Wetland m Distance to nearest wetland edge
(point at which vegetation
changes from grassland to
wetland type)

Natural grassland m Distance to nearest uncultivated
grassland

Pasture m Distance to nearest cultivated
pasture

Cropland m Distance to nearest cultivated
cropland

Surface area m2 Surface area of nearest wetland or
dam

Perimeter m Perimeter of nearest wetland or
dam

Island boolean Whether the nest was on an island

Height ordinal (1–5, short,
short–medium,
medium,
medium–tall,
tall)

Description of height of vegetation
surrounding nest-site

Figure 3.Mean (± 95% confidence interval) dates at which Grey Crowned Crane Balearica regulorum developmental stages were observed between successful and unsuccessful sites.

Bird Conservation International 5

https://doi.org/10.1017/S0959270924000376 Published online by Cambridge University Press

http://doi.org/10.1017/S0959270924000376
http://doi.org/10.1017/S0959270924000376
http://doi.org/10.1017/S0959270924000376
https://doi.org/10.1017/S0959270924000376


General breeding outcomes

The number of offspring per nest differed between developmental
stages, with significantly more eggs recorded than juveniles or
fledglings (χ2 = 27.08, df = 3, P < 0.001; Figure 4A). The average
number of eggs detected was 2.53 (2.30; 2.78). This average includes
interesting observations of four nest-sites, each with four eggs. The
number of eggs continuously declined and were no longer detected
after approximately 30 days of monitoring (estimated-df = 3.82,
F = 70.69, P <0.001). Hatchlings (estimated-df = 3.95, F = 29.19,
P <0.001), juveniles (estimated-df = 4.49, F = 23.26, P <0.001), and
fledglings (estimated-df = 3.13, F = 35.32, P <0.001) all showed
unimodal-type responses with peak counts occurring at 24, 48, and
146 days, respectively (Figure 4B).

Transition probabilities

Grey Crowned Crane transition probabilities varied significantly
among stage types (χ2 = 30.73, df = 2, P <0.001; Figure 5A). No
significant difference was found in the probability of transitioning
from eggs to hatchlings (0.384 (0.293; 0.484)) in comparison to
either transitioning from eggs to juveniles (0.311 (0.266; 0.361)) or
transitioning from juveniles to fledglings. However, transitioning
from eggs to hatchlings was less likely to occur than the transition
from hatchlings to juveniles (0.660 (0.521; 0.776)), but the prob-
ability of transitioning from hatchlings to juveniles was not
different from the probability of transitioning from juveniles to
fledglings (0.590 (0.432; 0.731)). Transitioning from eggs
to juveniles was less probable than transitioning from hatchlings
to juveniles, and from juveniles to fledglings. Furthermore, 10.6%
(7.8; 14.2) of nests showed a 100% success rate, where all eggs
transitioned to juveniles – less than all other transition types
considered. The probability of developing from eggs into

hatchlings was negatively affected by increased rainfall intensity
(χ2 = 4.071, df = 1, P = 0.044; Figure 5B), but transitioning from
hatchlings to fledglings was not (χ2 = 0.054, df = 1, P = 0.816;
Figure 5B).

Macro-environmental impacts

The first principal component (PC1) explained 22.8% of the vari-
ation in nest locations (eigenvalue: 0.16). It included wetland areas
(21.2%) and distances to buildings (16.0%), water edges (15.6%), tar
roads (14.8%), and farm roads (13.3%) as the most closely related
descriptors (Figure 6). The second principal component (PC2)
explained 16.1% of the variation (eigenvalue: 0.11) and represented
distances to natural grasslands (20.1%), buildings (15.7%), tar roads
(14.8%), rivers (11.9%), and water edges (10.7%) (Figure 6). There
were significant differences in the composition of nest-site metrics
when considering hatching success (PERMANOVA, 999 permuta-
tions, pseudo-F1,95 = 3.04, P = 0.006; Figure 6 – empty circles), but
not in their overall success (PERMANOVA, 999 permutations,
pseudo-F1,95 = 1.86, P = 0.073; Figure 6 – filled circles). These
separations occurred along PC1.

Multi-model inference identified 11 candidate models to explain
hatching success and eight models to define overall breeding success.
Model averaging procedures (Figure 7 and Table S2) revealed that
hatching success decreased when nest-sites were further away from
natural grasslands and buildings (at the 95% CI level) and when
located at greater distances from dirt roads (at the 85% CI level).
Considering overall success, nest-sites further away from buildings
were less successful (at the 95% CI level), while reduced distance to
natural grasslands and larger nearby dam surface areas were posi-
tively associated with increased breeding success (at the 85% CI
level).

Figure 4.Counts of Grey Crowned CraneBalearica regulorum offspring at different developmental stages. (A) Error bars indicate 95% confidence interval, and shared letters indicate
no evidence of significant differences. (B) Change in counts throughout the season. Dashed vertical lines indicate when themost offspring were detected for a developmental stage.
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Discussion

General breeding outcomes and transition probabilities

Grey Crowned Cranes lay some of the largest clutches in the crane
family, with findings in Kenya reporting average clutch sizes of
approximately 2.5 eggs (Wamiti et al. 2022), which aligns with our
observations. Pomeroy (1980) observed larger crane clutch sizes at
higher altitudes, possibly explaining our rare finding of four nests
with more than three eggs (n eggs = 4) (Ivey and Dugger 2008;
Sundar and Choudhury 2005). Other research reported that the
reproductive success of cranes increases with stronger pair bonds,
while frequent socialisation and having previously undertaken
multiple breeding attempts also increases their reproductive suc-
cess (Barwisch et al. 2022; Hammers et al. 2012; Ivey and Dugger
2008; Teitelbaum et al. 2017).

Unlike other crane species which frequently only invest in one
hatchling (e.g. Wattled Cranes Grus carunculata), Grey Crowned
Cranes attempt to raise all hatchlings (Morrison 2015; Morrison
and Bothma 1998; Zelelew et al. 2019). Gichuki (1993) estimated
an 83.6% hatching rate in Grey Crowned Cranes in Kenya, while
Zelelew et al. (2019) reported a higher hatching rate (91.3%) in
Black Crowned Cranes Balearica pavonina but inferred a low
overall breeding success since less than half of the clutches in
their study fledged. We observed substantially lower hatching
rates than these studies, with only 38.4% of eggs hatching,
66.0% of hatchlings transitioning to juveniles, and 59.0% of
juveniles surviving to the fledging stage. Multiplying these tran-
sition probabilities suggests a 14.95% chance that an egg will
reach the fledging stage. These results support the earlier men-
tioned concerns of Assersohn et al. (2021) and suggests that Grey
Crowned Crane breeding is most vulnerable during their nesting
phase. After hatching, crane chicks remain vulnerable for another
two to three months until they fledge. However, their survival
probability usually increases thereafter, as they become older and

more adept at identifying danger and escaping predators them-
selves (Fox et al. 2019).

In our study, 10.6% of Grey Crowned Crane pairs managed to
ensure that all eggs in their clutch transitioned to juveniles. The
hatchling to juvenile/fledgling transition probability in Grey
Crowned Cranes (one to two fledglings per pair) is higher than
that of some other crane species. For example, Wattled Cranes are
known to display low reproductive outputs, with the highest tran-
sition rate of hatchling to juvenile being recorded as 0.42 chicks per
pair (in 1999, vs 0.66 for Grey Crowned Cranes) and approximately
0.25 chicks per pair in subsequent wetter years (Bento et al. 2007).
Another comparison can be made with the EndangeredWhooping
Crane Grus americana, whose recovery is believed to be highly
dependent on their ability to reproduce successfully (Butler et al.
2017). Yet, over eight years, Spalding et al. (2009) estimated a 30%
hatching rate, with 47% of these Whooping Crane chicks surviving
until the fledging stage – this translates to an overall breeding
success of only 14%. Grey Crowned Cranes’ general reproductive
output throughout the duration of our study is comparable to that
of Whooping Cranes (Spalding et al. 2009), which supports similar
concerns about declining Grey Crowned Crane population trends.

Several studies have identified extreme weather events and
human disturbances as major drivers of breeding failures among
some Critically Endangered coastal and wetland ground-nesting
birds (Ferreira et al. 2005; Powell et al. 2010; Smart et al. 2006;
Spalding et al. 2009; Van De Pol et al. 2010). Therefore, in the
sections that follow, we discuss how these climatic and landscape-
level factors impact the reproductive outputs of Grey Crowned
Cranes.

Macro-environmental impacts

Breeding birds incur high energetic costs when defending territor-
ies, incubating, and raising young (Gichuki 2000), but these costs

Figure 5. Transition probabilities (A) (mean ± 95% confidence interval) from one development stage to the next where (i) shared letters denote no difference, (ii) eggs–juveniles
represents the probability that an egg was successfully reared, and (iii) 100% success indicates the probability that all eggs in a nest were raised successfully. (B) Across a rainfall
intensity gradient (points are empty and jittered to show overlap).
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are escalated under suboptimal climatic conditions. It is note-
worthy that our observations were made during a La Niña event,
which resulted in unusually high rainfall; thus, the reported obser-
vations should be considered in this context. Whilst rainfall gen-
erally increases avian breeding success by optimising habitat
requirements (Woolley et al. 2022), prolonged and heavy rain
(especially over a short period) can lead to flooding or cooler
weather and wet nest conditions, which may affect egg temperat-
ures (Ivey and Dugger 2008). Maintaining egg temperature is
crucial for species that share incubation duties between adults
(including most crane species), as eggs are regularly exposed to
the elements and predators during rotation (Du Rant et al. 2013;
Ivey andDugger 2008). Our findings showed that the egg phase was
more vulnerable to intense rainfall than the hatchling and fledgling
stages. Indeed, we observed nest abandonment by Grey Crowned

Cranes shortly after heavy rainfall and hail events (Demmer,
personal observation), as has been reported for Sandhill Cranes
Grus canadensis following rainfall events of >50 mm of rain
within 24 hours (Fox et al. 2019; Nesbitt 1988).

Future climate predictions indicate more extreme events such as
droughts and high rainfall in alternating years (Connell et al. 2021;
Marcelino et al. 2020) and so the ability to adapt to a changing
environment may influence the survival of a species (Charmantier
and Gienapp 2014). Endangered bird species often exhibit reduced
genetic variability, which can limit their ability to adapt to changing
environmental conditions (Canteri et al. 2021; Evans and Sheldon
2008; Frankham 2005). This reduced adaptability may be particu-
larly pronounced in non-migratory species like the Grey Crowned
Crane, as they cannot easily relocate to more suitable habitats
(Donnelly et al. 2022; Ramírez et al. 2018). Despite higher rainfall

Figure 6. Grey Crowned Crane Balearica regulorum nest-sites and environmental descriptors along PC1 (eigenvalue = 0.16) and PC2 (eigenvalue = 0.11) of a Principal Components
Analysis. Black points represent nest-sites, solid black lines are environmental descriptors. Envelopes represent the 95% confidence interval for the centroids (larger coloured
points) of successful (blue) or failed (red) hatching (empty circle, dashed envelope) and overall breeding (filled circle, solid envelope) success. All descriptors are distances except for
island (nest on island), vegetation height (height class around the nest-site), and areas (size of wetland or dam).
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over the past season, we found no difference in breeding outcomes
when breeding began earlier or later in the 2022/3 breeding season.
However, since these observations are based on only a single
breeding season, we encourage future studies to examine whether
Grey Crowned Cranes show any changes in their breeding strategy
between years of extreme and non-extreme climatic conditions.

Several observations of crane species attempting to renest within
the same breeding season in an attempt to replenish lost broods
have been reported (Nesbitt 1988; Thompson et al. 2022; Woolley
et al. 2022). Renesting decisions depend on factors such as the time
available to renest, environmental and parental condition, and the
species’ overall breeding strategy (Saalfeld et al. 2021). Whilst
renesting can improve breeding success in some bird families
(Hayes 2022; Ledwoń et al. 2023), it may not always be beneficial,
as the long-term fitness of adults can decrease when energetic costs
outweigh reproductive benefits (Jones et al. 1995; Swift et al. 2020).
Some renesting attempts by Grey Crowned Cranes in our study
(n = 4; excluded from analyses in this study) were successful, but
others renested towards the end of the breeding season which may
have resulted in a resource mismatch during the early stages of
offspring development (Martay et al. 2023; Zelelew et al. 2019). Our
small renesting sample size precluded analyses of renesting impact
on overall reproductive output, but this could be explored in future
studies.

Nest-sites were evidently vulnerable to flooding during high
rainfall periods, which is likely exacerbated in agricultural land-
scapes due to wetland degradation and destruction. To effectively
address the threat of breeding failures caused by habitat loss and
degradation, future conservation strategies and management inter-
ventions should focus on protecting habitats that are important to
the entire life cycle of Grey Crowned Cranes. Restoring degraded
wetlands for example, will not only increase biodiversity and food
availability, but could also mitigate severe water level changes
during periods of intense rainfall. Responsible land-use practices

and wetland buffer zones are vital tools in wetland restoration, but
they must be implemented in a way that supports and informs
landowners to ensure their cooperation (Jepthas and Swanepoel
2019; Wood 1999). Further protection from flooding may also take
the form of artificial nesting platforms in suitably vegetated areas,
sinceGrey CrownedCranes readily nest inman-madewater-bodies
(Chuyu et al. 2022).

Human disturbances and anthropogenic landscapes

Cranes are generally sensitive to human disturbances (Coverdale
2006; Ivey and Dugger 2008; Végvári et al. 2011; Wang et al. 2011),
but in South Africa, cranes occur primarily outside of protected
areas. While this increases their vulnerability to human pressures
and unmanaged changes in their environment (Olupot et al. 2010),
Hemminger et al. (2022) reported that several crane species, includ-
ing the Grey Crowned Crane, benefit from readily available food
supplies resulting from crop residues. An unfortunate drawback of
this is that cranes may cause crop damage, with Grey Crowned
Cranes observed affecting up to 4.1% of maize plants (van Niekerk
2018). Losses caused by insects are comparably higher (10–16%)
(Bradshaw et al. 2016; Oerke 2006; Raphela and Pillay 2021).
However, both crane and insect-related crop damage can be sub-
stantially reduced by planting seeds treated with insecticide, which
reduces crane-related crop damage to just 0.23% (van Niekerk
2018). The residual effects of consuming pesticide-treated seed in
small amounts is largely unknown, and this, together with other
studies on the impact of Grey Crowned Cranes on agricultural
activities, should be explored further.

Several alternative, but highly effective, approaches exist to deter
cranes from agricultural lands (Austin and Sundar 2018). These
methods include changing the timing of crop planting to avoid
overlap with crane presence, selecting less preferred crops when
cranes are present in high numbers, planting marginal lands as

Figure 7.Model averaged effect sizes of covariates on Grey Crowned Crane Balearica regulorum breeding success. Positive values indicate greater success with greater distance or
area. Negative values indicate greater success with reduced distance (measured inmetres) or area (measured inm2/1,000). Error bars indicate 95% (red) and 85% (blue) confidence
intervals. Dashed vertical lines indicate no effect. Shaded values are non-significant at P <0.157 (representative of ΔAIC = 2).
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“diversionary fields” to distract cranes away from the principal
croplands, providing supplementary feeding, and applying respon-
sible seed treatments to deter birds (Austin and Sundar 2018). Each
of these methods can be applied regardless of the scale of agricul-
tural activity being undertaken. Despite the benefits of increased
foraging opportunities, intensive agricultural practices
(e.g. grazing, cropping, and damming; Dalu et al. 2017) drastically
transform natural ecosystems, modifying sensitive breeding habi-
tats (Bartzen et al. 2010; Sica et al. 2018). Nesting closer to human
disturbances during vulnerable and energetically taxing breeding
stages (e.g. incubation) may also lower breeding success (Seress
et al. 2020). This is supported by observations of the migratory
White-naped Cranes Grus vipio, which have shifted their nest-sites
further away from roads and settlements (Wu et al. 2014).

The physical nest-site location directly or indirectly influences
breeding success or failure (Nalwanga et al. 2004; Wu et al. 2014).
For example, nesting on islands is common in several waterbird
species (e.g. Burgess and Hirons 1992; Scarton and Valle 2020) and
was also observed to promote positive breeding outcomes in our
study – likely through a decreased risk of predation by terrestrial
mesopredators. Grey Crowned Cranes commonly locate their nest-
sites in moderate (50 cm) water depth amongst taller (60–90 cm)
vegetation that is further away (100 m) from shore (Wamiti et al.
2020). Most nest-sites in our study were surrounded by tall vege-
tation, likely to conceal nest-sites from terrestrial predators (Olupot
2016). Yet, our results indicated that vegetation height did not
necessarily promote reproductive success. This may be explained
by nest-sites still being visible to aerial predators despite tall vege-
tation. Indeed, we observed three instances when birds of prey were
feeding on exposed eggs at nests (Figure S2). Considering the
simplicity of earlier recommendations, we suggest that new dam
sites consider incorporating these features into their planning to
offset potential losses to pre-existing breeding habitats due to
wetland flooding or degradation. Furthermore, our observations
revealed that nearly all nests were situated in dense bulrushes
(Typha capensis). Therefore, both new and existing dam sites
should aim to encourage the establishment of this species to pro-
mote the suitability of nesting sites around the dam.

Although our study did not assess predator presence around
nest-sites, predation via natural predators is an on-going challenge
for ground-nesting birds that inhabit farmland landscapes (Bravo
et al. 2023). We observed and received reports from landowners of
some predatory incidences on Grey Crowned Cranes during this
study (n = 6; Demmer, personal observation) by generalist meso-
predators (i.e. serval Leptailurus serval and jackal Lupulella
mesomelas). These types of predators are commonly associated
with intensively managed pastures during calving and lambing
seasons (Humphries et al. 2016; Skead 1979) and are known
predators of ground-nesting birds (Beja et al. 2014), and we pre-
sume that mesopredator density would be lower in natural grass-
lands and near buildings during this time. We therefore speculate
that this could account for some of the observed positive associ-
ations between Grey Crowned Crane reproductive success and the
closer proximity of their nesting to natural grasslands and build-
ings. Interestingly, our findings suggest that nesting closer to sec-
ondary roads and buildings (an indicator of human presence) is
associated with increased hatching success in Grey Crowned
Cranes, suggesting a tolerance to (if not a preference for) some
human disturbances (Archibald et al. 2020; Wamiti et al. 2022).
One potential explanation for this is that mesopredators typically
avoid regions where humans are present (Reilly et al. 2022) which,
in turn, benefits nesting Grey Crowned Cranes. Alternatively, Fox

et al. (2019) suggest that such relationships between birds and
nesting location may be in response to decreased suitable breeding
habitats, forcing cranes to choose nest-sites in suboptimal locations
(e.g. Miller and Barzen 2016).

Finally, nest-sites situated in water-bodies with larger surface
areas improved overall breeding success – perhaps because large,
healthy water-bodies act as biodiversity hotspots, meeting a greater
number of habitat requirements for significant life events of
inhabiting species (Creed et al. 2017; Donnelly et al. 2022; Toussaint
et al. 2021). These larger water-bodies may also be able to buffer
flooding instances better than smaller water-bodies, especially
given the greater flood attenuation ability of highland wetlands
(like those in our study) compared with lower altitude wetlands
(Åhlén et al. 2022; Wu et al. 2023).

Conclusions

Our study provided key insights into the breeding outcomes ofGrey
Crowned Cranes in unprotected areas and identifies macro-
environmental factors that influence their reproductive success or
failure. We observed significant attrition from egg to hatchling
stages, which increased with higher rainfall intensity. Successful
breeding outcomes were higher whenGrey Crowned Cranes nested
near buildings and natural grassland vegetation, suggesting some
adaptability to human disturbances. However, the benefits of nest-
ing near agricultural areas may be short-lived if wetland vegetation
becomes degraded, reducing future nesting sites. We recommend
refining monitoring methods and implementing more frequent,
detailed, and long-termmonitoring of Grey Crowned Crane breed-
ing to gain a better understanding of this species’ long-term breed-
ing success. Insights from long-term monitoring will undoubtedly
assist with maintaining wetland ecosystem health and ensure con-
tinued breeding opportunities for this Endangered species.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0959270924000376.
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