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THE JOINT DISTRIBUTION OF THE RIEMANN ZETA - FUNCTION

A. LAURINCIKAS

In the paper the asymptotic distribution of (|C(S)|!C(S))> where £(s) is the Riemann
zeta - function, in the sense of weak convergence of probability measures is considered.
For this, the continuity theorems for probability measures on R x C are used. Some
aspects of the dependence of \((s)\ and C(s) are also discussed.

l . INTRODUCTION

Throughout the paper, N, Z, R and C denote the sets of positive integers, integers,
real and complex numbers, respectively. Let s = a + it be a complex variable, and let
C(s), as usual, denote the Riemann zeta - function defined, for a > 1, by

, m'
m=l

and by analytic continuation elsewhere. It is well known that the function C(s) has
a limit distribution in the sense of the weak convergence of probability measures, see
[4, 5, 6, 9, 13, 14]. For more precise statements we need some notation. Denote by
meas{j4} the Lebesgue measure of a measurable set A C R, by B(S) the class of Borel
sets of the space 5, and let

M...) = 5; meas{te [0,21 : . . . } ,

where in place of dots a condition satisfied by t is to be written. Moreover, let

7 = { s € C : | s | = l}

be the unit circle on C, and

p

where -yp = 7 for all primes p. With the product topology and pointwise multiplication
n is a compact topological Abelian group. Therefore, on (Q, B(Cl)) the probability Haar
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202 A. LaurinCikas (2]

measure m# exists, and this leads to a probability space (fi, B(Q), TO#). Denote by w(p)
the projection of w e Q to the coordinate space 7P. Let, for a > 1/2,

Then C(^i^) *s a complex-valued random element defined on the probability space
(fi, B(fi),mff). Let P f stand for the distribution of the random element £, so in the
case of C,{a,oj)

THEOREM A. Let a > 1/2 be fixed. Tien the probability measure

uT{Q{o + it)£A), AeB{C),

converges weakly to P^ asT —>• oo.

A direct proof of Theorem A for Dirichlet L- functions is given in [2], it also follows
from a limit theorem in the space M(D) of functions meromorphic on D = {s 6 C :
o > 1/2} equipped with the topology of uniform convergence on compacts, see [l] or,
more generally, [10, 11 , 12], since the function h : M(D) -»• C defined by

h(f)=f(o),f€M(D),

is continuous.

THEOREM B . Leto> 1/2 be 6xed. Then the probability measure

converges weakly to P\(\ as T -> oo.

The function h : C —> R given by h(s) = \s\, clearly, is continuous, therefore Theorem
B is an immediate consequence of Theorem A.

Now let, for A e B(R),

4 /'-(^-)/»*i1 X 6 (0,oo),

0, i4€(-oo,0].

L is the lognormal probability measure on (R, B(R)) •

THEOREM C. The probability measure

|(2-IloglogT)-'/2

l
converges weakly to L as T —> oo.
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[3] Riemann zeta - function 203

Theorem C in terms of distribution functions is stated in [9].

Let P be a probability measure on (C, B(C)). Then its characteristic transform

W(T, k), T € R, k g Z, is defined in [9] by

(1) « ; ( T , * ) = J \z\iTeik"*zdP.
C\{0>

A probability measure on (C, S(C)) is called lognormal if its characteristic transform is

e x p < -

Let Pn,n 6 N, and P be probability measures on (C, B(C)). We say that Pn converges
weakly in the sense of C to P as n —• oo if Pn converges weakly to P as n —¥ oo and

(see [9|).

THEOREM D. Tie probability measure

converges weakly in the sense of C to t i e lognormal probability measure on (C, B(C)) as

T-4oo.

A theorem, similar to Theorem D, when C((l/2) + l/(logT) + it) instead of C((1/2)
+ it) is considered, can be found in [9]. Theorem D can be obtained by the same way.
Also, Theorem D is a consequence of Selberg's result for C((l/2) + it), see, for example,
[6]. Note that, for £(s) ^ 0,a ^ O,C°(s) is understood as exp{alogC(s)}, where argC(s)
in logC(s) is defined by continuous displacement from the point 5 = 2 along the straight
lines connecting the points s = 2, s = 2 + it and s = cr + it. Since

VT{C,{O + it) = 0) = o(l), T->oo,

we set, for simplicity, Qa{a + it) = 0 if C(^ + it) = 0.
Our aim is to consider the joint distribution of |C(S)| an<l C(s)i aQd *° investigate a

"measure" of their asymptotic dependence.
Let X = R x C. In Section 2 we shall consider the weak convergence of probability

measures on (X, B(X)). For points of X, we use the notation (z,reJV)). Let P be a
probability measure on (X, B(\)), and

Pn(A) = P(AxC), A€ B(R).
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The functions

(2) w{T)

and

(3) w(n,T2,k) = Je
X

where the integrand is zero if r = 0, are called the characteristic transforms of the measure
P.

Now we define the weak convergence of probability measures in the sense of the
space X. Let Pn,n € N, and P be probability measures on (X,B(X)). We say that Pn

converges weakly in the sense of X to P as n —• oo if Pn converges weakly to P, and
additionally

THEOREM 1. Let a > 1/2 be fixed. Tien, as T -*• oo, the probability measure

+it) | ,<(

converges weakly in the sense ofX to the measure P on (X, B(X))deSned by its charac-
teristic transforms

•w(rur2,k) = /|C(CT,w)|'T1+"*exp{iA;argC(CT,u;)}dmH, Ti,T2€R, A: € Z.
n

THEOREM 2 . As T -> oo, t ie probability measure

converges weakly in the sense ofX to the measure P on (X, B(X)) defined by its charac-
teristic transforms

W{T) = e-(r2/2), T6R,

w{n,T2,k) = e x p { - ^ l + T^ — j , r i , T 2 e R , k e Z.

Next we shall discuss the asymptotic dependence of functions. Suppose that f i and
£2 are a real and a complex-valued random variables with distributions P^ and P^2,
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respectively, defined on some probability space (f2,S(fi),P). By the definition, £1 and £2

are independent if, for all A± e B(R) and A2 € B(C),

(4) P ( 6 € Au& 6 At) = Pft(i4,)Pe,(i42).

Since the spaces R and C are separable, (6> 6 ) is a X - valued random variable. Moreover,
S(X) = B(R) x S(C). Therefore, if ^x and 6 are independent, then by (4)

(5) P ( ( 6 , 6 ) e A) = Pf t (Ax)PG(i42) ,

where

X = Ax x ylj.A, € B(R),i4a € S(C).

Denote by P ^ , the distribution of the two-dimensional vector (6>6) - Then, in view of
(5), the characteristic transforms of the measure P ^ , are

w(r) ^

X R C

On the other hand, if, for all n, r2 € R, A; € Z,

W(TI, r2, fc) = W(TI)W(T2, k),

then by Theorem 5, see Section 2,

A = A\ x Ai,A\ € S(R), A2 € S(C). This shows that ^i and ^2 are independent. Hence
it follows that the quantity

&) =r sup \w(rUT2,k) - W(TI)W(T2,k)\
6R

is a certain "measure" of the dependence between & and £2. As we just have seen,
the random variables fi and & are independent if and only if Wfa,^) = 0. Clearly,

Now we shall apply the last theory to the asymptotic distribution of two functions.
Suppose that fi(t) and f2(t) are defined on R with values in R and C, respectively, and
that the probability measures

t)eA), AeB(R),

) eA), Ae B(C),
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206 A. LaurinCikas [6|

and

converges weakly to P/,, converges weakly in the sense of C to P/2 and converges weakly
in the sense of X to P/,,/2, respectively, as T -> oo. Denote by u//1(r),iu^(r, A;) and
{yjf^Ti), iu/,,/j(n. 2̂) *0) the characteristic function and characteristic transforms of the
measures Pfv,Ph and P/,,/2, respectively, and define

W(Mt),Mt)) =' sup \wflth(TUT2,k)-wfl(n)wh(r2,k)\.
/tez

Then by the above remarks the quantity H^(/i(i),/2(<)) is the "measure" of the asymp-
totic dependence of the functions /i(t) and f2(t).

Let f{t),t 6 R, be a complex-valued function. Then, clearly | /(t) | and f(t) are
"strongly" asymptotically dependent. In the case of the Riemann zeta - function we have
the following results.

THEOREM 3 . We iave

( ,1 y - s . D =j
^-MoglogT

In the case a > 1/2, the situation is more complicated, and the estimation of

W (log|C(<r +«t) |,C(* +it))

remains an open problem.

THEOREM 4 . Let a > 1/2. Then, For r 6 R, r ^ 0,

w(lQg|C(<7 + «)|,C(<r +it))

It is an interesting problem of the dependence on a of estimates for

W (log|C(* +it) |, C(a +i t ) ) .

2. PROBABILISTIC BACKGROUND

In this section we consider probability measures and their weak convergence on
((X,B(X)) where X = R x C.

Clearly, the study of probability measures on (X, B(X)) can be reduced to that of
probability measures on (R3,5(R3)). However, in our case it is convenient to use the
trigonometric form relip of complex numbers. For probability measures P on (C, S(C))
this was done in [8], see also [9], by using the characteristic transforms (1). A similar
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method of investigations can be also applied for probability measures on (X, S(X)). We
define the characteristic transforms (w(t),w(Ti,T2,k)) of the probability measure P on
(X,B(X)) by formulae (2) and (3).

The aim of this section is to obtain, by using the characteristic transforms, the
uniqueness and continuity theorems for probability measures on (X, B(X)).

THEOREM 5 . A probability measure P on (X, B(X)) is uniquely determined by its
characteristic transforms (W(T),W(TI,T2, k)).

THEOREM 6 . Let Pn be a probability measure on (X, B(X)), and let (wn{T),
iVn(.Ti,T2, k)) be its characteristic transforms, n e N. Suppose that

lim wn{r) = W{T), T € R,

and
lim wn(TUT2, k) = W(T1,T2, k), TU T2 € R, A; € Z,

n-*oo

where the functions w(r), tu(0,r2,0) and U>(TI,0,0) are continuous at t ie points
T = 0, r2 = 0 and T\ = 0, respectively. Then on (X, S(X)) tiere exists a probability
measure P such that Pn converges weakly in the sense ofX to P as n -» oo. In this case,
(W(T),W(TI, T2, fc)) are the characteristic transforms of the measure P.

THEOREM 7 . Let Pn and (wn(r), wn(r\,T2, fc)) be the same as in Theorem 6. Sup-
pose that Pn converges weakly in the sense of X to some probability measure P on
(X,B(X)) asn-»oo. Then

lim wn(r) = W(T), T e R,
n—*oo

and
lim wn(Ti,T2,k) = w{TUT2,k), TUT2 € R,k G Z,

n—foo

where (w(r),w(Ti,T2,k)) are the characteristic transforms of the measure P.

To prove Theorems 5-7 we use the following auxiliary space. Let, as above, 7 be
the unit circle on C, T = R x 7 and Y = R x T. We denote the points of the space Y by
(x, y, a) where x, y € R and a € 7. Define the Fourier transform

of the probability measure P on (Y, B(Y)) by

f(n,T2,k)= f'6«

LEMMA 8 . The probability measure P is uniquely determined by its Fourier trans-

form f(n,r2,k).
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PROOF: First of all we notice that the space Y is locally compact. Therefore, the
lemma and the next lemmas follow from general theorems for probability measures on
locally compact groups, see, for example, [7]. However, we prefer to give, for fulness, a
simple direct proof.

Let fj(Ti,r2, k) be the Fourier transform of the probability measure Pj on (Y, B(Y)),
j = 1,2. We have to prove that

/ i ( n , r 2 , k ) = / 2 ( r 1 ( r 2 ,k) , TUT2 € R,k £ Z,

implies the equality

P1(A)^P9(A)

for all A € B(Y). It suffices to prove the later equality for the sets

A = (a, b] x (c, d] x I.

where / is an arc of the circle 7, and

—00 < a < b < 00, —00 < c < d < 00.

Define a function ip : R -4 [0,1] by

!

if u ^ 0,

1 - u if 0 ^ u ^ 1,

0 if u 5* 1,
and let t/»n(w) = ip{nu). Moreover, we put

where p and p\ are the distance on R and 7, respectively. Let IB denote the indicator
function of a set B. Then, obviously,

gi,n(x) -> Aa-ilfr).

$2,7,(1/) -> Ac,d](2/)>

53,-. (a ) -> / , ( o ) ,

as n —• 00. Hence we have

Pj(A) =lim I gi*(x)92*(v)93»(a)dPi, j = 1,2,
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and it suffices to prove that, for n € N,

(6) / 9lAx)92,n(y)93,n(
a)dPl = I 9l,n(x)92,n(v)93,n{

a)dP2-
Y Y

We fix n e N. Let 0 < e < 1, and let Kx > 0 and K2 > 0 be such that the functions
<7i,n(z) and g2<n(y) are zeros in the exterior of [—K\, K\\ and [—K2, K2], respectively, and

(7) Pj(Y\AKuK2) < e, j = l,2,

where

A*.* = {{x,y,a) € Y : |x| ̂  Ku\y\ < K2}.

Since 9j,n{—Kj) = gj<n{Kj), the function #,,n(x) by the Weierstrass theorem can be ap-
proximated uniformly on [—Kj,Kj\ by a finite trigonometric sum

with period 2Kj,j = 1,2. Similarly, the function ff3,n(a) can be approximated by a linear
combination of circle functions

m3

Therefore, the product <7i,n(z)52,n(j/)53,n(a) can be approximated uniformly on

[-KuKx]x[-K2,K2]

by a finite sum

g(x,y,a)=

We choose the latter sum to satisfy

(8) \9l,n(x)92,n(y)93,n(a) ~ ff(^. 2/. a)\ < £,

for all (x,y,a) e

Since

by (8)
|5(x,3/,a)| < 1 + e

for all (x, j / , a) 6 AKUK2- Therefore, by periodicity,

(9) \9l,n(x)92,n(y)93,n(a) ~ 5(^>J/,a)| < 2 + £
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for (x,y,a) G Y\AKltK3. Then, in view of (7)-(9),

J
Y

= f / + / J \9i,n{x)92,n(v)93,n{<x) ~ s(*> V,ot)\dPj < £ + (2 + e)e < 4e.

From this it follows that

I f f
y l,n 2.n 3,n 1 J l,n
Y Y

<\j 9(x,y,a)dP1- J g(x,y,a)dP2 +8e.
Y Y

By the hypothesis of the lemma

j 9{x, y, a)dP1 = I g(x, y, a)dP2.
Y Y

Since e is an arbitrary positive number, this shows that (6) is a simple consequence of

D
PROOF OF THEOREM 5: At first we note that one function w(ri,T2,k) can not

determine uniquely the measure P. For example, if Pj has the unit mass at the point
(xj,0),j = 1,2,11 ^ x2, then wl{TX,T2,k) = w2(ri,T2,k) = 0 thought Pi ^ P2. In other
words, if r = 0, the function W(TI,T2, k) does not separate measures on the component R
of the space X.

Let Xo = R x (C\{0». Then the function h : XQ -> Y given by

is continuous. Therefore,

(11) w(TUT2,k)= f ei(TlX+T*v)akdPhr\ TUT2 € R,k € Z,
Y

where P/i"1 is given by Ph-\A) = P{h~lA), A g B(Y).
Let $ = w(0,0,0) = P(Xo). Suppose that p ^ 0, and define on (Y,#(Y)) the

probability measure P by the formula
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Substituting this in (11), we obtain that

(13) W(TUT2,k) = 0 J ei^x+^akdP, TUT2 G R,k G Z.
¥

Let
f(Ti,r2,k)= I e^+^a'dP, Ti, 74 € R, * € Z,

Y

denote the Fourier transform of the measure P. Then by (13)

(14) f(Twn,k) = W{Tl'p'k), r1>r2€R,ifc€Z.

By Lemma 8, the measure P is uniquely determined by its Fourier transform /(TI,r2,fc),

therefore, in view of (14), also by W(TX,T2, k). Consequently, the measure P(A) is uniquely

determined by w{n,T2,k) for A G B(X),,4 G Xo- In particular, p(>i x ( C \ { 0 » ) is

uniquely determined for all A G 5(R). Since P(A x C) is uniquely determined by W(T),

we derive from this that P(A x {0}), A G 5(R), is also uniquely determined by W(T) and

W(TI,T2, k). This shows that P(A) is uniquely determined by its characteristic transforms

also for A G B(K), An(Rx {0}) ^ 0. Thus, in the case 0 ^ 0 the theorem is proved. D

Now let P = 0, that is, f(Xo) = iu(0,0,0) = 0. Consequently, P{A) = 0,A

G B(X), 4̂ G XO, is uniquely determined. In this case, for every

A G B{X), A = AiX A2, Ax G B(R), A2 G B(C), 0 G -A2,

we have

P(A) = P(A, x A2) = P[A, x (A2 \ {0})) + P{AX x {0}) = P{AX x {0}).

However,

P{Ai x {0}) = P(Ai x C) - P(AX x (C\{0» = P(Ai x C) =

and is uniquely determined by W(T). The theorem is proved. D

We begin the proof of Theorem 6 with a statement on the weak convergence of

probability measures on (Y, B(Y)).

LEMMA 9 . Let Pn be a probability measure on (Y,B(Y)), and let fn(n,T2,k) be

its Fourier transform, n G N. Suppose that

lim fn(Ti,T2, k) = f(ru r2 ,k), TUT2, G R, k G Z,
n—K»

and t i a t t ie functions / (0 , r2,0) and /(rx , 0,0) are continuous at the points r2 = 0 and

Ti = 0, respectiveiy. Then on (Y, S(Y)) tiere exists a probability measure P such that
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Pn converges weakly to P as -> oo. In this case, f(T\,T2,k) is the Fourier transform of

the measure P.

PROOF: Let

Pn,n(A) = Pn(A x T), Ae 0(R),

and

PJAA) = Fn(R x A), Ae

Its is well known that the sequence {Pn} is tight (for definition, see [3]) if every sequence
of marginal distributions {Pn,n} and {FT,*} is tight. We shall prove the tightness of the
sequence {Pr,n}- Clearly,

/n(r2,k) =' /n(0,r2, k), r2 e R,k e Z,

is the Fourier transform of the measure PT,n (for definition, see [9]). By the hypothesis
of the lemma

(15) lim fn(T2, k) = /(0, r2, k) HI /(r2 l k), r2 e R, k e Z.

By the Fubini theorem, for u > 0,

u u

\j{l - fn(r2,0))dr2 = J(l
T —u

uy ) ' J \ uy
T J

(16) ^ f t , n ( ( y , a ) 6 T : | y | ^

Since /(r2,0) is continuous at r2 = 0, for every e > 0 there exists u > 0 such that

u

\f\\-f{r2,0)\dT2<e.

Therefore, by (15) and the Lebesgue theorem on bounded convergence there exists no € N
such that

u

^J\l-fn(T2,0)\dr2<2e
—u

for n > no- From this and (16) we find that, for n ^ no,
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Clearly, taking u smaller if this is necessary, we can demonstrate that the later inequality
should remain true also for n < n<>. This shows that there exists a compact subset K c T
such that

PT<n(K) > 1 - 2e

for all n € N, that is, the sequence {PT,»I} is tight.

Similarly we obtain that the sequence {ffe,n} is also tight. Therefore, the sequence of
probability measures {Pn} is tight. Hence, by the Prokhorov theorem, see, for example,
[2|, it is relatively compact, and we have that every subsequence {Pni} C {Pn} contains
a subsequence {Pnj} weakly convergent to some probability measure P on (Y, B(Y)) as
n2 - • oo. Moreover, / ( r i , T2, k) is the Fourier transform of the measure P. By Lemma 8
the measure P is the same for all weakly convergent subsequences. Thus, the lemma is
a consequence of [3, Theorem 2.3]. D

PROOF OF THEOREM 6: Let 0n = wn(0,0,0). By the hypothesis of the theorem

limfl, = 10(0,0,0) = ' £ .
n—*oo

If 0 / 0, there exists n0 € N such that 0n ^ 0 for n ^ no. For n ^ n0, define the measure
Pn on (Y, 0(Y)) by formula (12), and let fn(Ti,T2,k) be its Fourier transform. Then the
hypothesis of the theorem and a formula of the type (14)

imply the existence of the limit

lim fn(TUT2, k) = /(ri,r2, k), n,r2eR,k€Z,
n—*oo

where the functions / (TI ,0 ,0 ) and /(0,r2,0) are continuous at T\ = 0 and r2 = 0,
respectively. Therefore, by Lemma 9 on (Y, B(Y)) there exists a probability measure P
such that Pn converges weakly to P as n —»• oo, and / (TI ,T 2 , k) is the Fourier transform
ofF.

Denote by dA the boundary of a set A. The function h : Xo —• Y defined in the
proof of Theorem 5 is homeomorphic. Therefore, for A € B(Y),

(17) d{h~xA) = h~\dA).

Since Pn converges weakly to P and /?„ -> 0, we have from the definition of P that on
(X, B(X)) there exists a probability measure P such that Pn(A) -¥ P(A),n -> oo, for
the sets A = h~lB, where B € B(Y) and P(h~ldB) = 0. However, then in view of (17)
P{dh~lB) = P(dA) = 0. Thus, we have that

(18) Pn(A) -> P{A), n -^ oo,
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for all continuity sets A of the measure P which do not contain the points (x, 0). In
particular case,

(19) Pn(A x (C\{0») - • P[A X (C\{0») , n -> oo,

for all continuity sets A of P(A x C) = PR(A). Moreover, since wn(r) -> w(r),n -> oo,
and W(T) is continuous at r = 0, it follows that

Pn{A x C) -> P(A x C), n ->• oo,

for all continuity sets A of PR. This together with (19) implies the relation

(20) Pn{Ax{0})-+P(Ax{0}), n->oo,

for all continuity sets A of PR. Suppose that B D {0} is a continuity set of the measure
Pc, PC(B) = P(K x B). Then in view of (18)-(20), for every continuity set A of PR,

Pn(A x B) = Pn (A x ((C \ {0}) \ Bc) U {0})

= Pn (A x (C \ {0})) - Pn(A x Bc) + Pn(A x {0}) - • P(A x B), n - • oo.

Therefore, we have that Pn converges weakly to P as n -*• oo.

Since /?„ ->• /?, we find similarly that Pn(R x {0}) -> P(R x {0}),n ->• oo, and the
theorem in the case 0 ̂  0 is proved. D

Now suppose that 0 = 0. Then Pn(lK x (C\{0») -> 0 as n -> oo. Hence Pn{A)

-+ 0, n ->• oo, for all >1 G R x (C\{0}). Since wn{r) - • W(T),TI -> oo, we have that

Pn(A x C ) - > P(i4 x C), n -> oo, for all continuity sets A of PR. Hence and from relation

Pn( ,4x(C\{0})) ->0, n -^co ,

we obtain that Pn(Ax{0}) -> P(AxC) = P(Ax{0}). Since Pn(Rx {0}) -> l ,n ->oo ,
it follows that Pn converges weakly in the sense of X as n —¥ oo to the measure P the
mass of which is concentrated on R x {0}.

Clearly, (U;(T),IU(TI,T2, k)) are the characteristic transforms of P.

LEMMA 10 . Let {Pn} and {/n(ri,T2, k)} be the same as in Lemma 9. Suppose

that Pn converges weakly to some probability measure P on (Y, B(Y)) as n -> oo. Tien

lim fn(Ti,T2,k) = f(n,T2,k), TUT2 6 l , i € Z ,
n*oon—*oo

where f{ru r2, k) is the Fourier transform of the measure P.

PROOF: The lemma is an immediate consequence of the definition of the Fourier
transforms and weak convergence of probability measures. D
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PROOF OF THEOREM 7: The weak convergence of Pn to P implies that of ffe,n to
PR, n -¥ oo. Therefore, we have that

lim wn(T) = W(T), r gR .
n—*oo

We have that
0 =' u>(0,0,0) = [dP =

x0

Since Pn(R x {0}) - > P ( I x {0}),n ->• oo, hence we obtain that

& =' wn{0,0,0)-¥ 0,n-too.

H 0 ^ 0, then we obtain that Pn converges weakly to P as n —> oo. Now by Lemma 10
it follows that

lim fn{TUT2,k) = /(n,r2,k), TUT2,6l,i6Z.
n-»oo

Therefore, from a formula of type (14) we find that

lim wn(n,T2,k) = w(TUT2,k), TUT2 6 R,fc € Z.
n—«x>

If /9 = 0, then the limit measure P is concentrated on R x {0}, and its characteristic
transform W(TI,T2, k) = 0. Then, by the definition of the characteristic transforms

lim wn(ri,T2,k) = 0 .
n-»oo

The theorem is proved. D

3. P R O O F OF THEOREMS 1-4

Theorems 1 and 2 are simple consequences of Theorems A-D and Theorem 6.

PROOF OF THEOREM 1: The characteristic transforms of the measure of the theo-

rem are

T T

// ( * + H)\dr,
o o

exp{ik argC(a + it)} dt\.

By Theorems A and B these characteristic transforms converge to

(j\a°,u)\iTdmH, JlCfau)^^ exp{i*argC(<r,w)}dmjr)
n n

as T -> oo. Therefore, it remains to apply Theorem 6. D
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P R O O F OF THEOREM 2: The characteristic transforms of the measure of the theo-

rem are

T
• / 1 ^ vi i j / iy' -iugiug.1,

dt,
| VZ /

o
Pi) (i/|c(i+«)

2 /I ^2-1 log log T

Since the characteristic function of the measure L is e^~T*^2, and the characteristic trans-
forms of the lognormal probability measure on (C,S(C)) is e(~TS)/2~(*J)/2, by Theorems
C and D we obtain that the characteristic transforms (21) converge to

( ~(r2) /2
 e -

as T —• oo. Hence, by Theorem 6, the theorem follows.

P R O O F OF THEOREM 3: By Theorems 2, and C, D

i + it)I/A/2"1 loglogT, (c(i + it))
2

= sup

Let
/ ( r i ,T 2 ) = e-<

T'+^)3/2 _ e-r?/2e-r»/2

Obviously, | / ( T I , T 2 ) | < 1 (as n = - r 2 and r2 -»• oo,/(ri,r2) ->• 1).

PROOF OF THEOREM 4: Theorem 1 and Theorems A and B imply

W (loggia+ it)\,a<* +H

= sup
T1,TJ€R

z

J |C(<7,u)\in+iT1 exp{ifcargC(a, w
n

- J \C(<r,u)\indmH J K ^ . w ) ^ exp{ifcargC(a, w
n n

Taking T\ = —r2 ^ 0 and k = 0, we find that the expression inside modulo is

This proves the theorem.

(I

D

D
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