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Ekedahl-Oort Strata for Good Reductions
of Shimura Varieties of Hodge Type

Chao Zhang

Abstract. For a Shimura variety of Hodge type with hyperspecial level structure at a prime p, Vasiu
and Kisin constructed a smooth integral model (namely the integral canonical model) uniquely
determined by a certain extension property. We define and study the Ekedahl-Oort stratifications
on the special fibers of those integral canonical models when p > 2. This generalizes Ekedahl-
Oort stratifications defined and studied by Oort on moduli spaces of principally polarized abelian
varieties and those defined and studied by Moonen, Wedhorn, and Viehmann on good reductions of
Shimura varieties of PEL type. We show that the Ekedahl-Oort strata are parameterized by certain
elements w in the Weyl group of the reductive group in the Shimura datum. We prove that the
stratum corresponding to w is smooth of dimension I(w) (i.e., the length of w) if it is non-empty.
We also determine the closure of each stratum.

1 Introduction

Ekedahl-Oort strata were first defined and studied by Ekedahl and Oort for Siegel
modular varieties in late 1990s in [19]. Let g, n be integers such that ¢ > 0 and
n > 2, and let &7, , be the moduli scheme of principally polarized abelian schemes
over [F,-schemes with a symplectic level # structure. Then .27 , is smooth over IF,.
Let A be the universal abelian scheme over .27, ,,. For a field k of characteristic p > 0,
a k-point s of .27, , gives a principally polarized abelian variety (As, y) over k. The
polarization y: A; - A} induces an isomorphism A,[p] ~ AY[p] that will still be
denoted by y.

Let C be the set of isomorphism classes of self-dual BT-1s of height 2¢ over F,. For
aclass ¢ € C, we fixa self dual BT-1 (H,, ) in this class. Let @7, be the set of points
sin @, ® F, such that there exists an algebraically closed field k and embeddings
of k(s) and F,, such that the pairs (A;[p],¥) ® k and (H,, y.) ® k are isomorphic.
The subset <7, is called an Ekedahl-Oort stratum.

Oort proved in [19] that C is of cardinality 2%, and each &, is non-empty and
locally closed in .27, , ® F,. Moreover, he proved that each stratum is quasi-affine,
and gave a dimension formula. Ekedahl and van der Geer then computed the cycle
classes of Ekedahl-Oort strata in [3].

By studying Ekedahl-Oort stratification, Oort re-proved a theorem by Faltings and
Chai that o7, , is geometrically irreducible. However, his proof does not make use of
characteristic zero arguments and the irreducibility of the moduli space of character-
istic zero is actually a corollary of this theorem.
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The theory of Ekedahl-Oort strata has been generalized by works of Moonen [15,
16], Wedhorn [26], Moonen-Wedhorn [17] and Viehmann-Wedhorn [24] to Shimura
varieties of PEL type, and works of Vasiu [23] to Shimura varieties of Hodge type. We
remark that these papers use different methods: [15,16] use canonical filtrations on
Dieudonné modules attached to BT-1s, [26] uses moduli of BT-#s, [17] and [24] use
F-zips, while [23] uses truncated F-crystals.

Pink, Wedhorn, and Ziegler developed systematically technical tools to study Eke-
dahl-Oort strata for Shimura varieties in [20,21]. Results in [20] were already used in
[24] to obtain very explicit results on Ekedahl-Oort strata for PEL Shimura varieties
(e.g., see [24, Theorem 7.1] for a combinatorial description for closure of a stratum).

In this paper, we establish and study Ekedahl-Oort strata for Shimura varieties of
Hodge type using [21]. The advantage of this method is that we could work schemat-
ically and get explicit statements. Now we explain the main results of this paper.

Let (G, X) be a Shimura datum of Hodge type with good reduction at p > 2. We
will always assume here and in the main body of the paper that p > 2 unless other-
wise mentioned. Let G be the reduction of G. Let Shi (G, X) be the Shimura variety
with K small enough and hyperspecial at p. Let . be the integral canonical model
constructed by Vasiu and Kisin, and let .#} be its special fiber. The main results of this
paper are as follows.

(a) Fixing a symplectic embedding, we construct a G-zip of type u over .%;. See
Definition 2.2.1 for the definition, and Theorem 3.4.1 for this result. This G-zip induces
a morphism (:.%, - G-Zip, where G-Zip! is the stack of G-zips of type u (see [21]
or our §2.2).

(b) (Theorem 4.1.2) The morphism { is smooth.

(c) Inverse images of IF,-points of G-Zip¥ are Ekedahl-Oort strata, so they are
locally closed in .%, ® F,. Moreover, all the possible strata are given by a certain
subset of the Weyl group of G.

(d) (Proposition 4.1.4) There is a dimension formula for each stratum assuming
that it is non-empty. There is also a description of Zariski closure of a stratum. There
is a unique stratum that is open dense in . ® IF,. This stratum is called the ordinary
stratum. There is at most one zero dimensional stratum in . ® I, which is called
the superspecial stratum.

We remark that our results are compatible with main results in Vasiu’s [23]. For
example, his Basic Theorem D(d) in 12.2 asserts that the number of strata is at most
[Wg: Wp], which is the same as our Proposition 4.1.4. We also remark that Vasiu’s
method works when p = 2, but our method, based on Kisin’s [7], has restrictions
when p = 2. In fact, Kisin assumes [7, 2.3.4] in his construction of integral models
and integral automorphic sections, and as a result, we have to impose that condition
to follow his constructions.

There are recent preprints closely related to this paper. D. Wortmann proves in
[29] that the p-ordinary locus coincides with the ordinary Ekedahl-Oort stratum,
and hence open dense. This is a generalization of the fact that the ordinary Newton
stratum coincides with the ordinary Ekedahl-Oort stratum on Siegel modular vari-
eties. The author proves in [30] that Ekedahl-Oort stratifications are independent of
choices of symplectic embeddings. There are also works of Koskivirta-Wedhorn [9]
and Goldring-Koskivirta [4] on Hasse invariants on Shimura varieties of Hodge type.
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2 F-zips and G-zips
2.1 F-zips

In this section, we will follow [17, 21] to introduce F-zips. Let S be a scheme, and
let M be a locally free Os-module of finite rank. By a descending (resp. ascending)
filtration C* (resp. D,) on M, we always mean a separating and exhaustive filtration
such that C"*1(M) is a locally direct summand of C'(M) (resp. D;(M) is a locally
direct summand of D;,;(M)).

Let LF(S) be the category of locally free Og-modules of finite rank, and let
FilLF*(S) be the category of locally free Os-modules of finite rank with descend-
ing filtration. For two objects (M, C*(M)) and (N, C*(N)) in FilLF*(S), a mor-
phism f:(M,C*(M)) - (N,C*(N)) is a homomorphism of Og-modules such
that f(C'(M)) c C'(N). We also denote by FilLF,(S) the category of locally free
Os-modules of finite rank with ascending filtration. For two objects (M, C*) and
(M’,C") in FilLF*(S), their tensor product is defined to be (M ® M’, T*) with
T"=%,Ce C'*J. Similarly for FilLF,(S). For an object (M, C®) in FilLF*(S),
one defines its dual to be

(M, C.)V — (VM = Mv’\/ci = (M/Cl_i)v);
and for an object (M, D, ) in FilLF,(S), one defines its dual to be
(M,D,)" = (VM :=M","D; := (M/D__;)").

It is clear from the convention that (M, C*)Y = (YM,"C*) = (M",YC"*), and similar
with D,.

If S is over IFj,, we will denote by 0:S — S the morphism that is the identity on
the topological space and p-th power on the sheaf of functions. For an S-scheme T,
we will write T(P) for the pull back of T via 0. For a quasi-coherent Og-module M,
M) means the pull back of M via ¢. For a o-linear map ¢: M — M, we will denote
its linearization by ¢'™: M(?) — M.

Definition 2.1.1  Let S be an IF-scheme. By an F-zip over S, we mean a tuple M =
(M, C®, D., ¢.) such that

(i) M isan objectin LF(S), i.e., M is a locally free sheaf of finite rank on S;
(ii) (M, C®) is an object in FilLF*(S), i.e., C* is a descending filtration on M;
(iii) (M, D,) is an object in FilLF,(S), i.e., D, is an ascending filtration on M;
(iv) ¢;:C*/C™*! - D;/D;_; is a o-linear map whose linearization

gDliin: (Ci/CHl)(p) _ Di/Di—l

is an isomorphism.

By a morphism of F-zips

M: (M) C.,D., ¢o) I M,: (M,) Cl.yD:, §0,.)>
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we mean a morphism of Og-modules f: M — N, such that for all i € Z, f(C*) c C",
f(D;) ¢ D}, and f induces a commutative diagram

Pi

Cf/ci+l Di/Di—l
f| |1
C/i/C/i+1 % DQ/D§_1-

Remark 2.1.2  Let S bealocally Noetherian IF ,-scheme, and X be an abelian scheme
or a K3 surface over S; then Hj, (X/S) has a natural F-zip structure. See [27, 1.6, 1.7,
and 1.11] for more details and examples.

Example 2.1.3 ([21, Example 6.6]) The Tate F-zips of weight d is
l(d) = (OS; C.; Do) (P.),

where

Ci o Os fori<d, _J0 fori<d,
o fori>d, o Og fori>d,

and ¢4 is the Frobenius.
One can talk about tensor products and duals in the category of F-zips.

Definition 2.1.4 ([21, Definition 6.4]) Let M, N be two F-zips over S; then their
tensor product is the F-zip M ® N, consisting of the tensor product M ® N with
induced filtrations C* and D, on M ® N, and induced o-linear maps

gr-(M®N) gr’(M®N)

) 4

; i D 9j®¢i-j
@, gre(M) @ gre ! (N) — ®;jgr? (M) @ gr? ;(N),
whose linearization are isomorphisms.

Definition 2.1.5 ([21, Definition 6.5]) The dual of an F-zip M is the F-zip M" con-
sisting of the dual sheaf of Og-modules M" with the dual descending filtration of C*
and dual ascending filtration of D,, and ¢-linear maps whose linearization are iso-
morphisms

. . (CE)
(gri (M) = ((grg myv) P2

For the Tate F-zips introduced in Example 2.1.3, we have natural isomorphisms
1(d)®1(d") 21(d +d") and 1(d)" = 1(-d). The d-th Tate twist of an F-zip M is
defined as M(d) := M ® 1(d), and there is a natural isomorphism M (0) = M.

(g7, M)" = grP (M),

1
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Definition 2.1.6 A morphism between two objects in LF(S) is said to be admissible
if the image of the morphism is a locally direct summand. A morphism f: (M, C*) —
(M’,C") in FilLF*(S) (resp. f: (M, Ds) — (M’, D,) in FilLF,(S)) is called admis-
sible if for all i, f(C") (resp. f(D;)) is equal to f(M) n C'* (resp. f(M) n D’) and
is a locally direct summand of M’. A morphism between two F-zips M - M’ in
F-Zip(S) is called admissible if it is admissible with respect to the two filtrations.

With admissible morphisms, tensor products, and duals defined as above, the cat-
egories LF(S), FilLF*(S), FilLF,(S) become Og-linear exact rigid tensor categories
(see [21, 4.A, 4.C, 4.D]). The admissible morphisms, tensor products, duals, and the
Tate object 1(0) make F-Zip(S) an [F,-linear exact rigid tensor category (see [21, 6]).
The natural forgetful functors

F-Zip(S) - LF(S), F-Zip(S) — FilLF*(S), F-Zip(S) - FilLF.(S)

are exact functors.

Remark 2.1.7  For a morphism in LF(S), FilLF*(S), FilLF.(S), or E-Zip(S), the
property of being admissible is local for the fpqc topology (see [21, Lemmas 4.2 and
6.8]).

2.2 G-zips

We will introduce G-zips following [21, Section 3]. Note that the authors of [21] work
with reductive groups over a general finite field IF; containing IF,,, and g-Frobenius.
But we do not need the most general version of G-zips, as our reductive groups are
connected and defined over IF,.

Let G be a connected reductive group over IFp, let k be a finite extension of I,
and let y: G, r — Gy be a cocharacter over k. Let P, (resp. P_) be the parabolic sub-
group of Gy such that its Lie algebra is the sum of spaces with non-negative weights
(resp. non-positive weights) in Lie(Gy ) under Ado y. Let U (resp. U-) be the unipo-
tent radical of P, (resp. P_), and let L be the common Levi subgroup of P, and P_.
Note that L is also the centralizer of y.

Definition 2.2.1 Let S be a scheme over k. A G-zip of type y over S is a tuple I =
(I,I,,1_,1) consisting of a right Gi-torsor I over S, a right P, -torsor I, ¢ I (i.e., the
inclusion I, ¢ Iis such that it is compatible for the P, -action on I, and the G-action
on I), a right PP torsor I_ ¢ I (similarly as for I, ¢ I), and an isomorphism of
L) torsors ulfrp)/UJ(rP) - I_/UEP).

A morphism (I, 1,,I_,1) - (I',I|,I",1") of G-zips of type y over S consists of
equivariant morphisms I — I’ and I, — I’ that are compatible with inclusions and
the isomorphisms ¢ and ¢'.

Here by a torsor over S of an fpqc group scheme G/S, we mean an fpqc scheme
X/S with a G-action p: X xg G — X such that the morphism X x G —» X xg X,
(x,g) = (x,x - g) is an isomorphism.

The category of G-zips of type y over S will be denoted by G-Zip} (S). With the
evident notation of pull back, the G-Zip}(S) form a fibered category over the category
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of schemes over k, denoted by G-Zip}. Noting that morphisms in G-Zip}(S) are
isomorphisms, G-Zip{ is a category fibered in groupoids.

Theorem 2.2.2  'The fibered category G-Zip} is a smooth algebraic stack of dimension
0 over k.

Proof 'This is [21, Corollary 3.12]. |

2.2.1 Some Technical Constructions about G-zips

We need more information about the structure of G-Zipz . First, we need to introduce
some standard G-zips as in [21].

Construction 2.2.3 ([21, Construction 3.4] ) Let S/k be a scheme. For a section
g € G(S), one associates a G-zip of type y over S as follows. Let I; = S x; Gx and
Iy« = S x¢ Py € Ig be the trivial torsors. Then Iép) ¢ § xg G = I, canonically, and
we define Iy _ ¢ I, as the image of S x P ¢ § x; G under left multiplication by g.
Then left multiplication by g induces an isomorphism of L(P)-torsors

1 IR U = §5 PP JUP) 2§, PP UP) s (53 PP U = 1, U,
We thus obtain a G-zip of type x over S, denoted by I,,.

Lemma 2.2.4  Any G-zip of type x over S is étale locally of the form I,,.

Proof Thisis [2], Lemma 3.5]. |

Now we will explain how to write G-Zip} in terms of a quotient of an algebraic
variety by the action of a linear algebraic group following [21, Section 3].

Denote by Frob,: L — L(P) the relative Frobenius of L, and by Eg, x the fiber prod-
uct
p»)

Egy——

\L Frob,

P, ——=L—=10),
Then we have
(21) Eg . (S) = {(ps = luy, po=1Pu ) : 1 L(S),us € Up(S),u_ e UL (S)}.

It acts on Gy from the left-hand side as follows. For (p,,p-) € Eg,,(S) and g €

Gi(S), (p+>p-) - 8= p+gp".

To relate G-Zip] to the quotient stack [Eg,\Gx], we need the following construc-
tions in [21]. First, for any two sections g, g’ € Gx(S), there is a natural bijection
between the set

TranspEG,X(S)(g,g') = {(p+>p-) € Ecx(S) | p+gp=' = ¢’}

and the set of morphisms of G-zips lg - 1g, (see [21, Lemma 3.10]). So we define a
category X fibered in groupoids over the category of k-schemes as follows. For any
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scheme S/k, let X(S) be the small category whose underlying set is G(S), and for any
two elements g, g’ € G(S), the set of morphisms is the set Transp Eo,,(S) (g.4).

Theorem 2.2.5 'There is a fully faithful morphism X — G-Zip{ given by sending
g € X(S) = G(S) to L. It induces an isomorphism [Eg,,\Gi] — G-Zipy.

Proof This is [21, Proposition 3.11]. [ |

3 Integral Canonical Models and G-zips

3.1 Construction of Integral Canonical Models

Integral canonical models are constructed by Vasiu in [22] and Kisin in [7]. We will
first follow [13] to introduce Shimura varieties, and then follow [7] to introduce inte-
gral canonical models.

Definition 3.1.1 Let G be a connected reductive group over Q. We will write S for
the Deligne torus Resc/r (Gm,c). Let h:S — Gg be a homomorphism of algebraic
groups and let X be the G(R)-conjugacy class of k. Then the pair (G, X) is called a
Shimura datum if the following conditions are satisfied:

(i) Adoh induces a Hodge structure of type (-1,1) + (0,0) + (1,—1) on Lie(Gg);
(i) the conjugation action of h(i) on G3 gives a Cartan involution.
(iii) G*! has no simple factor over Q onto which / has trivial projection.

Let (G, X) be a Shimura datum, and K be a compact open subgroup of G(Ay)
that is small enough. The complex manifold Shx (G, X)c = G(Q)\(X x G(Af)/K)
has a unique structure of a complex quasi-projective variety by results of Baily-
Borel. The Shimura datum (G, X) gives the G(R)-orbit X of the real manifold
Homg (S, Gg)(R). For x € X with corresponding homomorphism 4,:S — Gg, we
have a cocharacter

id x0 = hyc
Qx:Gme —— Gm,c x Gpue ——S¢ —— Ge.
The G(C)-orbit of @, in Hom¢ (G, ¢, G¢) depends only on X and is defined over
a finite extension E/Q, called the reflex field of (G, X). By results of Deligne, Milne,
Borovoi, Shih, and others, Shx (G, X)¢ has a canonical model Shx (G, X) over E. We
refer the reader to [13, Chapter 12] and [14, Chapter 2, 2.17] for more details.

Let p > 3 be a prime, and let Gz, be a reductive group over Z, whose generic fiber
is Gg,. Let K = K,K? with K, = Gz,(Z, ), and K? be an open compact subgroup of
G(A f) that is small enough. Let v be a prime of Og over (p); then v is unramified
over p. We write Og (, for the localization of O at v. Assume that the Shimura
datum (G, X) is of Hodge type, i.e., there is an embedding of Shimura data (G, X) <
(GSp(V, ), X'). Then by [7, Lemmas 2.3.1and 2.3.2], for the chosen Gz, there exists
alattice Vz C V, such that y restricts to a pairing V2 x Vz - Z and Gz,y> the closure of
G in GL( Vz(p)) with Gz, = Gz, xz,,) Zp, is reductive. Moreover, by [7, Proposition
1.3.2], there is a tensor s € VZ&;,,) defining Gz, € GL(Vz,, ), i.e., for any Z,)-algebra
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R, we have
GZ(P)(R) = {g < GL(VZ(P))(R) | g(S ® 1) =5s® 1} .

Here Vz, == V2 ® Z(p)> and Vi@(’l’) is a finite free Z,)-module that is obtained from
Vz,,, by using the operations of taking duals, tensor products, symmetric powers,
exterior powers, and direct sums finitely many times.

Let KI', <€ GSp( Vo, v) be the stabilizer of V7, := Vz®Z,. Thenby [7, Lemma 2.1.2],
we can choose K’ = Kj,K'” such that K'? contains K” and K’ leaves V3 stable, making
the finite morphism

ShK(G, X) — ShK/(GSp(V, l{/),X’)E

a closed embedding.

Let d = |V,)//Vyz|, and g = dim(V)/2. Then Shx (GSp(V,v),X’) is closed in
the generic fiber of & 4 x» ® Og,(,), where @ 4 ks is the fine moduli scheme of
g-dimensional abelian schemes over Z,)-schemes equipped with a degree d polar-
ization and a level K’-structure (see [18, Theorem 7.9]). Let %% (G, K)~ be the Zariski
closure of Shg (G, X) in o7, 4,k ® Og, () with the reduced induced scheme structure,
and let .#k (G, X) be the normalization of #kx (G, K)~. Let A be the universal abelian
scheme on .7 4 x+. Then

V = Hig (Alshg(6,x)/Shk (G, X)) (resp. V° = Hyg (Al 1 (6,%) -7k (G, X)))

is a vector bundle on Shg (G, X) (resp. k(G, X)). By the construction of [7, Section
2.2], the tensor s € VZ@:m gives a section sqr of V®, which is horizontal with respect to

the Gauss-Manin connection.
Here we collect some of the main results in [7].

Theorem 3.1.2
(i)  The scheme (G, X) is smooth over Og ), and

yKP(G’X) = l(iLnprKp(G,X)
Kp
is an inverse system with finite étale transition maps, whose generic fiber is
G(A?)—equivariantly isomorphic to Shg, (G, X) = lim  Shg,ke (G, X).

(i)  The scheme Sk, (G, X) satisfies the a certain extension property.

Namely, for any regular and formally smooth Og,(,y-scheme X, any morphism
X ® E » 7%, (G, X) extends uniquely to a morphism X — 7, (G, X).
(ili) The section sqr extends to a section of V°®, which will still be denoted by sqr. For
any closed point x € /¢ (G, X) ® F, and any lifting X € Sk (G, X)(W (k(x))),
we have
(a) the scheme Isomw(k(x))((VZVP ® W(k(x)),s ®1),(V%, sarx)) is a trivial
right Gz, ® W (k(x))-torsor;

(b) for any t € Isomyy (i(x)) ((VZV,, ® W(k(x)),s®1),(V% sarx)) (W(k(x))),
Gz, ® W(k(x)) acts faithfully on V via g(v) := tgt™'(v), for all v € V.
The Hodge filtration on V% is induced by a cocharacter of Gz, ® W (k(x)).
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Proof (i) and (ii) are [7, Theorem 2.3.8(1) and (2)]. The first sentence of (iii) is [7,
Corollary 2.3.9].

The proof of (iii)(a) is hidden inside [7]. We write F for q.f.(W(k(x))) and X
for the F-point of .7k (G, X) given by the composition

Spec(F) < Spec(W (k(x))) — Z«(G, X).

Let A be the universal abelian scheme as before. Then there is an isomorphism Vv
H},(Az,,Z,) taking s to sz,. Here the right-hand side is the p-adic étale cohomol
ogy of the abelian variety Az, over F.
Then by [7, Corollary 1.4.3 (3)], there is an isomorphism

Hy(Az,» Zp) ®z, W(k(x)) — D(A«[p™]) (W (k(x)))

taking s¢t 7, ® 1 to a Frobenius-invariant tensor so. Here we write D(-) for the Dieu-
donné functor as in [7]. We remark that this is just an isomorphism, which is highly
non-canonical. But by the construction in [7, Corollary 2.3.9], sy gives sqr z by the
canonical identification

D(A:[p™]) (W(k(x))) = Har(Az/W (k(x))).

This proves (iii)(a).

For (iii)(b), see the proof of [7, Corollary 1.4.3 (4)]. Note that Kisin actually proves
the Hodge filtration on Hjjy (Ax) is a Gz, -filtration, but in his statement, he only
states it for the special fiber. ]

3.2 Construction of the G-zip at a Point

In this and the following subsections, we show how to get a G-zips over .%; using
Ve, where G is the special fiber of Gz, , considered in the previous subsection. We use
‘G-zip in the title here (and also that of 3.2.6, 3.3), as we want to keep the notations
in titles simple and coherent.

We will first say something about cocharacters inducing the Hodge filtrations, as
they are crucial data in the definition of G-zips, and will also be used in 2.4 to get the
torsor I over .%%.

3.2.1 Basics about Cocharacters

Proposition 3.2.1 Let G be a reductive group over a scheme S and Hom(G,,, G) be
the fpqc-sheaf of cocharacters denoted by Z. Then we have the following:

(i)  Z is represented by a smooth and separated scheme over S;

(ii) the fpqgc-quotient of Z by the adjoint action of G is represented by a disjoint union
of connected finite étale S-schemes;

(iil) assume that G has a maximal torus T over S. Let X (T be the scheme of cochar-
acters, and let W be the Weyl group scheme with respect to T. Then

(a) T ¢ G induces an isomorphism of fpqc-sheaves W\X.(T) = G\Z;
(b) if S = Spec R with R a henselian local ring with residue field k such that Gy, is
quasi-split, then the natural map X, (T)(R) - (W\X.(T))(R) is surjective.
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Proof The first statement follows from [2, Corollary 4.2, Chapter XI]. For (ii), one
can work with open affines of S. But by [2, Corollary 3.20, Chapter XIV], maximal tori
exist Zariski locally. We can assume that S is affine such that there exists a maximal
torus T ¢ G. Note that X, (T) is étale and locally finite over S, and that W is a finite
étale group scheme (see [2, 3.1, Chapter XXII ]).

Maximal tori are fpqc locally G-conjugate, so the inclusion T € G induces an
isomorphism of fpqc-sheaves W\X,(T) = G\Z. To prove (ii), it suffices to prove
that W\ X, (T) is represented by an étale and locally finite scheme over S. To see that
WA\X, (T) is representable, note that W x X, (T) and X, (T) x X, (T) are both étale
over S, so the morphism

W x X, (T) — X, (T) x X (T), (w,v) —> (v,w-v)

is also étale, and hence has open image. But it is also closed, since there is a finite étale
cover S’ of S, such that W and X, (T) become constant, and the image of « is just
copies of §’, which is closed in (X, (T) x X.(T))s. Let R be the image of «, then its
projections to X, (T) induced by projections of X, (T) x X, (T) to its factors are both
finite. So by [8, Chapter 1, Propositions 5.14 and 5.16 b)], W\ X, (T) is represented by
an étale separated scheme over S.

To see that the quotient is locally finite, one still works over S’. For an S’-point of
X« (T)s, its orbit under W(S") is just copies of §’. Let X’ ¢ X,.(T)s be an open and
closed subscheme such that it contains precisely one copy of " in each W (S’)-orbit.
Then X' = (W\X,(T))s/, and hence W\ X, (T) is locally finite.

To finish the proof of the proposition, we only need to prove (iii)(b). If R = k is
a field, then the statement follows from [10, Lemma 1.1.3]. We remark that although
it is stated for fields containing Q there, its proof works for general fields. But for a
henselian local ring R, noting that both X, (T) and W\ X, (T) are étale, we have

X.(T)(R) = X.(T)(k) and (W\X.(T))(R) = (W\X.(T))(k),
and hence (iii)(b). [ |

3.2.2 A Cocharacter Defined Over W («x)

Now we come back to notations introduced after Definition 3.1.1. Let ¥ = Og/v, and
Z = Hom(G,,, Gz, ). Let T ¢ Gz,,, be a maximal torus, and Wr be the Weyl group
scheme, then by the above proposition, Gz, \Z = Wr\X. (T) isa union of connected
finite étale Z,)-schemes. As explained at the beginning of Section 3.1, the Shimura
datum gives a Gg-orbit [@, ] of Z¢ which is defined over E, and hence a connected
component C = Spec Og,(,y of Gz,,\Z. Noting that Gz ,, ® I, is quasi-split, by
(iii)(b) of the previous proposition, the x-point of C induced by Og,(,) = Op/v = «
comes from a x-point of X, (T), which lifts to a W(x)-point of X, (T). The cochar-
acter corresponding to this point is such that for any embedding W(x) — C, its
image in Zc lies in [@,]. As by our construction, its image in Gy (x)\Zw ) lies in
Cw(x) = OE,v-
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3.2.3 An Easy Lemma

To get started, we need one preparation, namely the next lemma. It is probably well
known, but we still give a proof. It will be used in Section 3.2.5. We need to fix
some notation to state and prove it. Let k be a finite field of characteristic p, A be
an abelian scheme over W (k), o be the ring automorphism W (k) — W (k) which
lifts the p-Frobenius isomorphism on k. Denote by M the module H}, (A/W (k)) =
H. . .(Ax/W(k)) (see [6, 3.4.b], and this isomorphism is functorial in A). Then the
absolute Frobenius on Ay induces a o-linear map ¢: M — M (see [6, 2.5.3, 3.4.2])
whose linearization will be denoted by ¢!, Let M 2 M' be the Hodge filtration.
We know that M' is a direct summand of M, and its reduction modulo p gives the
kernel of Frobenius ¢ on H}; (A ® k/k). This implies that 9(M") € pM, and hence
@/p: M' - M is well defined.

Lemma 3.2.2  For any splitting M = M° & M, the linear map

2" 00 +(E) | 100)

o M) = M®W(k),g W(k) = MO (&) M)

is an isomorphism.

Proof Let F (resp. V) be the Frobenius (resp. Verschiebung) on M. Then
(9/p)™], g0 is induced by V™ 1 Im(V!'™) — M/ Ker(V'™). So a is an isomor-
phism as Ker(F) = Im(V) and Ker(V) = Im(F), but then « is an isomorphism by
Nakayama’s lemma. ]

Notations 3.2.3 Now we will fix some notation that will be used later. Notation as
in Section 3.2.2, we will write W for W () for simplicity. By the discussions there,
the orbit [@, ] gives a cocharacter G, - Gz, ® W which is unique up to Gz,(W)-
conjugacy. Its inverse will be denoted by y. The (contragredient) representation on
VZV( ,OW induced by y has weights 0 and 1. Since we are interested in reductions of
integral canonical models, we will work either over W or over k. So we will simply
write . for /x (G, X) ®o,,(,, W, and .7 for the special fiber of .. We will write A
for the pull back to . of the universal abelian scheme on 27 4 k. We will still denote
by V° (resp. sar) the pullback to . of V° (resp. sqr) on .7k (G, K) as in Theorem 3.1.2,
and V° (resp. sqr) for the pull back to ., of V° (resp. sqr) on .7

3.2.4 Basic Properties of sqr 7 and ¢

Now we will discuss some basic properties of sqr % related to the Frobenius on V3 and
the filtration on V%® induced by the Hodge filtration. We will keep the notation as in
Theorem 3.1.2(iii)(b). In particular, there is an element

t € Isomyy (k) ((V2, ® W(k(x)),s ®1), (V5 sar,7)) (W(k(x)))-

The element t will be fixed once and for all in our discussion. Also, we will introduce
some new notation as follows. Let

1 G wik(x)) — Gz, ® W(k(x))
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be a cocharacter such that g} := tu't™" induces the Hodge filtration on V. (The
existence of y’ follows from Theorem 3.1.2(iii)(b).) Note that y’ induces a W (k(x))-
point of C introduced after the proof of Proposition 3.2.1, as the Hodge filtration on
V% ® C is always induced by a cocharacter conjugate to yc (via the contragredient
representation). In particular, y’ is Gz, (W (k(x)))-conjugate to py (x(x)). We will
write ¢ for the Frobenius on V% and V2 = (V2)° @ (V2)' for the splitting induced by
py, with (V2)' the sub-module of weight i. The filtration on V% induces a filtration
on V2® by the constructions at the beginning of Section 2.1. There is a Frobenius that
is defined, not on V®, but on (\7%[%] )®, as follows. It is the tensor product of ¢ on

\7;[%] and
Yo: (VE[/pD) Y — (VE[/p)) Y. froo(foe™) VY feVsY,

on (VZ[1/p]))". The induced Frobenius on (V2[1/p])® will still be denoted by ¢.

It is known that sag x € V2® actually lies in Fil’ V® ¢ V22, the submodule of non-
negative weights, and that sqr ¥ is ¢-invariant ([7, 1.3.3], and we view sqr ¥ as an ele-
ment in (V%[1/p])® when considering the ¢-action).

We have the following better description.

Proposition 3.2.4  The Frobenius ¢ takes integral value on Fil® V2®. Let (V3®)° be
the submodule of V® such that u,(G,,) acts trivially, then sqr 7 € (VZ®)°.

Proof We use notation from Section 3.2.4. To see the first statement, note that we
have

Fil’(V2®) = @50 (V2®),

where (V2®)' is the submodule whose elements are of weight i with respect to the
cocharacter y;. And elements in (VZ®)’ are images of sums of elements from

o ®a ° ®b ovy—1) ®C ° ®d
((v9)°) e ((vp)h) e ((v:)™) e ((v:)°)
such that b — ¢ = i. The ¢-linear map ¢ induces well defined ¢-linear maps
Dl (V2)° — V3 and  “l(yay: (V)0 — V5",
But
¢ o ®b o _1\ ®c¢ o o c
(90|(v;)1)®b ® (V§0|(V;_V)fl)® :((Vf)l) ® ((va) 1) — (Vf)®h ®(V3")®

is also defined as
Qb
(Plevzy)® ® Colevzy )™ =0 (Tlovan) @ (2 Y9leven )™

while ¢/p|(vey and p - ¥¢[(yev)-1 are well defined. So ¢ is defined on Fil’(V28).
To see that sqg % € (VZ® )?, one only needs to use the fact that s € VZ@’ is Gz, -inva-

riant, and hence s4r 5 is also Gz, -invariant via . In particular, it is of weight 0 with
respect to the cocharacter y. ]
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3.2.5 Constructing Some Torsors Over W (k(x))

Now we will show that using the Frobenius ¢ and the splitting induced by u; (see Sec-
tion 3.2.4 for the definition of 1’ and y}), we can get an element g; of Gz, (W (k(x))).

Construction 3.2.5 Let o: W(k(x)) - W(k(x)) be as in Section 3.2.3, and let {
be the W (k(x))-linear isomorphism

vy © W(k(x)) — (V2 ® W(k(x))) "
givenby v ® w > v ® 1® w and t(?) be the pull back of
t € Tsomyy (i (V2] © W(k(x)).s ©1), (Vausans)) (W(k(x))
via 0. Let & = t(?) 0 & and g be the W (k(x))-linear map

lin lin
4 ‘(v;)u(n) +(%) ‘(V;)l(o)

V(@) = (V2)°(0) g (V)1 VI

X

We define g; to be the composition 1! o g o &, and (V) (resp. (VZ)1) to be the sub
W (k(x))-module of V% generated by ¢((V%)°) (resp. %((\7%)1)).

We have the following proposition.

Proposition 3.2.6

(i)  The linear map g; is an element of Gz, (W (k(x))).
(ii) The splitting

Vo, @ W(k(x)) = t7((V5)o) @t (Vi)
is induced by the cocharacter v = g;u'(%) g7! of Gz, ® W(k(x)), ie, t7((V%):)
is of weight i with respect to v.
Proof By Lemma 3.2.2, g; € GL(VZVP)(W(k(x))). So, to prove (i), it suffices to
check that the induced map
gr Vie; ® W(k(x)) — VZ@; ® W(k(x))

maps s ® 1 to itself. Now we compute g;(s ® 1). First, {(s ® 1) = s ®1® 1 and
t)(s®1®1) = sqrx ® 1. We decompose V2 = @;(V2®)’ via the weights of the
cocharacter g} introduced before. Then (V2®)(?) = @, ((V2®)")(?).

Note that sqr 5 € (V2®)° by Proposition 3.2.4, so

g® — Zp—i(¢lin)®|(v;®)i:@((V%(X))i) (o) N %®

i
maps Sqr,¥ ® 110 Sqr 3, as it is p-invariant. And hence,
g(s®l) =tlogoé(s®l) =51,

as t ! takes sqg 5 to s ® 1. This proves (i).
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For (ii), we look at the commutative diagram

\7A% Wik t(7og Ve (o) o i(o)
2 © W(k(x) — e (1)) (a,72)
\ l&piq)lm(v%)i(a)
vy © W(k(x)) =~ V3.

It shows directly that

v(m)(v) = geo(u'(m)) g;' (v), VmeG,(W(k(x))), Vve VZVP ® W(k(x)).
|

Corollary 3.2.7  Let u: G, w — Gz, ® W be the cocharacter as in Notations 3.2.3. Let
C*® be the descending filtration on VZV,, ® W such that C' is the sub-module of elements
of weights > i with respect to y, and let D, be the ascending filtration on VZVP ® W such

that D; is the sub-module of elements of weights < i with respect to u(?).
Let P, (resp. P_) be the stabilizer in Gz, ® W of C* (resp. D, ), and let Ix be

Isomw(k(x))( (VZV,, ® W(k(x)),s®1),(Vs, st;,;)) )
(i)  The closed subscheme
Iz = Isomw(k(x))( (VZVP ® W(k(x)),s®1,C*), (\7%, sarg Vi 2 (\7%)1) ) clz

is a trivial P, -torsor.
(ii) The closed subscheme

L= Isomw(k(x))( (V. ® W(k(x)),s ®1,D.), (V& sar > (Vo € \7;)) c Iy
is a trivial P -torsor.
Proof To prove (i), takea g; € Gz, (W (k(x))) suchthatgl(yéz»W(k(x))) gl=y,

then we have Iz, = t- gi( P, ® W(k(x))).
For (ii), by Proposition 3.2.6, Iy, = ¢ - gtg(a)(P_ ® W(k(x))) @ [ |

3.2.6 The G-zip Attached to a Filtered F-crystal

Notation as above, let L be the centralizer of y. Let i, G, P,, P_, and let L be the
reduction modulo p of y, Gz,, Ps, P, and L, respectively. For simplicity, we still
write &, C®, and D, for their reductions. The map & induces isomorphisms

po: (V2 0 )P 1((v, 0 0)) P 22 (v 00)°) P 5 (v @),

o (v 00 55 (v 9 1) = (V) 9 )/(VE, 9 K)o,

and hence induces o-linear maps @, ¢; after pre-composing the natural map VZ
K — (Vv ® ) (). The tuple (VZ ® k,C®, D, @) is an F-zip. The G-zip associated

with (G, /4) is isomorphic to I,; (here we use notations as at the end of Section 2.2).
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o

To get a G-zip from V2, one needs to “compare” the above F-zip and the one com-

ing from VZ. Let ¢o: V3/(V3)! = (V3)o be the reduction mod p of @l(v)o, and

o1 (V2)' — (Vo = V3 / (V2o

be the reduction mod p of %|(\79_)1. Let I, 4, I,,— and let I, be the reduction mod p of
Iz 4, Iz,_, and Ix, respectively. For simplicity, we still write ¢, g, g; for their reductions.

By the proof of Corollary 3.2.7, I, . and I, _ are P, y(,-torsor and E)(,f()x)-torsor,
respectively. For any k(x)-algebra R, an element 8 € I, , (R) is an isomorphism

B: (V2 @ k(x),581,C*(Vy, ® k(x))) ® R —> (V3,5qm,4, C*(V3)) ®R.
It induces an isomorphism
gt (v, ®k(x)) " ®R) —> 0 grl(V2®) @ R)

which will still be denoted by B(?). But then () is an element in (I ,(CP 2 / UEP ) )(R),

and any element of (I ip 2 / UJ(rP ) )(R) is of this form (by [2, XXVI Corollary 2.2], as U,
is unipotent).

Let 1: I,(CQ/UJEP) - Ix,_/UEP) be the morphism taking ﬁ(P) to
ogr? ((Vz, ®k(x)) ®R) ogr®(V2 @ R)

. (62] .
ogrl (VY @ k(x)® ® R) ——> @ gl (V;P) o R).

We claim that ¢ is an isomorphism of T _torsors. First note that
o' @ ¢1_1:69griD ( VZV,, ® k(x)) - eagric ( (VZVP ® k(x))(f’))

and g™ @ gri. (V2 (P)) — @ grP(V2) are isomorphisms, and so are their base changes
to R. This implies that ¢ is an isomorphism. We only need to show that 1 is L(?)-equi-
variant. But this follows from the fact that ¢5' ® ¢;" is L(P)-equivariant. So the tuple
(Ly, L v, Iy,—, 1) is a G-zip of type @ over k(x).

Remark 3.2.8 One can describe (I, I+, Iy, ) explicitly. We have 8 = tg;p for
some g € P, j(,)(R) and

li _ _
(B = gi 0 t PP g P o (451 @ 97) = 11l gD
Using notations and constructions in the discussion after Theorem 2.2.2, we have
(L L L 1) = Ligrigg®aw = Long g0

If we replace ¢ by tgi, then (I, L,+» Ix,—» 1) = L.
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3.3 Construction of the G-zip over a Complete Local Ring

We want to globalize the above point-wise results to .%;. But to do so, we need first
to work at completions of stalks at closed points. And to study the G-zip structure
at the complete local rings, we need Faltings’s deformation theory. For simplicity, we
assume that ¢ is such that tut™" induces the Hodge filtration.

3.3.1 Faltings’s Deformation Theory and Complete Local Rings of the Integral
Model

Now we will describe Faltings’s deformation theory for p-divisible groups following
[14, 4.5] and its relation with Shimura varieties following [7, 1.5, 2.3].

Let k be a perfect field of characteristic p, and W (k) be the ring of Witt vectors. Let
H be a p-divisible group over W (k) with special fiber Hy. The formal deformation
functor for Hy is represented by a ring R of formal power series over W (k). More
precisely, let (Mg, Mg, ¢o) be the filtered Dieudonné module associated with H, and
L be a Levi subgroup of P = stab(My 2 Mj). Let U be the opposite unipotent of
P; then R is isomorphic to the completion at the identity section of U. Let u be the
universal element in U(R), and let 6: R — R be the homomorphism that is the Frobe-
nius on W (k) and p-th power on variables; then the filtered Dieudonné module of
the universal p-divisible group over R is the tuple (M, M*, ¢, V), where M = My ®R,
M'=My®R, ¢ =u-(¢o®0),and V is an integrable connection, which we do not
want to specify, but just refer the reader to [14, Chapter 4].

More generally, let G ¢ GL(M) be a reductive group defined by a tensor s €
Fil’(M®) ¢ M®, which is go-invariant. Assume that the filtration My 2 M} is in-
duced by a cocharacter y of G. Let Rg be the completion along the identity section of
the opposite unipotent of the parabolic subgroup Pg = stabg (Mo 2 Mp) of G, and ug
be the universal element in Ug (Rg) which is also the pull back to R of u. Then Rg
parametrizes deformations of H such that the horizontal continuation of s remains a
Tate tensor (see [14, Proposition 4.9]).

For any closed point x € .75, let O;O, . and O;’ . be the completions of Oy, »
and O with respect to the maximal ideals defining x respectively. Clearly,
0, ./pOy, =0y, . LetXbea W(k(x))-point of .7’ lifting x, and y’ be a cochar-
acter of Gz, ® W (k(x)) as in the proof of Proposition 3.2.6, which induces the Hodge
filtration on V3 via ¢ as introduced in Theorem 3.1.2(iii)(b). Let R be as above and
0:Rg — Rg be the morphism which is Frobenius on W (k(x)) and p-th power on
variables. We will simply write u for ug. Then by the proof of [7, Proposition 2.3.5],
the p-divisible group A[p>]|o- gives a formal deformation of A[p*]| , and in-

duces an isomorphism Rg — O;)X. Moreover, if we take the Frobenius on O;’x
to be the one on Rg, then the Dieudonné module of A[p™]|o- is of the form
(V$® 0, ,,(V2)' ® O .9, V), where ¢ is the composition

— (p@a’ — —
V% ® O.S”,x - V?f ® O.S/’,x & V?f ® OY,x’
with u, = tut™, and V is given by restricting the connection on the universal de-

formation to the closed sub formal scheme Spf (O;)x) (see [14, 4.5]). Note that by
[7,1.5.4, proof of Corollary 2.3.9], sqr # ® 1 = sar ® Lin V°® ® O, ..
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Lemma 3.3.1
(i)  The scheme

I:= Isomspec(o;)x)( (Vz, ® W,s) ®w Oy (V°,54r) ® 0 )

is a trivial GZP-torsor over O;,)x.
(ii) The closed subscheme I, C I defined by

Ly = Isomgpe o=, y((Vz, ® W,C%5) ®w Oy, (V°,V° 2 (V°)',5ar) ® Oy )
is a trivial P, -torsor over O;)x.

Proof (i) follows from (V°,s4r) ® O;’x ¥ (VZ,5ar7) ® O;’x and Theorem
3.1.2(iii)(a). And (ii) follows from

(V2,V° 2 (V°)sar) ® Oy = (V2 VS 2 (V) sarz) ® Oy

and Corollary 3.2.7(i). [ |

Let t be as in Section 3.3.1, and g; be the composition of
§: Vg, ®0,, — (Vz, ®0,.) 7 vesr—veles,
(te 1) (Vz, ® W(k(x)) ® 05 )" — (Vi@ 05,),
with g,
(V2805,) =

uto((((l"(v%)o“'%hvg)l )®‘7)lin)

(V9" @ (V9)") 5= ) V005,

and (t ® 1)'. We have the following lemma.

Lemma 3.3.2 The O, ,-linear map g is an element of Gz,(0, ). Let Vo,

(resp. V°}) be the module g(((v2)°e O;,x)(")) (resp. g( ((V2)'® O;’x)("))), then
the scheme 1_ given by

Isomgyec(o, ) ( (V2,8 W, Days)@w Oy (V’®0, .,V cV°®0, ,,5qr ®1))

is a trivial PE”)—torsor over O; .
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Proof To prove the first statement, we need to show that g€ (s ® 1) = s ® 1. We have
the following commutative diagram

~ (81 ok o — o 0\ i - ()
Vy, ® 0, —— (V3 ®w(k(x)) 0, ) ——=((&:(V3)) ® 0, )
®1
K J{Zi(p—iq)@a)lin
f Veoy.— T vieo;,
V) ®0,,, £ el V200, .

We know from Proposition 3.2.6 that g&(s ® 1) = s® 1. But u®(s ® 1) = s ® 1 by
definition. So g¥(s®1) =s® 1.

To prove the second statement, we use the same method as in the proof of Corol-
lary 3.2.7. Let let Iz, Iz, be as in Corollary 3.2.7 (but with ¢ replaced by tg;). Then
by the proof of Lemma 3.3.1, we have

I, = (to (P.® W(k(x)))) x Spec(0 ) = Iz,+ x Spec(O ).
By the proof of Proposition 3.2.6(ii) and the commutative diagram above, the splitting
Vz, ® O, =(te) (Vo) @ (te1)™(V°)

is induced by the cocharacter u(v ® 1)u™". So I = t - u(t'Iz,- x Spec(0, ,)), and

hence it is a trivial P**)-torsor over Spec(0, ). [ |

3.3.2 Description of the G-zip over the Complete Local Ring

From now on, we only need to use mod p parts of previous result, so we simplify
notation as follows. We will write G (resp. V) for the special fiber of Gz, (resp. Vz,),
and y, s, Rg, I, I, I, P, P_, Uy, U_, L, t, u, and g, for their reductions mod p.
To get a G-zip structure on Rg = O, ., we only need to construct an isomorphism
L:Hﬁp)/UJ(rp) - H_/UEP) of L(P)-torsors over Rg. The construction is the same as in
Section 3.2.6. Let V be reduction mod p of V° ® O, , in Lemma 3.3.1, C* be the
filtration on 'V given by reduction mod p of (V° 2 (V°)!) ® O;’x there, and D, be
the filtration on V given by reduction mod p of V°, ¢ V° ® O, in Lemma 3.3.2.
For f8 € I, (R) with R a Rg-algebra, denote by (?) its image of Frobenius pull back
in (]I(f ) / Uip ))(R), then the composition

(¢5'@¢; o1
_—

D1V i r1Vs(p) B i (p)y  Pa®l D
ogr; (Vy) ogro(Vp ) ———eogro(Vy') ———@gr; (Vr)

is in ]L/UEP)(R). This gives the morphism I:ng)/Uip) - ]L/UEP), which is
L(P)_equivariant as ¢3! ® ¢7 is so. Moreover, we have (I,1,,1_, /) = L,
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3.4 Construction of the G-zip on the Reduction of the Integral Model

Letus write A (resp. V, sqr) for the restriction of A (resp. V°, sqr) to .. Notation as in
Section 3.3.2, we will now explain how to geta G-zip on %, using A[ p]. Let 9: A[ p] —
A[p]® and v: A[p]®) — A[p] the Frobenius and Verschiebung respectively; then
the sequences
¢ v v ¢
Alp] = Alp]? — A[p] and A[p]"®") = Alp] = A[p]"”
are exact. After applying the contravariant Dieudonné functor, we get exact sequences
v v® 2oy and V@ v YL k)
Let 8:V — V() the Frobenius semi-linear map x + x ® 1, we write C* for the de-
scending filtration given by
€% :=V2e =Ker(gpod)2€*:=0,
and D, for the ascending filtration given by
D_1:=0¢C Dy :=Im(p) € D;:=V.
Let ¢o: C°/C' — D, be the natural map induced by ¢ o §. Note that v induces an

isomorphism V/Im(¢) > Ker(¢), whose inverse will be denoted by v™". Let ¢;: C! —
D;/Dy be the map v~! o (8]e1); then the tuple (V, €*, D,, ¢ ) is an F-zip over .%.
Let C* and D, be filtrations on V. introduced at the beginning of Section 3.2.6.

Theorem 3.4.1
(i) LetIcIsomgy, (V) ® Og,,"V) be the closed subscheme defined as
I:=Isom y,((V),s) ® Oz, (V,sar))-
Then I is a G,-torsor over ..
(i) Let I, < I be the closed subscheme
I, :=TIsom , ( (V;,s,C*) ® 05, (V,s5ar,C")).
Then 1, is a P, -torsor over ..
(iii) Let I_ < I be the closed subscheme

I_:=Tsom ., ((V,,s,Ds) ® O.7,, (V,5ar,Da)).

K

ThenI_isa pr)—torsor over .Sy.
(iv) The o-linear maps @ and ¢ induce an isomorphism

l:IJ(rP)/UJ(rP) N I_/UEP)

of LP)-torsors over 7.
Hence the tuple (I,1.,1_,1) is a G-zip over .%.

Proof By construction, G(S§) acts simply transitively on I(S) for any .#;-scheme S,
s0ifI(S) # &, the morphism Is xs Gs — Is xs1s, (£, g) ~ (¢, t-g) isan isomorphism.
To prove (i), it suffices to show that I is smooth over .#; with non-empty fibers. The
non-emptiness of I, for a closed point x € .#; follow from Theorem 3.1.2(iii)(a). For
smoothness, by Lemma 3.3.1(i), I — .%5 is smooth after base-change to the complete
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local rings at stalks of closed points. And hence I — .7} is smooth at the stalk of each
closed point of .. But this implies that it is smooth at an open neighborhood for
each closed point, and hence smooth.
(ii) follows from Corollary 3.2.7(i) and Lemma 3.3.1(ii) using the same strategy.
To prove (iii), we also use the same strategy. Take a point x € ., we consider
I_ x., Spec(O, ). We claim that

I x4, SPeC(Oyu,x) = 11*|Spec(0;0)x)'
To see this, using notations in Lemma 3.3.2, we only need to show that

(V,sar,Da) ® 04, . 2 (V°® 04 sk ® L,V EV°® 0, ) ® O .

— ~ —==0
But by our construction, V°y € V° ® O, _ is the submodule generated by ¢(V° ),
and the composition

7' 805, SV 80, » (V80 )V &0y, .)

is an isomorphism, as it has an inverse pr,. So V°; ® Oy . =3(p)in V0, ,
and this proves (iii).

For (iv), the same argument as before Remark 3.2.8 works. For € I, (R) with
Spec(R) an affine scheme over .%, denote by (#) its image of Frobenius pull back

in (L(rp ) / UJ(rp ))(R), the composition

lin

oegr)el @ ; .
@gr?(VRV)m@gr’c(VRv’(P))L@gr%(\?g))%@gr?(vlz)

is in I,/UEP)(R). This induces a morphism t:Ifrp)/UJ(rp) - L/UEP), which is
L(P)—equivariant, as ¢y @ ¢7! is so. [ ]
4 Ekedahl-Oort Strata for Shimura Varieties of Hodge Type
4.1 Basic Properties of Ekedahl-Oort Strata

In this section, we will define Ekedahl-Oort strata for Shimura varieties of Hodge
type, and study their basic properties. Let G, V, u, P, P_, and L be as in Section
3.3.2,and let (I, I, I_,1) be the G-zip constructed in the revious theorem.

Definition 4.1.1 'The G-zip (I,1,,1_,1) on .%, induces a morphism of smooth al-
gebraic stacks {:.%) — G-Zipk. For a point x in the topological space of G-Zip% ® &,
the Ekedahl-Oort stratum in .%} ® & associated with x is defined to be {™!(x).

Now we will state our main result.

Theorem 4.1.2  The morphism (: %, - G-Zip! is smooth.

https://doi.org/10.4153/CJM-2017-020-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-020-5

Ekedahl-Oort Strata for Good Reductions of Shimura Varieties of Hodge Type 471

Proof By Theorem 2.2.5, G, — G-Zipl is an Eg ,-torsor. Let k be ¥, to prove that {
is smooth, it suffices to prove that in the cartesian diagram

#
y(),k > y@,k

M

Gy — G-Zipz ® k,

the morphism {* is smooth. Note that ., and Gy are both smooth over k, so to
show that {* is smooth, it suffices to show that the tangent map at each closed point
is surjective (see [5, Chapter 3, Theorem 10.4]).

Let x* € 7, be a closed point, its image in .7 x is denoted by x, which is also
a closed point. Let Rg be as in Section 3.3.2, which is the reduction modulo p of the
universal deformation ring at x. Consider the cartesian diagram

X ——— Spec(Rg)

Gy —= G-Zip* @ k.

The morphism X — Spec(Rg) is a trivial Eg,,-torsor by our construction at the very
end of Section 3.3.2: the G-zip over Rg is isomorphic to I, (see Constructions 2.2.3
and 2.3.4). The Rg-point ug; of G gives a trivialization of the Eg ,-torsor X over
Rg. This trivialization induces an isomorphism from Spec(R¢) xx (Eg,u )« to X that
translates « into the morphism f: Spec(Rg) xx (Eg,u)k = Gy that sends, for any k-
scheme T, a point (u, I, uy,u_) to lu,ug,(I®¥u_)"" (see Equation (2.1) and the line
following it, and note that as k-scheme, Eg , = L x U, x U, and that R is the
complete local ring of U_ at the origin).

Let k[e] = k[x]/(x?*), and g € G(k[e]) be a deformation of g;. By viewing g; as
an element in G(k[¢e]), we get a gy € Lie(Gy) = Ker(G(k[e]) - G(k)) such that g =
go0g:. By [1, Chapter IV, Proposition 14.21(iii)], the product map L x U, x x U_ x — G
is an open immersion, so there exists u € Lie(U_ ;) = Rg(k[e]), I € Lie(Ly) and u, €
Lie(U, ;) such that lu,u = go. Noting that [(#) = id, we see that (u, [, u,,id) = g,
which proves the theorem. ]

4.1.1 Dimension and Closure of a Stratum

Thanks to Theorem 4.1.2, the combinatory description for the topological space of
[Eq,.\G«] developed in [20] can be used to describe Ekedahl-Oort strata for reduc-
tion of a Hodge type Shimura variety, and gives dimension formula and closure for
each stratum. We will first present some notations and technical results following
[20,24], and then state how to use them.

Let B € G be a Borel subgroup, and T ¢ B be a maximal torus. Note that such a B
exists by [11, Theorem 2], and such a T exists by [2, XIV Theorem 1.1]. Let W(B, T) :=
Normg(T)(x)/T(x) be the Weyl group, and I(B, T) be the set of simple reflections
defined by Bg. Let ¢ be the Frobenius on G given by the p-th power. It induces an
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isomorphism (W (B, T), W(B, T)) - (W(B, T), W(B, T)) of Coxeter systems still
denoted by ¢.

A priori the pair (W(B, T),I(B, T)) depends on the pair (B, T). However, any
other pair (B’, T") with B’ ¢ Gx a Borel subgroup and T’ ¢ B’ a maximal torus is
obtained on conjugating (B, Tz) by some g € G(x) which is unique up to right mul-
tiplication by Tk. So conjugation by g induces isomorphisms W(B, T) - W(B’, T")
and I(B,T) — I(B’,T’) that are independent of g. Moreover, the morphisms at-
tached to any three of such pairs are compatible, so we will simply write (W, I) for
(W(T),I(B,T)), and view it as ‘the’ Weyl group with ‘the set of simple reflections.

The cocharacter y: G,, - G, as in Section 4.1 gives a parabolic subgroup P,, and
hence a subset J € I by taking simple roots whose inverse are roots of P,. Let W} the
subgroup of W generated by ], and /W be the set of elements w such that w is the
element of minimal length in some coset Wyw’. Note that there is a unique element
in Wyw’ of minimal length, and each w € W can be uniquely written as w = w;/w
with wy € Wy and /w € /W. In particular,/ W is a system of representatives of W;\W.

Furthermore, if K is a second subset of I, then for each w, there is a unique element
in Wyw W which is of minimal length. We will denote by /WX the set of elements of
minimal length, and it is a set of representatives of Wj\W/Wk.

Let wg be the element of maximal length in W, set K := “°¢(J). Here we write &] for
gJg 7" Let x € *W?() be the element of minimal length in Wi w, Wy (j)- Then x is the
unique element of maximal length in KW ?U) (see [24, 5.2]). There is a partial order <
on’W, defined by w’ < w if and only if there exists y € Wy, yw’'xp(y™)x™ < w (see
[24, Definition 5.8]). Here < is the Bruhat order (see [24, A.2] for the definition). The
partial order < makes /W into a topological space.

Now we can state the the main result of Pink-Wedhorn-Ziegler that gives a com-
binatory description of the topological space of [Eg,,\Gy] (and hence G-Zip¥).

Theorem 4.1.3 Forw € ’W, and T’ € B’ ¢ Gy with T’ (resp. B') a maximal torus

(resp. Borel) of Gg such that T' € Lz and B’ ¢ PEP?) let g,w € Normg_(T") be a

representative of ¢~' (x) and w respectively, and G* ¢ G be the Eg, ,-orbit of gB'wB'.

Then

(i)  The orbit G¥ does not depends on the choices of w, T', B' or g.

(ii)  The orbit G¥ is alocally closed smooth subvariety of Gz. Its dimension is dim(P) +
I(w). Moreover, G¥ consists of only one Eg,,-orbit. So G" is actually the orbit of

W.

(iii) gDenote by | [Ec,.\Gx] ® %| the topological space of [Eg,,\G«] ® %, and still write
TW for the topological space induced by the partial order <. Then the association
w > G" induces a homeomorphism W — | [Ec,u\Gk]® E|.

Proof By [20,Lemmal2.11], (B, T', g) is a frame of (Gz, P, %, Pff%), ¢) in the sense

of [20, Definition 3.6]. Here ¢: P, /U, z — PEPE) / UEPE) is the morphism induced by
the relative Frobenius of L. So the first statement is’[20, Proposition 5.8], the sec-
ond statement is [20, Theorem 1.3, Proposition 7.3, and Theorem 7.5], and the third
statement is [20, Theorem 1.4]. [ |
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The next statement (including its proof) is a word by word adaptation of results in
[24] (to be more precise, Theorem 6.1, Corollary 10.2, and Proposition 10.3).

Proposition 4.1.4  Let ] be the type of P,; then the Ekedahl-Oort strata are given
by the finite set 'W. For w € /W, the stratum .7}’ is smooth and equi-dimensional of
dimension 1(w) if ) # @. Moreover, the closure of " is the union of 7/} such that
w <w.

Proof The first statement follows from our definition of Ekedahl-Oort strata and
Theorem 4.1.3(iii). For the second one, note that by Theorem 4.1.3(ii), each G,, is equi-
dimensional of codimension dim(U_) - I(w) in Gy, so each .%}" is equi-dimensional
of codimension dim(U_) — I(w) in .%; %, as { is smooth by Theorem 4.1.2. So the
dimension of .#y" is I(w), as dim(.%5) = dim(U_).

The smoothness of each stratum follows from a direct adaption of the proof of [24,
Proposition 10.3]. More precisely, let w: Spec(k) - Eg,,\Gy be a point. Then its re-
duced gerbe (Eg,,\Gx)" is smooth. And hence {7 ((Eg,,\Gx)") is smooth. But .#"
is reduced with the same topological space as {'((Eg,,\Gx)"), so .3 is smooth.
For the last statement, by Theorem 4.1.3(iii), the closure of {w} in | [Ec,u\Gk]® E’ is

{w' | W <w}.So .7y = ("}(w) by the universally-openness of (. [ |

Remark 4.1.5 There is a unique maximal element in / W; its corresponding stratum
is called the ordinary stratum. It is open and non-empty by Theorem 4.1.2 and hence
dense by Proposition 4.1.4. There is also a unique minimal element in /W, namely
the element 1. Its corresponding stratum is called the superspecial stratum which is
expected to be non-empty (but we cannot prove it now)". The non-emptiness of the
superspecial stratum implies that every stratum is non-empty, as ¢ is an open map by
Theorem 4.1.2.

4.2 F-zips with Additional Structure

In this subsection, we will describe additional structure on F-zips associated with
reductions of Shimura varieties of Hodge type, and show how to generalize the the
theory in [24] to study Ekedahl-Oort strata for Shimura varieties of Hodge type.

4.2.1 Description of the additional structures

Let (G, V, u,s) be as at the beginning of 4.2.1, and C*®, D, be the filtrations on VY
introduced at the beginning of 3.2.6.

Definition 4.2.1 Let S be a scheme over k. By an F-zip of type (G, V, u,s) with a
Tate class sqr over S, we mean an F-zip (V, C*, D,, ¢, ) over S equipped with a section
sqr: Os = V&, such that

There are currently many announced proofs for non-emptiness of Newton strata (by Dong Uk Lee,
Kisin-Madapusi Pera, and Chia-Fu Yu). Together with works of Kisin on the Langlands-Rapoport con-
jecture and those of Nie on fundamental elements, this implies the non-emptiness of the superspecial
stratum.
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(i) I:=Isomgy,((Vy,s)®0s,, (V,sar)) < Isomy, (VY ® 0, V) isa G-torsor
over .%y,

(i) I, := Isomyo( (V,5,C*)®0.4, (V,s4r, G')) ¢ Iisaright P, -torsor over .%;,

(iii) I- := Isomy ((Vy,s,Ds) ® Oz, (V,sar,Da)) < I is a right P torsor
over .%y,

(iv) sqr:Os — V® is a Tate sub F-zip of weight 0, i.e., the F-zip structure on V®
restricted to Og makes it a Tate F-zip of weight 0.

Remark 4.2.2 Condition (i) in the above definition implies that sqg: Og = V& is
a locally direct summand. As there is an fpqc-cover T of S, such that I(T) # @. An
element ¢ € I(T) identifies

(k—s> V®)T and (OS ﬂ>/\7®)T,

so (V®/0g)r = (V®/k)r is free. Noting that being locally free is local for the fpqc
topology for finitely generated modules, we see that Og = V® is a locally direct sum-
mand. The embedding sqg is then admissible in the sense of Definition 2.1.6.

We will simply call an ‘F-zip of type (G, V, p, s) with a Tate class sqr”an ‘F-zip with
a Tate class sqr” for short. We denoted by F-Zip, _(S) the category whose objects are
F-zips with a Tate class sqr over S, and whose morphisms are isomorphisms of F-zips
respecting Tate classes.

Construction 4.2.3  There is a functor 3: G-Zip% (S) — F-Zip,, (S) as follows. For
(I1.,1_,1) € G-Zip¥(S), we define

V:IXG VSV) GI:I+ ><P+ C}S)

p®

Do=1-x""Dys, and @¢;@grp(V)—> @gr?(\?)

to be the o-linear map whose linearization is the morphism
® ; ®
£x (0@ p): 7 JUL T (@ (V)Y — L /U T (@8 ().

Here ¢ and ¢, are as in Section 3.2.6. The condition that ¢ is L(?)-equivariant im-
plies that 1 x (¢o ® ¢;) is well defined. The same argument as in the previous remark
shows that ' ¢ V and Dy € V are locally direct summands. So (V,€*, D,, ¢.)
is an F-zip that satisfies the first three conditions of Definition 4.2.1. The section
sar € V® is the image of I x {s} in V® = I x% (V®). Let €*(V®) (resp. C*(V¥))
be the filtration induced by €® (resp. C*), then C°(V®) = I, xP+ (C°(V®)s), and
sqr is in €°(V®) as s € C°(V,?) is G-invariant. Similarly, sqr € Do(V®), and it in-
duces injections Os — C°(V®)/CY(V®) and O5 - Do(V®)/D_;(V®). The F-zip
(V,€*,D,, ¢,) induces an F-zips structure on V®, and in particular a o-linear iso-
morphism @: C°(V®)/CH(V®) - Dy (V®)/D_1(V®). The linearization of @y is the
identity on Og = Im(sgr), as ¢o ® ¢ is so on s. So sqr: Os — V® is a Tate sub F-zip
of weight zero.

Corollary 4.2.4  The functor 3: G-Zip§ (S) - F-Zip,, (S) induces an equivalence
of categories.
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Proof We only need to construct a quasi-inverse &: F~Zip, (S) - G-Zip%(S) of 3.
Let (V,C*, D., ¢o) be an F-zip with a Tate class sqr. By Definition 4.2.1, we already
have (I,1,,1_), and hence only need to construct an isomorphism of L{*)-torsors
I Igp)/UJ(rP) - I_/UEP). Asin 3.2.6, for § € I, (R) with Spec(R) an affine scheme over
S, denote by (?) its image of Frobenius pull back in (I (2) / U )(R), then condition

(iv) of Definition 4.2.1 implies that the composition

(¢5'@¢)®1 p» ; 9."®1
ogP(Vy) ——>egi(Vy ") ———egrh, (V) ——> ogr? (V)

is in L/UEP)(R). This induces a morphism Ifrp)/UJ(fp) - L/UEP), which is
L(P)_equivariant as ¢5' ®¢7 " is so. One checks easily that & is a quasi-inverse of 3. B

4.2.2 Defining Ekedahl-Oort Strata Using F-zips

In this section, we will follow the construction in [17,24] to show that the Ekedahl-
Oort strata defined using G-zips are the same as those defined using F-zips with a
Tate class. The main technical tool is still [20]. Fix the datum (G, V, u, s) as before,
let Z, be the Zariski sheafification of the presheaf that associates with a x-scheme §
the set of F-zip structures (C®, D,, ¢.) on Vs with Tate class s ® 1.

Let Z;, be the Zariski sheafification of the presheaf that associates with a k-scheme S
the set of triples (P, Q, UqgU,(p)), where P c G is of type ] (the type of P, defined
before), Q ¢ Gs is of type ¢(J) and g € G(S) is such that Q and go(P)g™" are in
opposite position. By [17, Corollary 4.3], Z; is represented by a smooth x-scheme.
By [7, Lemma 1.1.1] and the proof of Proposition 1.1.5, the construction of [17, Lemma
5.1] induces an isomorphism Z, = Z,. We remark that for an affine scheme S, Z,(S)
(resp. Z,,(S)) is precisely the set of triples described above. We also remark that our
construction of Z, is slightly different from X defined in [17, 5.2]. We insists to fix
the type of cocharacters inducing the filtrations, rather than the type of the filtrations.
This kills the problem mentioned before [17, Corollary 6.2].

Now we will construct a morphism Z, — [Eg,,\G«]. By definition, to give such
a morphism is the same as to give an Eg,,-torsor H over Z,, equipped with an
Eg,,-equivariant morphism H — G.

The F-zip (Vy, C*, D., ¢s) constructed in 3.2.6 is an element of Z, (). Using the
proof of [20, Lemma 12.5], the group G« x G, acts on Z, transitively via

(§:h) - (C*,Ds, 9a) = (gC*, hDo, houg™),

where h¢;g™" is the composition

g(CY/g(C™*) £5 CHCH — DyJDyy s W(D)[H(Dy).

Under the above action, the stabilizer of (Vi, C®, D,, ¢ ) is Eg,, (by the proof of
(20, Lemma 12.5]), and hence the action induces an Eg, ,-torsor G, x G, — Z, which
is G,-equivariant with respect to the diagonal action on G, x G, and the restriction
to diagonal on Z,. The morphism m: G x Gx - Gy, (g, h) ~ g 'h is a G-torsor
which is Eg, ,-equivariant. By the same reason as in [20, Theorem 12.7], we get an
isomorphism of stacks 8 : [G,\Z,] ~ [Eg,,.\G] after passing to quotients.
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Let I be Isom_», ((Vi,s) ® O, (V,s4r)) as before. There is a G,-equivariant
morphism from the G-torsor I to Z,, given by mapping ¢ € I to the pull back via
t of the F-zip structure on V. This induces a morphism {":.7, — [G(\Z,]. Our
Ekedahl-Oort strata are defined by the morphism {:.#y — [Eg,,\G,] constructed in
Section 4.1. But by what we have seen, one can identify [G,\Z,] with [Eg,,\G,] via
B. So it is natural to ask whether they induce the same theory of Ekedahl-Oort strata.

Proposition 4.2.5 We have an equality f o {' = (.
Proof By [20, 12.6], there is a cartesian diagram
Gy x Gy ——= Gy
o
Zy —— [EG,u\G«]

whose vertical arrows are G-equivariant Eg ,-torsors and horizontal arrows are
Eg,,-equivariant G,-torsors. One only needs to check that the pull back to G, x G,
of ¥* > Gyand I — Z, are G, x Eg ,-equivariantly isomorphic over G, x G,.

Let %, be the pull back
Fo—= ¢
Gy x Gy 2 G,.
For any T/x,

Fo(T) = {(g1,82,a,b) | g € Ge(T),(a,d) € #(T) such that g;'g, = a”'b}.
For any (g, p1, p2) € G x Eg,,(T), the action is given by

(8 p1,02) - (g1,82,a,b) = (gg1p1"> 8825 apy ' bp3').

Let T be the pull back
[————1
Gy x Gy —— Z,.
For any T/x,

I(T) ={(g1>82t) | gi € Ge(T), t € I(T) such that (g1 (C}), g2(De,1), £20681 ")
=€, Darrs 90) } 5

where (V, C*, D, ¢.) is the F-zip on .7} introduced at the beginning of Section 3.4.
For any (g, p1, p2) € Gk x Eg,,(T), the action is given by

(& p1-02) - (g1,82:1) = (8811 > 8820215 8 1)
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There is a G, x G,.-morphism %, — I mapping (g1, g2, a, b) to (g1, g2, ag;"). This
is clearly an isomorphism. One also checks easily that it is G, x Eg,,-equivariant. MW

5 Ekedahl-Oort Strata for CSpin-varieties

We apply our main results to CSpin Shimura varieties, which are typical examples of
Shimura varieties of Hodge type but not necessarily of PEL type.

5.1 CSpin-Shimura Varieties

We explain what CSpin-Shimura varieties are and their integral canonical models fol-
low [12].

Let V be a n + 2-dimensional Q-vector space with a quadratic form Q of signature
(n,2). We will always assume that n > 0. Let p > 2be aprimeand L € V be a
Z p)-lattice such that Q is non-degenerate on LZ(P) (i.e., the bilinear form attached
to Q induces an isomorphism L — LY). Let C(L) and C*(L) be the Clifford algebra
and even Clifford algebra respectively (see [12, 1.1]). Note that there is an embedding
L - C(L) and an anti-involution * on C(L) (see [12, 1.1]).

Let CSpin(L) be the stabilizer in C*(L)* of L — C(L) with respect to the
conjugation action of C*(L)* on C(L). Then CSpin(L) is a reductive group over
Zpy- Consider the left action of CSpin(L) on C(L). There is a perfect alternating
form y on C(L), such that the embedding CSpin(L) — GL(C(L)) factors through
GSp(C(L), ) which induces an embedding of Shimura data

(Cspin(V),X) — (GSp(C(V), ), X').

We refer to [12, 1.8, 1.9, 3.4, 3.5] for details. Here X is the space of oriented negative
2-planes in Vg, and X is the union of Siegel half-spaces attached to GSp(C(V), ).

The above construction shows that (CSpin(V'), X) is a Shimura datum of Hodge
type. Let K, = CSpin(L)(Z,) and K? ¢ CSpin(V) (A;) be a compact open subgroup
which is small enough. Let K = K, K?; then

Shi := CSpin(V)(Q)\X x ( CSpin(V)(Af)/K)

has a canonical model over QQ that will again be denoted by Shx. Moreover, Kisin's
main theorem on existence of integral canonical models implies that Shx has an in-
tegral canonical model .7k over Z,).

5.2 Ekedahl-Oort Strata for CSpin-varieties

Let %5 the special fiber of .. The Shimura datum determines a cocharacter
#: Gz, - CSpin(Lz,), which is unique up to conjugation. The special fiber of
p will still be denoted by y. The cocharacter y determines a parabolic subgroup
P, ¢ CSpin(Lp,), whose type will be denoted by J. Let W be the Weyl group of
CSpin(Lg, ), and let /W be as in Section 4.1.1 The set /W is equipped with a partial
order < (see Section 4.1.1, before Theorem 4.1.3). Then Proposition 4.1.4 implies that
the structure of Ekedahl-Oort stratification on .#; is described by /W together with
the partial order <.
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All we need is a combinatorial description of (/W, <). But everything reduces to
the computations in [28], after identifying the Weyl group of CSpin(Lg, ) with that of
SO(Ls, ).

5.2.1 A Description of (W, <)

Let us recall the description of (W, <) in [28]. Let m be the dimension of a maximal

torus in SO(Ly, ).
(a) If n is odd, then the partial order < on /W is a total order, and the length
function induces an isomorphism of totally ordered sets (W, <) - {0,1,2,...,n}.

(b) If n is even, noting that in this case n + 2 = 2m, then W is generated by simple
reflections {s;};-1,...,m>» where

(i,i+)(n—-i+2,n-i+3), fori=1,...,m—-1,
si=
"sw=(m-1,m+1)(m,m+2), fori=m.

Let
S183 Sy fori<m-1,
Wi =13 5183 S, fori=m,

S182  SmSm—2**"Sam—i—1, fori>m+1.

and w!,_, be 5153+ Sm_25m. Then /W = {w;}o<ic, U {w/,_,}, and the partial order <
is given by

. 4
Wo=id Wi < S Wy g S Wy, Woy ] S Wiy S0 S W,

Now we can describe structure of the Ekedahl-Oort stratification on .%.

Corollary 5.2.1 Let m and n be as before.

(i)  There are at most 2m Ekedahl-Oort strata on ..
(i) (a) Ifnisodd, then for any integer 0 < i < n, there is at most one stratum .y such
that dim (.73 ) = i. These are all the Ekedahl-Oort strata on .%,. Moreover,
the Zariski closure of .7} is the union of all the .7 such that i’ < i.
(b) If n is even and positive, then for any integer i such that 0 < i < nand i #
n/2, there is at most one stratum .} such that diim(.#y) = i. There are at
most 2 strata of dimension n/2. These are all the Ekedahl-Oort strata on .%.
Moreover, the Zariski closure of the stratum .7y’ is the union of 7" with all

the strata whose dimensions are smaller than dim(.77").

Proof Apply Proposition 4.1.4 together with Section 5.2.1. ]
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