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Abstract

Regular fish or fish oil intake is associated with a low incidence of heart failure clinically, and fish oil-induced reduction in cardiac remo-

delling seen in hypertrophy models may contribute. We investigated whether improved cardiac energy efficiency in non-hypertrophied

hearts translates into attenuation of cardiac dysfunction in hypertrophied hearts. Male Wistar rats (n 33) at 8 weeks of age were sham-

operated or subjected to abdominal aortic stenosis to produce pressure-overload cardiac hypertrophy. Starting 3 weeks post-operatively

to follow initiation of hypertrophy, rats were fed a diet containing 10 % olive oil (control) or 5 % fish oil (ROPUFAw 30 (17 % EPA,

10 % DHA)) þ 5 % olive oil (FO diet). At 15 weeks post-operatively, ventricular haemodynamics and oxygen consumption were evaluated

in the blood-perfused, isolated working heart. Resting and maximally stimulated cardiac output and external work were .60 % depressed

in hypertrophied control hearts but this was prevented by FO feeding, without attenuating hypertrophy. Cardiac energy efficiency was

lower in hypertrophy, but greater in FO hearts for any given cardiac mass. Coronary blood flow, restricted in hypertrophied control

hearts, increased with increasing work in hypertrophied FO hearts, revealing a significant coronary vasodilator reserve. Pronounced

cardiac dysfunction in hypertrophied hearts across low and high workloads, indicative of heart failure, was attenuated by FO feeding

in association with membrane incorporation of n-3 PUFA, principally DHA. Dietary fish oil may offer a new approach to balancing the

high oxygen demand and haemodynamic requirements of the failing hypertrophied heart independently of attenuating hypertrophy.
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Despite declining heart disease mortality rates, a continuing

rise in heart failure incidence is of major clinical concern in

many nations(1). Regular fish (and hence n-3 PUFA) consump-

tion is associated with low CVD mortality(2,3). Antiarrhythmic

effects first identified in animal models(4) are evident in clinical

studies showing reduced incidence of primary cardiac arrest(5)

and post-infarction arrhythmic deaths(6), and represent the

best-supported mechanism of action. However, in addition

to arrhythmia prevention, alternative mechanisms of fish oil

action, such as prevention of heart failure, are implicated

directly from epidemiology(7), and indirectly as reduced

non-arrhythmic but otherwise unspecified cardiac deaths

and post-infarction deaths(8). These clinical outcomes are

independent of dietary n-3 PUFA effects on classic risk factors

such as plasma TAG and thrombogenic factors(9) or blood

pressure(8,10). Animal studies have described fish oil-induced

improvements in heart function and the prevention of fatal

arrhythmia in non-disease states that are associated with the

incorporation of the long-chain n-3 PUFA DHA into myocar-

dial membranes(4,11–14) and occur at lower intakes than for

the vascular effects(15).

Hearts isolated from rats fed fish oil exhibit significantly

reduced oxygen consumption without compromise to cardiac

output (CO) or external work(13). This represents increased

energy efficiency of oxygen use, increased coronary perfusion

reserve, less damage in acute ischaemia and reduced myocar-

dial stunning(13,16,17). Cardiac hypertrophy is generally charac-

terised by morphological and biochemical changes that

predispose to myocardial ischaemia through disturbances of

both oxygen supply and demand at the cellular level, which

promote energetic failure and heart failure(18). For example,

high ventricular wall tension increases oxygen demand and

restricts coronary blood flow, compromising oxygen delivery

to myocardial mitochondria already jeopardised by high

inter-capillary distances. The capacity of the hypertrophied

cell to use oxygen has reportedly been further reduced by
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a high ratio of contractile protein:mitochondria, and mito-

chondrial function itself may be compromised(18). Conse-

quently, an intervention that reduces myocardial oxygen

consumption (MVO2) without detriment to myocardial work

output could improve cardiac function in hypertrophy and

retard the progression to failure(19).

The present study tests the hypothesis that incorporation of

n-3 PUFA into myocardial membranes through fish oil feeding

will improve cardiac energy efficiency and attenuate cardiac

dysfunction and heart failure in the hypertrophied heart.

Methods

A total of thirty-three male Wistar rats (CSIRO Human Nutri-

tion, Adelaide, Australia) were used in the present study.

The experiments were conducted according to the National

Health and Medical Research Council of Australia, Guidelines

for the Use of Experimental Animals, and were approved by

the Animal Care and Ethics Committees of the University of

Wollongong and CSIRO Human Nutrition.

Animal model of pressure-overload hypertrophy

Under ketamine (70 mg/kg) þ xylazine (5 mg/kg) anaesthesia,

twenty-eight rats were subjected to restrictive banding of the

suprarenal abdominal aorta at 8 weeks of age using a blunt

23G needle as a template. The needle was tied tightly against

the aorta above the renal arteries (causing visible kidney

blanching), and then removed, leaving the suture in place to

partially restore blood flow (visually confirmed). Another five

rats were subjected to sham operation without aortic restriction.

Heart function was assessed 15 weeks post-operatively.

Cardiac hypertrophy was determined from the heart weight:

body-weight ratio and the heart weight:tibia length ratio. The

latter index is not distorted by acute fluctuations in body

weight or body-weight gain from fluid retention. Cardiac

hypertrophy was defined as a ratio . 2 SD above the mean

for rats of the same strain and age as those in the present

study. The pooled mean of ventricle dry weight:tibia length

from fifty-three rats previously recorded in this laboratory,

not subjected to surgical intervention, was 0·376 (SD

0·045) g/cm. Cardiac hypertrophy was therefore defined for

this strain and age of rat as a ventricle weight:tibia length

ratio . 0·466 g/cm.

The pressure overload induced by aortic stenosis provokes

a hypertrophic response within 4 d, and it has been well

established by 3 weeks(20). Because fish oil inhibits cardiac

hypertrophy when presented before and during a hypertrophic

stimulus(21,22), in the present study, the initiation of fish oil

feeding was delayed until 3 weeks after surgery in order to

focus interpretation on pathophysiology of the hypertrophied

heart. The aortic stenosis model was preferred to alternative

models of the following: aortic valve disruption (volume over-

load), which is unsuitable for evaluation in the isolated working

heart preparation; and coronary artery occlusion (chronic myo-

cardial infarction), which is prone to a high incidence of acute

fatal arrhythmia and potentially confounding effects of tissue

repair processes that may be influenced by dietary intervention

independently of the effects on hypertrophic function.

Diets

Rats were fed an olive oil (OO) control diet for 4 weeks before

surgery and 3 weeks post-operatively. They were then ran-

domly allocated to either the fish oil (FO) diet or the OO con-

trol diet for 12 weeks. Sham-operated rats were fed the OO

control diet throughout the experiment. Isoenergetic fully fab-

ricated diets were prepared(16,23) containing 100 g/kg diet as

fat. The OO (control) diet contained 10 % (by weight) olive

oil, and the FO diet contained 5 % olive oil plus 5 % fish oil.

The olive oil was commercially available food-grade olive

oil, refined to exclude antioxidant phytochemicals. The fish

oil (ROPUFAw 30 n-3 EPA oil; DSM Nutritional Products,

Basel, Switzerland) contained 16·8 % EPA (20 : 5n-3) and

9·7 % DHA (22 : 6n-3; 32·5 % total n-3 fatty acids). Olive oil

was selected for the isoenergetic control diet on the basis of

the following: its main component (monounsaturated oleic

acid (18 : 1)) being a physiologically neutral fat; and the oil

providing sufficient PUFA to avoid essential fatty acid

deficiency(16). Although n-3 PUFA replace n-6 PUFA in myo-

cardial membranes, the long-chain n-3 PUFA are incorporated

in direct relationship to their absolute quantities in the diet

and independently of dietary MUFA or n-6 PUFA dietary

concentrations(23). The main fatty acid components of the

two diets were as follows: total SFA (OO 14 %; FO 22 %);

total PUFA (OO 10 %; FO 22 %); oleic acid (18 : 1; OO 76 %;

FO 45 %); linoleic acid (18 : 2n-6; OO 8·3 %; FO 5·2 %); EPA

(FO 8·4 %); DHA (FO 4·9 %).

Isolated working heart

Rats were anaesthetised (pentobarbitone sodium 60 mg/kg

intraperitoneally), and the right common carotid artery and

the left femoral artery were cannulated to record arterial

blood pressures proximal and distal to the aortic stenosis.

Rats were then killed by rapid exsanguination and the hearts

removed into ice-cold saline and prepared for working heart

perfusion with porcine erythrocyte buffer (40 % haematocrit

in Krebs Henseleit solution) as described previously(13).

Briefly, the aorta, left atrium and pulmonary artery were can-

nulated and the heart perfused with Krebs Henseleit solution

in Langendorff mode for 10 min for rat blood washout.

Hearts were switched to working heart mode and perfused

with erythrocyte buffer via the left atrium with 10 mmHg filling

pressure (preload) and 75 mmHg diastolic aortic pressure

(afterload, coronary perfusion pressure). A catheter intro-

duced through silicone self-sealing tubing supplying the left

atrium and fed into the ventricle via the mitral valve recorded

left ventricular pressure. Working hearts were allowed to

stabilise for 15 min.

Cardiac function

CO and coronary flow were measured at 5 min intervals by

timed overflow, with coronary and aortic samples collected
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for the measurement of arterial and venous blood gases and

pH. Stroke volume (SV) was calculated from the CO and

heart rate. MVO2 was derived from arterio-venous oxygen

differences per unit coronary flow, and external work was

derived from the CO and developed pressure (CO £ mean

aortic pressure) as described previously(13). Cardiac energy

efficiency (%) was calculated as the ratio of energy derived

from MVO2 (in kJ) to energy delivered as external work (in

kJ) £ 100. After equilibration, preload was changed over the

range 5–20 mmHg by altering ventricular filling pressure,

before returning pressure to 10 mmHg for recovery. Intraven-

tricular pressure, aortic pressure and electrocardiogram were

recorded continuously, while coronary and aortic flows were

measured and blood samples were collected at 5 min intervals.

Membrane fatty acids

Hearts were rinsed in ice-cold saline, blotted dry and weighed.

A small section of the ventricle free wall was weighed and

retained for dry-weight estimation. The remaining ventricle

was rapidly frozen using liquid N2-cooled clamps and then

frozen at 2608C until required for fatty acid measurement

according to established methods(23). In brief, samples of the

frozen tissue were pulverised over liquid N2 and washed

with centrifugation to remove sucrose. Lipids were extracted

using chloroform–methanol with aliquots applied to silicic

acid columns to separate neutral lipids and phospholipids.

Fatty acid methyl esters of the phospholipids were prepared

and extracted for analysis by GC. Fatty acids were identified

from their retention times compared with those of authentic

methyl fatty acid standards.

Statistical analysis

The CO, external work, coronary flow, oxygen extraction

and MVO2 were expressed 1/g ventricle dry weight. Results

are expressed as means with their standard errors. For hae-

modynamic measures, two-way ANOVA was conducted with

diet and hypertrophy main effects and diet £ hypertrophy

interaction. Individual comparisons between diet £ hyper-

trophy were conducted using Scheffe’s post hoc F test for

multiple comparisons of individual means. Values in tables

sharing a common superscript letter were not significantly

different. The level of significance was considered at

P,0·05.

Results

Heart and body weights, blood pressure and cardiac
hypertrophy

Cardiac enlargement sufficient to classify as hypertrophy

occurred in six of the fourteen rats in each of the dietary

groups subjected to abdominal aortic stenosis. Rats with car-

diac hypertrophy (designated OOH if fed the olive oil diet

and FOH if fed the FO diet) had significantly greater ventricle

weights and body weights than non-hypertrophied (desig-

nated OO or FO) or sham-operated rats (Table 1). Tibia

length, body weight, body size or heart weight were not

different between the dietary groups within either the hyper-

trophy or non-hypertrophy animals (Table 1). Less variation

in tibia length than in body weight resulted in the ventricle

weight:tibia length being the clearer discriminator of

hypertrophy.

Table 1. Effect of diet and cardiac hypertrophy on animal characteristics and isolated working heart function at equilibrium

(Mean values with their standard errors)

Diet group. . . OO OOH FO FOH

Sham control
(n 5)

No hypertrophy
(n 8)

Hypertrophy
(n 6)

No hypertrophy
(n 8)

Hypertrophy
(n 6)

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Body weight (g) 477 10 442 13 504 28 468 15 486 16
Atria weight (g) 0·12 0·01 0·12 0·01 0·19 0·03 0·12 0·01 0·15 0·02
Ventricle weight (g) 1·66b 0·06 1·49b 0·05 2·23a 0·10 1·69b 0·06 2·10a 0·07
Ventricle dry weight (g) 0·27b 0·01 0·27b 0·01 0·39a 0·01 0·31b 0·01 0·38a 0·02
Dry:wet left ventricle weight 0·163 0·005 0·185 0·004 0·175 0·007 0·188 0·002 0·184 0·002
Tibia length (cm) 4·16 0·01 4·15 0·04 4·13 0·07 4·26 0·07 4·16 0·06
Ventricle weight:tibia length (g/cm) 0·400b 0·021 0·359b 0·012 0·545a 0·030 0·397b 0·015 0·503a 0·014
Ventricle weight:body weight (g/100 g) 0·348b 0·010 0·338b 0·011 0·455a 0·031 0·363b 0·017 0·436a 0·032
Heart weight:body weight (g/100 g) 0·373b 0·014 0·356b 0·014 0·488a 0·039 0·386b 0·022 0·443a 0·039
Carotid systolic BP (mmHg) 146b 14 161b 19 220a 20 166b 17 218a 19
Carotid diastolic BP (mmHg) 118b 13 131b 17 165a 13 131b 12 164a 15
Femoral systolic BP (mmHg) 166a 13 134b 16 136b 13 135b 19 148a,b 15
Femoral diastolic BP (mmHg) 125 16 100 14 111 12 114 16 118 14
Isolated working heart at equilibrium

Heart rate (beats per min) 207 26 203 23 185 24 211 14 210 19
Cardiac output (ml/min per g dry weight) 82b,c 19 108a,b 22 56c 20 128a,b 33 127a 20
Coronary flow (ml/min per g dry weight) 33·7a 4·7 34·3a 6·2 17·3b 3·9 30·2a 6·1 40·6a 4·8
Ventricle dP/dtmax (mmHg/s) 3070 194 3634 503 2389 452 3233 388 3236 317
Ventricle 2dP/dtmax (mmHg/s) 2460b 269 2608b 355 1632a 278 2351b 292 2560b 320

OO, olive oil diet; OOH, rats with cardiac hypertrophy fed with an olive oil diet; FO, fish oil diet; FOH, rats with cardiac hypertrophy fed with a fish oil; BP, blood pressure.
a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05).
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Femoral artery pressure was significantly lower (P,0·05) in

rats subjected to aortic stenosis than in sham-operated controls

and did not differ between the rats with or without cardiac

hypertrophy or between the dietary groups (Table 1). Carotid

artery pressure was significantly higher in animals with cardiac

hypertrophy compared with those that failed to develop

hypertrophy or sham-operated controls (P,0·05). There

were no significant differences in carotid blood pressures

between the dietary groups.

Equilibrium heart function

Under initial conditions of the 10 mmHg preload and the

75 mmHg afterload, there were no differences in spontaneous

resting heart rate (Table 1). Uncorrected CO (ml/min) was sig-

nificantly higher in hearts from fish oil-fed rats (FO 41·3 (SEM

10·9); FOH 48·1 (SEM 10·5)) than in hearts from rats fed olive

oil (sham 20·1 (SEM 4·7); OO 29·0 (SEM 3·9); OOH 21·9 (SEM

7·6)) (P,0·01), with no significant interaction (P.0·05).

When corrected for ventricular mass, the CO of the hypertro-

phied OOH hearts was significantly lower per gram of tissue

(P,0·05) than the OO, FO and hypertrophied FOH hearts

(Table 1). The CO of the FOH (hypertrophied) hearts was

not significantly different from that of the FO (non-hypertro-

phied) hearts. There was a significant (diet £ hypertrophy)

interaction for the maximum rate of ventricular relaxation

(P¼0·02) and the OOH hearts showed a significantly slower

relaxation rate than all the other hearts (P,0·05; Table 1).

Coronary flow did not differ among the non-hypertrophied

hearts but was significantly lower in the OOH hearts (P,0·01)

than all the other hearts (Table 1). The MVO2 at equilibrium in

the non-hypertrophied hearts did not differ between the diet-

ary groups or the sham-operated control but was higher in the

FOH hearts and lower in the OOH hearts relative to all the

other hearts (P,0·05; Fig. 1). External work was significantly

lower in the OOH hearts (P,0·01) than in the OO, FO and

FOH hearts (Fig. 1).

The hypertrophied hearts had significantly lower energy

efficiency than the non-hypertrophied hearts (two-way

ANOVA (diet, hypertrophy), P,0·05) and the FO hearts

had higher cardiac efficiency than the OO hearts (P,0·05).

Cardiac energy efficiency was significantly lower in the

OOH hearts than in the OO, FO and FOH hearts (Fig. 1).

Cardiac function under load

The CO, SV (Fig. 2) and external work (Fig. 3) increased with

increasing filling pressure (preload) (P,0·0001). The hypertro-

phied hearts had a lower SV, CO or external work over the

range of filling pressures (P,0·0001). A significant (diet £

hypertrophy) interaction was evident for SV (P¼0·01), CO

(P¼0·023) and external work (P¼0·044). The OOH hearts had

a significantly lower SV (P,0·0001), CO (P,0·0001) and exter-

nal work (P,0·0001) than the OO hearts, while there were

no significant differences between the FOH and FO hearts

(SV P¼0·10; CO P¼0·082; external work P¼0·51). Among the

hypertrophied hearts, the FOH group had a significantly higher

SV (P¼0·008), CO (P¼0·003) and external work (P¼0·003)

than the OOH hearts across the range of filling pressures.

Coronary flow and MVO2 increased with increasing filling

pressure (P,0·04; Fig. 2). A significant (diet £ hypertrophy)

interaction was evident for coronary flow (P¼0·01) and MVO2

(P¼0·002). Coronary flow over the range of filling pressures

was significantly lower in the OOH hearts than in the FOH

(P¼0·015) and OO hearts (P¼0·0005). The MVO2 was not

significantly different in the FOH hearts compared with the

FO hearts (P¼0·19), and there were no significant differences

in coronary flow (P¼0·12) or MVO2 (P¼0·059) between the

OO and FO hearts. The cardiac energy efficiency of oxygen

conversion into external work increased (P¼0·0003) as external

work was increased by increasing filling pressure (Fig. 3), and it

was significantly lower in hypertrophy (P,0·0001) with both

diets. No significant (diet £ hypertrophy) interaction was evi-

dent for cardiac energy efficiency (P¼0·87). Cardiac efficiency

was higher in the FO hearts than in the OO and sham hearts

(P¼0·004) and higher in the FOH hearts than in the OOH

hearts (P¼0·004).

Membrane composition

The phospholipid fatty acid composition of the rat hearts was

significantly influenced by the fat source in the diet. The FO
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diet significantly increased the concentration of n-3 PUFA EPA

and DHA and reduced the concentration of monounsaturated

oleic acid and the n-6 PUFA arachidonic acid compared with

the OO diet (Table 2). The total saturated fat concentration

was unaltered but the total PUFA concentration and the unsa-

turation index were increased with FO feeding.

The hypertrophied OOH hearts incorporated significantly

less linoleic acid (P,0·05) with non-significant trends towards

increased arachidonic acid (P,0·1) and DHA (P,0·1), produ-

cing, overall, a non-significant trend towards reduced n-6

PUFA (P,0·1) and a small but significant increase in unsatura-

tion index (P,0·05) compared with the non-hypertrophied

OO hearts (Table 2). There were no significant differences

in phospholipid fatty acid composition between the hypertro-

phied (FOH) and non-hypertrophied (FO) fish oil hearts.

Discussion

The results of the present study demonstrate that incorpor-

ation of n-3 PUFA into myocardial cellular membranes to

reduce MVO2 in relation to the cardiac work output seen in

normal hearts(13) translates into attenuation of cardiac dys-

function in the hypertrophied hearts. Fish oil feeding is

known to limit the development of cardiac hypertrophy

induced by a variety of stimuli(21,22,24,25), and until now, any

attenuation of hypertrophied heart dysfunction by n-3 PUFA

was always accompanied by, and could not be differentiated

from, the prevention of ventricular remodelling(21,24). Our

demonstration that hypertrophied heart function was

improved independently of attenuating cardiac hypertrophy

suggests that dietary fish oil may prevent cardiac dysfunction

progressing to heart failure. The improved cardiac function,

demonstrated not only at rest (as previously shown in associ-

ation with hypertrophy attenuation(21,24)), but over a wide

range of loading conditions and functional measures, provides

further support.

Fish oil improvement of cardiac function was largely limited

to the hypertrophied hearts, even though myocardial energy

efficiency was significantly greater with fish oil feeding in

the non-hypertrophied hearts. Improved oxygen efficiency

often does not translate into cardiac function improve-

ment in healthy, well-oxygenated hearts(13,24). However,
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energy-sparing effects consistently translate into improved

heart function under cardio-depressant stress conditions

such as myocardial ischaemia(13,16) or cardiac hypertrophy.

Attenuation of the decline in CO, the decline in cardiac relax-

ation and filling, the depressed external work and energy effi-

ciency, over the entire Frank–Starling relationship, especially

at high workload, illustrates the potential for translation

across all stages of heart failure.

Increased ventricular stiffness impairs relaxation and filling,

increases the work of contraction, impairs cardiac energetics,

prolongs coronary artery compression and impairs coronary

perfusion(18,19,26). It is therefore a major contributor to cardiac

dysfunction. Retention of residual wall tension was less evi-

dent in the hypertrophied fish oil hearts by virtue of better car-

diac relaxation. The hypertrophy-induced reduction in cardiac

energy efficiency was attenuated by fish oil feeding, and the

hypertrophied fish oil hearts did not display the depressed

rate of relaxation, ventricle filling and CO usually associated

with post-adaptive cardiac hypertrophy. Furthermore, the

increase in coronary vasodilator reserve associated with fish

oil in healthy hearts(13,16) translated into an adaptive increase

in oxygen delivery in the hypertrophied hearts during the

demand of raised filling pressure, overcoming the normally

depressed coronary flow and providing further advantage in

pathophysiological conditions.

Potential mechanisms of n-3 PUFA actions

Impaired relaxation, contraction and energetic failure under-

pinning the pathophysiology of cardiac dysfunction and

heart failure are all associated with altered myocardial Ca2þ

homeostasis. In turn, energetic failure leads to altered Ca2þ

handling, creating a vicious cycle(18). Conversely, numerous

effects of the long-chain n-3 PUFA on myocardial Ca2þ regu-

lation have biologically plausible correlates in the effects of

dietary fish oil on hypertrophied heart function that might

play a role in breaking that cycle(14). For example, pathologi-

cal depolarisation and cardiac arrhythmias may be attenuated

by the following: inhibition of phospholipase-C and to

thereby attenuate inositol trisphosphate and diacylglycerol

mobilisation from membrane phospholipids, which in turn

attenuates Ca2þ mobilisation, particularly in response to

ischaemic stress; reducing sarcoplasmic reticulum (SR)- Ca2þ

overload and attenuating Ca2þ sparks(14,27). Hypertrophied
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Fig. 3. Effects of dietary oil and cardiac hypertrophy on (a, b) cardiac external work and (c, d) cardiac energy efficiency in the isolated working heart during

changes in ventricular filling pressure. (a, c) Sham and non-hypertrophied hearts. (b, d) Sham and hypertrophied hearts. Sham-operated olive oil (OO) control diet

( , ), OO control diet ( , no hypertrophy; , hypertrophy (OOH)) and FO diet ( , no hypertrophy; , hypertrophy (FOH)). Values are means, with their stan-

dard errors represented by vertical bars (n 6–8 per group). * Mean values were significantly different from those of the sham OO control (P , 0·05; ANOVA).

† Mean values were significantly different for diet £ hypertrophy interaction (P , 0·05; ANOVA).
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heart dysfunction may be attenuated by the following: inhibit-

ing mitochondrial Ca2þ overload to attenuate excess oxygen

consumption(13,28); and limiting pathological increases in cyto-

solic free Ca2þ and cellular Ca2þ transients to reduce residual

wall stiffness and improve relaxation and filling(29,30).

In the present study, use of the isolated, blood-perfused,

working heart model allows us to draw conclusions about

the intrinsic role of membrane incorporation of the n-3

PUFA(14) by excluding nervous or humoral influences or

effects of circulating fatty acids. Myocardial phospholipid

DHA concentration increased much more than EPA, produ-

cing relative concentrations of 15:1 in the myocardial

membranes, despite a dietary DHA:EPA ratio of less than 1:2

favouring EPA. In the rat heart, DHA, and not EPA, is incor-

porated well above its circulating levels and its dietary

concentration(31), and DHA is preferentially incorporated

into myocardial tissue in rats and in human subjects(12,14,32)

even when the diet favours EPA as in the present study, or

contains only very low intakes of fish oil(23,24). DHA is the

principal n-3 PUFA in most table fish and is the key n-3

PUFA modulating cardiac function directly through membrane

composition(14,15). For example, ischaemic arrhythmias are

not prevented by increases in membrane EPA when the

DHA increase is inadequate(15). While not denying a role for

EPA in inflammatory and other signalling processes in blood,

vasculature and other tissues(27,33), membrane DHA status is

consistent with clinical evidence of direct myocardial effects

of dietary fish and fish oil. For whereas fish and fish oil

reduce heart rate, heart failure and sudden cardiac

death(5,7,8,10,34) without preventing new (vascular) ischaemic

events(8,10), purified EPA used in a major clinical trial pre-

vented new vascular ischaemic events without reducing

sudden cardiac death(35). The reduction in membrane arachi-

donic acid with fish oil feeding implies a role for reduced

eicosanoid production. However, earlier studies have shown

variable relationships between the availability of arachidonic

acid in myocardial membranes and the ability of fish oils

and other dietary fats to modulate myocardial eicosanoid

production and pathophysiological responses such as

cardiac arrhythmia(36,37). Alternatively, DHA can inhibit the

cyclo-oxygenase and lipoxygenase production of potent

eicosanoids derived from arachidonic acid, and can also

inhibit MAP kinase-stimulated Ca2þ-activated phospholipase-D

to restrict arachidonic acid mobilisation from membrane

phospholipid(27). In addition to influencing eicosanoid

mechanisms, n-3 PUFA can directly modulate a wide range

of Ca2þ-handling cellular processes and other intracellular

signalling processes involved in Ca2þ mobilisation and

cardiac contractile function(14,27). However, much of the cell

signalling data are derived from in vitro studies, and are yet

to be verified after dietary incorporation of the n-3 PUFA

into cell membranes.

Table 2. Effect of cardiac hypertrophy and ROPUFAw 30 dietary fish oil supplementation on myocardial total phos-
pholipid fatty acid composition§

(Mean values with their standard errors, n 5)

Percentage of occurrence{

OO OOH FO FOH

Diet Mean SEM Mean SEM Mean SEM Mean SEM

Fatty acid
16 : 0 9·98 0·28 10·82‡ 0·24 11·08 0·26 11·43 0·24
18 : 0 22·76 0·24 21·11 0·32 21·89 0·24 22·14 0·24
18 : 1n-7 4·71 0·12 4·02 0·15 4·22 0·09 4·17 0·04
18 : 1n-9 (OA) 10·83 0·45 10·47 0·41 6·34* 0·35 6·22† 0·24
18 : 2n-6 (LA) 12·72 0·54 8·17‡‡ 0·64 10·08 0·61 9·51 0·65
20 : 4n-6 (AA) 20·56 0·37 21·73‡ 0·41 14·60* 0·32 14·11† 0·56
20 : 5n-3 (EPA) 0·05 0·04 0·06 0·02 1·42 0·04 1·28 0·05
22 : 4n-6 0·41 0·04 0·69 0·02 ND ND
22 : 5n-3 or 24 : 0 0·82 0·12 1·00 0·11 3·52* 0·10 3·46† 0·12
22 : 5n-6 1·72 0·30 2·18 0·24 0·31* 0·10 0·19† 0·02
22 : 6n-3 (DHA) 9·32 0·34 11·37‡ 0·95 20·68* 0·74 19·91† 0·88

Total fatty acids 93·88 0·77 93·56 0·87 94·14 0·50 95·17 0·33
Sum SFA 32·74 0·54 33·43 0·60 32·97 0·46 34·12 0·09
Sum MUFA 15·54 0·41 15·25 0·45 10·56* 0·36 11·51† 0·25
Sum PUFA 45·60 0·46 44·89 0·49 50·61* 0·62 49·14 0·46

Total n-3 PUFA 10·19 0·56 11·43 0·97 25·62* 0·88 24·65† 0·93
Total n-6 PUFA 35·41 0·88 32·76‡ 0·93 24·99* 0·93 23·82† 1·18
n-6:n-3 3·47 0·25 2·99 0·39 0·98* 0·10 0·98† 0·08
UI 193·7 2·5 202·4‡‡ 2·8 239·5* 3·0 233·0† 2·6

OO, olive oil diet; OOH, rats with cardiac hypertrophy fed with an olive oil diet; FO, fish oil diet; FOH, rats with cardiac hypertrophy
fed with a fish oil; OA, oleic acid; LA, linoleic acid; AA, arachidonic acid; ND, not detected; UI, unsaturation index.

* Mean values were significantly different for FO from those of the OO group (P,0·05).
† Mean values were significantly different for FOH from those of the OOH group (P,0·05).
Mean values were significantly different from those of the OO group: ‡‡ P,0·05 (‡ P,0·10; NS).
§ Fatty acid terminology – X:Y n 2 Z represents the length of the carbon chain (X), the number of double bonds (Y) and the position

of the first double bond from the methyl-terminal end (n 2 Z). Total fatty acids represent the percentage of peaks identified.
{Percentage of occurrence refers to all measures except n-6:n-3 (a ratio) and UI which represents the sum of (fatty acid percentage

of occurrence £ number of double bonds).
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With more membrane manufactured as cells enlarge,

hypertrophy-driven changes have the potential to alter myo-

cardial phospholipid composition and modify responses to

dietary intervention. Indeed, adaptive decreases in linoleic

acid and increases in arachidonic acid, DHA and membrane

total unsaturation that occur in response to a variety of stres-

sors(38), including pressure overload(20,24) and catecholamine

stress(39), were observed in the present study. However,

none of the adaptive changes were as great as changes

induced by the FO diet. Any hypertrophy-associated increases

in DHA and total unsaturation were overwhelmed by the diet-

ary intervention and the arachidonic acid increase was

reversed, such that no differences were evident between the

hypertrophied and non-hypertrophied fish oil hearts.

Comparison with therapeutic interventions to enhance
cardiac function

Dietary fish oil-induced improvement of hypertrophied heart

contractile function has some similarities but many differences

to therapeutic interventions used in the treatment of heart

failure. For example, positive inotropic agents typically

improve systemic haemodynamics and provide symptomatic

relief in heart failure by increasing contractility at the expense

of reduced energy efficiency(40), increased risk of ischae-

mia(41), cardiac arrhythmias and increased early mortality.

Vasodilators relieve heart failure by reducing systemic blood

pressure and unloading the heart, which the fish oil did not

do in the present study. Moreover, the negative inotropic

actions of the Ca2þ channel blocking class of vasodilators(42)

are inconsistent with the effects of fish oil. The angiotensin-

converting enzyme (ACE) inhibitors and angiotensin receptor

antagonists have no direct effect on myocardial contractile

performance, acting principally by inhibiting hypertrophy

and myocardial fibrosis(43,44), whereas fish oil directly improved

cardiac function without the effect on ventricular remodelling.

The greatest similarity of physiological mechanisms lies

with adrenergic b-blockers, which reduce the heart rate and

reduce the chronic hyper-adrenergic state that is typical

of heart failure(45), thereby reducing energy requirements.

However, although fish oils can reduce intrinsic heart rate

and prevent sudden death in rats associated with chronic iso-

prenaline treatment(39), they have no b-adrenoceptor antagon-

ist action(46), and unlike b-blockers, heart rate reduction is

achieved independently of sympathetic nervous activity(12,16).

In common with n-3 PUFA, b-blockers facilitate chronic

intrinsic improvements in cellular function in hypertrophied

cardiomyocytes by improvements in cellular energetics(19) or

intracellular Ca2þ handling(43).

Thus, dietary fish oil improved cardiac function in hyper-

trophied hearts in a manner that contrasts to the currently

available suite of treatments used to stimulate the heart

or counteract dysfunction. It appears to have an intrinsic

effect on myocardial cellular function independent of cardiac

unloading or slowed heart rate, to improve contractility

without adverse energetic consequences and independently

of modulating the hypertrophy.

Therapeutic implications

Epidemiological evidence showing a reduced risk of incident

heart failure in people who regularly eat fish(7,47) is now sup-

ported by a large secondary prevention clinical trial in which

n-3 PUFA supplementation reduced mortality and hospitalis-

ation in heart failure in the context of usual care(48), which

included simultaneous treatment with many of the therapeutic

agents discussed above. The findings of the present study

begin to explain not only the original GISSI-HF outcomes

but also a recent subset evaluation of the GISSI-HF trial(48)

which noted that the reduced number of hospital admissions

due to cardiovascular reasons in heart failure was paralleled

by improved cardiac function without the evidence of reverse

remodelling(49).

Animal and human studies have suggested that a ceiling

exists for the cardiac effects of n-3 PUFA(50,51), which in

animals reflects maximum incorporation of DHA into myo-

cardial membranes(23,52). Thus, the effects reported here for

5 % dietary fish oil are probably achievable at lower

intakes(24,50,53), in line with even very low increases in fish

oil intake, commensurate with human dietary intake, to

increase myocardial membrane n-3 PUFA incorporation(23).

An absence of n-3 PUFA from the diet amplifies the cardiac

depressant effects of ischaemic or hypertrophic stress. This

can be overcome by incorporating fish oil in the diet to

improve myocardial energetics, which is identified as a new

candidate approach to the treatment of heart failure(19).

When combined with the amelioration of risk for sudden

heart attack death and antihypertrophic actions, amelioration

of heart failure adds a new dimension to the nutritional pre-

conditioning properties of fish oil fatty acids(16).
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