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Abstract

We study cosine and sine Fourier transforms defined by F(t) := (2/n) /0°° f(x) cos tx dx and F(t) :=
(2/n) f™ f(x)s'mtxdx, where / is L'-integrable over [0, oo). We also assume that F and F are
locally absolutely continuous over [0, oo). In particular, this is the case if both f(x) and xf(x) are L'-
integrable over [0, oo). Motivated by the inversion formulas, we consider the partial integrals .$„(/, x) :=
/0" F(t) cosxt dt and sv(f, x) := /0" F(t) sinxt dt, the modified partial integrals «„(/, x) := sv(f, x) —
F(v)(smvx)/x and uv(f,x) := sv(f,x) + F(v)(cosvx)/x, where v > 0. We give necessary and
sufficient conditions for the L'[0, oo)-convergence of uv(f) and uv(f) as well as for the L'[0, X]-
convergence of .$„(/) and sv(f) to / as v —> oo, where 0 < X < oo is fixed. On the other hand, in
certain cases we conclude that .$„(/) and sv(f) cannot belong to L'[0, oo). Consequently, it makes no
sense to speak of their L' [0, oo)-convergence as v —> oo.

As an intermediate tool, we use the Cesaro means of Fourier transforms. Then we prove Tauberian
type results and apply Sidon type inequalities in order to obtain Tauberian conditions of Hardy-Karamata
kind.

We extend these results to the complex Fourier transform defined by G(t) := l/(2n) f™xg(t)e~'xl dt,
where g is L'-integrable over (—oo, oo).

1991 Mathematics subject classification (Amer. Math. Soc): primary 42A38; secondary 26A46.
Keywords and phrases: cosine and sine Fourier transforms, complex Fourier transform, absolute continu-
ity, Ll -convergence, inversion formula, partial integral, Cesaro mean, modified partial integral, Tauberian
condition of Hardy-Karamata kind, Sidon type inequalities.

1. Notation and basic assumptions

We consider a complex-valued function / that is Lebesgue integrable over [0, oo),
in symbols : f e Ll[0, oo). The cosine and sine Fourier transforms of / are defined
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406 Dang Vu Giang and Ferenc M6ricz [2]

respectively by

2 r°°
(1.1) F(t):=- f(x)costxdx,

x Jo
(1.2) F(t):=-( f(x)sintxdx (t > 0).

x Jo
As is well-known (see for example [5, pp. 13 and 16-17]), the inversion formulas

f{x) = lim / Fit)cosxtdt
(1.3) ^°°Jo

r

= lim / Fit)sinxtdt (x > 0)

hold true under various conditions. The aim of this paper is to recover / from F or F
by means of L1-convergence.

To this effect, we consider the partial integrals of (1.3) defined by

sv(f,x):=l F(t)cosxtdt,
Jo

sv(f,x) := / F(t) sin xtdt;
Jo

the Cesaro means, or (C, 1) means of (1.3) defined by

av(f,x):=l (l-^FU) cos xtdt,

ov{f,x) := I M - l-j F(t)sinxtdt

(see for example [5, p. 26]), where v > 0 and x > 0 are arbitrary real numbers.
The usage of av(f) and av( / ) is analogous to the summability of series by the

method of the first arithmetic mean, which is too well-known to need much discussion
here. (See for example [6, Vol. 1, Ch. 3].)

From now on, we also assume that F and F are locally absolutely continuous (in
abbreviation: LAC) over [0, oo). hi particular, this is the case if both f(x) and xf(x)
belong to Lx [0, oo). In fact, then the cosine Fourier transform F is differentiable and

(1.4) F'(0 = - F , ( 0 (?>0) ,

where Fx is the sine Fourier transform of f\(x) := xf(x).
The last statement is a common place. But for the reader's convenience, we prove

it briefly. The function

cos(t + h)x — cos tx cos hx — 1 sin hx
f(x) = f(x)costx xf(x)sintx——

h h hx
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[3] On the L1-convergence of Fourier transforms 407

is majorized in absolute value by the integrable function \xf (x) | independent of h, and
tends to the limit —xf(x) sin tx as h —»• 0. By the Lebesgue dominated convergence
theorem,

f ( , + / l ) - T O

which is (1.4). (In case t = 0, we consider h > 0 only.)
Making use of definition (1.2) and Fubini's theorem results in the following

/

t ft /»OO /»0O pt

F'(u)du = — I I xf(x) sin ux dxdu = — I xf(x) I sin uxdudx
Jo Jo Jo Jo

/»OO

= / f(x)(costx- \)dx = F(t)-F(0) ( f > 0 ) .
Jo

This shows that F is indeed LAC over [0, oo).
The statement that F is also LAC over [0, oo) can be proved analogously. In

particular, we have

where F, is the cosine Fourier transform of / i (x).
Next, we introduce the auxiliary expressions

X C Xv ( t \ smxt

where v > 0, X > 1 and x > 0 are arbitrary real numbers. They will play a decisive
role in our results on L1-convergence.

By integration by parts, we obtain

sinvx fv , smxt
sv(f, x) = F(v) / F'{t) dt.

x Jo x

This motivates the introduction of the modified partial integral defined by

sinvx fv , sinxt
(1.5) «„(/, x) := sv(f, x) - F{v) = - / F'(t) dt,

x JQ x

and analogously,

(1.6) «„(/, x) := sv(f, x) + F ( v ) ^ ^ = [ F ' ( O ^ ^ dt.
X J X
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2. Main results

We characterize the L'[0, oo)-convergence of uv{f) and uv(f) to / as v —> oo.

THEOREM 1. / / / e L'[0, oo) and F is LAC over [0, oo), then

/•OO

(2.1) lim / \uv(fx) - f(x)\dx = 0
*f 0

if and only if

p OO

(2.2) lim lim sup / |rv(/, A, x)\ dx = 0.

THEOREM 2. / / / e L'[0, oo) a«rf F /s LAC over [0, oo), then
/»OO

(2.3) Jim / !«„(/, x) - / ( * ) | dor = 0

if and only if

(2.4) lim lim sup / |fu(/, A.,x)| Jx = 0.

It is an easy consequence that, under the conditions of Theorems 1 and 2, we cannot
expect the L'[0, oo)-convergence of sv{f) and sv(f) as v —*• oo, respectively.

COROLLARY 1. If f e Ll[0, oo), F is LAC over [0, oo), and condition (2.2) w
satisfied, then sv(f) g Ll[0, oo) for each v such that F(v) ^ 0.

COROLLARY 2. If f e L'[0, oo), F « LAC over [0, oo), a«d condition (2.4) «
satisfied, then sv(f) ^ L'[0, oo)/or eac/; v SHC/Z f/ia? F(u) 7̂  0.

On the other hand, we are able to characterize the L1-convergence of sv(f) and
sv(f) to / over any finite interval [0, X] as v —>• 00, where 0 < X < 00 is arbitrary.

COROLLARY 3. / / / e L'[0, 00), F w LAC over [0, 00), and condition (2.2) w
satisfied, then for any 0 < X < 00

(2.5) lim / M / , JC) - f(x)\ dx = 0 j/arcd only if lim F(v) In v = 0.
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COROLLARY 4. / / / e L'[0, OO), F is LAC over [0, oo), and condition (2.4) is
satisfied, then for any 0 < X < oo

fx

(2.6) lim / \sv(f, x) - f(x)\ dx = 0 /fane? on/y */ lim F(v) In v = 0.
w->oo Jo i>->oo

The following simple example shows that there exists a function / e L' [0, oo) such
that its cosine Fourier transform F is absolutely continuous over [0, oo), F(v) In v —>
0 as v —> oo, but $„(/) ^ L'[0, oo) for all v > 0. Consequently, it makes no sense to
speak of the L'[0, oo)-convergence of sv(f) as v —> oo.

EXAMPLE. Let F(t) := 2/7r(r + 1) for f > 0,

/(x) := lim / F(t) cosxtdt (x > 0).
H O Oio

It is plain that

/•OO

(ess
./o

By [3, Theorem 1], it follows that / e L'[0, oo). Keeping the inversion formula
(1.3) in mind, by Corollary 5 below, we conclude (2.1). By (1.5), the difference
Sv(f) — uv(f), and a fortiori sv(f), does not belong to L'[0, oo) for any v > 0.

We note that an easy computation gives that

2 f°° sinxt .

sin*?

sinxt 2sinvx
d +(l+t)2x

whence the above statements can be checked directly, too.

PROBLEM 1. It is an open problem how to deduce sufficient or/and necessary con-
ditions for the L'[0, oo)-convergence of sv(f) and sv(f) to / as v -» oo? Since the
differences uv(f) - sv(f) and uv{f) - sv(f) do not belong to L'[0, oo) (cf. (1.5)
and (1.6)), one should avoid the usage of «„(/) and uv(f) during the solution of this
problem.

According to Theorems 1, 2 and Corollaries 3, 4, the question of L1-convergence
of «„(/), «„(/), sv(f), and sv(f) reduces to finding sufficient conditions for the
fulfillment of (2.2) and (2.4), respectively.
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THEOREM 3. If f e Ll[0, oo), F is LAC over [0, oo), and for some p > 1 we
have

flkV

(2.7) limlimsup / tp-l\F'(t)\p dt < oo,
*••!•' v -*oo Jv

then condition (2.2) is satisfied.

COROLLARY 5. / / / e Ll[0, oo), F w LAC over [0, oo), and

(2.8) ?F'(0 = ^(1) as t -> oo,

condition (2.2) w satisfied.

THEOREM 4. If f e L'[0, oo), F is LAC over [0, oo), and for some p > 1 we

have

tp-x\F'{t)\pdt < oo,

then condition (2.4) is satisfied.

COROLLARY 6. / / / e L'[0, oo), F is LAC over [0, oo),

(2.10) rF'(O = ^(1) as / ->• oo,

! condition (2.4) is satisfied.

Also, conditions (2.7), or in particular (2.8), are sufficient for the fulfillment of both
(2.1) and (2.5). Likewise, conditions (2.9), or in particular (2.10), are sufficient for
the fulfillment of both (2.3) and (2.6).

A few comments are appropriate here.
(i) Theorems 3 and 4 are stronger when p is closer to 1. By Holder's inequality, if

0 < p\ < p2 < oo, then

akv \ '/Pi / pkv \ 1/P2

t"'-l\F'(t)\p'dt\ < (lnA.)(1/Pl)~(1/P2> ( / tP2-l\F'(t)\P2dt) .
Thus, without loss of generality we may assume that for some 1 < p < 2 we actually
have

(2.7') limlimsup/ tp~l\F'{t)\p dt = 0.
A^l v-*oo Jv
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A similar observation pertains to condition (2.9). That is, we may assume that for
some 1 < p < 2 we actually have

(2.9') lim lim sup / tp~' | F"(t)\» dt = 0.
*••!•' v - » o o Jv

(ii) The counterparts of conditions (2.7') and (2.9') are well-known in the theory
of Fourier series and called Tauberian conditions of Hardy-Karamata kind (see, for
example [1,2,4]).

(iii) In the special case p = 1, condition (2.7') is of the form

t*Xv

/ \F'(
Jv

(2.11) lim lim sup / \F'(t)\dt = 0.
X i ' J

PROBLEM 2. We guess that condition (2.11) is not enough to ensure L' -convergence.
However, we are unable to construct a function / e Ll[0, oo) such that its cosine
Fourier transform F is LAC over [0, oo), condition (2.11) is satisfied, and relation
(2.1) is not satisfied.

We claim an analogous conjecture in connection with condition (2.9').

3. Auxiliary results

We present four lemmas.

LEMMA 1. (See [5, p. 11].) / / / e L'[0, oo), then F(t) and F(t) are continuous
over [0, oo) and

lim F(t) = lim F(t) = 0.
r->oo

LEMMA 2. (See [5, p. 35].) / / / e L'[0, oo), then

K(/, x) - f(x)\ dx = lim / |a,(/, x) - f(x)\dx = 0.

The next Tauberian type results are interesting in themselves.
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LEMMA 3. / / / <E L'[0, oo), F and F are LAC over [0, oo), v > 0, and A. > 1,

«.>(/> •*) - ov(f, x) - ——^[akv(f, x) - av(f, x)]

+ ^ ( / . x . x )

(X - l)

Uvif, x) - av{f, x) = ——r[akv(f, x) - av(f, x)]

( 3 ' 2 ) 1 fXv ~ cosxt
+ xv{f, X, x) + — / F{t) dt.

(A. - l ) v Jv x
PROOF. By definition, r t

•<*Af,x)= / -
Jo v

sv(f,x)-(Tv(f,x)= I -F(t)cosxtdt,
J v

[ -F(t) cosxt dt

+ / ! F(t) cosxt dt.
Jv \ W

Hence it follows that

sv(f, x) - av(f, x) = -[(TXv(f, x) - av(f, x)]
(3.3) X ~

By integration by parts, we get

fkv ( t \ ( \\ sinw 1 flv sinxt
/ 1 ) F(t) cosxt dt = - 1 - - )F(v) 1-—/ ^(0 dt
Jv \ ^vj \ XJ x Xv Jv x

Combining this with (3.3) gives

sv(f, x) - av(f, x) = -[aXv(f, x) - av{f, x)]
A — 1

~ (X- l)v Jv

Hence (3.1) follows by (1.5).
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The proof of (3.2) runs along the same lines. We omit it.
The next two Sidon type inequalities are crucial in the proofs of Theorems 1 and 2

below.

LEMMA 4. (See [3].) Iff is locally Lp-integrable over [0, oo) for some 1 < p < 2,
then for any v > Owe have

(3.4)

(3.5)
/»0O

J\/v

2v sinx?
f(t) dt

i r2v

vjv
fit)

COSJC?
dt

dx<Cp[-

dx <CP

l / ( ' ) r<") •

-J. l / (01'*) •
Here and in the sequel, by Cp we denote a constant depending only on p, whose

value may be different at different occurrencies.

4. Proofs of the results in Section 2

PROOF OF THEOREM 1. By (3.1), we can estimate as follows

f \uv(fx)-av(fx)\dx-[ \zv(f,k,x)\dx
Jo Jo

A. f°°
<- T \akv(f,x)-av(fx)\dx

k — 1 Jo

A ~ l J0 V Jv

(4.1)

smxr
F(t) dt dx =: /[ +

say. By Lemma 2, for any fixed A > 1 we have

(4.2) lim /, = 0.

We may assume that 1 < A. < 2. By (3.4),

h2 r ;

l/p

Making use of Lemma 1, for any fixed A, > 1 we conclude

(4.3) lim J2 < lim
Cn

(A. -
sup|F(r)| = 0,

where l/p + \/q = 1. Combining (4.1)-(4.3), we see that

(4.4) lim / \uv(f x) - av(f, x)\ dx =
Jo
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if and only if condition (2.2) is satisfied.
It remains to take into account that relations (2.1) and (4.4) are equivalent, thanks

to Lemma 2. This completes the proof of the equivalence of (2.1) and (2.2).

PROOF OF THEOREM 2. In overall outline, it follows the proof of Theorem 1. This
time, we have to use inequality (3.5) instead of (3.4). This is the reason that in (2.3)
the integration interval is [1/v, oo) instead of [0, oo).

PROOF OF COROLLARY 1. It follows immediately from Theorem 1, Definition (1.5),
and the fact that (sin vx)/x does not belong to Ll[0, oo) for any v > 0.

PROOF OF COROLLARY 2. It follows immediately from Theorem 2, Definition (1.6),
and the fact that (cos vx)/x does not belong to L'[l/v, oo) for any v > 0.

PROOF OF COROLLARY 3. By (1.5) and (2.2),

(4.5)
/
Jo

Mf,x)-fW\dx -\F(v)\f -
Jo

sin VJC
dx

Wv(f, x) — f(x)\ dx -»• 0 as v —> oo,

thanks to Theorem 1. It is easy to check that

t*X n i n . , „ /• X

(4.6) Cln(iv X ) < ( ^ d x < [ *
Jl/v x J0

sin vx dx < l+ln(vX) (vX > 1)

with a constant C > 0, not depending on v and X. From (4.5) and (4.6) we conclude
(2.3).

PROOF OF COROLLARY 4. By (1.6) and (2.4),

\sv(f,x)-f(x)\dx-\F(v)\
l/v

COS VJC
dx

\uv(f,x) — f(x)\dx —> 0 as v —> oo,
1/v

thanks to Theorem 2. Since

(4.7) Cln(
fX

vX)< /
Jl/v

COS VX
dx < ln(vX) (vX > 1),
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it follows that

fX

lim / \sv(f, x) - f(x)\dx = 0 if and only if lim F(v)lnv = 0.

It remains to take into account that

/

l/v
\f(x)\dx = 0,

and by definition,

lim / \sv(f,x)\dx< lim / f \F(t)\dtdx
v-°° Jo v^°° Jo Jo

i r ~
= lim - / \F(t)\dt = 0 ,

"-«> V Jo

due to Lemma 1. This completes the proof of (2.6).

PROOF OF THEOREM 3. By (3.4),

<Cp\v"~l j \F\t)\pdt

'/P

tp-l\F'(t)\"dt

According to Remark (i) made in Section 2 (cf. (2.7')), (2.2) follows.

PROOF OF COROLLARY 5. By (2.8), there exists a constant C such that

/ tp-'\F\t)\pdt <C I — = Clnk^0 as A. | l .
Jv Jv *

PROOF OF THEOREM 4. It is similar to the proof of Theorem 3.

PROOF OF COROLLARY 6. It is the same as the proof of Corollary 5.
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5. Extension to complex Fourier transform

In the sequel, we consider a complex-valued function g that is Lebesgue integrable
over (—cxi, oo), in symbols : g e L1 (—oo, oo). The complex Fourier transform of g
is defined by

1 r
Git) := 7T- / g{x)e-'x dx (-oo < x < oo).

This time the inversion formula is of the form

g(x) = lim f G{t)eixt dt

(see for example [5, p. 42]). Accordingly, we introduce the following notations:

G(t)e""dt,sv(g,x):= I
J — V

provided that in the last case G is LAC over (—oo, oo), where v > 0, A. > 1, and
x ^ 0 are real numbers. By integration by parts, we obtain

= G(v)- G(-v) — - \ G\t)—dt.
J-v IXIX IX

This motivates the introduction of the modified partial integral defined by

(5.1) uv(g, x) := sv(g, x) - f ^IX IX

Analogously to Theorems 1 and 2, the following is true.

THEOREM 5. If g e L ' ( -oo , oo) and G is LAC over (-00, 00), then

(5.2) lim f \uv{g,x)-g(x)\dx=0

if and only if

(5.3) lim lim sup / \xv{g, X, x)\ dx = 0.
Ml u^oc J\x\->\/v
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The counterpart of Corollaries 1 and 2 reads as follows.

COROLLARY 7. If g € L1 (—00,00), G is LAC over (—00,00), and condition
(5.3) is satisfied, then sv(g) g L'((—00, — 1/v) U (l/v, 00)) for each v such that
|G(v)| + | G ( - v ) | # 0 .

The counterpart of Corollaries 3 and 4 reads as follows.

COROLLARY 8. Ifg e Ll(-oo, 00), G is LAC over (-00, 00), and condition (5.3)
is satisfied, then for any 0 < X < 00

(5.4) lim / \sv(g,x)-g(x)\dx = 0 if and only if lim G(v) In \v\ = 0.
v—>oc J_y |y|—>oo

Analogously to Theorems 3 and 4, one can prove the following.

THEOREM 6. Ifg e L'(—00, 00), G is LAC over (—00, 00), and for some p > 1

(5.5) lim lim sup I \t\p-x\G'{t)\p dt < 00,
HI v->oo Ju<|r|<Xv

then condition (5.3) « satisfied.

COROLLARY 9. //g e L'(-oo, 00), G is LAC over (-00, 00), and

(5.6) fG'(O = 0{\) as \t\ -+ 00,

then condition (5.5) w satisfied.

Also, conditions (5.5), or in particular (5.6), are sufficient for the fulfillment of both
(5.2) and (5.4).

6. Proofs of the results in Section 5

First, we formulate the auxiliary results corresponding to Lemmas 1-4.

LEMMA 5. (See [5, p. 1].) If g e L'(—00, 00), then G(t) is continuous over
(—00, 00) and

lim Git) = 0.
||
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LEMMA 6. (See [5, p. 35].) If g e L'(—oo, oo), then

lim f \av(g,x)-g(x)\dx = 0.

LEMMA 7. If g e Ll(-oo, oo), G is LAC over (-oo, oo), v > 0, and k > 1,

wv(g, x) - o-v(g, x) =
A — 1

(k

[CTkv(g, X) - <Tv(g, X)] + Tv(g, k, X)

i f CXv eix1 rv e'xt 1
— — / G(t)—dt~ G(t)—dt\.
- l ) v IJV x J_Xv x \

LEMMA 8. (See [3].) If g is locally Lp-integrable over {—oo, oo) for some 1 <
p < 2, then for any v > Owe have

r
/ e

g(t)—dt
X

dx < C p [ -
\V Jv

\g(t)\"dt

and an analogous inequality holds when f_^v is substituted for fv
 v on both sides.

Our last lemma is interesting in its own right.

LEMMA 9. IfG is LAC over (-oo, oo), then for any 0 < X < oo,

(6.1) lim /
v^°° J\lv<\x\<>

if and only if

(6.2)

G(v) G(-v) dx =

lim G(v)ln|v| = 0.
\\

PROOF. Sufficiency. Relation (6.1) follows immediately from (4.6), (4.7), and (6.2).
Necessity. An elementary reasoning and (4.6) yields

v,X):= f

Li

G(v) G(-v)
x x

dx

G{v) G(-v)
X X

(6.3)
G(v) dx

>\G(v) (-v)| f
J\lv

dx

> 2C\G(v) + G(-v)\ln(vX).
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Thus, from (6.1) it follows that

(6.4) lim |G(v) + G(-v) | lnv = 0.
o
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However, in (6.3) we can estimate in a different way, too. Namely, by (4.7),

Kv.X) > \G(v)-G(-v)\ I
(6.5) \/v

dx

whence

(6.6)

> 2C|G(v) - G(-v)\ ln(vX),

lim |G(v ) -G( -v ) | l nv = 0.

Combining (6.4) and (6.6) gives (6.2).

After these preliminaries, the proofs of Theorems 5, 6 and Corollary 9 follow the
same patterns as those of the corresponding results in Section 4.

Only the proofs of Corollaries 7 and 8 need some explanation.

PROOF OF COROLLARY 7. By Theorem 5, uv(g) e L'(-oo, oo). Taking into ac-
count definition (5.1), it is enough to show that

G(v)- G ( - v ) -
X X

L'((-oo, -1/v) U (1/v, oo))

if v is such that at least one of the values G(v) and G(—v) differs from zero. But this
is the case since, similarly to (6.3) and (6.5), we have

/(v,oo)>2|G(v)4

/(v,oo) >2\G(v)-G(-v)\

cos vx
X

sin vx

dx,

dx.

Consequently, sv(g) & L'((-oo, -1 /v) U (1/v, oo)).

PROOF OF COROLLARY 8. By Theorem 5, we have (5.2). Keeping Definition (5.1)
in mind, we conclude that, for any 0 < X < oo,

lim \sv(g,x)-g(x)\dx=0
l/v<\x\<X

if and only if condition (6.1) is satisfied. By Lemma 9, the latter is equivalent to
condition (6.2).
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It remains to take into account that

/

l/v

\g(x)\dx = 0

and by Lemma 5,

l im/ \sv(g,x)\dx < lim / / \G(t)\dtdx
W-l/u "-*°JJ

v 2 r
= lim - /

K->-OO V J_v

\G(t)\dt = 0.
"^°° v j _ v

This completes the proof of (5.4).
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