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Conformal invariance in four-dimensional field
theories and in QCD

Conformal symmetry was shown to be extremely powerful in two-dimensional
field theories and obviously also in string theories. This is due to the fact that
the conformal algebra is infinite dimensional and hence supplies a set of infinitely
many conserved charges. In four dimensions the conformal algebra is finite and
therefore less powerful.1 The purpose of this chapter is to explore the use in
4d conformal field theories of notions and tools that we encountered in two-
dimensional CFT, such as primary fields, conformal operator expansion, confor-
mal anomalies and Ward identities.

Free massless theories are obviously scale and conformal invariant. However,
field theories that describe the elementary particles of nature and their interac-
tions, are interacting field theories. The question is thus, to what extent can one
apply the techniques of CFT to those theories and in particular QCD in four
dimensions? QCD with massless quarks is a prototype model of theories which
are classically conformal invariant. In fact even for theories with masses and
other dimension-full parameters, in certain cases these can be neglected in the
high energy and high momentum transfer regime of the theory. However, even in
the massless case and with only dimensionless couplings, it is easy to realize that
the quantum picture lacks conformal invariance. This follows from the fact that
one has to introduce dimension-full parameters such as UV cutoff, which turns
into a scale where the coupling is defined, after renormalization. Thus there is
an anomaly in the conformal symmetry in the sense that it is a symmetry of the
classical system but not of the quantum one.

We will investigate in this chapter conformal symmetry in four-dimensional
field theories and in particular its applications in the context of QCD in four
dimensions. We start with the description of conformal transformations, their
corresponding generators and the SO(2, 4) conformal algebra. We then analyze
the Noether currents that follow from the conformal transformation and their
conservation laws. Next we present the SL(2,R) collinear subgroup associated
with light-cone conformal transformations. In a similar manner to the treatment
of two-dimensional conformal symmetry, we define primary and descendant oper-
ators of the collinear group. We then define and study the conformal operator
product expansion (COPE). We proceed and describe the conformal Ward iden-
tity, the Callan–Symanzik equation. We then make use of the conformal toolbox

1 The full conformal algebra in four dimensions was introduced in [156]

https://doi.org/10.1017/9781009401654.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.018


310 Conformal invariance in four-dimensional field theories and in QCD

in the study of four dimensional QCD which is conformal only at the classical
level. We analyze the non-local operators built from a quark and an anti-quark
and expand them in terms of Gegenbauer polynomials. We use the COPE to write
down the operator product of two electromagnetic currents. Finally we deter-
mine, in the limit of large momentum exchange, the pion distribution amplitude.

Conformal invariance in four dimensions was described in several review papers
and books. The original studies on conformal symmetry are summarized in [207]
and [66]. A modern review that we follow in this chapter is [43].

17.1 Conformal symmetry algebra in four dimensions

In general in d space-time dimensions the conformal group is the subgroup of
coordinate transformations that leaves the metric invariant up to a scale, namely,

gμν (x)→ g′μν (x′) = Ω(x)gμν (x). (17.1)

It is obvious from (2.2) that the 2d conformal transformations (2.1) indeed pro-
duce such a variation of the metric. An important property of conformal trans-
formations in any dimension is that they preserve the angle �A · �B√

A 2 B 2 between two

vectors �A and �B.
Starting from flat space-time, the general infinitesimal coordinate transforma-

tion xμ → xμ + εμ(x) induces a change of the metric,

ds2 → ds2 + (∂μεν + ∂ν εμ)dxμdxν , (17.2)

so that the condition for conformal transformations reads,

∂μεν + ∂ν εμ =
2
d
(∂ · ε)gμν , (17.3)

where gμν is ημν or δμν for a Minkowskian signature or Euclidean signature,
respectively, and the factor of 2

d is fixed by tracing both sides of the equation
with gμν . To check what are all the possible solutions for εμ we differentiate (2.4)
twice to find that,

[(d− 2)∂μ∂ν + gμν ∂α∂α ]∂β εβ = 0. (17.4)

This equation together with (2.4) implies that the third derivatives of εμ vanish,
which means that εμ can be of order 0, 1, 2 in xν . Obviously the parameters
associated with the Poincare group, since they are an isometry and hence do
not change the metric, obey (17.1). These transformation parameters together
with additional infinitesimal parameters which are linear and quadratic in xμ

are summarized as follows:

εμ = εμ
0 space-time translations

εμ = εμν
0 xν Lorentz transformations

εμ = ε0x
μ scale transformations

εμ = ε̃μ
0 x2 − 2xμ ε̃ν

0 xν special conformal transformations (17.5)
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17.1 Conformal symmetry algebra in four dimensions 311

where εμ
0 , εμν

0 , ε0 , ε̃μ
0 are vector, antisymmetric tensor, scalar and vector infinites-

imal constants, respectively. The corresponding finite transformations are,

xμ → xμ ′ = xμ + aμ

xμ → xμ ′ = aμ
ν xν

xμ → xμ ′ = axμ

xμ → xμ ′ =
xμ + ãμx2

1 + 2ãμxμ + ã2x2 , (17.6)

where the various forms of a are the finite parameters of transformation that
correspond to the infinitesimal ones above. The last transformation is referred
to as the special conformal transformation. It can in fact be decomposed into
an inversion transformation xμ → −xμ

x2 , a space-time shift transformation and
another inversion. The sum of all these transformations is d + d(d−1)

2 + 1 + d =
(d+1)(d+2)

2 , which is the dimensions of SO(2, d), the algebra of the conformal
group in Minkowski space-time.

Let us analyze now the generators of the conformal transformations and show
that indeed they obey the SO(2, d) algebra. The generators are,

Pμ = −i∂μ space-time translations

Lμν = i(xμ∂ν − xν ∂μ) Lorentz transformations

D = −ixμ∂μ scale transformation

Kμ = −i
[
x2∂μ − 2xμxν ∂ν

]
special conformal transformations (17.7)

Using these expressions for the generators it is a straightforward exercise to
realize that they obey the following algebra,

[Pμ, Pν ] = 0

[Pμ, Lνρ ] = i(ημν Pρ − ημρPν )

[Lμν , Lρσ ] = −i(ημρLνσ − ημσLνρ + ηνσLμρ − ηνρLμσ )

[D,Pμ ] = −iPμ [D,Kμ ] = iKμ

[Pμ,Kν ] = 2i(Lμν − ημν D)

[D,Lμν ] = 0

[Kμ,Kν ] = 0, (17.8)

which is indeed the SO(2, 4) algebra. The first three lines constitute the Poincare
algebra in four dimensions. It is well known that (17.8) is not the most general
form of the SO(2, 4) algebra. One can further generalize the construction of the
generators by modifying Lμν in the following way,

Mμν = Lμν + Σμν , (17.9)

where Σμν does not act on the space-time points and obeys,

[Σμν ,Σρσ ] = −i(ημρΣνσ − ημσΣνρ + ηνσΣμρ − ηνρΣμσ ). (17.10)
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312 Conformal invariance in four-dimensional field theories and in QCD

Shortly the role of these generators in the conformal transformation of fields will
be discussed.

17.2 Conformal invariance of fields, Noether currents and
conservation laws

So far we have discussed the conformal transformations as they act on the points
in space-time. Now we would like to consider field theories in four dimensions
that are classically invariant under the group of conformal transformations. The
fields associated with conformal invariant theories may be scalar fields, spinors,
vectors or tensors. We denote such a field by Φ(x).

The transformation of the field under the conformal transformations,

δΦ(x) = δxμ∂μΦ(x) + δI Φ(x), (17.11)

is composed of two parts, the one due to that of the space-time point with
δxμ given in (17.5) and an “internal transformation” δI Φ(x), which vanishes
for space-time translations, while for Lorentz transformations, dilatations and
special conformal transformations, takes the form,

δI Φ(x) = −eμν Σμν Φ Lorentz transformations

δI Φ(x) = e lΦ scale translations

δI Φ(x) = 2ẽμ(lxμ − xν Σμν )Φ special conformal transformations

(17.12)

where l is the conformal dimension of the field and the internal Lorentz generators
Σμν are given by,

Σμν =
i

4
[γμ , γν ] −Dirac spinors [Σμν ]βα = ημβ δν

α − ηνβ δμ
α − gauge fields

(17.13)
Recall that all the parameters of transformations are global, namely space-time
independent. To determine the Noether currents associated with the various
symmetry transformations, one elevates the transformations into local ones and
reads the currents from the variation of the action,

δS =
∫

d4xJa
μ ∂μea (17.14)

where ea is any of the parameters of transformations given in (17.5). The outcome
of the Noether procedure are the following conserved currents,

J (P )μ

ν ≡ Tμ
ν = Πμ∂ν Φ− δμ

ν L
J (M )μ

νρ = xν Tμ
ρ − xρT

μ
ν −ΠμΣνρΦ

J (D )μ ≡ Dμ = xν Tμν + lΠμΦ

J (K )μ

ν = (2xρxν − ηνρx
2)Tμρ + 2xρΠμ(lδρ

ν − Σρ
ν )Φ, (17.15)
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17.2 Conformal invariance of fields 313

where Πμ = ∂L
∂ (∂μ Φ) . In fact the variation of the action with respect to dilatations

may lead in addition to the divergence of J (D )μ
, to another total derivative

term ΔD . However for Lagrangians that are polynomials in the fields and their
derivatives, this term vanishes. For the special conformal transformations the
additional term is defined by

δK S =
∫

d4xeμ(x) [−∂ν Kμν + 2xμΔD + Δμ
k ] , (17.16)

with Δμ
k = 2Πν Φ(lgμν + Σμν )Φ. For invariance we need ΔD = 0 and Δμ

k =
2∂ν σμν . For l = 1 and l = 3/2, σμν vanishes, so in these cases J (K )μ

ν are really
the generators of conformal transformations.

An interesting observation is that all the Noether currents associated with the
full conformal group can be expressed in terms of a modified energy-momentum
tensor. First note that the energy-momentum tensor defined above in not
necessarily symmetric. In fact from the conservation of J (M )μ

νρ the antisymmetric
part of Tμν can be determined since,

∂μJ (M )μ

νρ = Tρν − Tνρ − ∂μ(ΠμΣμν Φ) = 0. (17.17)

Using this result it is now easy to define a modified conserved symmetric energy-
momentum tensor,

T (S )
μν = Tμν +

1
2
∂ρ(ΠρΣμν Φ−ΠμΣρν Φ−Πν ΣρμΦ). (17.18)

The current associated with the Lorentz transformations can be expressed in
terms of T

(S )
μν as,

J (M )μ

νρ = xν T (S )μ

ρ − xρT
(S )μ

ν . (17.19)

One can further modify the symmetric energy-momentum tensor to render it
also traceless,

T (T L)
μν = T (S )

μν +
1
2
∂ρ∂σXρσμν , (17.20)

where Xρσμν is defined such that the energy-momentum tensor is traceless and
conserved and ημν ∂ρ∂σXρσμν = 2∂ρ∂ν σρν = −2ημν T

(S )
μν . In terms of this trace-

less energy-momentum tensor the dilatation current and the current associated
with the special conformal transformation are given by,

J (D )μ
= xν T (T L)μν

J (K )μ

ν = (2xν xρ − x2ηρν )T (T L)μρ
. (17.21)

It is thus clear that J (D )μ
and J (K )μ

ν are conserved only provided that T (T L)μν

is conserved and traceless.
Note that in the latter form, scale invariance, namely a traceless energy-

momentum tensor, implies also conformal invariance.
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314 Conformal invariance in four-dimensional field theories and in QCD

17.3 Collinear and transverse conformal transformations of fields

Recall that in 2d conformal field theories it is very useful to employ light-cone
coordinates (in Minkowski space-time) or holomorphic and anti-holomorphic
coordinates (in complex Euclidean space-time). We want to argue now that it is
also quite useful to use light-cone coordinates, when analyzing four-dimensional
conformal field theories.

Consider the two light-like vectors nμ
+ and nμ

−,

nμ
+n+ μ = nμ

−n−μ = 0 nμ
+n−μ = 1. (17.22)

We can then decompose any Lorentz four-vector Aμ as follows,

Aμ = A−nμ
+ + A+nμ

− + Aμ
T , (17.23)

where,

A+ ≡ Aμnμ
+ A− ≡ Aμnμ

−, (17.24)

and the transverse part of the four-vector Aμ
T is defined using the transverse part

of the metric defined as,

ηT
μν = ημν − nμ

−nν
+ − nμ

+nν
− Aμ

T ≡ ηT
μν Aν . (17.25)

Using this decomposition we find that AμAμ = 2A+A− −A2
T .

We can now also consider transformations associated with a subgroup of the
full conformal group. In particular consider the special transformations associ-
ated with a light-like parameter ãμ = ãnμ

−. The transformation of x− takes the
form

x− → x′
− =

x−
1 + 2ãx−

. (17.26)

Combining this transformation with the translation along the x− direction x− →
x− + a− and scaling x− → ax− these transformations constitute a subgroup of
the full conformal group, the collinear subgroup which is an SL(2, R).2 To verify
this group structure we define the following generators,

L+ = −iP+ L− =
i

2
K−

L0 =
i

2
(D + M−+) E =

i

2
(D −M−+). (17.27)

The generators L± and L0 obey the algebra,

[L0 , L±] = ±L± [L−, L+] = −2L0 , (17.28)

which is indeed the SL(2, R) ∼ SO(2, 1) algebra; E commutes with them. It is,
actually, the L0 of the other SL(2, R), the one in the x+ direction.

2 The use of the SL(2, R) group in applications of conformal symmetry to QCD was introduced
in [150] and [83]
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17.3 Collinear and transverse conformal transformations of fields 315

The SL(2, R) collinear subgroup is particularly useful for collinear fields, where
for instance Φ(x) takes the form Φ(α) ≡ Φ(αnμ

+), with α a real number and nμ
+

the light-cone direction defined above. In particular, as will be shown below,
this will apply to parton description of quarks. The field Φ(α) is taken to be an
eigenstate of the spin operator Σ+−,

Σ+−Φ(α) = sΦ(α), (17.29)

so that s is the spin projection to the n+ direction. The collinear subgroup of the
conformal group now acts on the coordinate α as an SL(2, R) transformation,

α→ α′ =
aα + b

cα + d
, (17.30)

where a, b, c, d are real numbers with ad− bc = 1, and correspondingly the field
Φ(α) transforms as,

Φ(α)→ (cα + d)−2jΦ
(

aα + b

cα + d

)
, (17.31)

with,

j =
1
2
(l + s). (17.32)

Thus Φ(α) is a representation of SL(2, R) or an SL(2, R) form of degree j.
The generators of the SL(2, R) group and E act on the collinear field as,

[L+ ,Φ(α)] = −∂αΦ(α)

[L0 ,Φ(α)] = (α∂α + j)Φ(α)

[L−,Φ(α)] = (α2∂α + 2jα)Φ(α)

[E,Φ(α)] =
1
2
(l − s)Φ(α) (17.33)

where t = (l − s) is referred to as the collinear twist. In addition Φ(α) is an
eigenstate of the Casimir operator with,∑

i=0,1,2

[Li, [Li,Φ(α)]] = j(j − 1)Φ(α). (17.34)

Another subgroup of the conformal group is the transverse subgroup SL(2, C)
acting on the transverse coordinates xμ

T = (0, x1 , x2 , 0) or in complex coordi-
nates z = x1 + ix2 and z̄ = x1 − ix2 , with fields Φ(z, z̄). This is in fact identi-
cal to the SL(2, C) discussed in Chapter 3 where the conformal symmetry of
two-dimensional field theories is discussed. In terms of the conformal generators
(17.7) the generators of the SL(2, C) are the Pμ

T ,Mμν
T ,D,Kμ

T . The coordinate z

transforms under the SL(2, C) transformation,

z → z′ =
az + b

cz + d
, (17.35)
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316 Conformal invariance in four-dimensional field theories and in QCD

which implies the following transformation of Φ(z, z̄),

Φ(z, z̄)→ (cz + d)−2hΦ
(

az + b

cz + d
, z̄

)
, (17.36)

where h = 1
2 (l + λ) with λ is the helicity defined by Σz z̄Φ = λΦ. Similarly for

the transformation of z̄ and the corresponding transformation of Φ(z, z̄), with
h̄ = 1

2 (l − λ).

17.4 Collinear primary fields and descendants

In two-dimensional conformal field theories fields were classified into primary
fields and descendant ones. The classification was based on their conformal trans-
formations. Correspondingly the states were put into Verma modules each con-
taining a highest weight state and its descendants. Recall the definition of the
former,

L0 [φ(0)|0>] = h [φ(0)|0>] Ln [φ(0)|0>] = 0, n > 0. (17.37)

In a similar manner the primary operator and the highest weight state of the
four-dimensional collinear group are defined [171], [42] as,

[L0 ,Φ(0)] = jΦ(0) [L−φ(0)] = 0 ⇒
L0 [Φ(0)|0>] = j[Φ(0)|0>] L−[Φ(0)|0>] = 0, (17.38)

Φ(0) is by definition collinear since it is defined at the origin of the light-cone
direction. The fact that in the 2d case the conformal algebra is infinite while in
4d it is finite is manifested by the fact that in the former case there is an infinite
set of annihilation operators Ln , n > 0 that annihilate the highest weight state,
whereas in the latter case it is the single operator L−.

The descendant fields and correspondingly the descendant states are obtained
by repeatedly applying the creation operators, which are L−n in 2d while in 4d
it is the operator L+. So in 4d,

On = [L+ , . . . [L+ , [L+ ,Φ(0)]]] = (−∂+)nΦ(α)|α=0 . (17.39)

Note the difference in notation, as it is L− in 2d while it is L+ in 4d, both raising.
The descendant operators obey the following commutation relations,

[L0 ,On ] = (j + n)On [L+ ,On ] = On+1 [L−,On ] = −n(n+2j − 1)On−1 .

(17.40)

In two-dimensions we discussed the Verma module that includes a highest weight
state and all its descendants, and similarly, in four dimensions we consider the
so-called conformal tower which also includes the highest weight state and all its
descendants. Recall however that there is an essential difference between the two
cases due to the fact that in the 2d the algebra is infinite dimensional whereas
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17.4 Collinear primary fields and descendants 317

in 4d it is finite dimensional. In particular the notion of null vectors that played
an important role in the 2d case does not exist in four-dimensional CFTs.

We can associate the complete sets of Φ(α) and On by the following Taylor
expansion,

Φ(α) =
∞∑

n=0

(−α)n

n!
On . (17.41)

An interesting and useful map relates the descendant operators and polyno-
mials. Consider for instance the descendent operator defined in (17.39), which
can be re-expressed as,

On = Pn (∂α )Φ(α)|α=0 Pn (u) = (−u)n . (17.42)

It is straightforward to realize that in terms of these polynomials the operation
of L0 , L± takes the form,

L+ → L̃− = −u

L− → L̃+ = (u∂2
u + 2j∂u )

L0 → L̃0 = (u∂u + j). (17.43)

This correspondence can be viewed as first mapping,

∂α → u α→ ∂u , (17.44)

then interchanging the + and − components, and finally some “normal ordering”
of taking the derivatives with respect to u to the right of the factors of u.

The representation in terms of polynomials is referred to as the ‘adjoint repre-
sentation’. Note that since in the original algebra L− includes a term proportional
to α2 , the new algebra includes a second-derivative term ∂2

u in L̃+. This can be
avoided by introducing a different argument of the polynomials defined as,

un

Γ(n + 2j)
→ κn , (17.45)

so that the action L0 , L± on P̃(κ) is the same as (17.33) with α→ κ and the
interchange of L− and L+.

We now discuss composite operators built from two “elementary” operators of
the form,

O(α1 , α2) = Φj1 (α1)Φj2 (α2), (17.46)

with α1 	= α2 . The operator product expansion with |α1 − α2 | → 0 is expressed
in terms of the composite operators,

On (0) = Pn (∂1 , ∂2)Φj1 (α1)Φj2 (α2)|α1 =α2 =0 , (17.47)

where Pn (∂1 , ∂2) is a homogeneous polynomial of degree n. It can be shown that
the complete set of local operators with which one can perform the conformal
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318 Conformal invariance in four-dimensional field theories and in QCD

operator expansion (COPE) takes the form,

Oj1 ,j2
n (x) = ∂n

+

[
Φj1 (x)P (2j1 −1,2j2 −1)

n

(−→
∂ + −

←−
∂ +

−→
∂ + +←−∂ +

)
Φj2 (x)

]
, (17.48)

P
(a,b)
n (x) are the Jacobi polynomials, and we are back to x space here.3 One can

further generalize this construction to a product of three or more operators.

17.5 Conformal operator product expansion

The conformal operator expansion in two dimensions, discussed in Section 3.7.2,
was shown to be a very powerful tool in determining correlation functions. Obvi-
ously, we anticipate that in four dimensions the COPE will be less powerful.
We discuss now the general structure of the COPE.4 Consider the OPE of two
local conformal operators A(x)B(0) with twists and spin projection along the +
direction (tA , sA ), (tB , sB ), respectively. We perform an expansion for fixed x−
and x+ , xT → 0, namely x2 → 0. We want to expand the product in terms of a
complete set Oj1 ,j2

n,n+k and to leading order in the twist. Such an expansion takes
the form,

A(x)B(0) =
∞∑

n=0

∞∑
k=0

Cn,k

(
1
x2

)1/2(tA +tB −tn )

xn+k+Δ
− Oj1 ,j2

n,n+k (0) + . . . , (17.49)

where Δ = s1 + s2 − sA − sB , On,n+k = (−∂+)kOn , s1 and s2 are the spin pro-
jections of the constituent fields in the local operators Oj1 ,j2

n,n+k , tn = ln − n−
s1 − s2 = l1 + l2 − s1 − s2 the twist of the operator On , actually independent of
n, and the dots refer to higher twist contributions. We want to check to what
extent conformal invariance enables us to determine the coefficients Cn,k . For
this purpose we act on the OPE with L− as,

[L−, A(x)B(0)] =
(

x−(2jA + x · ∂x)A(x)− 1
2
x2 n̄ · ∂xA(x)

)
B(0) + . . . (17.50)

Inserting (17.49) and taking into account that,

[L−,Oj1 ,j2
n,n+k (0)] = −k(k + 2jn − 1)Oj1 ,j2

n,n+k−1 , (17.51)

3 The Jacobi polynomial is given by,

P
(a ,b )
n (z) =

Γ(a + n + 1)
n!Γ(a + b + n + 1)

n∑
m =0

(
n

m

)
Γ(a + b + m + n + 1)

Γ(a + m + 1)

(
z − 1

2

)m

.

4 COPE in four dimensions was introduced in [90] and used in QCD in [49], [50], [51].
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with jn = j1 + j2 + n, we find the following recursion relation for the coefficients
Cn,k ,

Cn,k+1 = −jA − jB + jn + k

(k + 1)(k + 2jn )
Cn,k , (17.52)

which is solved by,

Cn,k = (−1)k 1
k!

Γ(jA − jB + jn + k)
Γ(jA − jB + jn )

Γ(2jn )
Γ(2jn + k)

Cn, (17.53)

where Cn = Cn,0 . Plugging this into (17.49) we get the following form for the
OPE,

A(x)B(0) =
∞∑

n=0

Cn

(
1
x2

)1/2(tA +tB −tn ) xn+s1 +s2 −sA −sB
−

B(jA − jB + jn , jB − jA + jn )

×
∫ 1

0
duu(jA −jB +jn −1)(1− u)(jB −jA +jn −1)Oj1 ,j2

n (ux−), (17.54)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function.

17.6 Conformal Ward identities

The application of conformal invariance in determining correlation functions was
discussed in Section 2.8 for the case of two-dimensional conformal field theo-
ries. It includes both the use of the Ward identities associated with the global
SL(2, C) transformation5 and the full holomorphic conformal transformation.
Here in discussing four-dimensional field theories we will encounter two major
differences:

(i) Due to the fact that the conformal symmetry group is finite dimensional,
there are Ward identities only associated with global transformations.

(ii) When discussing theories with conformal anomalies, there will be modifica-
tions of the Ward identities.

Let us start by reminding ourselves of the concept of Ward identities and in
particular the conformal ones. Associated with any infinitesimal transformation
of a given field φ(x)→ φ(x) + δφ(x), the action that describes the system is
transformed into,

S → S + δS = S +
∫

d4xΔ(φ, ∂μφ). (17.55)

Associated with this transformation there is a current Jμ such that ∂μJμ = Δ.
Obviously where Δ = 0 (or a total derivative) the transformation is a symmetry
and the corresponding Noether current is conserved. Associated with such a

5 Conformal Ward identities which were studied in [168] are identical to the Callan–Symanzik
equation [55] and [204].
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transformation of the field there is a constraint on correlation functions of this
field. This constraint which is referred to as a Ward identity takes the form,

∂yμ <TJμ(y)φ(x1)...φ(xN )>=<TΔ(y)φ(x1)...φ(xN )>

−iδ4(x1 − y) <Tδφ(x1)...φ(xN )> ...

−iδ4(xi − y) <Tφ(x1)...δφ(xi)...φ(xN )> ...

−iδ4(xN − y) <Tφ(x1)...δφ(xN )> . (17.56)

This relation can be derived straightforwardly using the path integral formulation
of correlation functions. The Ward identity takes a simpler form when integrating
over yμ ,

<Tδφ(x1)...φ(xN )> +...+ <Tφ(x1)...δφ(xi)...φ(xN )> +...

<Tφ(x1)...δφ(xN )> + <TiδSφ(x1)...φ(xN )>= 0. (17.57)

In particular in analogy with (2.56) the Ward identities associated with dila-
tion and special conformal transformation take the form,

N∑
i

(lφ + xi∂i) <Tφ(x1)...φ(xN )>= −i

∫
d4x <TΔD (x)φ(x1)...φ(xN )>

N∑
i

(2xμ
i (lφ + xi∂i)− 2Σμ

ν xν
i − x2

i ∂
μ
i ) <Tφ(x1)...φ(xN )>

= −i

∫
d4x2xμ <TΔD (x)φ(x1)...φ(xN )>, (17.58)

where lφ is the canonical dimension, namely that of the free field. Similarly
to the way we extracted information about the structure of correlators in 2d
CFT in Section 2.9, we can now constrain the form of correlators in 4d. The
Ward identities associated with the Poincare transformations imply that any
correlation function is in fact not a general function of the N coordinates xμ

i ,
but only of the invariants x2

ij ≡ (xi − xj )2 .
To understand the implication of the dilatation transformation on the correla-

tion function let us first study the theory at its fixed point, namely at a coupling
g∗ = g(μ∗) such that β(g∗) = 0. Recall that the β function is defined as,

β(g(μ)) = μ
∂

∂μ
g(μ), (17.59)

and hence the vanishing β function implies a fixed point of the coupling constant
g. This will be further discussed below for the case of 4d QCD. In this case the
dilatation Ward identity takes the form of that of a free theory, like the one given
in (17.58), apart from the change of scaling dimension,

N∑
i

(lΦ + γ(g∗) + xi∂i) <Tφ(x1)...φ(xN )>= 0, (17.60)
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where γ(g∗) is the anomalous dimension of the filed Φ. As a consequence of this
form of the Ward identity, the two-point function of two scalar fields at the fixed
point has the form,

<φ(x1)φ(x2)>= N2(g∗)(μ∗)−2γ (g∗)
[

1
(x1 − x2)2

]lφ +γ (g∗)

. (17.61)

For particles with spin s and the same projection on the light-cone,

<φ(x1)φ(x2)>= N2(g∗)(μ∗)−2γ (g∗)
[

1
(x1 − x2)2

]lφ +γ (g∗) ( (x1 − x2)+

(x1 − x2)−

)s

,

(17.62)

where it is assumed that (x1 − x2)T = 0. At the fixed point, namely β(g∗) = 0,
the Ward identity associated with the special conformal transformation takes the
form of that of a free theory with lφ again shifted by the anomalous dimension
lφ → lφ + γ(g∗).

In two dimensions (see Section 2.8) it was found that the three-point function
of primary fields is fully determined by the SL(2, C) symmetry and any four-
point function of primary fields is determined up to a function of the cross ratio
(or anharmonic ratio) z1 2 z3 4

z1 3 z2 4
and its complex conjugate coordinate. Based on

the Poincare, dilation and special conformal transformation in four dimensions,
the three-point function is determined here too. For instance, the three-point
function of a scalar field is,

<φ(x1)φ(x2)φ(x3)>=N3(g∗)(μ∗)−3γ (g∗)
[

1
(x1−x2)2(x1−x3)2(x2−x3)2

][lφ +γ (g∗)]/2

,

(17.63)

and any correlator of n > 3 operators depends only on the ratios xi j xk l

xi l xj l
.

It is worth noting that the Ward identity associated with the dilation (the
first equation of (17.58)) is in fact the same as the Callan–Symanzik renor-
malization group equation. First note that based on dimensional counting and
Lorentz invariance the dependence of the N point function on the scale μ takes
the form,

<TΦ(x1)...Φ(xN )>= μN lΦ G(x2
ikμ2 ; g(μ)), (17.64)

which means that the following relation holds,

N∑
i=1

(lΦ + xi∂i) <TΦ(x1)...Φ(xN )>= μ
∂

∂μ
<TΦ(x1)...Φ(xN )> . (17.65)

It is easy to realize that the right-hand side of the conformal Ward identity can
be rewritten in the form,

i

∫
d4x <TΔD (x)Φ(x1)...Φ(xN )> = −M

∂

∂M
<TΦ(x1)...Φ(xN )>, (17.66)
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as follows from,

ΔD (x) = −M
∂

∂M
Leff , (17.67)

for the cases with no explicit dimension-full parameters. We will show this explic-
itly for the effective theory of 4d QCD below. On the other hand the dependence
of the correlator on M follows from the dependence of the field renormalization
factor and the dependence of the coupling constant so that,

−M
∂

∂M
<TΦ(x1)...Φ(xN )>=

[
β(g)

∂

∂g
+

N∑
i=1

γΦ i

]
<TΦ(x1)...Φ(xN )> .

(17.68)
Combining this together with (17.58) and (17.60) we get the Callan–Symanzik
equation, [

μ
∂

∂μ
+ β(g)

∂

∂g
+

N∑
i=1

γΦ i

]
<TΦ(x1)...Φ(xN )>= 0. (17.69)

17.7 Conformal invariance and QCD4

So far we have discussed the implications of conformal invariance in general, and
in particular the invariance properties under the SL(2, R) collinear group and
conformal Ward identities. We are now in the position to examine the application
of conformal symmetry to four-dimensional QCD. Recall that the action of four-
dimensional SU(N) gauge theory with massless quarks takes the form,

LQC D4 = −1
4
Fa

μν Fμν a + iψ̄ 	D ψ, (17.70)

where Dμ = ∂μ − igtaAa
μ is the covariant derivative, and ta as usual are the

N ×N matrices in the fundamental representation of the SU(N) algebra. It is
straightforward to check that the corresponding classical action is invariant under
the full set of fifteen transformations associated with the SO(2, 4) symmetry
group. In particular it is invariant under the scale transformation given by,

xμ → λxμ Aμ(x)→ λAμ(λx) ψ(x)→ λ3/2ψ(λx). (17.71)

The invariance under these transformations manifests itself in the form of con-
servation of the corresponding Noether current,

Dμ = xν T (T L)μν
= xν

[
FμρaF ν

ρ
a +

i

2
ψ̄(

↔
D)(μγν )ψ

]
, ∂μDμ = 0, (17.72)

where (
↔
D) ≡ −→D −←−D . The classical invariance is not maintained quantum

mechanically. This situation of having classical conformal symmetry but not
a corresponding quantum mechanical one is referred to as the conformal
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anomaly.6 In string theory the two-dimensional conformal symmetry is local.
Having an anomaly in a local symmetry renders the theory into an inconsistent
one. This implies that (at least in flat space-time) the theory will be defined in a
critical dimension where the conformal anomaly vanishes. In the four-dimensional
field theories discussed here, like QCD4 , conformal invariance is a global sym-
metry and the theory is consistent even when having an anomaly. There are
several ways to show that the quantum theory is not scale and hence also not
conformal invariant. One may say that the anomaly follows from the fact that
the theory has infinities that are cured just by the introduction of a renormal-
ization procedure. The latter involves the introduction of a cutoff scale. Once a
scale is introduced the theory is not any more scale invariant.

To see it more explicitly let us consider the low energy effective action of mass-
less QCD4 . We expand the gluons and quarks in terms of modes and distinguish
the low energy (momentum) modes and the high energy modes. Next we inte-
grate the high energy modes to derive the one loop low energy effective action.
It takes the form,7

SLE = −1
4

∫
d4x

[(
1
g2

0
− β0

16π2 ln
(

M 2

μ2

))
Fa

μν Fμν a + ...

]
low

, (17.73)

where M is the UV cutoff, and β0 = 11
3 Nc − 2

3 Nf is the coefficient of the one
loop beta function. It is easy to check that this one loop renormalized action is
not invariant under the scale transformations of (17.71). The variation of the
action under those transformation reads,

δS = − 1
32π2 β0 lnλ

∫
d4x

[
1
g2

0
Fa

μν Fμν a + ...

]
low

. (17.74)

Thus the quantum mechanically (unlike the classical case) dilatation Noether
current is not conserved,

∂μDμ ≡ ΔD = − 1
32π2

[
β(g)Fa

μν Fμνa
]
low

, (17.75)

and in deriving the right-hand side of the equation we have used the equations
of motion.

The effective action admits also an anomaly with respect to the special con-
formal transformations.

In (17.46) we discussed the general structure of non-local operators of four-
dimensional conformal field theory. In QCD in many cases we encounter a non-
local operator built from a quark and an anti-quark at light-like separation, with

6 The conformal anomaly was introduced in [169] and [6].
7 The explicit calculation is a one loop perturbative calculation. Since we do not deal with

perturbative methods in this book, we do not present here the derivation and refer the
reader to references that deal with perturbation theory in QCD4 .
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a line integral connecting them,

Qμ(α1 , α2) = ψ̄(α1)γμP eig
∫ α 1

α 2
dtA+ (t)

ψ(α2) (17.76)

where P stands for path ordering. The path integral factor will be denoted
[α1 , α2 ]. In performing the short distance expansion we need now to identify
the corresponding conformal operators. To relate the operator ψ to a primary
operator we first have to make a spin projection in the following way,

ψ+ = Γ+ψ ψ− = Γ−ψ ψ = ψ+ + ψ−, (17.77)

where,

Γ+ =
1
2
γ−γ+ , Γ− =

1
2
γ+γ−, Γ− + Γ+ = 1. (17.78)

The spin projected parts are,

ψ+(s = +1/2, j = 1, t = 1) ψ−(s = −1/2, j = 1/2, t = 2). (17.79)

With this identification we define the quark anti-quark operators:

twist− 2 : Q+ = ψ̄+γ+ψ+ ≡ Q(1,1)

twist− 3 : QT = ψ̄+γT ψ− + ψ̄−γT ψ+ ≡ Q(1,1/2) +Q(1/2,1)

twist− 4 : Q− = ψ̄−γ−ψ− ≡ Q(1/2,1/2) . (17.80)

The corresponding local conformal operators are,

Q1,1
n (α) = (i∂+)n

[
ψ̄(α)γ+C3/2

n

(↔
D+/d+

)
ψ(α)

]
,

Q1,1/2
n (α) = (i∂+)n

[
ψ̄(α)γ+γT γ−P 1,0

n

(↔
D+/d+

)
ψ(α)

]
,

Q1/2,1/2
n (α) = (i∂+)n

[
ψ̄(α)γ−C1/2

n

(↔
D+/d+

)
ψ(α)

]
, (17.81)

where
↔
D+ = −→D+ −

←−
D+ d+ = −→D+ +←−D+ , (17.82)

and where the Jacobi polynomials with two identical indices were replaced by
the Gegenbauer polynomials P (1,1) ∼ C

3/2
n and P (0,0) ∼ C

1/2
n .

A similar analysis can be carried out for the gluons. The various components
of the gluon field have the following properties,

F+T (s = +1, j = 3/2, t = 1) FT T , F+−(s = 0, j = 1, t = 2)

F−T (s = −1, j = 1/2, t = 3). (17.83)

Local operators built from two-gluon fields with leading twist are,

G3/2,3/2
n (α) = (i∂+)n

[
F+T (α)C5/2

n

(↔
D+/d+

)
F+T (α)

]
. (17.84)

Another application of conformal invariance to QCD is the determination of
the OPE of two electromagnetic currents jEM

μ =
∑

i eiψ̄iγμψi where the ei are the
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charges of the u, d and s quarks. At the tree level only the transverse components
are of interest. The latter have spin sj = 0 and twist tj = 3. The quark operators
Q1,1

n are the relevant basis for the expansion, with conformal spin jn = (ln + 1 +
n)/2 = n + 2 and tn = (ln − 1− n)/2 = 2. As Δ = 1 we find

JT (x)JT (0) ∼∑∞
n=0 Cn

( 1
x2

)(6−tn )/2 (−ix−)n+1 Γ(2jn )
Γ(jn )Γ(jn )

∫ 1
0 du[u(1− u)]jn −1Q1,1

n (ux−).

(17.85)

The coefficients Cn can be extracted from deep inelastic scattering via the fol-
lowing matrix element of forward scattering,

<P |JT (x)JT (0)|P>∼
∞∑

n=0

Cn

(
1
x2

)(6−tn )/2

(−ix−)n+1 <P |Q1,1
n (0)|P> .

(17.86)
Another application of the COPE is the determination of the short-distance

expansion of the operator Q+ ( 17.76). This case is characterized by sA = sB =
s1 = s2 = 1

2 so that Δ = 0 and lA = lB = l1 = l2 = 3
2 and we find,

Q+(α1 , α2) ∼
∞∑

n=0

C̃n (−i)n (α1−α2)n

∫ 1

0
duun+1(1−u)n+1Q1,1

n (uα1+(1−u)α2),

(17.87)
where C̃n = Cn Γ(n+2)2

Γ(2n+4) which can be determined again from forward matrix ele-

ments and are found to be C̃n = 2(2n+3)
(n+1)! .

Conformal invariance can be used at short distances to give predictions for the
quark distribution amplitudes for flavor non-singlet mesons, namely the wave
functions which control the behavior of the exclusive mesons processes at large
momentum transfer. Here we discuss as an example the pion distribution ampli-
tude in the leading twist order.

The basic ingredient in computing exclusive reactions including a large
momentum transfer to a pion is the matrix element of a quark anti-quark between
the vacuum and a one pion state. By using the light-cone gauge A+ = 0 the
Wilson line (17.76) is set to unity. We choose a frame where pμ = p+n−μ and
xμ = x−nμ

+ + xμ
T , x+ = 0 so that x2 = x2

T . The matrix element can then be
written as,

<0|d̄(0)[0,∞n]γ+γ5 [∞n + x, x]u(x)|π+(p)>=

ifπp+
∫ 1

0 dye−iy (p·x)f(y, lnx2) + O(x2). (17.88)

This matrix element is the probability amplitude to find the pion in the valence
state consisting of a u-quark carrying a momentum y and an anti-d quark of
momentum ȳ = 1− y and have a transverse separation xT . This amplitude is
intimately related to the pion electromagnetic form factor for large momentum
transfer Q2 and small separation distance of the order xT ∼ 1/Q2 . To approach
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this limit, one defines the pion distribution amplitude taken at exactly light-like
separation where xT = 0. This amplitude reads,

<0|d̄(0)[0, α]γ+γ5u(α)|π+(p)>= ifπp+

∫ 1

0
dye−iy (αp+)φπ(y, μ). (17.89)

The distribution amplitude φπ(y, μ) is scale and scheme dependent. In fact the
small transverse distance behavior of the valence component of the pion wave
function is traded for the scale dependence of the distribution amplitude.

It can be shown that the evolution equation of φπ(y, μ) is given by,

μ2 d
dμ2 φπ(y, μ) =

∫ 1

0
dỹV (y, ỹ, αs(μ)φπ(y, μ), (17.90)

where to leading order in αs the integral kernel is given by,

V0(y, ỹ) = CF

[
1− y

1− ỹ

(
1 +

1
y − ỹ

)
θ(y − ỹ) +

ỹ

y

(
1 +

1
y − ỹ

)
θ(y − ỹ)

]
+

,

(17.91)

where ]+ stands for,

[V (ỹ, y)]+ = V (ỹ, y)− δ(y − ỹ)
∫ 1

0
dtV (t, ỹ). (17.92)

Instead of solving this evolution equation one can alternatively proceed by
expanding both sides of (17.90) in powers of α. In this way moments of the distri-
bution amplitude are related to matrix elements of renormalized local operators
in the following form,

<0|d̄(0)γ+γ5(i
↔
D+)nu(0)|π+(p)>= ifπ(p+)n+1

∫ 1

0
dy(2y − 1)nφπ(y, μ).

(17.93)
This is similar to the leading twist operators that enter the OPE for the unpo-
larized deep inelastic scattering apart from the flavor, the additional γ5 factor
and the fact that now one has to take into account mixing with operators that
contain total derivatives of the form,

On−k,k = (i∂+)k d̄(0)γ+γ5(i
↔
D+)n−ku(0). (17.94)

The mixing matrix is in fact triangular since operators with fewer total deriva-
tives can only mix with operators with more total derivatives but not the other
way around. The components of the matrix on the diagonal are true anomalous
dimensions, which are identical to those of inelastic scattering,

γ(0)
n = CF

(
1− 2

(n + 1)(n + 2)
+ 4

n+1∑
m=2

1
m

)
, (17.95)
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where,

<P |On,0(μ)|P>=<P |On,0(μ0)|P>

(
αs(μ)
αs(μ0)

) γ
( 0 )
n
β 0

β0 =
11
3

Nc −
2
3
Nf .

(17.96)
Conformal invariance is useful in finding the eigenvectors of the mixing matrix
since conformal operators with different conformal spins cannot mix under renor-
malization to leading order. This happens since to leading order the renormaliza-
tion is determined by counter terms of the tree level which is conformal invariant.
Thus the mixing eigenvector operators are Q1,1(x) defined in (17.80) with the
right flavor and γ matrices structure,

Q1,1
n (x) = (i∂+)n

[
d̄(x)γ+γ5C

3/2
n

(↔
D+/d+

)
u(x)

]
. (17.97)

Note that because of their flavor content these operators cannot mix with oper-
ators made out of gluons and they also cannot mix with operators with more
fields since they have higher twist. Thus the operators (17.97) are the only rel-
evant ones and they must be multiplicatively renormalized. Comparing (17.93)
with (17.97) one concludes that the Gegenbauer moments of the pion distri-
bution amplitudes are given in terms of reduced matrix elements of conformal
operators,

ifπpn+1
+

∫ 1

0
dyC3/2

n (2y − 1)φπ(y, μ) =<0|Q1,1
n (0)|π+(p)> . (17.98)

As was mentioned above these operators are renormalized by a multiplication
and the corresponding anomalous dimension is given by (17.95). Thus the final
picture is that the distribution amplitude φπ(u, μ) can be expanded in a series
of Gegenbauer polynomials,

φπ(u, μ) = 6u(1− u)
∞∑

n=0

φn (μ)C3/2
n (2u− 1)

φn (μ) = (ifπpn+1
+ )−1 2(2n + 3)

3(n + 1)(n + 2)
<0|Q1,1

n (0)|π+(p)>

φn (μ) = φn (μ0)
(

αs(μ)
αs(μ0)

) γ
( 0 )
n
β 0

. (17.99)

This example demonstrates the application of conformal invariance to solve the
problem of operator mixing. There are other applications of conformal symmetry
to four-dimensional QCD. We refer the interested reader to [43]. The predictions
based on conformal symmetry beyond one loop, for the sector with β = 0 [51],
turned out to be in contradiction with explicit calculations [79]. This paradox
was resolved in [166].
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