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Abstract. Let S be a subgroup of a topological group T, and suppose that S acts
on a space X. One can form a T-transformation group (X xsT, T) called the
suspension of the S-transformation group (X, S). In this paper we study the relation-
ship between the dynamical properties of (X, S) and those of its suspension when
S is syndetic in T. The main tool used in this study is a notion of the group of a
minimal flow (X, T) which is sensitive to the topology on the group T. We are able,
using this group and the enveloping semigroup to obtain results on which T-
transformation groups can be realized as suspensions of S-transformation groups,
and give conditions under which the suspension of an equicontinuous S-flow is an
equicontinuous T-flow.

Introduction
When S is a closed subgroup of a topological group T and (X, S) is an S-
transformation group one can form the suspension X xsT of (X, S) to a T-
transformation group. Two natural questions arise: what is the relationship between
the dynamical properties of (X, S) and those of X x s 7? and which T-transformation
groups are suspensions of S-transformation groups? In this paper we obtain some
answers to these questions under the assumption that S is a closed normal syndetic
subgroup of T. For example we show that equicontinuity is not in general preserved
under suspension and give conditions on S and T under which it is. We also obtain
a complete answer to the second question.

The main tool used is the group of a minimal flow which is described in § 3. Here
we give a definition of the group of a minimal flow which is sensitive to the topology
on the group T; this group is the analogue of the group defined by R. Ellis (see
for example [El]) and the two coincide when T is given the discrete topology. In
particular in § 4 we describe conditions in terms of this group which are necessary
and sufficient for (X, T) to be the suspension of an S-flow. When T is abelian we
also obtain conditions under which (X, T) is totally minimal.

The paper is organized into five sections. In the first we recall some preliminaries
and set our notation. The second section contains a few elementary properties of
suspensions, and an example of an equicontinuous flow whose suspension is not
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102 D. B. Ellis

equicontinuous. In § 3 the group of a minimal flow is defined and some of its
properties deduced. The results in § 3 are used in §§ 4 and 5 to study the question
of realizing flows as suspensions and equicontinuity of suspensions
respectively.

1. Preliminaries
In this section we set notation and mention some of the results we will need to use
in the following sections. For further details and proofs see [E2].

We begin with some standard definitions regarding topological transformation
groups.

Definition 1.1. A topological transformation group (flow) is a pair (X, T) where X
is a compact Hausdorff space and T is a locally compact topological group, together
with a continuous map

XxT^X

We say that (X, T) is pointed if X is provided with a base point x0, such that the
orbit closure of x0 is X, that is

= {xot/teT} = X.

A homomorphism of pointed flows {X, T)->(Y, T) is a continuous map <p: X -* Y
such that <p(xo) = >'o and <p(x/) = <p{x)t for all teT and xeX. Note that if a
homomorphism exists it is unique. We often refer to (Y, T) as a factor of (X, T)
or to (X, T) as an extension of (Y, T).

Let {X, T) be a flow and A <=• X, we say that A is a minimal set if xT = A for all
xe A. If X itself is a minimal set we refer to (X, T) as a minimal flow.

Definition 1.2. Let (X, T) be a pointed transformation group, and denote by

Xx = { / :X^X}

the set of all functions from X to X. We give Xx the topology of pointwise
convergence and define the enveloping semigroup of (X, T) by

E(X,T)=fciXx.

Note that T<= Xx since each element of T acts as a homeomorphism on X. Moreover
Xx and hence E(X, T), is a semigroup under composition of functions. In fact
E(X, T) is a pointed flow.

We will need some facts about E(X, T).

PROPOSITION 1.3. Let (X, T) be a minimal transformation group. Then
(1) (X, T) is distal if and only if E(X, T) is a group
(2) (X, T) is equicontinuous if and only if E(X, T) is a group of homeomorphisms.

Remarks 1.4. (1) We recall that by definition (X, T) is distal if for every x^ yeX,

= {(xt, yt)eXxX/teT}n {{z, z)/ze X}.

https://doi.org/10.1017/S0143385700005411 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005411


Topological transformation groups 103

(2) By definition (X, T) is equicontinuous if T is an equicontinuous family of
homeomorphisms of X.

2. Suspensions of topological transformation groups
In this section we will define the suspension of an S-transformation group to a
T-transformation group and discuss some elementary properties of this construction.

From now on T will denote a locally compact topological group and 5<= T a
closed syndetic subgroup given the induced topology. Recall that 5 is a syndetic
subgroup of T if there exists a compact subset K<^T with SK = T.

Definition 2.1. Let S c T b e a closed syndetic subgroup of T and (X, S) an S-
transformation group. We define an action of 5 on X x T by

s(x, t) = (xs~',st).

Then the suspension of (X, S) is given by

X xT = XxT/~,
s

where (x , , ti)~(x2, t2) iff s(x,, t1) = (x2, t2) for some s e S.
We will denote the equivalence class of (x, t) by [x, t~\. We observe that X xsT

is a compact Hausdorff space because S is closed and syndetic. The map

XxTxT^XxT
s s

([*, 0. 'i)-»l>, «,],

defines a continuous action of T on X xs T.
We will be interested in which properties of the S-transformation group (X, S)

are preserved by suspension. The proofs of the next two lemmas are straightforward
and will be left to the reader.

L E M M A 2.2. Let <p: (X, S)->(Y, S) be a homomorphism of S-transformation groups.
Then <p induces a homomorphism <p:X xsT-> Y xsT of T-transformation groups.

L E M M A 2.3. Let (X, S) be an S-transformation group. Then
(1) Ifx^S = Xthen [xo,e]T = XxsT.
(2) If (X, S) is minimal then X xs T is minimal.
(3) If (X,S) is distal then X xsTis distal.

PROPOSITION 2.4. Let S be a closed syndetic subgroup of T which is contained in the
center of T. Let (X, S) be an equicontinuous S-transformation group. Then X xsT is
an equicontinuous T-transformation group.

Proof. It suffices to show that the S-transformation group (X xsT, S) is equicon-
tinuous. Now since S is syndetic in T there exists a compact subset K^T with
KS= T. We form the S-transformation group (X x K, S) using the action

(x, k)s = (xs, k).
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It is clear that the assumption that (X, 5) is equicontinuous implies that (X x K, S)
is equicontinuous. On the other hand, the map

(XxK,S)-*(X xT,S)
s

(x, k) -»[x, k],

is an epimorphism of S-transformation groups and hence (X xsT, S) is equicon-
tinuous.

Remarks 2.5. (1) When T is given the discrete topology the assumption that 5 is
contained in the center of T can be replaced by the weaker assumption that 5 is
normal in T. The proof needs to be modified slightly because in this case the map
(X x K, S)-* (X x s 7", 5) given above need not be a homomorphism. Nevertheless
the result still follows because the compact subset K of T must be finite.

(2) For a general topology on T it is possible to have a closed syndetic normal
subgroup 5 of T where (X, 5) is equicontinuous but (X xsT, T) is not. The following
example illustrates this fact.

Example 2.6. Let 5 = R2 (the Lie group under addition). Then the circle 5' acts on
5 by rotations and we can form the semidirect product

7=5x15',

(T is simply a subgroup of the group of rigid motions in R2.) Then T is a connected
locally compact solvable Lie group and 5 is a syndetic normal subgroup of T.

Set X = 5' x 5', the torus. Then the standard action of 5 = R2 on X by covering
transformations factors through the action of X on itself by multiplication and
hence is equicontinuous.

We claim that T does not act equicontinuously on X xs T. To see this first note
that T acts effectively on X xs T. This is because if [x, t]t, = [x, t] for all t e T then
t, e 5 and tt,t~l acts trivially on X for all t e T. It is easy to check that this implies
that /, = e. The fact that T does not act equicontinuously on X x s T now follows
from the fact that any connected locally compact solvable group which acts effectively
and equicontinuously on a compact Hausdorff space is abelian. This fact is a
corollary of the following lemma.

This example was motivated by [Mc-I-W].

LEMMA 2.7. Let T be a connected locally compact solvable topological group. Let
(X, T) be an equicontinuous T-transformation group. Then the commutator subgroup
of T acts trivially on X.

Proof. Consider the enveloping semigroup E(X, T) = E. By 1.9 £ is a compact
topological group. But the inclusion T-> E is a homomorphism of T onto a dense
subgroup; therefore £ is a compact connected solvable topological group. It follows
that E is abelian. If £ is a Lie group this is well known, in general E is an inverse
limit of quotients of E which are Lie groups.

Now the fact that E is abelian implies that any element t e T which is in the
commutator of T is in the kernel of the inclusion T-> E. Thus t acts as the identity
homeomorphism of X.
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COROLLARY 2.8. Let The a connected locally compact solvable topological group which
acts effectively and equicontinuously on a compact Hausdorffspace X. Then Tis abelian.

We end this section with an elementary lemma on realizing transformation groups
as suspensions which will be used and generalized in § 4. (see § 5).

LEMMA 2.9. Let (Z, T) be a T-transformation group, and S a closed syndetic subgroup
of T. Suppose 0 ;* X <= Z satisfies:
(i) X is closed and invariant under S,
(ii) ifXt n X * 0 then t e S.

Then (X, S) is an S-transformation group and (X xs T, T) = (Z, T).

Proof. The map X x s T^Z given by [JC, (]-»*/ is a T-isomorphism.

Remark 2.10. (1) The converse of 2.9 clearly holds; indeed the subset
Xe = {[x,e]/xeX}cX xT

s
satisfies conditions (i) and (ii).

(2) If S is contained in the centre of T then 2.9 can be used to show that

(E(X, 5) x T, T) = (E(X x T), T).
s s

This fact can in turn be used to give an alternative proof of 2.4. (3) In general the
homomorphism of S-transformation groups E(X, S) -> X induces a homomorphism
of T-transformation groups

(E(X,S)xT, T)^(E(X xT), T)
s s

which in turn induces a homomorphism

<p:E(E(X,S)xT, T)^E{E(XxT), T) = E(X xT).
s s s

Indeed it is not hard to check that <p is an isomorphism.

3. Continuous transformation groups
The group of a minimal flow (X, T) has proved to be useful in studying the dynamical
properties of (X, T) (see [El] for example). This group however is independent of
the topology on T; that is the group of (X, T) is the same as that of (X, Ts). In
this section we will give an analogous construction of the group of a minimal flow
which is sensitive to the topology placed on T; this construction reduces to the
usual notion when T is given the discrete topology. In particular, since the notion
of a syndetic subgroup S of T is heavily dependent on the topology on T, these
groups prove to be useful in comparing the dynamical properties of an S-flow with
those of its suspension to a T-flow.

The construction of these groups mimics the treatment in [E2]; the proofs of
some of their properties are quite similar to those given in [E2] and hence they will
often just be outlined. We begin with some notation. Recall that T denotes a locally
compact topological group, and S a closed syndetic subgroup of T.

Notation 3.1. We will denote by (IT the Stone-Cech compactification of the discrete
topology on T (not the given topology). It is standard that /3T can be provided
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with a transformation group structure which is pointed by the identity e e 7"c fjT;
in fact f3T is equipped with a semigroup structure in such a way that

Lp:jiT^pT and R,-.pT^pT

q^pq q^-qt

are continuous for all pe (iT and t e T.
It is well known that the transformation group (f$T, e) is universal for pointed

T-transformation groups. That is, given a pointed T-flow (X, x0) there exists a
unique homomorphism (y3T, e)-* (X, x0). Note however that the action /JTx T-* /3T
is continuous for the discrete topology on T but not necessarily for the given
topology.

We denote by % = %{fiT) = {/: /?T-» R/ / is continuous}. Note that % is a Banach
algebra with the supremum norm. I f / e 9? we denote the value of/ at pefiT by
(//>)• For teT and pe(3T the functions tf, fpe'ti are defined by

for all qe/3T

for all qe/3T.

Let -si <= "^(pT) be a subalgebra, we say that sd is a T-subalgebra if
(i) ^ is closed,

(ii) R c r f ( i contains the constant functions),
(iii) if fe si then r/e .a? for all te T.
A generalization of the Stone-Weierstrass theorem implies that the category of
T-subalgebras of ^ with inclusions as morphisms is naturally equivalent to the
category of pointed T-transformation groups. We will use the notation \$4\ for the
unique (up to homeomorphism) compact Hausdorff space such that

si = {/: | ^ | ^ R// is continuous} =f

We say tha t / : T-*R is right uniformly continuous if lim,_e ||f/-/|| =0. We write
9? 7- for the T-subalgebra of <€ consisting of all bounded right uniformly continuous
functions / :T-*R. (Any bounded function f:T->R has a unique continuous
extension to y3T.) Note that when T is given the discrete topology ^T-5 = "# and

The next lemma shows that (|SHrl> T) is universal for pointed continuous T-
transformation groups (the topology on T being taken into account).

LEMMA 3.2. Let T be a locally compact topological group and {X, T) a pointed
T-transformation group. Then
(1) there exists a unique homomorphism of T-transformation groups (|SHT-|, T)-*

(X, T),
(2) |!HT-| admits a semigroup structure in which Lp is continuous for all pe\))\T\ and

R, is continuous for all teT; moreover the canonical T-homomorphism TT:/3T-*

|3tT| 15 a homomorphism of semigroups,
(3) The natural inclusion T-> PT-*\$\.T\ gives an isomorphism of T into \d\T\ with
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Comments on Proof. Rather than giving a detailed proof here we remark that (1) is
proven in [E2]. It is important to note that the assertion that the action |JH r | x T -»|9t T\
is continuous is part of statement (1).

Statement (2) is proven by noting that \?RT\ has the quotient topology given by
the map ir:fiT-*\dlT\, and denning the semigroup structure on |3ir| so as to make
77 a homomorphism of semigroups. Alternatively one can observe that by (1) the
T-homomorphism £(|!Hr|, T)-»|!;Rr| from the enveloping semigroup of |5Hr| to |9tT|
given by evaluation at the base point must be an isomorphism.

Statement (3) is proven by Veech in [V]. (See his Appendix, pp. 823-824.)

LEMMA 3.3. Let S c Tbe a closed syndetic subgroup and denote by S the closure of S
in |9tT|. Then
(1) The product map Sx T-> |9tr| induces an isomorphism (S xs T, T) -* (|9tr|, T) of

T-transformation groups.
(2) {S, S) is universal for continuous pointed S-transformation groups. {Here S is

provided with the induced topology).

Proof. (1) S is closed in |9tr|, hence compact. The product map is the restriction of
the map |!Hr|x T-*?HT\ and hence is continuous by 3.2. In particular (S, S) is a
continuous pointed (by e e S) S-transformation group when S is given the induced
topology. Since 5 is syndetic in T,(SxsT, T) is a pointed continuous T-transforma-
tion group. It is straightforward to check that the product map induces a homomorph-
ism; but by 3.2 (|SRr|. T) is universal, hence it must be an isomorphism.

(2) Now suppose that (X, x0) is a continuous pointed S-transformation group,
and consider (X xsT, [xo,e]). Since (|9tr|, e) is universal we obtain a T-
homomorphism

But then i/*(S) = {[x, e]/xeX} so the restriction of f to S induces an S-
homomorphism (S, e) -> (X, x0).

COROLLARY 3.4. Let S c T be a closed syndetic subgroup of T and let S denote the
closure of S in |5K T|. Then StnS*0 if and only ifteS.

Proof. By 3.3 the map

<p:SxT^\sMT\ q>[x,t] = xt
s

is a T-isomorphism. Now suppose that x e S and xt = y e S (i.e. St n SV 0) . Then
<p[y, el= <?[*>'] an<* hence [y,e] = [x, t] and / e S. Clearly t e S implies St = S.
Notation 3.5. Let S be a closed syndetic subgroup of T and M a minimal right
ideal in |ffiT|. We set

Ms = MnS,

where as usual S is the closure of S in |JHr|-

Remark 3.6. Let M be a minimal right ideal in |5Hr| and we M an idempotent. It
is shown in [E2] that (M, M) is a universal continuous pointed minimal T-transforma-
tion group.
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108 D. B. Ellis

LEMMA 3.7. Let S be a closed syndetic subgroup ofT, Ma minimal ideal in |5RT-|,

ueMs an idempotent. Then (Ms, u) is a universal continuous pointed minimal S-
transformation group.

Proof. It follows from 3.3 that (S, S) = (\$ts\, S); hence it suffices to show that Ms

is a minimal right S ideal (by 3.6 with T replaced by 5). Now MS5<= S because S
is a subsemigroup of |ffir| and Ms = M n S c S. On the other hand AfsSc A/S<=
M|9iT| = M, since M is a right ideal. Thus AfsS<= MnS = Ms and Afs is a right
ideal in S.

To see that Ms is minimal let p, qe Ms, we will show that q€pS. But p, qe M
and M is minimal (as a T-transformation group) so there exists a net { ' n}c T such
that ptn -* q. Since S is syndetic in T we can write tn = snkn with {sn}<= S and {/cn} c K
where K c T i s compact. Now {psn}c Ms which is compact, so by passing to a
subnet if necessary we may assume that psn-*pe Ms and kn-> ke K. Then ptn =
psnkn -»pk so pfe = q. But p, q e Ms<= S hence SknS^0. By 3.4 this implies that
IceS. Therefore q = pke (pS)S = pS and Ms is minimal.

Notation 3.8. Let S c J b e a closed syndetic subgroup, and M a fixed ideal in |5HT

Fix an idempotent u = wsE MS = MnS<^ M. We set

G = Mu and Gs = Msu.

LEMMA 3.9. Let S be a normal syndetic subgroup of Tand M c: |SRr| a minimal ideal.
Let we M be an idempotent. Then we Ms.

Proof. The T-transformation group (Af, T) is minimal so w e M is an almost periodic
point of (Af, X). But 5 is normal and syndetic in T so w is an almost periodic point
of (wS, S); hence (wS, S) is a minimal S-transformation group (see 2.5 and 2.8 of
[E2]).

Now choose an idempotent ve Ms. Since u e Af we have v = wvewS (each peM
can be written p= wq for some qe M, so wp = w2q = wq = p and Lw acts as the
identity on Af). But Lw is continuous so wS= wS; hence v e Afs n wS. Both Afs and
wS are minimal so this implies that Afs = wS and in particular w € Afs.

Remark 3.10. Lemma 3.9 shows that when studying normal closed syndetic subgroups
S <= T we can fix an idempotent w e Af such that u e Afs for all S.

In what follows when the assumption is made that S is normal in T we will use
a fixed choice of u independent of S. This will be important in § 9.

LEMMA 3.11. Let S, T, u, G, Gs be as in 3.8. Then
(1) G = {pe M/pu = p} is a subgroup of M with identity u,
(2) Gs = {p e Mslpu = p} is a subgroup of G.

Proof. (1) When T is given the discrete topology |JHT| = j8r and this result is just
3.5 of [E2]. The proof of the general case is completely analogous.

(2) Since S = |SHS| and Afs is an S minimal ideal (see 3.7); replacing T by 5 in
(1) shows that Gs is a group. But the group structure on Gs comes from the
semigroup structure on S, and 5 is a subsemigroup of |5)tr|, therefore Gs is a
subgroup of G.

https://doi.org/10.1017/S0143385700005411 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005411


Topological transformation groups 109

LEMMA 3.12. Let TT: /?T->|MT-| denote the canonical projection. Then
(1) There exists a minimal ideal Msa f}T and an idempotent useMs such that

TT(MS) = M and n(us) = u.

(2) Set Gs = Msus. Then TT\GS is a group homomorphism with kernel
RT = {aeGs/fa=f forall/e3tT withfus=f}.

Proof. (1) By 3.2 n is an epimorphism of semigroups, hence TT'\M) is a nonvacuous
right ideal in /3T. Let M s c w~\M) be a minimal right ideal. Then TT(M5)C M is
a right ideal, so TT(M5) = M because M is minimal. Moreover TT~\U)<^ Ms is a
nonvacuous subsemigroup of (IT and thus must contain an idempotent «s.

(2) The group structure on Gs comes from the semigroup structure on /3T so
TT\GS is a group homomorphism. Clearly

TT{MSUS) = Tr{Mz)ir(us) = Mu = G.
To see that ker IT = RT consider the restriction TT: MS->M; it is adjoint to the

inclusion of algebras
7T*:sd{u)

It is not hard to check that

Now suppose that a = pus e Gs with 7r(a) = u. Let fe sis(us)c: SHr; then /a =
fus =/because 7r(a) = TT(MS) (since fey\T, n(p) = Tr{q) implies that^p=/^). This
shows that ae RT and hence that ker TTC RT.

On the other hand suppose that a e RT and let fe M(u). Then
f{ir(a)) = {foTT)a

= (f° IT)US (because f° TTeMs{us)<^>3iT)

= /"•
This holds for all fe M{u) = ^(M) so 7r(a) = u and hence a e ker IT.

Remark 3.13. Using the notation of 3.12 we observe that
(i) «(M8) = rf8(«e)

and
(ii) «(M) = jrf(u) = jrf8(ii4)n5M7..

Note that
/ e i s ( " « ) " S T impliesthat f=fus effipUs;

similarly if / = gws e
 SM TUR then
fuR = gul = gUfi and / e ^ ( M ^ O ^ T - .

(One needs to check here tha t /eWr implies ^/>e3iT for all pefiT.) Combining
these remarks with (ii) above we obtain

(iii) |WTu«| = M.
Thus (1̂ 7-Msl, T) is a universal continuous pointed minimal T-transformation group;
hence any continuous pointed minimal T-transformation group corresponds to a
T-subalgebra .s^c W ^ . We are now ready to define the group of a continuous
pointed minimal 7-transformation group.
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Definition 3.14. Let S be a closed syndetic subgroup of T and sicfft-rUa a T-
subalgebra. Thus (\s&\, T) is a continuous pointed minimal flow and we define the
group of si by

G(si) = G(|si\, T) = {ae G/fa = / for a l l /e jtf}.

Similarly we define the relative S-group of ^ by

Gs(s*) = GS(MI, n = («e Gs/fa = / for a l l /e jtf}.

Here G and Gs are defined as in 3.8.

Remarks 3.15. (1) When T is discrete \diT\ = pT and we use the notation Gs(si)
for the group of the flow (\s&\, T). This coincides with the definition of the group
of a minimal flow given in [El].

(2) Let st^m-iUg and

be the classifying map (which is adjoint to the inclusion sic?HTuR). By definition

aeG{\si\, T)

if and only if

a e Mu and fa =f for a l l /e si

which holds if and only if

(f,a) = (f,au)
a e Mu and = (fa, u)

= </,«),

which in turn holds if and only if

aeG and V(a) = xM.

Noting that an element lim tn= pe /3T acts on x e \si\ by xp = lim xtn, and that ty
is a T-homomorphism we obtain:

= {aeG/(xsl)(a) = xxl}.

(3) If si = R (the constant functions) then (|si\, T) is the point flow and G{si) = G,
GS(M) = Gs, Ga(si) = G/j. (By definition Ga = Msus where Ms and us are as in 3.12.)

(4) G«(5HTM«) = Gs(st(u)) = Ga{M, T) (see 3.13). Moreover by definition

G8(JHT«8) = {a e Ga//o = / for a l l /e JR^} .

But since ftl-jUg = sd^Us)nMT we have, using 3.12, that

GR(M, T) = RT = ker {w: G8 -» G}.

(5) It is clear from the definitions that si<= 3ft implies G(S8)c G(si),
Gs(.sa0 and G s ( ^ ) c G s ( ^ ) . It follows from (3) that

RT c Ga(si) for every si c S

https://doi.org/10.1017/S0143385700005411 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005411


Topological transformation groups 111

It then follows from 3.12 that the projection IT: Gs -» G induces an isomorphism of
groups

n:Gs(\si\,T)/RT^G(\si\,T) (*)

for all si^^Tus.
(6) It is possible using the isomorphism in (*) above to prove theorems about

how the groups G(si) behave with regard to proximal, distal and almost periodic
extensions which are analogous to those proven for Gs in [E2]. In particular we
will make use later on of the fact that if si c 38 are distal with G(si) = G(S8) then
si = ®.

LEMMA 3.16. Let S be a closed syndetic subgroup of T, and si <= JH Tus a T-subalgebra.
Then Gs(si) = G(st) n S. (As usual S is the closure of S in |9tT|.)

Proof. Recall that by 3.11, Gs = Msu is a subgroup of G = MM. The result follows
immediately from 3.15 and the fact that Gs = Gn S. It is clear that

Gs = M s u c M s = M n S c 5 and Gs = Msuc Mu = G.

On the other hand,

if aeGnS = Mun§

then aeMnS = Ms and au = a

(a = yu so au = yu2 = yu = a), therefore a e Msu.
We now prove a proposition which relates the relative S-group of a minimal

T-flow to the group of an S-flow.

PROPOSITION 3.17. Let S<=T be a closed syndetic subgroup and .s£<=?RTus a T-
subalgebra. Let i: /3S-* fiT denote the natural inclusion and set sis = i*{si). Then
(1) ^ sc<Hsr ' (u8) is an S-subalgebra.
(2) t, induces an isomorphism (|J^SI» S) = (X.&S, S) of S-transformation groups, (x^e

\si\ is the base point.)
(3) i induces an isomorphism G(\J£S\, S) = Gs(\sd\, T).

Proof. (1) Note that i:@S-> /3T is one-one so that i~\us)ef}S is well-defined. One
way to see this is to note that the image t(flS) satisfies the defining properties of
the Stone-Cech compactification, hence t :/3S-» t(pS) must be a homeomorphism.
Now t is a homomorphism of S-transformation groups; thus since si is a T-
subalgebra (hence also an S-subalgebra) of <i?(/?T), we see that i*(si) is an S-
subalgebra of <€(PS). Moreover if / e si then

= </««,

= <t*(/),P> for allpe^S,

(/"*=/ because .stfc WTMS). Since t*(/)e5H5 (because it is the restriction of a
T-right-uniformly-continuous function to S), this shows that
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(2) The proof of this statement is similar to the proof in the discrete case (which
appears in [E2]) and will be left to the reader.

(3) i induces i: |3ts| -> |£%T| which must be an S-transformation group isomorphism
onto S c |9tr| since both are universal pointed continuous S-flows. Using i to identify
(L~\MS), I ~ ' ( " ) ) with (Ms, M) we see that

is identified with

{a G Msu/fa =f for a l l /e M) = GS(\M\, T).

4. Realizing transformation groups as suspensions
In this section we show that if S is a closed syndetic subgroup of T and (\s&\, T)
is a pointed continuous minimal T-flow then \sd\ = x^S xs T if and only if G($2) =
Gs(sii). When T is abelian this enables us to give an interpretation of total minimality
for a flow (\s&\, T) in terms of its group G(stf).

We begin with a calculation of G(X xsT,T) from G(X, S) when (X, S) is a
continuous S-transformation group.

PROPOSITION 4.1. Let S be a closed syndetic subgroup of T and (X, T) a continuous
pointed S-minimalflow. Then G{X, S) = G(X xsT,T) where we identify a e G(X, S)
with its image under t: |9is| -»\$tT\. (See 3.17.)

Proof. Let si be the S-subalgebra of yisr\us), and S3 the 7-subalgebra of ̂ jUg
corresponding to (X, S) and (X xs T, T) respectively. Let x^e\si\ = X be the base
point; then [x^, e ] eX x s T is the base point. Consider the classifying map

<P:(M,u)^(XxsT,[Xs,,e]).

Its restriction to Ms gives a classifying map

<P:(Ms,u)^(X,Xsl)

where we identify X with {[x, e]/xeX}<= X x s T. We can identify <A with the
classifying map \p using t:

r\Ms)—^-> Ms

Now by 3.15 (2)

G(X, S) = {a 6 i-l(Ms)r\u)/$(a) =

under the identification by i. Similarly

G(X x T, T) = {a e Mu/<p(a) = [x«, e]}
s

= { G MM/[XV ) e]a = [x,^, e]}.

With these identifications it is clear that G(X, S)c: G(X xs T, T).
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Now suppose that a e G = Mu with [x.rf, e]a = [x^, e]. Let X <= r be a compact
subset with SK = T. Then

[x.tf, e] = [xia?, e]a =

for some a e Ms and ke K. But this implies that k e S and a = ak e Ms satisfies
x^a = x&. The fact that au = a implies that a e Msu = Gs, hence a e Msu and
G(X, S) = G(X xsT, T).

PROPOSITION 4.2. Let S be a closed syndetic normal subgroup of T and let M be a

T-subalgebra of M-rUg. Set AT = x^S = M s l c Ml, and set S, = {/e

(1) S, = {r e T/Xt = X} and hence 5, is a subgroup of T,
(2) there is an action of the compact group L = 5 , /5 on X x s T such that

(3) the product map X x T-» \si\ induces a T-isomorphism

(X XT, D = (|jrf|, T).
s,

Proof. (1) jj/cfli-rMg so (Ml, 7") is minimal. Since S is syndetic (AT, S) is minimal.
Now suppose that / e T with Xt n X ^ 0 . Since S is normal in T, A7 is invariant
and minimal under 5. Thus Xt n X = X = Xt.

(2) Note that L is a group because 5 is normal in T and L is compact since S
is syndetic. Let Sst e L and set

It is easy to check that this defines an action of L on X xsT. Now consider the map

<p

X x T - » M | given by [x, /]->xr.

It is clear that <p(Ss, • [x, /]) = <p[x, /] for all 5, e 5 , , thus <p induces a map

X x

Now suppose that $[x,t~\ = $\_xi,tl]. Then x/ = x,/, and x = xltlt~
1; thus X"n

AT/, r" V 0 and ?, r ' e 5 , . Therefore 5/, t~' • [x, /] = [ x » ^ , ? , / " ' t] = [x,, /,] and <p is
an isomorphism of /"-transformation groups.

(3) The proof of this statement is similar to that of (2) and will be left to the reader.

Remark 4.3. In [E2] Ellis defines the so-called r-topologies on the group of a
minimal flow. In our notation, for each minimal si there is a topology T{M) on Gs

making it compact and making G^/G^si) a T, space. We define the r{si) topology
on G to be the quotient topology under the map

G^GJRrsG

given in 3.15(5).
These topologies are used in the following corollary.

COROLLARY 4.4. Let S, T, Su si, and X be as in 4.2. Then G{M)/GS(M) is
homeomorphic to S,/ S.

https://doi.org/10.1017/S0143385700005411 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005411


114 D. B. Ellis

Proof. We first observe that it is shown on p. 146 of [E2] that if |S8| is a compact
extension oi\M\ by L (i.e. \&\/L = \s&\) then L= Gs(st)/Gs(3$) where the latter is
given the T ( ^ ) topology. Applying this to \9B\ = X x s T and \s£\ of 4.2 we obtain that

SJS=Gs{s4)/Gs{5%)

= G(j*)/G(sis)(by4.1)

As an additional corollary to 4.2 we obtain necessary and sufficient conditions
for a ^-transformation group (Z, T) to be the suspension of (z0S, 5). (z0 denotes
the base point of Z.)

COROLLARY 4.5. Let S be a closed normal syndetic subgroup of T, sd^%TuB a
T-subalgebra and X = |,s/s| c \s&\. Then the following are equivalent:
(i) (\s#\,T) = (XxsT,T),

(ii) Xt n X # 0 if and only if t e S,
(iii)
(iv)

Proof. Using the notation of 4.2, set Sx={t/XtnX* 0} . Then it is clear that (ii)
above is equivalent to the statement that S, = 5, hence 4.2 shows that (ii) implies
(i). The fact that (i) implies (ii) is easily checked.

It follows immediately from 4.4 that (ii) is equivalent to (iii). Finally (iii) and
(iv) are equivalent since Gs(s&)= G(sd)nS by 3.16.

We conclude this section with a condition on the group of a minimal flow which
is equivalent to total minimality when the group T is abelian. Since the condition
depends only on the group of the flow it shows in particular that total minimality
is a proximal invariant. First we recall the definition of total minimality.

Definition 4.6. Let (X, T) be a pointed minimal T-transformation group with base
point x(). We say that (X, T) is totally minimal if x0S = X for all normal closed
syndetic subgroups S<= T. Note that this is equivalent to the statement that xS = X
for all xeX and S a normal closed syndetic subgroup of T.

PROPOSITION 4.7. Let T be abelian and si ^ MTUR a T-subalgebra. Then the following
are equivalent:

(i) (|^|, 7") is totally minimal,
(ii) ifSc T is closed and syndetic then G(st)/Gs(si) s T/S,

(iii) «/S<= T is closed and syndetic and Gs(s4) = G{s4) then S = T.
Proof (i)=>(ii). Suppose (\sd\, T) is totally minimal and let 5 c T be closed and
syndetic. Then in the notation of 4.2 we have X = \sds\ = \sd\ so that the subgroup
5, = {//AY n X * 0} is equal to 7; therefore by 4.4 G{sd)/Gs{s4) = T/S.

is clear.
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(i). Assume that (iii) holds and let S be a closed syndetic subgroup of T.
(5 is normal because T is abelian.) Let X = x^S = |^ s | and define 5, as above.
Then S, is a normal syndetic subgroup of T with XS, = X and

) (by 4.2).

Thus

G(M, T) = G{X xT, T)
s,

= G(X,St) (by 4.1)

(by 3.17)

and therefore by our assumption (iii) we must have that 5, = T; hence XT = X and
X = \sd\. Therefore (\si\, T) is totally minimal.

5. Suspensions of equicontinuous flows
In this section we apply the results of the previous sections to develop a condition
under which the suspension of a pointed equicontinuous flow is equicontinuous.
We observe that in 4.4 we saw that when S is contained in the center of T and
(X, S) is equicontinuous then (X x s T, T) is equicontinuous. Here we will obtain
a condition for minimal flows in terms of the groups studied in § 3 which is sharp
in the sense that if it is violated then (X x s T, T) will be non-equicontinuous for
some equicontinuous minimal flow (X, S).

We begin with the notion of the maximal equicontinuous T-transformation group
(the so called Bohr compactification of T.)

Definition 5.1. Let T be a locally compact topological group. The Bohr compac-
tification B(T) is a compact topological group which satisfies:

(i) there exists a continuous homomorphism y: T-> B(T) such that y(T) = B(T)
and

(ii) if (p : T-> H is a continuous homomorphism of T into a compact topological
youp YiilVv <pOH= Bl.T1) Xhet\ <p has a continuous extension to a \\omomoip\v\snv
B(T)^H.

LEMMA 5.2. Let T be a locally compact topological group. Then
(1) Tacts on B( T) making (B( T), T) a pointed equicontinuous transformation group.
(2) If (X, T) is an equicontinuous pointed transformation group then (X, x0) is a
factor of (B(T),e).

Proof. This is standard; we leave it to the reader.

PROPOSITION 5.3. Let S c T be a closed syndetic normal subgroup. Then the following
are equivalent:
(i) the map j : B(S)-» B(T) induced by S-» T is one-one
(ii) B(S) x s T= B(T) as T-transformation groups
(iii) G(B(S),S) = G(B{T),T).
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Proof. (i)<=>(ii). Consider the following diagram:

proj
T * T/S

y

B(S) >B(T) >T/S, '
-. ' f

where y' ami y are the continuous honiomorphisms guaranteed by 5.1, and <p is
the .unique T-homomorphism guaranteed by 5.2 and the fact that (T/S,T) is
equicontinuous (since S is syndetic). The diagram is commutative by the definition
of j and because T-homomorphisms are unique. Now the composite

<p°j°y':S-*T/S

is constant; but <p °j is continuous and y'(S) = B(S), therefore <p o j is constant. It
follows that if y(t)ej(B(S)) then teS and y(t)=j(y'(t)).

Now the map

induces a homomorphism of pointed transformation groups

t:(B{S)xT,[e,e])-*{B(T),e),
s

(this follows from the commutativity of the above diagram). Also \j)[bx, tt] = i]/[b2, '2]
if and only if j(b^b2) = y(M^'). But by the above this is equivalent to

e =j(bVb2)j(y'(t2tV)) =j(b;1b2y'(t2t;
1)).

Thus i/> is an isomorphism of T- transformation groups if and only if j is one-one.
(ii)=>(iii). This follows directly from 4.1.
(iii)=»(ii). Suppose that G(B(S),S) = G(B(T), T). Then by 4.1 ^

G(B(S)xT,T) =

Since B(S) is equicontinuous it is distal, hence by 2.3, (B(S) xsT, T) is distal. But
B(T) is a factor of B(S) x s T so it follows from 3.15 (6) that B(S) xs TsB(T).

Definition 5.4. Let T be a topological group. A function fe ^(/JT) is said to be
equicontinuous if {tf/te T} is relatively compact in*'#(/3'r). We denote by f?= %T

the T-subalgebra of equicontinuous functions. Note that £ is independent of the
topology on T.

LEMMA 5.5. Let T be a locally compact topological group. Then (B(T), T) =
(|£Tn5KT|, T).

Proof. When T has the discrete topology this is done in [E2]. That is (B(Ta), T*) =
(|<fT|, T*). In general if ̂ c ;1{T is equicontinuous as a T-transformation group then
it is equicontinuous as a Ts-transformation group. Thus using 5.2(2) with the discrete
topology on T, we see that (\st\, T*) is a factor of (|&T|, TR). But then (|^|, T) is
a factor of (|^7-n;)ir|, T) because ^c=j){r. Hence (\%TndiT\, T) is a maximal
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equicontinuous T-transformation group. It follows that \^TndiT\ is a compact
topological group (it must be isomorphic to its enveloping semigroup) which satisfies
the conditions of 5.1. Therefore B(T) = \%TnffiT\ as topological groups and hence
as ^-transformation groups.

PROPOSITION 5.6. Let Sbea closed normal syndetic subgroup ofT, with G( %s n
 SMS) =

G(%Tn?RT). Let (X, S) be a pointed equicontinuous S-transformation group. Then
(X xsT, T) is equicontinuous.

Proof. By 5.2 (X, S) is a factor of (B(S), S), thus (XxsT,T) is a factor of
(B(S) xs T, T). On the other hand combining 5.3 with 5.5 we see that
(B(S)xsT,T) = (B(T),T) which is equicontinuous. Therefore ( X x s r j ) is
equicontinuous.

Remark 5.7. If G(&snffis)^ G(^ r n9{ r ) then by 5.3 B(S) x s T is a nontrivial
extension of B(T) and hence by 5.2 cannot be equicontinuous. Note further that
in view of 2.5, when Tis discrete G(%sn3is) — G(WTn?RT) for all syndetic normal
subgroups 5 of T. In general, 2.4 implies that G{^sn?Rs)s G(^n!Kj-) when S
is a syndetic subgroup of T which is contained in the centre of T.
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