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Abstract
We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids
with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical
equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial
of a matroid, answering a question of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras,
and calculate the Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the
‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric
variety.
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1. Introduction

Let 𝐸 = {1, . . . , 𝑛}. For 𝑆 ⊆ 𝐸 , we write e𝑆 for the sum of the standard basis vectors
∑
𝑖∈𝑆 e𝑖 in the

vector space R𝐸 . A matroid M on E is a collection ℬ of subsets of E, called the bases of M, such that
every edge of the convex hull

𝑃(M) ≔ conv{e𝐵 | 𝐵 ∈ ℬ} ⊆ R𝐸

is parallel to e𝑖 − e 𝑗 for some i and j in E. By definition, the coordinate sum of any point in the base
polytope 𝑃(M) is a constant integer rk(M), called the rank of M, which is equal to |𝐵 | for any 𝐵 ∈ ℬ.
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− − +

Figure 1. An element of Mat2 ([4]) that is valuatively equivalent to zero.

The condition on the edges of the base polytope is equivalent to the basis exchange property appearing
in the work of Whitney [Whi35] that introduced matroids.

For any 𝐵1, 𝐵2 ∈ ℬ and any 𝑖 ∈ 𝐵1 \ 𝐵2, there is 𝑗 ∈ 𝐵2 \ 𝐵1 such that (𝐵1 \ 𝑖) ∪ 𝑗 ∈ ℬ.

The above definition of matroids via base polytopes arose from the study of moment map images of
torus orbit closures in Grassmannians by Gelfand, Goresky, MacPherson and Serganova in [GGMS87].
See [Kun86, Chapter 1] for an excellent historical overview of early contributions and [Ard22] and [Eur]
for snapshots of recent advances in the theory of matroids. For a general introduction to matroids, and
for any undefined matroid terms, we refer to [Oxl11].

For a nonnegative integer 𝑟 ≤ 𝑛, we consider the free abelian group generated by the set of matroids
of rank r on E:

Mat𝑟 (𝐸) ≔
{ ∑

𝑖

𝑐𝑖M𝑖

��� 𝑐𝑖 is an integer and M𝑖 is a rank 𝑟matroid on 𝐸
}
.

We study three equivalence relations on Mat𝑟 (𝐸) – valuative, homological and numerical.

Definition 1.1. Let 1𝑃 (M) be the indicator function of the base polytope of M, which is the function
R𝐸 → Z defined by 1𝑃 (M) (𝑥) = 1 if 𝑥 ∈ 𝑃(M) and 1𝑃 (M) (𝑥) = 0 otherwise. An element

∑
𝑖 𝑐𝑖M𝑖 is

said to be valuatively equivalent to zero if the function
∑
𝑖 𝑐𝑖1𝑃 (M𝑖) is zero.

Figure 1 illustrates an element of Mat2 ([4]) that is valuatively equivalent to zero. The valuative
group of rank r matroids on E, denoted Val𝑟 (𝐸), is the group Mat𝑟 (𝐸) modulo the subgroup of elements
valuatively equivalent to zero. A homomorphism of abelian groups Mat𝑟 (𝐸) → 𝐺 is said to be valuative
if it factors through the valuative group. Many matroid invariants, including the Tutte polynomial,
the Kazhdan–Lusztig polynomial, the motivic zeta function, the Chern–Schwartz–MacPherson (CSM)
cycle and the volume polynomial of the Chow ring, turn out to be valuative. See [AFR10; AS23; Ard22]
for extensive lists and history of the study of valuative matroid invariants.

For the homological equivalence relation, we use the augmented Bergman fan ΣM of M, which is an
r-dimensional simplicial fan in R𝐸 obtained by gluing together the order complex of the lattice of flats
and the independence complex of M. For an explicit description, see Definition 5.10. The augmented
Bergman fan, introduced in [BHM+22], is a central object in the proof of the Dowling–Wilson top-heavy
conjecture and the nonnegativity of the matroid Kazhdan–Lusztig polynomial [BHM+20]. The constant
weight 1 is balanced on the augmented Bergman fan, defining a Minkowski weight [ΣM] in the sense of
[FS97]. We review the definition of Minkowski weights and their identification with homology classes
on toric varieties in Section 5.2.

Definition 1.2. An element
∑
𝑖 𝑐𝑖M𝑖 is said to be homologically equivalent to zero if the Minkowski

weight
∑
𝑖 𝑐𝑖 [ΣM𝑖 ] is zero.

For the numerical equivalence, we use the bilinear intersection pairing

Mat𝑟 (𝐸) ×Mat𝑛−𝑟 (𝐸) −→ Z, (M, M′) ↦−→ deg(M ∧M′),
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where the integer deg(M ∧M′), for a rank r matroid M and a rank 𝑛 − 𝑟 matroid M′ on E, is

deg(M ∧M′) =

{
1 if there are bases 𝐵 of M and 𝐵′ of M′ such that 𝐵 ∩ 𝐵′ = ∅,

0 if otherwise.

We will identify this intersection pairing with an instance of the intersection product on the homology
of a certain n-dimensional smooth projective variety; see Theorem 1.6 and Section 7.

Definition 1.3. An element
∑
𝑖 𝑐𝑖M𝑖 is said to be numerically equivalent to zero if it is in the kernel of

the intersection pairing.

Our first main result states that these three equivalence relations coincide.

Theorem 1.4. The following conditions are equivalent for any 𝜂 ∈ Mat𝑟 (𝐸).

(1) 𝜂 is valuatively equivalent to zero.
(2) 𝜂 is homologically equivalent to zero.
(3) 𝜂 is numerically equivalent to zero.

We establish this equivalence via the combinatorics and algebraic geometry of the stellahedron Π𝐸

of E, which is an n-dimensional simple polytope in R𝐸 with the following equivalent descriptions.

• The permutohedron of E is the convex hull of the permutations

Π𝐸 ≔ conv{𝑤 · (1, 2, . . . , 𝑛) | 𝑤 is a permutation of 𝐸} ⊆ R𝐸 .

Writing R𝐸
≥0 for the nonnegative orthant, the stellahedron of E is

Π𝐸 =
{
𝑢 ∈ R𝐸≥0

�� there exists 𝑣 ∈ Π𝐸 such that 𝑣 − 𝑢 ∈ R𝐸≥0
}
.

This description shows that the permutohedron Π𝐸 is the facet of Π𝐸 on which the standard inner
product with e𝐸 is maximized.

• The independence polytope of a matroid M is the convex hull

𝐼 (M) = conv{e𝐼 | 𝐼 ⊆ 𝐵 for some basis 𝐵 of M} ⊆ R𝐸 .

Writing U𝑟 ,𝐸 for the uniform matroid of rank r on E, whose bases are all size r subsets of E, the
stellahedron of E is the Minkowski sum

Π𝐸 =
𝑛∑
𝑟=0

𝐼 (U𝑟 ,𝐸 ).

This description shows that the standard n-dimensional simplex 𝐼 (U1,𝐸 ) and the standard
n-dimensional cube 𝐼 (U𝑛,𝐸 ) are Minkowski summands of the n-dimensional stellahedron Π𝐸 .
Figure 2 illustrates the case 𝐸 = [3].

We remark that the stellahedron Π𝐸 is a realization of the graph associahedron of the star graph with the
set of endpoints E; see, for example, [PRW08, §10.4]. We refer to [CD06] and [Dev09] for discussions
of graph associahedra and their realizations.1

The stellahedral fan Σ𝐸 is the normal fan of the stellahedron Π𝐸 . It is a simplicial fan that is
unimodular with respect to the lattice Z𝐸 ⊆ R𝐸 . The stellahedral variety of E is the associated smooth
projective toric variety 𝑋𝐸 . In this introduction, all varieties will be over the complex numbers. We follow

1In [FS05; PRW08; Pos09], an n-dimensional graph associahedron is realized as a generalized permutohedron in R𝑛+1. For the
star graph with the set of endpoints E, the stellahedron Π𝐸 and the projection of that graph associahedron to R𝐸 have the same
normal fan.
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Figure 2. The stellahedron of [3] as the sum of three independence polytopes.

the conventions of [Ful93] and [CLS11] for toric varieties. The compact complex manifold 𝑋𝐸 is the
central geometric object behind Theorem 1.4.

Let T be the open torus (C∗)𝐸 of the stellahedral variety 𝑋𝐸 . The two descriptions of the stellahedron
have the following geometric consequences:

• The permutohedral variety 𝑋𝐸 , the toric variety of the permutohedron Π𝐸 , admits a T-equivariant
embedding

𝜄𝐸 : 𝑋𝐸 −→ 𝑋𝐸 ,

corresponding to the permutohedral facet Π𝐸 of Π𝐸 .
• There is a birational toric morphism to the n-dimensional projective space

𝜋𝐸 : 𝑋𝐸 −→ P
𝐸 ,

corresponding to the Minkowski summand 𝐼 (U1,𝐸 ) of Π𝐸 .
• There is a birational toric morphism to the n-dimensional product of projective lines

𝜋1𝐸 : 𝑋𝐸 −→ (P
1)𝐸 ,

corresponding to the Minkowski summand 𝐼 (U𝑛,𝐸 ) of Π𝐸 .

Summarizing, we have T-equivariant maps

𝑋𝐸 𝑋𝐸

P𝐸 (P1)𝐸 .

𝜄𝐸

𝜋1𝐸𝜋𝐸

The image of 𝑋𝐸 in P𝐸 is the hyperplane at infinity P(C𝐸 ), and the image of 𝑋𝐸 in (P1)𝐸 is the point
∞𝐸 . Note that P𝐸 and (P1)𝐸 are equivariant compactifications of the additive group C𝐸 . In Section 3,
we observe that the stellahedral variety 𝑋𝐸 is also a C𝐸 -equivariant compactification of C𝐸 , and that
both maps to P𝐸 and (P1)𝐸 are equivariant with respect to C𝐸 .

Theorem 1.5. For every integer r, the assignment M ↦→ [ΣM] defines an isomorphism

Val𝑟 (𝐸)
∼
→ 𝐻2𝑟 (𝑋𝐸 ,Z)

from the valuative group of matroids on E to the homology of the stellahedral variety of E.

Theorem 1.5 explains the coincidence of the valuative and the homological equivalence relations in
Theorem 1.4. In Corollary 7.9, we use Theorem 1.5 to give a geometric interpretation of a result of
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Derksen and Fink on a combinatorial basis of the valuative group [DF10]. The restriction of [ΣM] to
the permutohedral variety 𝑋𝐸 is given by the Minkowski weight [ΣM], which is the constant balanced
weight 1 on the Bergman fan ΣM if the matroid is loopless and the constant balanced weight 0 if
otherwise. Thus, Theorem 1.5 also recovers a result of Hampe that identifies the homology of 𝑋𝐸 with
the valuative group of loopless matroids [Ham17].

Poincaré duality for 𝑋𝐸 endows the homology of 𝑋𝐸 with the intersection product that is dual to the
cup product on the cohomology of 𝑋𝐸 . We identify this intersection product with matroid intersection.
Recall that the matroid intersection of matroids M and M′ on E is a matroid M ∧M′ on E whose bases
are the minimal members of the family

{𝐵 ∩ 𝐵′ | 𝐵 is a basis of M and 𝐵′ is a basis of M′}.

In particular, M ∧M′ has rank zero if and only if M and M′ have bases B and 𝐵′ that are disjoint. Let
us denote by crk(M) = 𝑛 − 𝑟 the corank of a rank r matroid M on E.
Theorem 1.6. The intersection product on 𝑋𝐸 satisfies

[ΣM] · [ΣM′ ] =

{
[ΣM∧M′ ] if crk(M) + crk(M′) = crk(M ∧M′),
0 if otherwise.

Theorem 1.6, together with Poincaré duality for 𝑋𝐸 , explains the coincidence of the homological and
the numerical equivalence relations in Theorem 1.4. By restricting to the permutohedral variety 𝑋𝐸 ,
we recover the following description of the intersection product on the homology of 𝑋𝐸 , previously
established by Speyer in [Spe08, Proposition 4.4].
Corollary 1.7. The intersection product on 𝑋𝐸 satisfies

[ΣM] · [ΣM′ ] =

{
[ΣM∧M′ ] if M ∧M′ is loopless,
0 if otherwise.

Recall that a realization of M over C is an r-dimensional linear subspace 𝐿 ⊆ C𝐸 such that

ℬ =
{
𝐵 ⊆ 𝐸

�� the projection C𝐸 � C𝐵 restricts to an isomorphism 𝐿
∼
→ C𝐵

}
.

The augmented wonderful variety 𝑊𝐿 is the closure of L in 𝑋𝐸 . We show in Corollary 5.11 that the
homology class of the augmented wonderful variety in the stellahedral variety is given by

[𝑊𝐿] = [ΣM] ∈ 𝐻2𝑟 (𝑋𝐸 ,Z).

The intersection of 𝑊𝐿 and 𝑋𝐸 is the wonderful variety 𝑊𝐿 of de Concini and Procesi [DCP95],
which is the closure of the projective hyperplane arrangement complement P(𝐿) ∩ (C∗)𝐸/C∗ in 𝑋𝐸 .
The main geometric objects behind the displayed identity and the proofs of Theorems 1.5 and 1.6 are
certain T-equivariant vector bundles on 𝑋𝐸 which we call ‘augmented tautological bundles’. For a linear
subspace 𝐿 ⊆ C𝐸 , these are T-equivariant vector bundles Q𝐿 and S𝐿 on 𝑋𝐸 that have the following
properties:
• The augmented wonderful variety 𝑊𝐿 is the vanishing locus of a distinguished global section of Q𝐿

(Theorem 5.2). Consequently, the normal bundle N𝑊𝐿/𝑋𝐸 is isomorphic to the restriction of Q𝐿 to
𝑊𝐿 (Corollary 5.4).

• The logarithmic tangent bundle T𝑊𝐿 (− log 𝜕𝑊𝐿) of 𝑊𝐿 , viewed as a compactification of 𝐿 = 𝑊𝐿 \

𝜕𝑊𝐿 , is isomorphic to the restriction of S𝐿 to 𝑊𝐿 (Theorem 9.2).
See Definition 4.2 for the construction of the augmented tautological bundles. By restricting these
bundles Q𝐿 and S𝐿 to the permutohedral variety 𝑋𝐸 , one recovers the ‘tautological bundles’ Q𝐿 and
S𝐿 (Definition 4.5) introduced in [BEST23].
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In general, for an arbitrary matroid M with possibly no realization overC, instead of vector bundles on
𝑋𝐸 we have T-equivariant K-classes [QM] and [SM] on 𝑋𝐸 . These classes, which we call ‘augmented
tautological classes’, satisfy the following properties:

• If 𝐿 ⊆ C𝐸 is a realization of M, then [QM] = [Q𝐿] and [SM] = [S𝐿] as T-equivariant K-classes
(Proposition 4.4).

• The assignments M ↦→ [QM] and M ↦→ [SM] are both valuative maps from Mat𝑟 (𝐸) to the
Grothendieck ring of T-equivariant vector bundles on 𝑋𝐸 (Proposition 4.7).

• By restricting [QM] and [SM] to the permutohedral variety 𝑋𝐸 , one recovers the ‘tautological classes
of matroids’ [QM] and [SM] introduced in [BEST23].

The Chern classes of augmented tautological classes relate well to independence polytopes and aug-
mented Bergman classes of matroids:

• Under the correspondence between base-point-free divisor classes on toric varieties and polytopes
[CLS11, Section 6.2], the first Chern class 𝑐1 (QM) of [QM] corresponds to the independence polytope
𝐼 (M⊥) of the dual M⊥ of M.

• The top Chern class 𝑐𝑛−𝑟 (QM) ∩ [𝑋𝐸 ] of [QM] is the augmented Bergman class [ΣM].

The augmented tautological classes behave particularly well with respect to the following exceptional
isomorphisms between the Grothendieck ring of vector bundles 𝐾 (𝑋𝐸 ) and the cohomology ring
𝐻•(𝑋𝐸 ,Z). For any K-class [E], we write 𝑐(E) for its total Chern class and [det E] for the K-class of
its determinant line bundle.

Theorem 1.8.

(1) There is a unique ring isomorphism

𝜙 : 𝐾 (𝑋𝐸 )
∼
→ 𝐻•(𝑋𝐸 ,Z)

that satisfies 𝜙([detQ𝐿]) = 𝑐(Q𝐿) for any linear subspace 𝐿 ⊆ C𝐸 .
(2) There is a unique ring isomorphism

𝜁 : 𝐾 (𝑋𝐸 )
∼
→ 𝐻•(𝑋𝐸 ,Z)

that satisfies 𝜁 ([O𝑊𝐿 ]) = [𝑊𝐿] for any linear subspace 𝐿 ⊆ C𝐸 .

Recall that the classical Hirzebruch–Riemann–Roch formula requires the use of rational coefficients.
We show that the isomorphisms 𝜙 and 𝜁 satisfy the following Hirzebruch–Riemann–Roch-type formula
with integer coefficients. We write the sheaf Euler characteristic map and the degree map by

𝜒 : 𝐾 (𝑋𝐸 ) → Z and
∫
𝑋𝐸

: 𝐻•(𝑋𝐸 ,Z) → Z.

For each i in E, let 𝜋𝑖 : 𝑋𝐸 → P
1 be the i-th factor of the map 𝜋1𝐸 : 𝑋𝐸 → (P

1)𝐸 .

Theorem 1.9. For any 𝜉 ∈ 𝐾 (𝑋𝐸 ), the exceptional isomorphisms 𝜙 and 𝜁 satisfy

𝜒
(
𝜉
)
=

∫
𝑋𝐸

𝜙
(
𝜉
)
· 𝑐

( ⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)
)
=

∫
𝜁
(
𝜉
)
· 𝑐

(
𝜋∗𝐸OP𝐸 (−1)

)−1
.

Despite apparent similarities, these identities are not consequences of the classical Hirzebruch–
Riemann–Roch theorem since 𝜙 and 𝜁 differ from the Chern character map. The integral classes
𝑐
( ⊕

𝑖∈𝐸 𝜋∗𝑖OP1 (1)
)

and 𝑐
(
𝜋∗𝐸OP𝐸 (−1)

)−1 play the role of the Todd class for 𝜙 and 𝜁 . The isomorphisms
𝜙 and 𝜁 are closely related to the isomorphism 𝐾 (𝑋𝐸 )

∼
→ 𝐻•(𝑋𝐸 ,Z) in [BEST23, Theorem D] in two

different ways; see Remark 6.7.

https://doi.org/10.1017/fmp.2023.24 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.24


Forum of Mathematics, Pi 7

We prove the existence of the isomorphisms in Theorem 1.8 in Section 6 and use it to prove Theorems
1.5 and 1.6 in Section 7.1. The uniqueness of the isomorphisms in Theorem 1.8 is then derived from
Theorem 1.5 in Section 7.1. We prove Theorem 1.9 in Section 8.1.

Theorem 1.9 reveals remarkable numerical properties of the augmented tautological classes. Recall
that the Tutte polynomial of a matroid M on E, introduced by Tutte [Tut67] for graphs and by Crapo
[Cra69] for matroids, is the bivariate polynomial

𝑇M (𝑥, 𝑦) =
∑
𝑆⊆𝐸

(𝑥 − 1)rkM (𝐸)−rkM (𝑆) (𝑦 − 1) |𝑆 |−rkM (𝑆) ,

where rkM : 2𝐸 → Z here denotes the rank function of M. We give the following geometric interpre-
tations of the Tutte polynomial as intersection numbers of the Chern and Segre classes of augmented
tautological classes. For a K-class [E] and a formal variable u, we set

𝑐(E , 𝑢) =
∑
𝑖

𝑐𝑖 (E)𝑢𝑖 and 𝑠(E , 𝑢) =
∑
𝑖

𝑠𝑖 (E)𝑢𝑖 ,

where 𝑐𝑖 (E) is the i-th Chern class of [E] and 𝑠𝑖 (E) is the i-th Segre class of [E].

Theorem 1.10. For any rank r matroid M on E, we have

𝑇M (𝑢 + 1, 𝑣 + 1) =
∫
𝑋𝐸

𝑐(SM, 𝑢) · 𝑣𝑛−𝑟 · 𝑐(QM, 𝑣−1) · 𝑐
( ⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)
)
.

Eliminating S using Q∨, we get the following identity for the homogeneous polynomial

𝑡M(𝑥, 𝑦, 𝑧, 𝑤) ≔ (𝑦 + 𝑧)𝑟 (𝑥 + 𝑤)𝑛−𝑟𝑇M

(
𝑥 + 𝑦

𝑦 + 𝑧
,
𝑥 + 𝑦 + 𝑧 + 𝑤

𝑥 + 𝑤

)
.

Theorem 1.11. For any rank r matroid M on E, we have

𝑡M (𝑥, 𝑦, 𝑧, 𝑤) =
∫
𝑋𝐸

𝑠
(
𝜋∗𝐸OP𝐸 (−1), 𝑥

)
· 𝑐

( ⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1), 𝑦
)
· 𝑠(Q∨M, 𝑧) · 𝑐(QM, 𝑤).

The second formula implies the following analytic property of the Tutte polynomial.

Theorem 1.12. For any rank r matroid M on E, the polynomial 𝑡M(𝑥, 𝑦, 𝑧, 𝑤) is a denormalized
Lorentzian polynomial in the sense of [BH20; BLP23].

See Section 8.3 for a short review of Lorentzian polynomials, and see Remark 8.9 for a strengthening
of Theorem 1.12. If M has a realization 𝐿 ⊆ C𝐸 , Theorem 1.12 follows from Theorem 1.11 and the fact
that the vector bundle Q𝐿 is globally generated. For an arbitrary, not necessarily realizable, matroid M,
we establish Theorem 1.12 by constructing tropical models of augmented tautological classes and then
by applying tools from tropical Hodge theory as developed in [ADH23, Section 5].

Remark 1.13. Consider the homogeneous polynomial

𝑡M(𝑥, 𝑦, 𝑧, 𝑤) ≔ (𝑥 + 𝑦)−1(𝑦 + 𝑧)𝑟 (𝑥 + 𝑤)𝑛−𝑟𝑇M

(
𝑥 + 𝑦

𝑦 + 𝑧
,
𝑥 + 𝑦

𝑥 + 𝑤

)
.

In [BEST23, Theorems A and B], the authors show the identity

𝑡M (𝑥, 𝑦, 𝑧, 𝑤) =
∫
𝑋𝐸

𝑠
(
𝜋∗𝐸OP(C𝐸 ) (−1), 𝑥

)
· 𝑐(QU1,𝐸

, 𝑦) · 𝑠(Q∨M, 𝑧) · 𝑐(QM, 𝑤)

https://doi.org/10.1017/fmp.2023.24 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.24


8 C. Eur, J. Huh and M. Larson

and show that this polynomial is a denormalized Lorentzian polynomial. The authors do not know
whether this result can be deduced directly from Theorem 1.11 and 1.12, or vice versa.

Specializing Theorem 1.12 by setting 𝑥 = 1, 𝑦 = 0, 𝑧 = 𝑞, 𝑤 = 0, we obtain the following corollary,
which appeared in [Wag98, Problem 6.10] and [SSV22, Conjecture 2] in the context of Postnikov–
Shapiro algebras of graphs [PS04].

Corollary 1.14. For any rank r matroid M, the coefficients of the polynomial 𝑞𝑟 𝑇M (𝑞
−1, 1 + 𝑞) form a

log-concave sequence with no internal zeroes.

We conclude with the study of the geometry of matroid Schubert varieties via augmented tautological
bundles. For a realization 𝐿 ⊆ C𝐸 of a matroid M, its matroid Schubert variety 𝑌𝐿 is the closure of L
in (P1)𝐸 . Matroid Schubert varieties play a central role in the proof of the Dowling–Wilson top-heavy
conjecture in the realizable case [HW17], and their intersection cohomologies are the main objects of
study in the proof of the general case [BHM+20]. Matroid Schubert varieties satisfy several features
analogous to those of classical Schubert varieties in flag varieties; see [BHM+20]. Two such features
are as follows:

• The map 𝜋1𝐸 : 𝑋𝐸 → (P
1)𝐸 restricts to a resolution of singularities 𝑊𝐿 → 𝑌𝐿 for any 𝐿 ⊆ C𝐸 . The

boundary 𝜕𝑊𝐿 = 𝑊𝐿 \ 𝐿 is a simple normal crossings divisor on 𝑊𝐿 .
• The standard affine paving of (P1)𝐸 restricts to an affine paving of a matroid Schubert variety 𝑌𝐿 ,

whose k-dimensional cells are

𝑈𝐹 = {𝑝 ∈ 𝑌 | 𝑝𝑖 = ∞ if and only if 𝑖 ∉ 𝐹},

one for each rank k flat F of M. Writing 𝑦𝐹 for the homology class of the closure of 𝑈𝐹 , which is
another matroid Schubert variety, we have

𝐻•(𝑌𝐿 ,Z) �
⊕

𝐹 ∈ℒ (M)
Z 𝑦𝐹 ,

where ℒ(M) is the lattice of flats of M.

As mentioned before, the restriction of S𝐿 to the augmented wonderful variety 𝑊𝐿 is isomorphic to the
log-tangent bundle T𝑊𝐿 (− log 𝜕𝑊𝐿). This allows us to deduce the following remarkably simple formula
for the CSM classes of matroid Schubert cells in their varieties. See Section 9.2 for a brief review of
CSM classes.

Theorem 1.15. The CSM class of 1𝐿 in 𝑌𝐿 is the sum over all flats

𝑐𝑆𝑀 (1𝐿) =
∑

𝐹 ∈ℒ (M)
𝑦𝐹 ∈ 𝐻•(𝑌𝐿 ,Z).

In particular, the CSM class of L in 𝑌𝐿 is effective. The analogous effectivity of CSM classes of
classical Schubert cells in their varieties was established in [AMSS].

We include an appendix that discusses notions of valuativity and polytope algebras. We mostly collect
statements from the literature, but we also give an isomorphism between a certain polytope algebra and
the K-ring of a smooth projective toric variety.

Notation

Let k be an algebraically closed field of arbitrary characteristic. A variety is an irreducible and reduced
scheme of finite type separated over k. When k = C, the singular homology groups in even degrees and
the Chow homology groups coincide for smooth projective toric varieties and augmented wonderful
varieties, so we will use the two groups interchangeably in such cases, and similarly for the singular
cohomology ring and the Chow cohomology ring. We denote by 〈·, ·〉 the standard pairing on k𝐸 or Z𝐸 .
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2. Torus-equivariant geometry preliminaries

We collect some facts about the torus-equivariant K-ring and torus-equivariant Chow ring of a smooth
projective toric variety. The reader may skip this section and refer back as needed.

Let 𝑋Σ be the smooth projective toric variety with fan Σ, and let 𝑇 = G𝐸𝑚 be the torus with character
lattice Char(𝑇) = Z𝐸 . Suppose that T acts on 𝑋Σ via a surjective map of tori with connected kernel to
the dense open torus of 𝑋Σ so that the corresponding map of cocharacter lattices is Z𝐸 → Z𝐸/(lin∩Z𝐸 )
for some linear subspace lin ⊂ Z𝐸 ⊗ R. These data are encoded by the n-dimensional complete fan Σ in
R𝐸 with lineality space lin such that Σ/lin = Σ.

2.1. Localization theorems

Let 𝐾𝑇 (𝑋Σ) be the T-equivariant K-ring of 𝑋Σ, the Grothendieck ring of T-equivariant vector bundles
on 𝑋Σ. Let 𝐾 (𝑋Σ) denote the K-ring of 𝑋Σ. By forgetting the equivariant structure, one has a surjective
map 𝐾𝑇 (𝑋Σ) → 𝐾 (𝑋Σ). By taking the T-equivariant sheaf Euler characteristic, one has a 𝐾𝑇 (pt)-
module homomorphism 𝜒𝑇 : 𝐾𝑇 (𝑋Σ) → 𝐾𝑇 (pt). We identify 𝐾𝑇 (pt) = Z[Char(𝑇)] with the Laurent
polynomial ring Z[𝑇±1

1 , . . . , 𝑇±1
𝑛 ], where 𝑇𝑖 is the standard character of 𝑖 ∈ 𝐸 under the identification

Char(𝑇) = Z𝐸 .
Let 𝐴•𝑇 (𝑋Σ) denote the equivariant Chow ring of 𝑋Σ, as defined in [EG98], and let 𝐴•(𝑋Σ) denote

the Chow ring of 𝑋Σ. Similar to the K-rings, one has a surjective map 𝐴•𝑇 (𝑋Σ) → 𝐴•(𝑋Σ) and a
𝐴•𝑇 (pt)-module homomorphism

∫ 𝑇 : 𝐴•𝑇 (𝑋Σ) → 𝐴•𝑇 (pt). We identify 𝐴•𝑇 (pt) with the polynomial ring
Z[𝑡1, . . . , 𝑡𝑛]. Let

∫
: 𝐴•(𝑋Σ) → Z be the (nonequivariant) degree map.

Let Σ(𝑘) denote the set of cones of dimension k of Σ. For each maximal cone 𝜎 of Σ, we have a map
𝐾𝑇 (𝑋Σ) → 𝐾𝑇 (pt𝜎) = Z[𝑇±1

1 , . . . , 𝑇±1
𝑛 ] given by pulling back to or localizing at the corresponding

fixed point pt𝜎 . Similarly, we have a map 𝐴•𝑇 (𝑋Σ) → 𝐴•𝑇 (pt𝜎) = Z[𝑡1, . . . , 𝑡𝑛]. These maps can be com-
bined into maps 𝐾𝑇 (𝑋Σ) → 𝐾𝑇 (𝑋

𝑇
Σ ) =

∏
𝜎∈Σ (𝑛) 𝐾𝑇 (pt) and 𝐴•𝑇 (𝑋Σ) → 𝐴•𝑇 (𝑋

𝑇
Σ ) =

∏
𝜎∈Σ (𝑛) 𝐴

•
𝑇 (pt),

where 𝑋𝑇
Σ denotes the set of T-fixed points of 𝑋Σ. For a character 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ Z

𝐸 , we denote
𝑇 𝑣 = 𝑇 𝑣1

1 · · ·𝑇
𝑣𝑛
𝑛 and 𝑡𝑣 = 𝑣1𝑡1 + · · · + 𝑣𝑛𝑡𝑛. Then we have the following localization theorem.

Theorem 2.1. Let 𝑋Σ as above. Then

(1) [VV03, Corollary 5.11] The restriction map 𝐾𝑇 (𝑋Σ) → 𝐾𝑇 (𝑋
𝑇
Σ ) is injective, and its image is the

subring of
∏

𝜎∈Σ (𝑛) 𝐾𝑇 (pt) given by

⎧⎪⎪⎨⎪⎪⎩ 𝑓 ∈
∏

𝜎∈Σ (𝑛)

𝐾𝑇 (pt)

������ 𝑓𝜎 − 𝑓𝜎′ ≡ 0 mod 1 − 𝑇 𝑣

whenever dim 𝜎 ∩ 𝜎′ = 𝑑 − 1 with R(𝜎 ∩ 𝜎′) = ker 𝑣

⎫⎪⎪⎬⎪⎪⎭ .

Moreover, the map 𝐾𝑇 (𝑋Σ) → 𝐾 (𝑋Σ) forgetting the equivariant structure is surjective, with kernel
𝐼𝐾 equal to the ideal generated by 𝑓 − 𝑓 (1, . . . , 1), where f is a global Laurent polynomial, that is,
𝑓𝜎 for all 𝜎 ∈ Σ(𝑛) equals a common Laurent polynomial.

(2) [Pay06] The restriction map 𝐴•𝑇 (𝑋Σ) → 𝐴•𝑇 (𝑋
𝑇
Σ ) is injective, and its image is the subring of∏

𝜎∈Σ (𝑛) 𝐴
•
𝑇 (pt) given by

⎧⎪⎪⎨⎪⎪⎩ 𝑓 ∈
∏

𝜎∈Σ (𝑛)

𝐴•𝑇 (pt)

������ 𝑓𝜎 − 𝑓𝜎′ ≡ 0 mod 𝑡𝑣
whenever dim 𝜎 ∩ 𝜎′ = 𝑑 − 1 with R(𝜎 ∩ 𝜎′) = ker 𝑣

⎫⎪⎪⎬⎪⎪⎭ .

Moreover, the map 𝐴•𝑇 (𝑋Σ) → 𝐴•(𝑋Σ) forgetting the equivariant structure is surjective, with kernel
𝐼𝐴 equal to the ideal generated by 𝑓 − 𝑓 (0, . . . , 0), where f is a global polynomial, that is, 𝑓𝜎 for
all 𝜎 ∈ Σ(𝑛) equals a common polynomial.
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2.2. Duality, rank, symmetric powers, exterior powers, Chern classes and Segre classes

We now recall the description of several operations on the equivariant K-ring of a toric variety in
terms of localization at fixed points. Let [E] ∈ 𝐾𝑇 (𝑋Σ) be an equivariant K-class, localizing to
[E]𝜎 =

∑𝑘𝜎
𝑖=1 𝑎𝜎,𝑖𝑇

𝑚𝜎,𝑖 at a torus-fixed point corresponding to a maximal cone 𝜎 ∈ Σ(𝑛).
There is a ring involution 𝐷𝐾 on 𝐾𝑇 (𝑋Σ) defined by sending the class of an equivariant vector

bundle to the class of the dual vector bundle. The dual class 𝐷𝐾 ([E]) := [E]∨ has

𝐷𝐾 ([E])𝜎 =
𝑘𝜎∑
𝑖=1

𝑎𝜎,𝑖𝑇
−𝑚𝜎,𝑖 .

There is a corresponding ring involution, denoted 𝐷𝐴, on 𝐴•𝑇 (𝑋Σ), defined by 𝐷𝐴(𝑡𝑖) ↦→ −𝑡𝑖 at each
torus-fixed point. This multiplies by (−1)𝑘 on 𝐴𝑘

𝑇 (𝑋Σ). These involutions descend to 𝐾 (𝑋Σ) and 𝐴•(𝑋Σ).
As toric varieties are integral, every coherent sheaf on a toric variety has a rank. As the rank is

additive in short exact sequences, this defines a ring homomorphism rk : 𝐾𝑇 (𝑋Σ) → Z, which descends
to 𝐾 (𝑋Σ) → Z. The rank of [E] is

∑𝑘𝜎
𝑖=1 𝑎𝜎,𝑖 , which is independent of the choice of 𝜎.

The operation that assigns to each equivariant vector bundle its j-th symmetric or exterior power
extends naturally to 𝐾 (𝑋Σ) and 𝐾𝑇 (𝑋Σ). Explicitly, with u a formal variable, we have that

∞∑
𝑗=0

∧ 𝑗 [E]𝜎𝑢 𝑗 =
𝑘𝜎∏
𝑖=1
(1 + 𝑇𝑚𝜎,𝑖𝑢)𝑎𝜎,𝑖 , and

∞∑
𝑗=0

Sym 𝑗 [E]𝜎𝑢 𝑗 =
𝑘𝜎∏
𝑖=1

(
1

1 − 𝑇𝑚𝜎,𝑖𝑢

)𝑎𝜎,𝑖

.

The function that sends a vector bundle to its equivariant total Chern class extends to a function
𝑐𝑇 : 𝐾𝑇 (𝑋Σ) → 𝐴•𝑇 (𝑋Σ), which is multiplicative in the sense that 𝑐𝑇 (E + F) = 𝑐𝑇 (E) · 𝑐𝑇 (F). The
equivariant Chern polynomial 𝑐𝑇 (E , 𝑢) is the polynomial 𝑐𝑇0 (E) + 𝑐𝑇1 (E)𝑢 + 𝑐𝑇2 (E)𝑢2 + · · · , where u is
a formal variable. Define similarly the Chern polynomial 𝑐(E , 𝑢) ∈ 𝐴•(𝑋Σ) [𝑢]. The equivariant total
Chern class localizes to

𝑐𝑇 (E , 𝑢)𝜎 =
∞∑
𝑗=0

𝑐𝑇𝑗 (E)𝜎𝑢 𝑗 =
𝑘𝜎∏
𝑖=1
(1 + 𝑢𝑡𝑚𝜎,𝑖 )

𝑎𝜎,𝑖 ,

where u is a formal variable.
If E is a vector bundle on 𝑋Σ, then E has a Segre class in 𝐴•(𝑋Σ), characterized by the property that

𝑐(E)𝑠(E) = 1. We define the equivariant Segre class to be the inverse of 𝑐𝑇 (E) in 𝐴•𝑇 (𝑋Σ) [𝑐
𝑇 (E)−1].

Because 𝑐(E) is a unit in 𝐴•(𝑋Σ), there is a natural map 𝐴•𝑇 (𝑋Σ) [𝑐
𝑇 (E)−1] → 𝐴•(𝑋Σ), and the image

of 𝑠𝑇 (E) is 𝑠(E). Define the (equivariant) Segre polynomial in the same way as the (equivariant) Chern
polynomial.

3. Stellahedral varieties

We describe the stellahedral fan Σ𝐸 and its variety 𝑋𝐸 in several different ways, and we record several
useful properties of 𝑋𝐸 we will need. The closely related permutohedral fan Σ𝐸 and its variety 𝑋𝐸 will
often appear and aid the discussion.

3.1. The stellahedral fan via compatible pairs

We describe the stellahedral fan in terms of its cones. We start by describing the closely related
permutohedral fan, which both serves as a motivation for and appears as a substructure in the stellahedral
fan.
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Definition 3.1. The permutohedral fan Σ𝐸 is a fan in R𝐸/Re𝐸 that consists of cones 𝜎ℱ for each chain
ℱ : 𝐹1 � · · · � 𝐹𝑘 of nonempty proper subsets of E, where

𝜎ℱ = cone{e𝐹1 , . . . , e𝐹𝑘 }.

Here, we denoted 𝑢 for the image of 𝑢 ∈ R𝐸 in R𝐸/Re𝐸 .

That this definition of Σ𝐸 is equivalent to its description as the normal fan of the permutohedron
Π𝐸 = conv{𝑤 · (1, 2, . . . , 𝑛) | 𝑤 is a permutation of 𝐸} ⊆ R𝐸 is a standard fact about Coxeter reflection
groups; see for instance [BB05]. We now give a similar description of the stellahedral fan Σ𝐸 in terms
of ‘compatible pairs’ as given in [BHM+22, §2].

Definition 3.2. A pair (𝐼,ℱ) consisting of a subset 𝐼 ⊆ 𝐸 and a chainℱ : 𝐹1 � 𝐹2 � · · · � 𝐹𝑘 of proper
subsets of E is said to be compatible if I is a subset of every element of ℱ. We write 𝐼 ≤ ℱ in this case.

Both the subset I and the chain ℱ are allowed to be empty. In contrast to the permutohedral case, the
empty set is allowed to be an element in the chain ℱ. Make the following a definition.

Proposition 3.3. [BHM+22, Proposition 2.6] The stellahedral fan Σ𝐸 is a simplicial fan that consists
of cones 𝜎𝐼 ≤ℱ for each compatible pair 𝐼 ≤ ℱ, where

𝜎𝐼 ≤ℱ = cone{e𝑖 | 𝑖 ∈ 𝐼} + cone{−e𝐸\𝐹 | 𝐹 ∈ ℱ}.

We denote the rays of the fan Σ𝐸 by

𝜌𝑖 = 𝜎{𝑖 }≤∅ = cone(e𝑖) for each 𝑖 ∈ 𝐸 and 𝜌𝑆 = 𝜎∅≤{𝑆 } = cone(−e𝐸\𝑆) for each 𝑆 � 𝐸.

The proposition gives the following corollary concerning the stars of the stellahedral fan. Recall that
for a fan Σ in R𝐸 , the star of a cone 𝜎 ∈ Σ is a fan, denoted star𝜎 Σ, in R𝐸/R𝜎 whose cones are the
images of the cones in Σ containing 𝜎.

Corollary 3.4. [BHM+22, Proposition 2.7] Let 𝐼 = {𝑖1, . . . , 𝑖 𝑗 } ≤ ℱ : 𝐹1 � · · · � 𝐹𝑘 be a compatible
pair, and by convention set 𝐹𝑘+1 = 𝐸 (so 𝐹1 = 𝐸 if ℱ is an empty chain). Then, the isomorphism

R𝐸/R𝜎𝐼 ≤ℱ = R𝐸/R{e𝑖1 , . . . , e𝑖 𝑗 ,−e𝐸\𝐹1 , . . . ,−e𝐸\𝐹𝑘
} � R𝐹1\𝐼 ×

𝑘∏
𝑖=1
R𝐹𝑖+1\𝐹𝑖/Re𝐹𝑖+1\𝐹𝑖

induces an isomorphism of fans

star𝜎𝐼≤ℱ Σ𝐸 � Σ𝐹1\𝐼 ×

𝑘∏
𝑖=1

Σ𝐹𝑖+1\𝐹𝑖
.

Example 3.5. When (𝐼,ℱ) = (∅, {∅}) corresponding to the ray 𝜌∅ = cone(−e𝐸 ), we have that
star𝜌∅ Σ𝐸 � Σ𝐸 . In particular, we recover that the permutohedral variety 𝑋𝐸 arise as the T-invariant
divisor of 𝑋𝐸 corresponding to the ray 𝜌∅, as noted in the introduction. From the map Z𝐸 → Z𝐸/Z𝜌∅ =
Z𝐸/Ze𝐸 , we have that the open dense torus of 𝑋𝐸 is the projectivization P𝑇 = (k∗)𝐸/k∗ of T.

We will often use Example 3.5 to recover or relate the ‘augmented’ structures on stellahedral varieties
to the ‘nonaugmented’ versions on permutohedral varieties. We will use the more general star structures
of the stellahedral fan in §4.2, where we study the restriction of augmented tautological bundles to
various torus-invariant subvarieties of the stellahedral variety.
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3.2. Refinements and coarsenings

We record how the stellahedral fan Σ𝐸 arises as either a refinement or a coarsening of certain fans.
First, we note that Σ𝐸 is an iterated stellar subdivision of coarser fans in two distinguished ways. Both
statements can be verified via Proposition 3.3.

Proposition 3.6. Let Σ𝐸 be the stellahedral fan of E. The following hold.

(a) Let Σ𝑛 be the fan in R𝐸 whose maximal cones are the cones generated by the cardinality-n subsets
of {e1, e2, . . . , e𝑛,−e𝐸 }. Then Σ𝐸 is obtained from Σ𝑛 by performing the stellar subdivision of all
maximal cones of Σ𝑛 that contain the vector −e𝐸 , then performing the stellar subdivision of the
inverse images of codimension 1 cones that contain −e𝐸 and so on.

(b) Let (Σ1)
𝐸 be the fan in R𝐸 whose maximal cones are the 2𝑛 orthants of R𝐸 . Then Σ𝐸 is obtained

from (Σ1)
𝐸 by performing the stellar subdivision of the negative orthant, then performing the stellar

subdivision of the codimension-1 faces of the negative orthant and so on.

Since the toric varieties of Σ𝐸 and (Σ1)
𝐸 are P𝐸 and (P1)𝐸 , respectively, the above two descriptions

of Σ𝐸 can be rephrased to say that the stellahedral variety 𝑋𝐸 is an iterated blow-up along smooth
centers from P𝐸 and from (P1)𝐸 . The two maps 𝜋𝐸 : 𝑋𝐸 → P

𝐸 and 𝜋1𝐸 : 𝑋𝐸 → (P
1)𝐸 are the blow-

down maps. For 𝑖 ∈ 𝐸 , let 𝜋𝑖 : 𝑋𝐸 → P
1 be the composition of 𝜋1𝐸 with the projection to the i-th P1.

These maps from 𝑋𝐸 to projective spaces give the following distinguished divisor classes on 𝑋𝐸 .

Definition 3.7. With notations as above, we denote

𝛼 = 𝜋∗𝐸 (hyperplane class of P𝐸 ) and 𝑦𝑖 = 𝜋∗𝑖 (hyperplane class of P1).

We now describe the stellahedral fan Σ𝐸 as a coarsening of a permutohedral fan. This description of
Σ𝐸 will be useful for our discussion of the tropical geometry of augmented wonderful varieties in §5.3
and for producing a basis for Σ𝐸 in §7.2.

Denote by 𝐸 = 𝐸 � {0}. Let p be the isomorphism of lattices

𝑝 : Z𝐸/Ze𝐸 → Z
𝐸 given by (𝑎0, 𝑎1, . . . , 𝑎𝑛) ↦→ (𝑎1 − 𝑎0, . . . , 𝑎𝑛 − 𝑎0).

That is, for 𝑆 ⊆ 𝐸 we have e𝑆 ↦→ e𝑆 if 0 ∉ 𝑆 and e𝑆 ↦→ −e𝐸\𝑆 if 0 ∈ 𝑆. To show that the stellahedral fan
Σ𝐸 of E is the image under p of a coarsening of the permutohedral fan Σ𝐸 of 𝐸 , we use the following
notions from [DCP95; FY04] in an equivalent formulation given in [Pos09, §7]. A building set is a
collection G of subsets of 𝐸 such that {𝑖} ∈ G for any 𝑖 ∈ 𝐸 , and if S and 𝑆′ are in G with 𝑆∩𝑆′ ≠ ∅, then
so is 𝑆∪ 𝑆′. The nested complex N of a building set G is a simplicial complex on vertices G whose faces
are collections {𝑋1, . . . , 𝑋𝑘 } ⊆ G such that for every subcollection {𝑋𝑖1 , . . . , 𝑋𝑖ℓ } with ℓ ≥ 2 consisting
only of pairwise incomparable elements, one has

⋃ℓ
𝑗=1 𝑋𝑖 𝑗 ∉ G. When 𝐸 ∈ G, the set of cones

{
cone{e𝑋1 , . . . , e𝑋𝑘 } ⊆ R

𝐸/Re𝐸 | {𝑋1, . . . , 𝑋𝑘 } ⊆ G \ {∅, 𝐸} a face of N
}

is a smooth fan in R𝐸/Re𝐸 that coarsens the permutohedral fan Σ𝐸 .

Proposition 3.8. The collection G = {𝑆 ∪ 0 | 𝑆 ⊆ 𝐸} ∪ 𝐸 is a building set whose fan projects
isomorphically onto the stellahedral fan Σ𝐸 under p.

Proof. Both the facts that G is a building set and that the faces of N are {𝑆1 ∪ 0, . . . , 𝑆𝑘 ∪ 0} ∪ 𝐼, where
∅ ⊆ 𝑆1 � · · · � 𝑆𝑘 ⊆ 𝐸 and ∅ ⊆ 𝐼 ⊆ 𝑆1, are straightforward to check. The rest of the proposition
follows from Proposition 3.3. �
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3.3. Polymatroids

A standard correspondence between polyhedra and divisors on toric varieties [CLS11, §6.2] (see also
[ACEP20, §2.4]) states the following: For a lattice polytope Q and the toric variety 𝑋𝑄 defined by its
normal fan Σ𝑄, the base-point-free torus-invariant divisors on 𝑋𝑄 are in bijection with deformations
of Q, which are lattice polytopes whose normal fans coarsen Σ𝑄. We show that specializing this to the
stellahedral variety 𝑋𝐸 gives a correspondence between the set of base-point-free divisor classes on 𝑋𝐸

and a family of polytopes called ‘polymatroids’ introduced in [Edm70].

Definition 3.9. For vectors 𝑢, 𝑣 ∈ R𝐸 , let us denote 𝑢 ≥ 𝑣 if 𝑢 − 𝑣 ∈ R𝐸
≥0. A polymatroid on E is a

nonempty polytope P in the nonnegative orthant R𝐸
≥0 satisfying the following two properties:

(1) If 𝑣 ∈ R𝐸
≥0 such that 𝑢 ≥ 𝑣 for some 𝑢 ∈ 𝑃, then 𝑣 ∈ 𝑃.

(2) For any 𝑣 ∈ R𝐸
≥0, every maximal 𝑢 ∈ 𝑃 such that 𝑢 ≤ 𝑣 has the same coordinate sum 〈𝑢, e𝐸 〉.

An integral polymatroid is a polymatroid whose vertices lie in Z𝐸 .

We will use the following ‘strong normality’ of integral polymatroids in the proof of Proposition 3.16.

Proposition 3.10. [Wel76, Chapter 18.6, Theorem 3] Let 𝑃1, . . . , 𝑃𝑘 be integral polymatroids on E.
Then any lattice point 𝑞 ∈ Z𝐸 in the Minkowski sum 𝑃1 + · · · +𝑃𝑘 is a sum 𝑝1 + · · · + 𝑝𝑘 of lattice points
𝑝𝑖 ∈ 𝑃𝑖 ∩ Z

𝐸 . In particular, an integral polymatroid P is a normal polytope.

This property of polymatroids implies that the closure of the image of the map

𝑇 → P |𝑃1∩Z
𝐸 |−1 × · · · × P |𝑃𝑘∩Z

𝐸 |−1 defined by 𝑡 ↦→ ([𝑡𝑚]𝑚∈𝑃1∩Z𝐸 , . . . , [𝑡𝑚]𝑚∈𝑃𝑘∩Z𝐸 )

is isomorphic to the toric variety of the normal fan of 𝑃1 + · · · + 𝑃𝑘 . For a general discussion of normal
polytopes in toric geometry, see [CLS11, Chapter 2].

To relate polymatroids to base-point-free divisor classes on 𝑋𝐸 , we will need the following equivalent
description of (integral) polymatroids. A function 𝑓 : 2𝐸 → Rwith 𝑓 (∅) = 0 is said to be nondecreasing
and submodular if

(nondecreasing) 𝑓 (𝑆) ≤ 𝑓 (𝑆′) whenever 𝑆 ⊆ 𝑆′ ⊆ 𝐸 , and
(submodular) 𝑓 (𝑆 ∪ 𝑆′) + 𝑓 (𝑆 ∩ 𝑆′) ≤ 𝑓 (𝑆) + 𝑓 (𝑆′) for all 𝑆, 𝑆′ ⊆ 𝐸 .

Theorem 3.11. [Edm70, (8)] Polymatroids on E are in bijection with nondecreasing and submodular
functions 𝑓 : 2𝐸 → R with 𝑓 (∅) = 0. The bijection is given by

a polytope 𝑃 ↦→ 𝑓 : 2𝐸 → R where 𝑓𝑃 (𝑆) = max{〈𝑢, e𝑆〉 | 𝑢 ∈ 𝑃} for 𝑆 ⊆ 𝐸

a function 𝑓 : 2𝐸 → R ↦→ 𝑃 = {𝑢 ∈ R𝐸≥0 | 〈e𝑆 , 𝑢〉 ≤ 𝑓 (𝑆) for all 𝑆 ⊆ 𝐸}.

A polymatroid P is integral if and only if the function f is Z-valued.2

Example 3.12. The independence polytope 𝐼 (M) of a matroid M is an integral polymatroid where the
function f is the rank function rkM. It follows that rkM is a nondecreasing and submodular function.
Conversely, the rank function characterization of matroids implies that an integral polymatroid contained
in the Boolean cube [0, 1]𝐸 is the independence polytope of a matroid. See [Edm70] for details.

The following proposition implies that, up to translation, polymatroids are exactly the deformations
of the stellahedron.

2In some previous works [DF10; CDMeS22], the terminology ‘polymatroid’ refers to associating the polytope 𝑃 = {𝑢 ∈ R𝐸
≥0 |

〈e𝑆 , 𝑢〉 ≤ 𝑓 (𝑆) for all proper 𝑆 � 𝐸and 〈e𝐸 , 𝑢〉 = 𝑓 (𝐸) } to a nondecreasing and submodular function f with 𝑓 ( ∅) = 0. Our
polytope P is equal to {𝑢 ∈ R𝐸

≥0 | there exists 𝑣 ∈ 𝑃 such that 𝑣 − 𝑢 ∈ R𝐸
≥0 }, and hence contains 𝑃 as a face.
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Proposition 3.13. For a proper subset ∅ ⊆ 𝑆 � 𝐸 , let 𝐷𝑆 be the torus-invariant divisor on 𝑋𝐸

corresponding to the ray 𝜎∅≤{𝑆 } = cone(−e𝐸\𝑆) of Σ𝐸 . Let [𝐷𝑆] be its divisor class in 𝐴1(𝑋𝐸 ). Then
the map defined by

(integral polymatroid 𝑃 defined by 𝑓 : 2𝐸 → Z) ↦→
∑
∅⊆𝑆�𝐸

𝑓 (𝐸 \ 𝑆) [𝐷𝑆] ∈ 𝐴1(𝑋𝐸 )

is a bijection between the set of integral polymatroids on E and the set of base-point-free divisor classes
on 𝑋𝐸 .

For the proof, we will need the following consequence of Proposition 3.3, which follows from
[CLS11, Theorem 6.1.7].

Corollary 3.14. (cf. [BHM+22, Proposition 2.10]) A collection of rays in Σ𝐸 is a minimal collection of
rays that do not form a cone in Σ𝐸 if and only if the collection is either

{𝜌𝑖 , 𝜌𝑆} for 𝑖 ∉ 𝑆 � 𝐸 or {𝜌𝑆 , 𝜌𝑆′ } for incomparable 𝑆, 𝑆′ � 𝐸.

Proof of Proposition 3.13. We begin by noting that the primitive vectors in the rays of Σ𝐸 are {e𝑖 |
𝑖 ∈ 𝐸} ∪ {−e𝐸\𝑆 | 𝑆 � 𝐸}. Because the cone spanned by {e𝑖 | 𝑖 ∈ 𝐸} is a maximal cone in Σ𝐸 , the
presentation of the class group 𝐴1(𝑋𝐸 ) in terms of torus-invariant divisors, as given in [CLS11, Theorem
4.1.3], implies that any divisor class [𝐷] ∈ 𝐴1(𝑋𝐸 ) can be written uniquely as [𝐷] =

∑
𝑆�𝐸 𝑐𝑆 [𝐷𝑆]

with 𝑐𝑆 ∈ Z. Let us set 𝑐𝐸 = 0 by convention, and let 𝐷 =
∑
𝑆�𝐸 𝑐𝑆𝐷𝑆 be a divisor. We now need

check that the line bundle O𝑋𝐸 (𝐷) of the divisor D on 𝑋𝐸 is base-point-free if and only if the function
𝑓 : 2𝐸 → Z given by 𝑆 ↦→ 𝑐𝐸\𝑆 defines a polymatroid on E.

For this end, we will use a criterion for base-point-freeness on toric varieties in terms of piecewise
linear functions. Following the conventions of [CLS11], the divisor 𝐷 =

∑
𝑆�𝐸 𝑐𝑆𝐷𝑆 corresponds to

the piecewise linear function 𝜑𝐷 on R𝐸 defined by assigning the value 0 to e𝑖 for 𝑖 ∈ 𝐸 and the value
−𝑐𝑆 to −e𝐸\𝑆 for 𝑆 � 𝐸 . Applying a criterion for base-point-freeness [CLS11, Theorem 6.4.9] to the
stellahedral fan along with Corollary 3.14, one has that O𝑋𝐸 (𝐷) is base-point-free if and only if the
following two conditions are satisfied:

(1) For 𝑖 ∈ 𝐸 and a subset 𝑆 � 𝐸 not containing i, one has

𝜑𝐷 (e𝑖 − e𝐸\𝑆) ≥ 𝜑𝐷 (e𝑖) + 𝜑𝐷 (−e𝐸\𝑆).

Equivalently, since 𝑖 ∉ 𝑆 implies that e𝑖 − e𝐸\𝑆 = −e𝐸\(𝑆∪𝑖) , noting that 𝜑𝐷 (e𝑖) = 0 and
−𝜑𝐷 (−e𝐸\𝑆) = 𝑐𝑆 gives

𝑐𝑆∪𝑖 ≤ 𝑐𝑆 .

(2) For incomparable proper subsets S and 𝑆′ of E, one has

𝜑𝐷 (−e𝐸\𝑆 − e𝐸\𝑆′ ) ≥ 𝜑𝐷 (−e𝐸\𝑆) + 𝜑𝐷 (−e𝐸\𝑆′ ).

Equivalently, since −e𝐸\𝑆 − e𝐸\𝑆′ = −e𝐸\(𝑆∩𝑆′) − e𝐸\(𝑆∪𝑆′) , and because 𝜑𝐷 is linear on
cone{−e𝐸\(𝑆∩𝑆′) ,−e𝐸\(𝑆∪𝑆′) }, noting that −𝜑𝐷 (−e𝐸\𝑆) = 𝑐𝑆 gives

𝑐𝑆∩𝑆′ + 𝑐𝑆∪𝑆′ ≤ 𝑐𝑆 + 𝑐𝑆′ .

Here, note that when 𝑆∪ 𝑆′ = 𝐸 , our convention that 𝑐𝐸 = 0 is consistent because 𝜑𝐷 (−𝑒𝐸\𝐸 ) =
𝜑𝐷 (0) = 0.

In terms of the function 𝑓 : 𝑆 ↦→ 𝑐𝐸\𝑆 , the first condition is equivalent to 𝑓 (𝑆) ≤ 𝑓 (𝑆 ∪ 𝑖), and the
second condition is equivalent to 𝑓 (𝑆 ∪ 𝑆′) + 𝑓 (𝑆 ∩ 𝑆′) ≤ 𝑓 (𝑆) + 𝑓 (𝑆′). �
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For an integral polymatroid P, let 𝐷𝑃 =
∑
𝑆�𝐸 𝑓 (𝐸 \ 𝑆)𝐷𝑆 be the corresponding divisor on 𝑋𝐸 . Let

𝑋𝑃 be the toric variety of the normal fan of P, considered as a fan in R𝐸 so that 𝑋𝑃 is considered as a
T-variety. Note that 𝑋𝑃 may have dimension less than n, so the action of T on 𝑋𝑃 may have a nontrivial
kernel.

Example 3.15. For any matroid M, we have that the divisor 𝐷 𝐼 (M) induces a toric morphism 𝑋𝐸 →

𝑋𝐼 (M) . In particular, we recover the two distinguished maps from 𝑋𝐸 in the introduction: When P is the
simplex 𝐼 (U1,𝐸 ), whose normal fan is Σ𝑛, we obtain the map 𝜋𝐸 : 𝑋𝐸 → P

𝐸 . When P is the Boolean
cube 𝐼 (U𝑛,𝐸 ), whose normal fan is (Σ1)

𝐸 , we obtain the map 𝜋1𝐸 : 𝑋𝐸 → (P
1)𝐸 .

3.4. Orbit-closure in a flag variety and additive-equivariance

We have so far described the structure of 𝑋𝐸 as a toric variety, that is, in terms of the T-action. Here,
we show that 𝑋𝐸 admits an action by a larger group that contains the additive group G𝐸𝑎 . Let us begin
with the one-dimensional case.

The multiplicative group G𝑚 acts on the additive group G𝑎 via 𝑡 · 𝑏 = 𝑡𝑏 for 𝑡 ∈ G𝑚 and 𝑏 ∈ G𝑎. Let
G = G𝑚 �G𝑎 be semidirect product. Concretely, the groups G𝑚, G𝑎, and G embed into 𝐺𝐿2 as follows.

G𝑚,G𝑎,G ↩→ 𝐺𝐿2 via 𝑡 ↦→

(
𝑡 0
0 1

)
, 𝑏 ↦→

(
1 𝑏
0 1

)
, (𝑡, 𝑏) ↦→

(
𝑡 𝑏
0 1

)
.

We denote by 𝑉 = k2 the resulting G-representation. The group G thus acts on P(𝑉) = P1 by

(𝑡, 𝑏) · [𝑥 : 𝑦] = [𝑡𝑥 + 𝑏𝑦 : 𝑦]

with two orbits {[𝑥 : 1] | 𝑏 ∈ k} � A1 and {[1 : 0]}, denoted {∞}. When we treat P1 as the
toric variety of the fan in R1 consisting of the three cones {R≥0,R≤0, {0}}, the orbit A1

𝑜 is identified
with the toric affine chart of P1 corresponding to R≥0. In particular, letting 𝐷 [0,1] be the toric divisor
on P1 corresponding to the interval [0, 1] ⊂ R1, we may identify 𝑉 = 𝐻0 (P1,OP1 (1))∨ by giving
T-linearization of OP1 (1) as OP1 (∞) = OP1 (𝐷 [0,1] ).

Let us now show that the stellahedral variety 𝑋𝐸 admits a G𝐸 -action. We do this by realizing 𝑋𝐸

as a G𝐸 -orbit closure in a flag variety. While there are several alternate ways to exhibit the G𝐸 -action
on 𝑋𝐸 , as listed in Remark 3.18, the orbit closure description will be useful for defining the augmented
tautological bundles in the next section.

From the G-action on 𝑉 = k2, we endow 𝑉𝐸 � k𝐸 ⊕ k𝐸 with the G𝐸 -action given by (t, b) ↦→(
diag(t) diag(b)

0 𝐼

)
. Let Δ : k𝐸 → 𝑉𝐸 be the diagonal embedding.

Proposition 3.16. Let ℒ = {𝐿1 ⊆ · · · ⊆ 𝐿ℓ } be a flag of linear subspaces of k𝐸 realizing matroids
M1, . . . , Mℓ , and let P be the polymatroid 𝐼 (M1) + · · · + 𝐼 (Mℓ). Then the G𝐸 -orbit closure of [Δ (ℒ)]
in 𝐹𝑙 (dim(𝐿1), . . . , dim(𝐿ℓ);𝑉𝐸 ) is identified with 𝑋𝑃 .

Proof. We first consider the case when ℓ = 1, so we are taking the G𝐸 -orbit closure of [Δ (𝐿1)] in
𝐺𝑟 (dim(𝐿1);𝑉𝐸 ). Let A be a matrix whose rows form a basis for 𝐿1, so the rows of

(
𝐴 𝐴

)
form a basis

for Δ (𝐿1). Then the G𝐸 -action on 𝐺𝑟 (dim(𝐿1);𝑉𝐸 ) is given by

(t, b) ·
[ (

𝐴 𝐴
) ]

=

[ (
𝐴 𝐴

) (
diag(t) diag(b)

0 𝐼

) 𝑡 ]
=

[ (
(t + b)𝐴 𝐴

) ]
.

This implies that the T-orbit closure coincides with the G𝐸 -orbit closure.
The normalization of 𝑇 · [Δ (𝐿1)] is a toric variety, so it is defined over SpecZ. We may therefore

consider the moment polytope of its complexification, which is given a polarization via the Plücker
embedding of the Grassmannian. The vertices of the moment polytope are given by the T-weights of the
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nonzero maximal minors of
(
𝐴 𝐴

)
, where T acts by scaling the first n columns. Every nonzero maximal

minor of
(
𝐴 𝐴

)
is given by a subset 𝑆1 of the first n rows and a subset 𝑆2 of the second n rows such that

𝑆1 � 𝑆2 is a basis for M1. The T-weight of this minor is e𝑆1 , so the moment polytope is 𝐼 (M1).
Let S be the set of nonloops of M1. The vertices of 𝐼 (M1) generate the lattice Z𝑆 , which implies that

the character lattice of the embedded torus in the normalization of 𝑇 · [Δ (𝐿1)] is Z𝑆 . Every lattice point
in 𝐼 (M1) is a vertex, so the restriction map 𝐻0(𝐺𝑟 (dim(𝐿1);𝑉𝐸 );O(1)) → 𝐻0 (𝑇 · [Δ (𝐿1)],O(1)) is
surjective. By Proposition 3.10, 𝑇 · [Δ (𝐿1)] is projectively normal and therefore normal, so𝑇 · [Δ (𝐿1)]
is isomorphic to 𝑋𝐼 (M1) .

We now treat the general case. There is an embedding 𝐹𝑙 (dim(𝐿1), . . . , dim(𝐿ℓ);𝑉𝐸 ) ↩→∏ℓ
𝑖=1 𝐺𝑟 (dim(𝐿𝑖);𝑉𝐸 ) and the computation above implies that the T-orbit closure of [Δ (ℒ)] is also

the G𝐸 -orbit closure. By Proposition 3.10, the Segre embedding of 𝑇 · [Δ (L)] corresponds to the
Minkowski sum of polytopes (with the complete linear series), which implies that the moment polytope
of 𝑇 · [Δ (ℒ)] is P. Using that P is a normal polytope, we get that 𝑇 · [Δ (ℒ)] is isomorphic to 𝑋𝑃 . �

The flag of matroids realized by a general full flag ℒ = {𝐿1 � 𝐿2 � · · · � 𝐿𝑛 = k𝐸 } over an infinite
field k are exactly the uniform matroids U1,𝐸 , . . . , U𝑛,𝐸 . Since the stellahedron Π𝐸 is the Minkowski
sum 𝐼 (U1,𝐸 ) + · · · + 𝐼 (U𝑛,𝐸 ), we have the following corollary.

Corollary 3.17. The G𝐸 -orbit closure of a general full flag of linear subspaces ℒ, viewed as a point in
𝐹𝑙 (1, . . . , 𝑛;𝑉𝐸 ) via Δ , is identified with 𝑋𝐸 . In particular, 𝑋𝐸 has the structure of a G𝐸 -variety.

Remark 3.18. With P1 as a G-variety described above, G𝐸 acts on (P1)𝐸 with 2𝑛 orbits. In §3.2,
we described 𝑋𝐸 as the iterated blow-up of the strict transforms of the proper G𝐸 -orbit closures in
increasing order of dimension. The functoriality of the blow-up then gives 𝑋𝐸 a G𝐸 -action, and the
blow-down map 𝑋𝐸 → (P

1)𝐸 is G𝐸 -equivariant.
Alternatively, one notes that P𝐸 , viewed as the projective completion P(k𝐸 ⊕ k) of k𝐸 , is a G𝐸 -

equivariant compactification of k𝐸 with the obvious action of G𝐸 . The proper G𝐸 -orbit closures in P𝐸
are then exactly the coordinate subspaces of P𝐸 contained in the hyperplane at infinity P(k𝐸 ) ⊆ P𝐸 . In
§3.2, we described 𝑋𝐸 as the iterated blow-up of the strict transforms of these proper G𝐸 -orbit closures
in the increasing order of dimension. Again, the functoriality of the blow-up gives 𝑋𝐸 a G𝐸 -action with
an equivariant blow-down map 𝑋𝐸 → P

𝐸 .
Lastly, one may also appeal to [AR17, Theorem 3.4 & 4.1] to show that any toric variety 𝑋𝑃 of the

normal fan Σ𝑃 of a polymatroid P on E admits aG𝐸𝑎 -action that is compatible with the torus-action: One
verifies that {−e𝑖 | 𝑖 ∈ 𝐸} form a ‘complete collection of Demazure roots’ of Σ𝑃 as defined in (loc. cit.).

4. Augmented tautological bundles and classes

4.1. Well-definedness

We now construct the augmented tautological bundles and augmented tautological classes. Recall the
notation 𝑉𝐸 = k𝐸 ⊕ k𝐸 . Recall that for any polymatroid P (such as an independence polytope), one
has a T-equivariant map 𝑋𝐸 → 𝑋𝑃 because the normal fan Σ𝑃 coarsens Σ𝐸 . Let us prepare with the
following trivial case.

Lemma 4.1. Consider the map 𝑋𝐸 → 𝐺𝑟 (𝑛;𝑉𝐸 ) obtained as the composition of 𝑋𝐸 → 𝑋𝐼 (U𝑛,𝐸 ) with
the map 𝑋𝐼 (𝑈𝑛,𝐸 ) → 𝐺𝑟 (𝑛;𝑉𝐸 ) given by setting ℓ = 1 and 𝐿1 = k𝐸 in Proposition 3.16. The pullback
to 𝑋𝐸 of the tautological subbundle S on 𝐺𝑟 (𝑛;𝑉𝐸 ) is isomorphic to

⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (−1), equipped with

the unique T-linearization that is trivial on the G𝐸 -orbit A𝐸 ⊆ 𝑋𝐸 .

Proof. By construction, the pullback of S to 𝑋𝐸 is a subbundle of O⊕2𝑛
𝑋𝐸

, and
⊕

𝑖∈𝐸 𝜋∗𝑖OP1 (−1) (with
the unique T-linearization that is trivial on A𝐸 ) is a subbundle of O⊕2𝑛

𝑋𝐸
whose fiber over any point

in A𝐸 is the diagonal Δ (k𝐸 ). It follows from the construction of the map 𝑋𝐸 → 𝐺𝑟 (𝑛;𝑉𝐸 ) that the
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pullback of S has the fiber over any point of A𝐸 equal to Δ (k𝐸 ); the result follows because we may
check whether two subbundles of O⊕2𝑛

𝑋𝐸
are equal on a dense open subset.

Alternatively, we had given OP1 (1) the T-linearization as the line bundle OP1 (𝐷 [0,1] ), which is
trivial on the G-orbit A1 of P(𝑉). This resulted in the identification of V with 𝐻0(P1,OP1 (1))∨. Since
𝐼 (U𝑛,𝐸 ) = [0, 1]𝐸 , we find that (P1)𝐸 � 𝑋𝐼 (U𝑛,𝐸 ) → 𝐺𝑟 (𝑛;𝑉𝐸 ) is the map induced by the E-fold
product of the injection of vector bundles OP1 (−1) → OP1 ⊗ 𝑉 . �

Given a linear subspace 𝐿 ⊆ k𝐸 , we now construct vector bundles fitting into a short exact sequence
that is modeled after 0 → 𝐿 → k𝐸 → k𝐸/𝐿 → 0. Because we would like at least one of the vector
bundles to be globally generated, the vector bundles S𝐿 and Q𝐿 will be defined so that they fit into the
short exact sequence 0 → S𝐿 →

⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (1) → Q𝐿 → 0 with

⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (1) in the middle

instead of
⊕

𝑖∈𝐸 𝜋∗𝑖OP1 (−1). As a result, when we define the dual bundle Q∨𝐿 , we are led to consider
the orthogonal dual 𝐿⊥ = (k𝐸/𝐿)∨ ⊆ k𝐸 of the realization 𝐿 ⊆ k𝐸 of a matroid M, which realizes the
dual matroid M⊥.

Definition 4.2. Let 𝐿 ⊆ k𝐸 be a realization of a rank r matroid M on E. Setting ℓ = 2 and 𝐿1 = 𝐿⊥ ⊆
𝐿2 = k𝐸 in Proposition 3.16 supplies us with a map

𝑋𝐸 → 𝑋𝐼 (M⊥)+𝐼 (U𝑛,𝐸 ) → 𝐹𝑙 (𝑛 − 𝑟, 𝑛;𝑉𝐸 ).

Define the augmented tautological bundles S𝐿 and Q𝐿 by

Q𝐿 = the dual of the pullback to 𝑋𝐸 of the tautological rank 𝑛 − 𝑟 subbundle of 𝐹𝑙 (𝑛 − 𝑟, 𝑛;𝑉𝐸 )

S𝐿 = the dual of the quotient bundle
⊕
𝑖∈𝐸

𝜋∗𝑖O(−1)/Q∨𝐿 .

That Q∨𝐿 is a subbundle of
⊕

𝑖∈𝐸 𝜋∗𝑖O(−1) follows from Lemma 4.1 and the fact that Proposition
3.16 supplies us with a commuting diagram

𝑋𝐼 (U𝑛,𝐸 ) 𝐺𝑟 (𝑛;𝑉𝐸 )

𝑋𝐸 𝑋𝐼 (U𝑛,𝐸 )+𝐼 (M⊥) 𝐹𝑙 (𝑛 − 𝑟, 𝑛;𝑉𝐸 )

𝑋𝐼 (M⊥) 𝐺𝑟 (𝑛 − 𝑟;𝑉𝐸 ).

Remark 4.3. By construction, we have a short exact sequence of G𝐸 -equivariant vector bundles

0→ S𝐿 →
⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1) → Q𝐿 → 0,

which, when restricted to the G𝐸 -orbit A𝐸 , is canonically identified with

0→ OA𝐸 ⊗ 𝐿 → OA𝐸 ⊗ k𝐸 → OA𝐸 ⊗ k𝐸/𝐿 → 0.

For arbitrary matroids M, we construct (T-equivariant) K-classes [SM] and [QM] on 𝑋𝐸 . By
Theorem 2.1.(1), the T-equivariant K-ring of 𝑋𝐸 is identified with a subring of the product ring∏

Σ𝐸 (𝑛) Z[𝑇
±1
1 , . . . , 𝑇±1

𝑛 ]. So we will specify these classes by specifying their localization values at each
torus-fixed point indexed by a maximal cone of Σ𝐸 .

By Proposition 3.3, the maximal cones of Σ𝐸 are in bijection with compatible pairs 𝐼 ≤ ℱ, where
∅ ⊆ 𝐼 ⊆ 𝐸 and ℱ is a (possibly empty) maximal chain of proper subsets of E containing I. For a
chain ℱ containing I, write ℱ/𝐼 for the new chain of subsets of 𝐸 \ 𝐼 obtained by removing I from
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each subset in the original chain. A maximal chain ℱ : ∅ � 𝐹1 � · · · � 𝐹𝑛−1 orders the ground set by
𝐹1 < 𝐹2 \ 𝐹1 < · · · < 𝐸 \ 𝐹𝑛−1, and for each matroid M on E we denote:

• 𝐵ℱ (M) the minimal basis of M under the lexicographic ordering, and
• 𝐵𝑐

ℱ
(M) the complement of 𝐵ℱ (M) in the ground set of M.

Proposition 4.4. For a matroid M on E, the augmented tautological classes defined as

[SM]𝐼 ≤ℱ = rkM (𝐼) +
∑

𝑖∈𝐵ℱ/𝐼 (M/𝐼 )
𝑇−1
𝑖 and

[QM]𝐼 ≤ℱ = |𝐼 | − rkM (𝐼) +
∑

𝑖∈𝐵𝑐
ℱ/𝐼
(M/𝐼 )

𝑇−1
𝑖

are well-defined T-equivariant K-classes on 𝑋𝐸 . Moreover, if L is a realization of M, then [S𝐿] = [SM]
and [Q𝐿] = [QM].

Proof. First, we check that [Q𝐿] = [QM]. Then taking the case 𝐿 = {0} gives that

[
⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)]𝐼 ≤ℱ = |𝐼 | +
∑
𝑖∈𝐸\𝐼

𝑇−1
𝑖 .

As [S𝐿] + [Q𝐿] = [
⊕

𝑖∈𝐸 𝜋∗𝑖OP1 (1)], this implies that [S𝐿] = [SM].
Let 𝐿 ⊆ k𝐸 be a subspace of dimension r. Note that the rank 𝑛 − 𝑟 tautological subbundle S on

𝐹𝑙 (𝑛 − 𝑟, 𝑛;𝑉𝐸 ) is pulled back from the forgetful map 𝐹𝑙 (𝑛 − 𝑟, 𝑛;𝑉𝐸 ) → 𝐺𝑟 (𝑛 − 𝑟;𝑉𝐸 ). The image
of the T-fixed point on 𝑋𝐸 corresponding to a maximal compatible pair 𝐼 ≤ ℱ is a T-fixed point p of
𝐺𝑟 (𝑛 − 𝑟;𝑉𝐸 ) such that every nonzero Plücker has weight equal to the vertex of 𝐼 (M⊥) on which any
functional in the interior of 𝜎𝐼 ≤ℱ attains its minimum, which is e𝐵𝑐

ℱ/𝐼
(M/𝐼 ) . Then

[S]p = |𝐼 | − rkM (𝐼) +
∑

𝑖∈𝐵𝑐
ℱ/𝐼
(M/𝐼 )

𝑇𝑖 ∈ 𝐾𝑇 (p).

As pullbacks commute with each other, this implies that [Q∨𝐿]𝐼 ≤ℱ = [S]p = |𝐼 | − rkM (𝐼) +∑
𝑖∈𝐵𝑐

ℱ/𝐼
(M) 𝑇𝑖 , so applying 𝐷𝐾 gives that [Q𝐿] = [QM]. In particular, it gives the claimed formula for

[
⊕

𝑖∈𝐸 𝜋∗𝑖OP1 (1)] = [Q{0}].
Now, we check well-definedness. As [SM] + [QM] = [

⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (1)], it suffices to check that

[SM] is well-defined. There are two types of codimension 1 cones in Σ𝐸 . The first type is given by
a compatible pair 𝐼 ≤ ℱ where 𝐼 = 𝐹1 and there is some ℓ such that 𝐹ℓ+1 \ 𝐹ℓ = {𝑖, 𝑗}. This cone
is contained in the kernel of the functional e𝑖 − e 𝑗 . Let 𝜎𝐼 ≤ℱ1 and 𝜎𝐼 ≤ℱ2 be the two maximal cones
containing 𝜎𝐼 ≤ℱ; they are obtained by inserting either 𝐹ℓ ∪ 𝑖 or 𝐹ℓ ∪ 𝑗 into ℱ. Because the normal fan
of 𝐼 (M⊥) coarsens Σ𝐸 , the vertices of 𝐼 (M⊥) that functionals in the interiors of 𝜎𝐼 ≤ℱ1 and 𝜎𝐼 ≤ℱ2 attain
their minimum on are either identical or differ by an edge. Because 𝜎𝐼 ≤ℱ1 and 𝜎𝐼 ≤ℱ2 have the same ‘I’,
this edge must be parallel to e𝑖 − e 𝑗 , and so the symmetric difference of 𝐵ℱ1/𝐼 (M/𝐼) and 𝐵ℱ2/𝐼 (M/𝐼)
is either {𝑖, 𝑗} or ∅. This implies that, along 𝜎𝐼 ≤ℱ , [SM] satisfies the condition of Theorem 2.1.

The second type of codimension 1 cone is given by a compatible pair 𝐼 ≤ ℱ when 𝐼 ∪ 𝑗 = 𝐹1, which
is contained in the kernel of e 𝑗 . Then the maximal cones containing 𝜎𝐼 ≤ℱ are 𝜎𝐼∪ 𝑗≤ℱ and 𝜎𝐼 ≤ℱ̃ , where
ℱ̃ is obtained by adding I to ℱ. Then a similar argument to the first case shows that 𝐵ℱ/𝐼∪ 𝑗 (M/𝐼 ∪ 𝑗)
and 𝐵ℱ̃/𝐼 (M/𝐼) either coincide or differ by { 𝑗}. �

These augmented tautological bundles and classes are related to the nonaugmented tautological
bundles and classes introduced in [BEST23] as follows. Endow O⊕𝐸𝑋𝐸

with the inverse T-equivariant
structure, that is, (𝑡1, . . . , 𝑡𝑛) · (𝑥1, . . . , 𝑥𝑛) = (𝑡−1

1 𝑥1, . . . , 𝑡
−1
𝑛 𝑥𝑛).
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Definition 4.5. Let 𝐿 ⊆ k𝐸 be a realization of a matroid M. Then the (nonaugmented) tautological
bundlesS𝐿 andQ

𝐿
are the unique T-equivariant vector bundles on 𝑋𝐸 that fit into a short exact sequence

0→ S𝐿 → O⊕𝐸𝑋𝐸
→ Q

𝐿
→ 0,

where the fiber over the identity is identified with

0→ 𝐿 → k𝐸 → k𝐸/𝐿 → 0.

One can show that the short exact sequence in the above definition is the restriction to 𝑋𝐸 of the
short exact sequence 0→ S𝐿 →

⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (1) → Q𝐿 → 0.

For each matroid M, the authors of [BEST23] define classes [SM] and [QM] in 𝐾𝑇 (𝑋𝐸 ). The
T-fixed points on 𝑋𝐸 are in bijection with complete flags ℱ of subsets of E. The tautological classes
are described by

[SM]ℱ =
∑

𝑖∈𝐵ℱ (M)
𝑇−1
𝑖 and [QM]ℱ =

∑
𝑖∈𝐵𝑐

ℱ
(M)

𝑇−1
𝑖 .

In particular, these are restrictions to 𝑋𝐸 of the augmented tautological classes [SM] and [QM].

4.2. Basic properties

We now develop some basic properties of augmented tautological classes. These properties and their
proofs are similar to those considered in [BEST23, Section 5].
Proposition 4.6. For a matroid M, we have that [detQM] equals the K-class of the line bundle
corresponding under Proposition 3.13 to the polymatroid 𝐼 (M⊥).
Proof. As a T-equivariant K-class, we have from Proposition 4.4 that

[detQM]𝐼 ≤ℱ =
∏

𝑖∈𝐵𝑐
ℱ/𝐼
(M/𝐼 )

𝑇−1
𝑖

for a maximal cone 𝜎𝐼 ≤ℱ of Σ𝐸 . Since the vertex of 𝐼 (M⊥) that minimizes the pairing with a vector in
the interior of 𝜎𝐼 ≤ℱ is e𝐵𝑐

ℱ/𝐼
(M/𝐼 ) , the result follows.

Alternatively, by appealing to Proposition 4.7 one can reduce to the case where M admits a realization
L, in which case the diagram above Remark 4.3 implies that detQ𝐿 defines the map 𝑋𝐸 → 𝑋𝐼 (M⊥)
given by the line bundle O𝑋𝐸 (𝐷 𝐼 (M⊥) ). �

Proposition 4.7. Any function that maps a matroid M to a fixed polynomial expression involving
symmetric powers, exterior powers, tensor products and direct sums of [SM], [QM], [SM]

∨ and [QM]
∨

is valuative and similarly for a fixed polynomial expression in the Chern classes of the augmented
tautological classes.

For instance, the proposition implies that the assignments M ↦→ 𝑐(QM) and M ↦→ 𝑠(Q∨M) are
valuative.

Proof. Let Z2𝐸 be the free abelian group with the standard basis indexed by the subsets of E. Consider
the function

Mat(𝐸) →
⊕
Σ𝐸 (𝑛)

Z2𝐸 given by M ↦→
∑

𝜎𝐼≤ℱ ∈Σ𝐸 (𝑛)

e𝐵ℱ/𝐼 (M/𝐼 ) .

By Proposition A.4, this function is valuative; see also [AFR10, Theorem 5.4]. Any fixed polynomial
expression in the augmented tautological classes or their Chern classes factors through this map and is
therefore valuative. �
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We now consider how augmented tautological classes restrict to T-invariant subvarieties of 𝑋𝐸 . By
Corollary 3.4, for a (not necessarily maximal) compatible pair 𝐼 ≤ ℱ : 𝐹1 � · · · � 𝐹𝑘 , the corresponding
T-invariant subvariety 𝑍𝐼 ≤ℱ ⊆ 𝑋𝐸 corresponding to the cone 𝜎𝐼 ≤ℱ is naturally identified with

𝑍𝐼 ≤ℱ � 𝑋𝐹1\𝐼 ×

𝑘∏
𝑖=1

𝑋𝐹𝑖+1\𝐹𝑖
.

This identification then induces isomorphisms

𝐾𝑇 (𝑍𝐼 ≤ℱ)
∼
→ 𝐾𝑇 (𝑋𝐹1\𝐼 ) ⊗

𝑘⊗
𝑖=1

𝐾𝑇 (𝑋𝐹𝑖+1\𝐹𝑖
) and 𝐴•𝑇 (𝑍𝐼 ≤ℱ)

∼
→ 𝐴•𝑇 (𝑋𝐹1\𝐼 ) ⊗

𝑘⊗
𝑖=1

𝐴•𝑇 (𝑋𝐹𝑖+1\𝐹𝑖
).

Proposition 4.8. Under the above identification, we have that

[SM] |𝑍𝐼≤ℱ = rkM(𝐼) [O𝑍𝐼≤ℱ ] + [SM |𝐹1/𝐼 ] ⊗ 1⊗𝑘 +
𝑘∑
𝑖=1

1⊗(𝑖−1) ⊗ [SM |𝐹𝑖+1/𝐹𝑖
] ⊗ 1⊗(𝑘−𝑖) , and

[QM] |𝑍𝐼≤ℱ = (|𝐼 | − rkM(𝐼)) [O𝑍𝐼≤ℱ ] + [QM |𝐹1/𝐼 ] ⊗ 1⊗𝑘 +
𝑘∑
𝑖=1

1⊗(𝑖−1) ⊗ [QM |𝐹𝑖+1/𝐹𝑖
] ⊗ 1⊗(𝑘−𝑖) .

In particular, when F = ∅, we have that 𝑐(SM) |𝑍𝐼 � 𝑐(SM/𝐼 ) as a class in 𝐴•(𝑍𝐼 ) � 𝐴•(𝑋𝐸\𝐼 ), and
similarly for QM.

Proof. The fan of 𝑍𝐼 ≤ℱ is the star of 𝜎𝐼 ≤ℱ , and the localization of an augmented tautological class to
a T-fixed point of 𝑍𝐼 ≤ℱ is the same as the localization to the T-fixed point of 𝑋𝐸 at the corresponding
maximal cone ofΣ𝐸 . The face of 𝐼 (M⊥) on which functionals in the (relative) interior of 𝜎𝐼 ≤ℱ attain their
minimum is naturally identified with 𝐼 ((M|𝐹1/𝐼)

⊥) ×
∏𝑘

𝑖=1 𝑃((M|𝐹𝑖+1/𝐹𝑖)⊥), and this identification is
compatible with the corresponding identification for Π𝐸 . As the localizations of augmented tautological
classes to a fixed point corresponding to a maximal cone of Σ𝐸 depend only on vertex of 𝐼 (M⊥) on which
any functional in the interior of that maximal cone attains its minimum, this product decomposition
gives the result. �

5. Augmented wonderful varieties and Bergman classes

5.1. Augmented wonderful varieties

Definition 5.1. Let 𝐿 ⊆ k𝐸 be a linear subspace. With k𝐸 identified with the toric affine chart of 𝑋𝐸

corresponding to the cone 𝜎𝐸≤∅ = R𝐸≥0 of Σ𝐸 , the augmented wonderful variety 𝑊𝐿 of L is defined as
the closure of L in 𝑋𝐸 .

We note an equivalent description of the augmented wonderful variety, which can be deduced from
Proposition 3.6. For a flat 𝐹 ⊆ 𝐸 of M, let 𝐿𝐹 = 𝐿 ∩ (k𝐸\𝐹 ⊕ 0𝐹 ). The projective completion P(𝐿 ⊕ k)
of L contains a copy of P(𝐿) as the hyperplane at infinity, and so it contains a subspace identified with
P(𝐿𝐹 ) for every flat F of M. Under the iterated blow-up 𝜋𝐸 : 𝑋𝐸 → P

𝐸 , the augmented wonderful
variety 𝑊𝐿 is the strict transform of P(𝐿 ⊕ k) ⊆ P(k𝐸 ⊕ k) = P𝐸 , fitting into the diagram

𝑊𝐿 𝑋𝐸

P(𝐿 ⊕ k) P𝐸 .
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This makes 𝑊𝐿 equal to the variety obtained by blowing up P(𝐿 ⊕ 𝑘) at the linear spaces P(𝐿𝐹 ) corre-
sponding to corank 1 flats of M, then blowing up at the strict transforms of linear spaces corresponding
to corank 2 flats of M and so on.

We relate augmented wonderful varieties to augmented tautological bundles as follows.
Theorem 5.2. For a linear subspace 𝐿 ⊆ k𝐸 , the augmented wonderful variety 𝑊𝐿 is the vanishing
locus of a distinguished global section of Q𝐿 .

We prepare to prove Theorem 5.2 with the following lemma.
Lemma 5.3. Let Q be a vector bundle of rank k on a smooth variety X, and let 𝐿 ⊆ 𝐻0 (𝑋,Q) be a
subspace which generates Q. Suppose there exists a nonempty open 𝑈 ⊆ 𝑋 such that for a general
𝑠 ∈ 𝐿, the vanishing locus 𝑉 (𝑠) is nonempty and the intersection 𝑉 (𝑠) ∩𝑈 is integral of codimension
k. Then 𝑉 (𝑠) is integral for a general 𝑠 ∈ 𝐿.
Proof. Once we show that 𝑉 (𝑠) is irreducible, the unmixedness theorem [Eis95, Corollary 18.14]
implies that 𝑉 (𝑠), which is of codimension k, has no embedded points, and hence is integral. To show
that 𝑉 (𝑠) is irreducible, let S be the kernel of O𝑋 ⊗ 𝐿 � Q, and let A(S) be the total space of S ,
which is irreducible. We consider the map 𝜋 : A(S) → 𝑋 × 𝐿 → 𝐿. For 𝑠 ∈ 𝐿, the fiber 𝜋−1 (𝑠) is
isomorphic to the vanishing locus 𝑉 (𝑠). Since 𝑉 (𝑠) is nonempty for a general s, the map 𝜋 is a dominant
map between varieties, and hence a general fiber of 𝜋 is pure-dimensional. Now, let Z be the total space
of the restriction of S to the closed subvariety 𝑋 \𝑈. Since dim 𝑍 < dimA(S), we see that Z cannot
contain a component of a general fiber of 𝜋. Hence, a general fiber of 𝜋 is irreducible, as desired. �

Proof of Theorem 5.2. Take the vector 𝑣 = (1, . . . , 1, 0, . . . , 0) ∈ k𝐸 ⊕ k𝐸 . Let us identify k𝐸 ⊕ k𝐸 =
𝐻0 (𝑋𝐸 ,

⊕
𝑖∈𝐸 𝜋∗𝑖O(1)) = (𝑉𝐸 )∨. The vector v then defines a global section of

⊕
𝑖∈𝐸 𝜋∗𝑖O(1), and

hence a global section of Q𝐿 via the surjection
⊕

𝑖∈𝐸 𝜋∗𝑖O(1) � Q𝐿 . On the G𝐸 -orbit A𝐸 of 𝑋𝐸 ,
Remark 4.3 identifies the restriction of v with the section

(𝑥1, . . . , 𝑥𝑛) ∈
(
k[𝑥1, . . . , 𝑥𝑛]

)𝐸 = 𝐻0(A𝐸 ,OA𝐸 ⊗ k𝐸 ).

So the image of v in 𝐻0 (A𝐸 ,OA𝐸 ⊗k𝐸/𝐿) vanishes exactly on L. TheG𝐸 -orbit of v is dense ink𝐸 ⊕k𝐸 .
Hence, by G𝐸 -equivariance, the G𝐸 -orbit of the image of v in 𝐻0 (𝑋𝐸 ,Q𝐿) is dense in a subspace of
𝐻0 (𝑋𝐸 ,Q𝐿) that globally generates Q𝐿 . In other words, the section v is a sufficiently general section
satisfying the conclusion of the above lemma, from which the theorem now follows. �

Corollary 5.4. Let 𝐿 ⊆ k𝐸 be a linear subspace of dimension r.
(1) The normal bundle N𝑊𝐿/𝑋𝐸 is identified with the restriction Q𝐿 |𝑊𝐿 .
(2) The K-class of the structure sheaf [O𝑊𝐿 ] ∈ 𝐾 (𝑋𝐸 ) equals

∑𝑛−𝑟
𝑖=0 (−1)𝑖 [

∧𝑖Q∨𝐿].
Proof. As 𝑊𝐿 is a smooth subvariety of 𝑋𝐸 of dimension r, that 𝑊𝐿 is the vanishing locus of a global
section of Q𝐿 implies that the Koszul complex

0→
∧𝑛−𝑟 Q∨𝐿 → · · · →

∧2 Q∨𝐿 → Q∨𝐿 → O𝑋𝐸

is a resolution of O𝑊𝐿 . Both statements now follow. �

5.2. Augmented Bergman classes

We describe the Chern classes of augmented tautological classes and recover the augmented Bergman
class as the top Chern class. We use the language of Minkowski weights, defined as follows.
Definition 5.5. A d-dimensional Minkowski weight on a unimodular fan Σ is a function 𝑤 : Σ(𝑑) → Z
such that the following balancing condition is satisfied: for every cone 𝜏′ ∈ Σ(𝑑 − 1)∑

𝜏�𝜏′

𝑤(𝜏)𝑢𝜏′\𝜏 ∈ span(𝜏′),
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where the summation is over all cones 𝜏 ∈ Σ(𝑑) containing 𝜏′, and 𝑢𝜏′\𝜏 denotes the primitive generator
of the unique ray of 𝜏 that is not in 𝜏′. Write MW𝑑 (Σ) for the set of d-dimensional Minkowski weights
on Σ.

Minkowski weights play the role of homology classes on smooth complete toric varieties in the
following sense.
Theorem 5.6. [FS97, Theorem 3.1] Let Σ be a complete unimodular fan of dimension m, and let 𝑋Σ be
its toric variety. Then, for every 0 ≤ 𝑑 ≤ 𝑚, one has an isomorphism

𝐴𝑚−𝑑 (𝑋Σ)
∼
→ MW𝑑 (Σ) defined by 𝜉 ↦→

(
𝜏 ↦→

∫
𝑋

𝜉 · [𝑍𝜏]

)
.

For a smooth complete toric variety 𝑋Σ, when a Chow class 𝜉 ∈ 𝐴•(𝑋Σ) maps to a Minkowski
weight 𝑤 ∈ MW•(Σ) by the isomorphism in Theorem 5.6, we say that w and 𝜉 are Poincaré duals of
each other, which is notated by writing

𝜉 ∩ [𝑋Σ] = 𝑤.

We compute the Chern classes of the augmented tautological classes in terms of Minkowski weights
on Σ𝐸 . By Theorem 5.6, this amounts to computing how they intersect with the various torus-invariant
strata of 𝑋𝐸 , for which we use Proposition 4.8 to reduce to understanding the Chern classes in the top
degrees. We hence begin by computing what happens in the top degrees.
Lemma 5.7. We have that ∫

𝑋𝐸

𝑐(QM) =

{
1 M = U0,𝐸

0 otherwise,
and

∫
𝑋𝐸

𝑐(SM) =

{
1 M = U𝑛,𝐸

0 otherwise.

Proof. We do the case of SM. The case of QM is similar. If M ≠ U𝑛,𝐸 , then SM has rank less than n, so
𝑐𝑛 (SM) = 0. If M = U𝑛,𝐸 , then SM =

⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (1), so we have that deg 𝑐𝑛 (SM) = 1. �

We will also need the analogous statement for tautological bundles.
Lemma 5.8. [BEST23, Lemma 7.3] We have that∫

𝑋𝐸

𝑐(QM) =

{
1 M = U1,𝐸 or M = U0,1

0 otherwise,
and

∫
𝑋𝐸

𝑐(SM) =

{
(−1)𝑛−1 M = U𝑛−1,𝐸 or M = U1,1

0 otherwise.

We now compute the intersection numbers of the Chern classes of [SM] and [QM] with the boundary
stata. When the minimal element of ℱ is the empty set, we recover [BEST23, Proposition 7.4].
Proposition 5.9. Let 𝐼 ≤ ℱ : 𝐹1 � 𝐹2 � . . . � 𝐹𝑘 be a compatible pair, and set ℓ = codim 𝑍𝐼 ≤ℱ . As
before, we set 𝐹𝑘+1 = 𝐸 , and when ℱ is empty we interpret 𝐹1 as E. Let [𝑍𝐼 ≤F ] ∈ 𝐴•(𝑋Σ) be the Chow
class of the T-invariant subvariety 𝑍𝐼 ≤F . Then

∫
𝑋𝐸

𝑐𝑛−ℓ (QM) · [𝑍𝐼 ≤ℱ] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 𝐹1 ⊆ clM (𝐼), and for 𝑖 = 1, . . . , 𝑘, exactly 𝑘 + rkM (𝐼) − rkM (M) of

the minors M|𝐹𝑖+1/𝐹𝑖 are loops, and the rest are 𝑈1,𝐹𝑖+1\𝐹𝑖 ,

0 otherwise, and
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∫
𝑋𝐸

𝑐𝑛−ℓ (SM) · [𝑍𝐼 ≤ℱ] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(−1) 𝜖

rkM (𝐹1) − rkM (𝐼) = |𝐹1 | − |𝐼 |, and for 𝑖 = 1, . . . , 𝑘, exactly
𝑘 + rkM (M) − rkM (𝐼) − 𝑛 of the minors M|𝐹𝑖+1/𝐹𝑖 are coloops,
and the rest are 𝑈 |𝐹𝑖+1\𝐹𝑖 |−1,𝐹𝑖+1\𝐹𝑖 ,

0 otherwise,

where 𝜖 = 𝑛 − 𝑘 − |𝐹1 |.

Proof. We do the case of SM, the case of QM is similar. By Proposition 4.8, we have that

𝑐(SM, 𝑢) |𝑍𝐼≤ℱ = 𝑐(SM |𝐹1/𝐼 , 𝑢) ⊗
𝑘⊗
𝑖=1

𝑐(SM |𝐹𝑖+1/𝐹𝑖
, 𝑢) ∈ 𝐴•(𝑋𝐹1\𝐼 ) ⊗

𝑘⊗
𝑖=1

𝐴•(𝑋𝐹𝑖+1\𝐹𝑖
).

Then Lemma 5.7 implies that the intersection number vanishes unless M|𝐹1/𝐼 is Boolean, and each
M|𝐹𝑖+1/𝐹𝑖 is either a coloop or is a corank 1 uniform matroid. Note that M|𝐹1/𝐼 is Boolean if and only if
rkM (𝐹1)−rkM (𝐼) = |𝐹1 |−|𝐼 |, and the fact that rkM (M) = rkM (𝐼)+rkM(M|𝐹1/𝐼)+· · ·+

∑
rkM (M|𝐹𝑖+1/𝐹𝑖)

implies that, if the intersection number is nonzero, then exactly 𝑘 + rkM (M) − rkM (𝐼) − 𝑛 of the minors
M|𝐹𝑖+1/𝐹𝑖 are coloops. In this case, the intersection number is (−1) 𝜖 , where

𝜖 =
∑
(|𝐹𝑖+1/𝐹𝑖 | − 1) ,

where the sum is over the minors such that M|𝐹𝑖+1/𝐹𝑖 is not a coloop. The set E decomposes into a
disjoint union of elements where the corresponding minor is a coloop, is in I, is in a noncoloop minor,
or is in 𝐹1 \ 𝐼, so

𝑛 = (𝑘 + rkM (M) − rkM (𝐼) − 𝑛) + |𝐼 | + (
∑
|𝐹𝑖+1/𝐹𝑖 |) + (|𝐹1 | − |𝐼 |).

We also have that the number of noncoloops is 𝑛 + rkM (𝐼) − rkM (M). Substituting, we see that 𝜖 =
𝑛 − 𝑘 − |𝐹1 |. �

We now define and derive certain properties of augmented Bergman fans and augmented Bergman
classes.

Definition 5.10. For a matroid M of rank r on E, the augmented Bergman fan, denoted ΣM, is the subfan
of Σ𝐸 consisting of cones 𝜎𝐼 ≤ℱ , where the subset 𝐼 ⊆ 𝐸 is independent in M and the flag ℱ consists
of proper flats of M. The augmented Bergman class [ΣM] of M is the weight

[ΣM] : Σ𝐸 (𝑟) → Z defined by 𝜎 ↦→

{
1 if 𝜎 ∈ ΣM

0 otherwise.

[BHM+22, Proposition 2.8] states that, up to scaling, the augmented Bergman class is the unique
way to assign weights to the cones of the augmented Bergman fan that results in a Minkowski weight.

Corollary 5.11. Let M be a matroid of rank r on E.

(1) We have that 𝑐𝑛−𝑟 (QM) = [ΣM]. In particular, the augmented Bergman class [ΣM] is a well-defined
Minkowski weight.

(2) The assignment M ↦→ [ΣM] is valuative.
(3) If 𝐿 ⊆ k𝐸 is a realization of M, then [ΣM] = [𝑊𝐿].

Proof. The first statement follows from Proposition 5.9. The second statement follows from the first by
Proposition 4.7. The third statement follows from the first by Theorem 5.2. �
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By restricting to the permutohedral variety, we recover properties of ‘nonaugmented’ Bergman fans
and classes as follows. Note that for a loopless matroid M, the augmented Bergman fan ΣM contains the
ray 𝜌∅.

Definition 5.12. The (nonaugmented) Bergman fan of a loopless matroid M on E is ΣM = star𝜌∅ ΣM.
Equivalently, it is the subfan of Σ𝐸 consisting of cones 𝜎ℱ where the flag ℱ consists of nonempty
proper flats of M. The (nonaugmented) Bergman class [ΣM] is the Minkowski weight on Σ𝐸 defined
by assigning weight 1 to the cones of ΣM.

The Bergman class of a matroid with a loop is defined to be zero. Since [QM] restricts to [QM] on
𝑋𝐸 and [ΣM] restricts to [ΣM], Corollary 5.11 recovers the properties of Bergman classes stated in
[BEST23, Corollary 7.11].

5.3. Tropical geometry of augmented Bergman fans

The contents of this subsection are not logically necessary for the rest of the paper but will be useful
elsewhere. We explain how augmented Bergman fans are related to tropicalizations. We point to [MS15]
for a background in tropical geometry.

Proposition 5.13. Let 𝐿 ⊆ k𝐸 be a realization of a matroid M of rank r. For a general 𝑏 ∈ G𝐸𝑎 , the
tropicalization of the very affine variety 𝐿̊𝑏 = (𝐿 + 𝑏) ∩𝑇 equals the support of the augmented Bergman
fan ΣM.

Proof. Let 𝐸 = 𝐸 � {0}, and let 𝑝 : Z𝐸/Ze𝐸 → Z
𝐸 be the isomorphism described in §3.2. Under the

isomorphism p, we may identify T with the projectivization P𝑇 of the torus 𝑇 = (k∗)𝐸 . We show that
the tropicalization of 𝐿̊𝑏 ⊆ P𝑇 is the support of a subfan in Σ𝐸 that maps isomorphically under p onto
the augmented Bergman fan ΣM.

Let 𝐿 = {x ∈ k𝐸 | 𝐴⊥x = 0} for an (𝑛 − 𝑟) × 𝑛 matrix 𝐴⊥. For an element 𝑏 ∈ G𝐸𝑎 , let 𝑏′ ∈ G𝐸𝑎 be
such that 𝐿 + 𝑏 = {x ∈ k𝐸 | 𝐴⊥x = 𝑏′}. In other words, the closure of 𝐿 + 𝑏 in the projective completion
P(k𝐸 ⊕ k) = P(k𝐸 ) is the projectivization of the linear subspace {(x, 𝑥0) ∈ k𝐸 | 𝐴⊥x − 𝑏′𝑥0 = 0}.
Since 𝑏′ is general because b was, this linear subspace is a realization of the matroid M̃ = M × 0 on 𝐸
called the free coextension of M, whose set of bases is defined as

{𝐵 ∪ 0 | 𝐵 a basis of M} ∪ {𝑆 ⊆ 𝐸 | 𝑆 contains a basis of M and |𝑆 | = 𝑟 + 1}.

It is a classical statement [Stu02; AK06] that the tropicalization of a linear subspace is the support of the
Bergman fan of the corresponding matroid. Thus, it suffices now to show that the support of the Bergman
fan of the free coextension is equal to that of the augmented Bergman fan under the isomorphism p.
This follows from the lemma below, which is a restatement of the discussion in [MM, §5.1]. �

Lemma 5.14. Let M be a matroid on E, and M̃ its free coextension matroid on 𝐸 . The collection

G = {𝐹 ∪ 0 | 𝐹 ⊆ 𝐸 a flat of M} ∪ {𝑖 ∈ 𝐸 | 𝑖 not a loop in M}

is a building set on the lattice of flats of M̃ that induces the fan structure on the support |ΣM̃ | ⊆ R
𝐸/Re𝐸

of the Bergman fan of M̃ consisting of cones

cone{e𝑖 | 𝑖 ∈ 𝐼} + cone{e𝐹∪0 | 𝐹 ∈ ℱ}

for each compatible pair 𝐼 ≤ ℱ with 𝐼 ⊆ 𝐸 independent in M and ℱ a flag of nonempty proper flats
of M.

We remark that the tropicalization of (𝐿+𝑏) ∩𝑇 for a nongeneral b can differ from the support of ΣM.
Nonetheless, by G𝐸 -equivariance, the homology class of the closure 𝑊𝐿+𝑏 of 𝐿 + 𝑏 in the stellahedral
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variety 𝑋𝐸 is independent of 𝑏 ∈ k𝐸 . Taking b to be general, Proposition 5.13 gives an alternate proof
that [𝑊𝐿] = [ΣM], for instance by [Kat09, Proposition 9.4].

6. Exceptional isomorphisms

We construct the pair of isomorphisms between 𝐾 (𝑋𝐸 ) and 𝐴•(𝑋𝐸 ) that were stated in Theorem 1.8.
The two isomorphisms will be related via the two involutions 𝐷𝐾 and 𝐷𝐴 described in §2.2.

We begin by recalling Theorem 2.1, which identifies the T-equivariant K-ring 𝐾𝑇 (𝑋𝐸 ) with a
subring of the product ring

∏
𝜎∈Σ𝐸 (𝑛) Z[𝑇

±1
1 , . . . , 𝑇±1

𝑛 ] of Laurent polynomial rings, and identifies
the T-equivariant Chow ring 𝐴•𝑇 (𝑋𝐸 ) with a subring of the product ring

∏
𝜎∈Σ𝐸 (𝑛) Z[𝑡1, . . . , 𝑡𝑛] of

polynomial rings. Let 𝐴•𝑇 (𝑋𝐸 ) [
∏

𝑖∈𝐸 (1 + 𝑡𝑖)
−1] be the ring obtained by adjoining the inverse of the

polynomial
∏

𝑖∈𝐸 (1 + 𝑡𝑖) to the ring 𝐴•𝑇 (𝑋𝐸 ). For an element f in such product rings, denote by 𝑓𝜎 the
(Laurent) polynomial corresponding to 𝜎 ∈ Σ𝐸 (𝑛).

Theorem 6.1. The map 𝜁𝑇 : 𝐾𝑇 (𝑋𝐸 ) → 𝐴•𝑇 (𝑋𝐸 ) [
∏

𝑖∈𝐸 (1 + 𝑡𝑖)
−1] defined by sending

𝑓𝜎 (𝑇1, . . . , 𝑇𝑛) ↦→ 𝑓𝜎 (1 + 𝑡1, . . . , 1 + 𝑡𝑛) for any 𝜎 ∈ Σ𝐸 (𝑛)

is a ring isomorphism, which descends to a ring isomorphism 𝜁 : 𝐾 (𝑋𝐸 ) → 𝐴•(𝑋𝐸 ).

Proof. Every edge of the stellahedron Π𝐸 is parallel to either e𝑖 for some 𝑖 ∈ 𝐸 or to e𝑖 − e 𝑗 for
some 𝑖 ≠ 𝑗 ∈ 𝐸 . Thus, the conditions 𝑓𝜎 (𝑇1, . . . , 𝑇𝑛) − 𝑓𝜎′ (𝑇1, . . . , 𝑇𝑛) ≡ 0 mod 1 − 𝑇 𝑣 appearing in
Theorem 2.1.(1), in the case of 𝐾𝑇 (𝑋𝐸 ), state that either 𝑓𝜎 − 𝑓𝜎′ ≡ 0 mod 1 − 𝑇𝑖 or 𝑓𝜎 − 𝑓𝜎′ ≡
0 mod 1− 𝑇𝑖

𝑇𝑗
. The latter is equivalent to stating that 𝑓𝜎− 𝑓𝜎′ ≡ 0 mod 𝑇𝑗 −𝑇𝑖 . Under the transformation

𝑇𝑖 ↦→ 1 + 𝑡𝑖 defining 𝜁𝑇 , these two conditions become 𝑓𝜎 (1 + 𝑡1, . . . , 1 + 𝑡𝑛) − 𝑓𝜎′ (1 + 𝑡1, . . . , 1 + 𝑡𝑛) ≡
0 mod 𝑡𝑖 and 𝑓𝜎 (1 + 𝑡1, . . . , 1 + 𝑡𝑛) − 𝑓𝜎′ (1 + 𝑡1, . . . , 1 + 𝑡𝑛) ≡ 0 mod 𝑡 𝑗 − 𝑡𝑖 , which are exactly the
conditions appearing in Theorem 2.1.(2) in the case of 𝐴•𝑇 (𝑋𝐸 ). Hence, the map 𝜁𝑇 is well-defined and
is clearly an isomorphism.

We now check that the isomorphism 𝜁𝑇 descends to a ring isomorphism on the nonequivariant rings.
We recall from Theorem 2.1 that the kernel 𝐼𝐾 of the quotient map 𝐾𝑇 (𝑋𝐸 ) → 𝐾 (𝑋𝐸 ) is the ideal
in 𝐾𝑇 (𝑋𝐸 ) generated by 𝑓 − 𝑓 (1, . . . , 1) for f a global Laurent polynomial, and that the kernel 𝐼𝐴
of the quotient map 𝐴•𝑇 (𝑋𝐸 ) → 𝐴•(𝑋𝐸 ) is the ideal in 𝐴•𝑇 (𝑋𝐸 ) generated by 𝑓 − 𝑓 (0, . . . , 0) for f
a global polynomial. Note that the polynomial

∏
𝑖∈𝐸 (1 + 𝑡𝑖) whose inverse was adjoined to 𝐴•𝑇 (𝑋𝐸 )

maps to 1 under this quotient map. It thus remains only to show that 𝜁𝑇 maps 𝐼𝐾 isomorphically onto
𝐼 ′𝐴 = 𝐼𝐴[

∏
𝑖∈𝐸 (1 + 𝑡𝑖)

−1]. But both 𝜁𝑇 (𝐼𝐾 ) ⊆ 𝐼 ′𝐴 and 𝜁𝑇 (𝐼𝐾 ) ⊇ 𝐼 ′𝐴 are straightforward to verify by
considering their generators. �

By conjugating 𝜁 by the two involutions 𝐷𝐾 and 𝐷𝐴, we have the ‘dual’ isomorphism.

Definition 6.2. Let 𝜙 : 𝐾 (𝑋𝐸 ) → 𝐴•(𝑋𝐸 ) be the isomorphism defined by 𝜙 = 𝐷𝐴 ◦ 𝜁 ◦ 𝐷𝐾 .

We remark that, similarly to Theorem 6.1, one can show that the map 𝜙𝑇 : 𝐾𝑇 (𝑋𝐸 ) →

𝐴•𝑇 (𝑋𝐸 ) [
∏

𝑖∈𝐸 (1 − 𝑡𝑖)
−1] defined by sending

𝑓 (𝑇1, . . . , 𝑇𝑛) ↦→ 𝑓 ((1 − 𝑡1)
−1, . . . , (1 − 𝑡𝑛)

−1) for a Laurent polynomial 𝑓 ∈ Z[𝑇±1
1 , . . . , 𝑇±1

𝑛 ]

is an isomorphism, which descends to the nonequivariant isomorphism 𝜙.
We now show that 𝜁 and 𝜙 behave particularly well with respect to K-classes with ‘simple Chern

roots’, a notion introduced in [BEST23].

Definition 6.3. A T-equivariant K-class [E] ∈ 𝐾𝑇 (𝑋𝐸 ) has simple Chern roots if for each maximal
𝜎 ∈ Σ𝐸 , there is a sequence (𝑎𝜎,0, 𝑎𝜎,1, . . . , 𝑎𝜎,𝑛) such that [E]𝜎 = 𝑎𝜎,0 +

∑𝑛
𝑖=1 𝑎𝜎,𝑖𝑇𝑖 .

Note that [QM]
∨ and [SM]

∨ have simple Chern roots.
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Proposition 6.4. Let [E] ∈ 𝐾𝑇 (𝑋𝐸 ) have simple Chern roots. With u a formal variable, we have∑
𝑗≥0

𝜁𝑇 (
∧ 𝑗 [E])𝑢 𝑗 = (𝑢 + 1)rkM (E)𝑐𝑇

(
E ,

𝑢

𝑢 + 1

)
,

∑
𝑗≥0

𝜙𝑇 (
∧ 𝑗 [E])𝑢 𝑗 = (𝑢 + 1)rkM (E) 𝑠𝑇 (E∨)𝑐𝑇

(
E∨, 1

𝑢 + 1

)
,

∑
𝑗≥0

𝜁𝑇 (Sym 𝑗 [E])𝑢 𝑗 =
1

(1 − 𝑢)rkM (E)
𝑠𝑇

(
E ,

𝑢

𝑢 − 1

)
, and

∑
𝑗≥0

𝜙𝑇 (Sym 𝑗 [E])𝑢 𝑗 =
𝑐𝑇 (E∨)

(1 − 𝑢)rkM (E)
𝑠𝑇

(
E∨, 1

1 − 𝑢

)
.

Proof. We prove the formulas involving 𝜙. The formulas involving 𝜁 are similar (and the first formula
follows from [BEST23, Proposition 10.5]). Since [E] has simple Chern roots, we have that [E]𝜎 =
𝑎𝜎,0 +

∑
𝑖∈𝐼𝜎 𝑇𝑖 for some multiset 𝐼𝜎 . We then compute∑

𝑗≥0
𝜙𝑇 (

∧ 𝑗 [E])𝜎𝑢 𝑗 = (𝑢 + 1)𝑎𝜎,0+|𝐼𝜎 |
∏
𝑖∈𝐼𝜎

(1/(1 − 𝑡𝑖)) (1 − 𝑡𝑖/(𝑢 + 1))

= (𝑢 + 1)rkM (E) 𝑠𝑇 (E∨)𝜎𝑐𝑇
(
E∨, 1

𝑢 + 1

)
𝜎

, and

∑
𝑗≥0

𝜙𝑇 (Sym 𝑗 [E])𝜎𝑢 𝑗 =
1

(1 − 𝑢)𝑎𝜎,0+|𝐼𝜎 |

∏
𝑖∈𝐼𝜎

1 − 𝑡𝑖
1 − 𝑡𝑖/(1 − 𝑢)

=
𝑐𝑇 (E∨)𝜎
(1 − 𝑢)rkM (E)

𝑠𝑇
(
E∨, 1

1 − 𝑢

)
𝜎

,

as desired. �

We note in particular the following consequence of Proposition 6.4.

Corollary 6.5. Let M be a matroid of rank r on E. Let 𝐷 𝐼 (M⊥) be the T-invariant divisor associated to
𝐼 (M⊥) as discussed above Example 3.15.

(1) One has 𝜙([O𝑋𝐸 (𝐷 𝐼 (M⊥) )]) = 𝑐(QM) and 𝜁 ([O𝑋𝐸 (𝐷 𝐼 (M⊥) )]) = 𝑠(Q∨M).
(2) If 𝐿 ⊆ k𝐸 realizes M, then 𝜁 ([O𝑊𝐿 ]) = [𝑊𝐿].

Proof. Applying 𝜁 = 𝐷𝐴 ◦ 𝜙 ◦ 𝐷𝐾 to the first formula in the proposition gives∑
𝑗≥0

𝜙(
∧ 𝑗 [E]∨)𝑢 𝑗 = (𝑢 + 1)rkM (E)𝑐(E ,− 𝑢

𝑢+1 )

for [E] ∈ 𝐾 (𝑋𝐸 ) with simple Chern roots. Since [QM]
∨ has simple Chern roots with rk(QM) = 𝑛 − 𝑟 ,

and since [
∧𝑛−𝑟 QM] = [detQM] = [O𝑋𝐸 (𝐷 𝐼 (M⊥) )] by Proposition 4.6, the first statement now follows

by setting [E] = [QM]
∨ and noting that 𝑐(E ,−𝑢) = 𝑐(E∨, 𝑢). The second statement follows from the

first formula in the proposition and Corollary 5.4. �

Example 6.6. Note that [detQU𝑛−1,𝐸 ] = [O𝑋𝐸 (𝐷 𝐼 (U1,𝐸 ) )] and [detQU0,𝐸 ] = [O𝑋𝐸 (𝐷 𝐼 (U𝑛,𝐸 ) )]. Be-
cause the line bundles O𝑋𝐸 (𝐷 𝐼 (U1,𝐸 ) ) and O𝑋𝐸 (𝐷 𝐼 (U𝑛,𝐸 ) ) induce the maps 𝜋𝐸 : 𝑋𝐸 → P𝐸 and
𝜋1𝐸 : 𝑋𝐸 → (P

1)𝐸 , respectively, we have

𝜙([O𝑋𝐸 (𝐷 𝐼 (U1,𝐸 ) )]) = 1 + 𝛼 and 𝜙([O𝑋𝐸 (𝐷 𝐼 (U𝑛,𝐸 ) )]) =
∏
𝑖∈𝐸

(1 + 𝑦𝑖) = 𝑐
( ⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)
)
.

Here, recall the notation that 𝛼 = 𝑐1 (𝜋
∗
𝐸OP𝐸 (1)) and 𝑦𝑖 = 𝑐1 (𝜋

∗
𝑖OP1 (1)).
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Remark 6.7. Let us remark on how the maps 𝜙 and 𝜁 here are related to the exceptional isomorphism
for permutohedral varieties given in [BEST23, Theorem D]. Just as for augmented tautological bundles,
classes and Bergman classes, the first relation comes from considering 𝑋𝐸 as a T-fixed divisor on
𝑋𝐸 : The restriction of 𝜁 to 𝑋𝐸 recovers the isomorphism 𝜁 between 𝐾 (𝑋𝐸 ) and 𝐴•(𝑋𝐸 ) in [BEST23,
Theorem D]. Let us now sketch a different relation. Let 𝐸 = 𝐸 � {0} as in §3.2, where we noted that the
stellahedral fan Σ𝐸 can be considered as a coarsening of the permutohedral fan Σ𝐸 . In other words, we
have a T-equivariant birational map 𝑝 : 𝑋𝐸 → 𝑋𝐸 . One can show that there is a commuting diagram

𝐾 (𝑋𝐸 ) 𝐴•(𝑋𝐸 )

𝐾 (𝑋𝐸 ) 𝐴•(𝑋𝐸 ),

𝜁

𝜁

where the two vertical maps are the respective pullback maps, and one has similar commuting diagrams
for 𝜙 and the T-equivariant versions of 𝜁 and 𝜙. Both Theorem 1.8 and Theorem 1.9 can then be deduced
from the commutativity of the diagrams and [BEST23, Theorem D].

7. Valuative group, homology and the intersection pairing

7.1. The polytope algebra and the proof of Theorem 1.4

For the proof of Theorem 1.4, the last remaining ingredient is the polytope algebra introduced in
[McM89]. For a polytope 𝑄 ⊆ R𝐸 , define the function 1𝑄 : R𝐸 → Z by 1𝑄 (𝑢) = 1 if 𝑢 ∈ 𝑃 and 0
otherwise. Recall that a (lattice) polytope P is said to be a (lattice) deformation of Q if its normal fan
Σ𝑃 coarsens that of Q.

Definition 7.1. Let Σ be the normal fan of a smooth polytope 𝑄 ⊆ R𝐸 . Let I(Σ) be the subgroup of ZR𝐸

generated by {1𝑃 | 𝑃 a lattice deformation of 𝑄}, and let transl(Σ) to be the subgroup of I(Σ) generated
by {1𝑃 − 1𝑃+𝑢 | 𝑢 ∈ Z𝐸 }. We define the polytope algebra to be the quotient

I(Σ) = I(Σ)/transl(Σ).

For a lattice deformation P, let us denote by [𝑃] its class in the polytope algebra I(Σ). The polytope
algebra, as the terminology suggests, is a ring with multiplication induced by Minkowski sum, that is, by
[𝑃] · [𝑃′] = [𝑃 + 𝑃′]. It was well-known among experts that the polytope algebra is naturally identified
with 𝐾 (𝑋Σ); this is realized in Theorem A.10. When we apply the theorem to the stellahedral variety,
noting that deformations of the stellahedron are exactly polymatroids (Proposition 3.13), we deduce the
following.

Theorem 7.2. The map sending an integral polymatroid P on E to [O𝑋𝐸 (𝐷𝑃)] defines an isomorphism
I(Σ𝐸 ) � 𝐾 (𝑋𝐸 ).

We now prove Theorem 1.5 by showing that we have a sequence of isomorphisms

𝑛⊕
𝑟=0

Val𝑟 (𝐸) � I(Σ𝐸 ) � 𝐾 (𝑋𝐸 ) � 𝐴•(𝑋𝐸 ).

We prepare for the first isomorphism in the sequence with the following lemma.

Lemma 7.3. The intersection of an integral polymatroid with an integral translate of the Boolean cube
[0, 1]𝐸 , if nonempty, is a translate of the independence polytope of a matroid.

Proof. For 𝑖 ∈ 𝐸 and 𝑎 ∈ Z, let us define the hyperplane 𝐻𝑖,𝑎 = {𝑢 ∈ R𝐸 | 〈e𝑖 , 𝑢〉 = 𝑎} and its half-
spaces 𝐻±𝑖,𝑎 = {𝑢 ∈ R𝐸 | 〈±e𝑖 , 𝑢〉 ≥ ±𝑎}. It follows from Definition 3.9 that a polymatroid intersected
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with any half-space 𝐻+𝑖,𝑎 or 𝐻−𝑖,𝑎 is a translate of a polymatroid if it isn’t empty. So, the intersection of
an integral polymatroid with an integer translate of the Boolean cube is a translate of a polymatroid if
nonempty. By Example 3.12, it now suffices to verify that this polymatroid is integral.

By [Edm70, (35)], the intersection of two integral polymatroids is a polytope whose vertices lie in
Z𝐸 . By intersecting an integral polymatroid P with integral polymatroids of the form

∏𝑛
𝑖=1 [0, 𝑎𝑖], for

𝑎𝑖 ∈ Z≥0, we see that all vertices of the intersection of P with an integral translate of the Boolean cube
are in Z𝐸 . �

Proposition 7.4. The map
⊕𝑛

𝑟=0 Val𝑟 (𝐸) → I(Σ𝐸 ) defined by M ↦→ [𝐼 (M⊥)] is an isomorphism.
Proof. To see that the given map is well-defined, note that the base polytope of the dual 𝑃(M⊥) is
−(𝑃(M) − e𝐸 ), and that the independence polytope 𝐼 (M⊥) is the intersection with [0, 1]𝐸 of the
Minkowski sum 𝑃(M⊥) + [−1, 0]𝐸 . Each of these operations—translation, negation, Minkowski sum,
and intersection—preserves valuative relations. Surjectivity of the map is immediate from Lemma 7.3,
since given an integral polymatroid P, by tiling R𝐸 with integer translates of the Boolean cube, we can
express [𝑃] ∈ I(Σ𝐸 ) as a linear combination of the classes of independence polytopes of matroids.

For injectivity, first we show that the only relations between indicator functions of translates of
independence polytopes come from valuativity. Suppose we have

∑𝑘
𝑖=1 𝑎𝑖1𝐼 (M𝑖 )+𝑢𝑖 = 0 for 𝑎𝑖 ∈ Z, 𝑢𝑖 ∈

Z𝑛, and M𝑖 a matroid on E. We show that then
∑𝑘
𝑖=1 𝑎𝑖1𝐼 (M𝑖 ) = 0 as an element in ZR𝐸 . By Proposition

A.4, this implies that
∑𝑘
𝑖=1 𝑎𝑖1𝑃 (M𝑖) = 0 because each 𝐼 (M𝑖) has 𝑃(M𝑖) as the face maximizing the

pairing with e𝐸 . For a subset 𝑆 ⊆ 𝐸 , let ℓ𝑆 be the subset of {M1, . . . , M𝑘 } consisting of matroids whose
set of loops is equal to S, or equivalently, the smallest coordinate subspace containing the independence
polytope of the matroid is R𝑆 ⊆ R𝐸 . Let us pick a linear ordering (𝑆0 = ∅, 𝑆1, 𝑆2, . . . , 𝑆2𝑛 = 𝐸) of the
subsets of E that refines the partial order by inclusion. We claim by induction that

∑
M 𝑗 ∈ℓ𝑆𝑖

𝑎 𝑗1𝐼 (M 𝑗 ) = 0.
In the base case 𝑆0 = ∅, the polytopes 𝐼 (M 𝑗 ) for all M 𝑗 ∈ ℓ𝑆0 nontrivially intersect the interior of the
Boolean cube [0, 1]𝐸 , whereas none of those of M 𝑗′ ∈ ℓ𝑆𝑖 for 𝑖 > 0 do. Hence that

∑𝑘
𝑖=1 𝑎𝑖1𝐼 (M𝑖 )+𝑢𝑖 = 0

implies that
∑

M 𝑗 ∈ℓ𝑆0
𝑎 𝑗1𝐼 (M 𝑗 ) = 0. For the induction step at 𝑆𝑖 , we may assume that ℓ𝑆0 , . . . , ℓ𝑆𝑖−1 are

empty. Then, we repeat the argument with ‘the interior of the Boolean cube’ replaced by ‘the relative
interior of the cube [0, 1]𝑆𝑖×{0}𝐸\𝑆𝑖 ’. That is, the polytopes 𝐼 (M 𝑗 ) for all M 𝑗 ∈ ℓ𝑆𝑖 nontrivially intersect
the relative interior of the cube [0, 1]𝑆𝑖 × {0}𝐸\𝑆𝑖 , whereas none of those of M 𝑗′ ∈ ℓ𝑆𝑖′ for 𝑖′ > 𝑖 do.
Hence, again we conclude

∑
M 𝑗 ∈ℓ𝑆𝑖

𝑎 𝑗1𝐼 (M 𝑗 ) = 0 from
∑𝑘
𝑖=1 𝑎𝑖1𝐼 (M𝑖 )+𝑢𝑖 = 0, completing the induction.

Now suppose that
∑𝑘
𝑖=1 𝑎𝑖 [𝐼 (M𝑖)] = 0 for 𝑎𝑖 ∈ Z and M𝑖 a matroid on E. This means that

𝑘∑
𝑖=1

𝑎𝑖1𝐼 (M𝑖 ) +
∑
𝑃,𝑚

𝑏𝑃,𝑚(1𝑃+𝑚 − 1𝑃) = 0

for some collection of polymatroids P, vectors 𝑚 ∈ Z𝑛, and integers 𝑏𝑃,𝑚. Using Lemma 7.3, we can
rewrite this as

𝑘∑
𝑖=1

𝑎𝑖1𝐼 (M𝑖 ) +

ℓ∑
𝑗=1

𝑐 𝑗 (1𝐼 (M′𝑗 )+𝑚 𝑗 − 1𝐼 (M′𝑗 ) ) = 0

for some collection of matroids M′𝑗 and vectors 𝑚 𝑗 ∈ Z
𝑛. Then the previous discussion implies that

equality still holds when we remove the second sum, as desired. �

Proof of Theorem 1.5. In Proposition 7.4, we have constructed an isomorphism
⊕𝑛

𝑟=0 Val𝑟 (𝐸) →
I(Σ𝐸 ) defined by M ↦→ [𝐼 (M⊥)]. Now, composing the isomorphism I(Σ𝐸 ) � 𝐾 (𝑋𝐸 ) in Theorem 7.2
with the isomorphism 𝜙 : 𝐾 (𝑋𝐸 ) → 𝐴•(𝑋𝐸 ) in §6, we obtain an isomorphism I(Σ𝐸 ) → 𝐴•(𝑋𝐸 ), which
by Corollary 6.5 maps [𝐼 (M⊥)] to 𝑐(QM) for a matroid M. By Corollary 5.11, the top nonvanishing
degree part 𝑐𝑛−rk(M) (QM) of 𝑐(QM) is the augmented Bergman class [ΣM], so we conclude from the
graded structure of 𝐴•(𝑋𝐸 ) that

⊕𝑛
𝑟=0 Val𝑟 (𝐸) → 𝐴•(𝑋𝐸 ) defined by M ↦→ [ΣM] is an isomorphism

of abelian groups. �
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With Theorem 1.5, we can now complete the proof of Theorem 1.8.

Proof of Theorem 1.8. That 𝜁 and 𝜙 are ring isomorphisms was proved in Section 6, and that they satisfy
the stated properties is Corollary 6.5. To verify that the stated properties characterize the maps, note
first that 𝐴1 (𝑋𝐸 ) generates 𝐴•(𝑋𝐸 ) as a ring, and that the augmented Bergman classes of matroids of
rank 𝑛−1 span 𝐴1 (𝑋𝐸 ) because Val𝑛−1 (𝐸) � 𝐴1 (𝑋𝐸 ) by Theorem 1.5. The result now follows because
every matroid of rank 𝑛 − 1 is realizable over any field, and if 𝐿 ⊂ k𝐸 realizes a matroid M of rank
𝑛 − 1 then [𝑊𝐿] = [ΣM] and 𝑐(Q𝐿) = 1 + 𝑐1 (Q𝐿) = 1 + [ΣM] by Corollary 5.11. �

We now prove Theorem 1.6 by using Lemma 7.3 with Corollary 6.5 and Corollary 5.11.

Proof of Theorem 1.6. If crk(M) + crk(M′) > 𝑛 ≥ crk(M∧M′), then the result vacuously holds, so we
may assume that crk(M) + crk(M′) ≤ 𝑛. Note that, by Corollary 5.11, the degree crk(M) + crk(M′) part
of 𝑐(QM)𝑐(QM′ ) is [ΣM] · [ΣM′ ], so by Corollary 6.5 it suffices to compute the degree crk(M) +crk(M′)
part of 𝜙([𝐼 (M⊥)] · [𝐼 (M′⊥)]). By Lemma 7.3, we may write [𝐼 (M⊥)] · [𝐼 (M′⊥)] = [𝐼 (M⊥)+ 𝐼 (M′⊥)]
as a sum of the classes of independence polytopes of matroids by intersecting it with the tiling of R𝐸
by translates of the Boolean cube and using inclusion-exclusion on the faces. This gives an expression
for nonequivariant K-class [𝐼 (M⊥)] · [𝐼 (M′⊥)] as a sum of the K-classes of independence polytopes
of matroids.

The intersection of 𝐼 (M⊥) + 𝐼 (M′⊥) with the Boolean cube is 𝐼 ((M∧M′)⊥). The image of [𝐼 ((M∧
M′)⊥)] under 𝜙 is [ΣM∧M′ ] in degree crk(M ∧ M′). Therefore, it suffices to show that the images
under 𝜙 of all of the other terms in the expression of [𝐼 (M⊥) + 𝐼 (M′⊥)] as a sum of the classes of
independence polytopes of matroids are zero in degrees at least crk(M) +crk(M′). Every other polytope
appearing requires a nontrivial translation towards the origin to realize it as an independence polytope
since an independence polytope always contains the origin. As the lattice distance from the origin of
any vertex of 𝐼 (M⊥) + 𝐼 (M′⊥) is bounded by crk(M) + crk(M′), this means that, after translating one
of these polytopes so that it is the independence polytope of a matroid, that matroid has rank at most
crk(M) + crk(M′) − 1. Then the result follows from Proposition 5.9. �

We showed in the discussion following Corollary 5.11 that [ΣM] restricts to [ΣM] on 𝑋𝐸 . Hence, by
restricting to 𝑋𝐸 ⊆ 𝑋𝐸 , we obtain Corollary 1.7 from Theorem 1.6. We also deduce that if M, M′ and
M ∧M′ are loopless, then crk(M) + crk(M′) = crk(M ∧M′).

7.2. A Schubert basis

For a total order < on E and two subsets 𝐼 = {𝑖1 < · · · < 𝑖𝑟 } and 𝐽 = { 𝑗1 < · · · < 𝑗𝑟 } of E with same
cardinality, let us say that 𝐼 ≤ 𝐽 if 𝑖𝑘 ≤ 𝑗𝑘 for all 𝑘 = 1, . . . , 𝑟 .

Definition 7.5. A Schubert matroid on E of rank r is a matroid whose set of bases is

{𝐵 ⊆ 𝐸 | |𝐵 | = 𝑟 and 𝐵 ≤ 𝐼}

for some total order < on E and a subset 𝐼 ⊆ 𝐸 with |𝐼 | = 𝑟 .

Because 𝐼 ≤ 𝐽 if and only if (𝐸 \ 𝐼) ≥ (𝐸 \ 𝐽), the dual of a Schubert matroid is a Schubert matroid.
We note the following equivalent description of the bases of a Schubert matroid.

Remark 7.6. Let < be a total order on E, and 𝐼 = {𝑖1 < · · · < 𝑖𝑟 }. Define

𝐼jumps = {𝑖 𝑗 ∈ 𝐼 | 𝑗 = 𝑟 or there exists 𝑒 ∈ 𝐸 such that 𝑖 𝑗 < 𝑒 < 𝑖 𝑗+1}.

Writing 𝐼jumps = {ℓ1 < · · · < ℓ𝑘 }, define a chain 𝐹1, . . . , 𝐹𝑘 of subsets of E and positive integers
𝑑1, . . . , 𝑑𝑘 by

𝐹𝑗 = {𝑒 ∈ 𝐸 | 𝑒 ≤ ℓ 𝑗 } and 𝑑1 + · · · + 𝑑 𝑗 = |𝐹𝑗 ∩ 𝐼 | for 𝑗 = 1, . . . , 𝑘 .
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Note that by construction, we have 𝑑1 ≤ |𝐹1 | and 𝑑 𝑗 < |𝐹𝑗 \ 𝐹𝑗−1 | for all 𝑗 = 2, . . . , 𝑘 . The set
{𝐵 ⊆ 𝐸 | |𝐵 | = 𝑟 and 𝐵 ≤ 𝐼} of the bases of the Schubert matroid associated to < and I then can be
described equivalently as the set

{𝐵 = {𝑏1 < · · · < 𝑏𝑟 } ⊆ 𝐸 | {𝑏1, . . . , 𝑏𝑑1+···+𝑑 𝑗 } ⊆ 𝐹𝑗 for all 𝑗 = 1, . . . , 𝑘}.

Schubert matroids appear in the literature under various other guises such as nested matroids [Ham17],
Bruhat interval polytopes [TW15], generalized Catalan matroids [BdM06] and shifted matroids [Ard03].

Theorem 7.7. The augmented Bergman classes of Schubert matroids on E form a basis for 𝐴•(𝑋𝐸 ).

We prepare the proof with the following lemma.

Lemma 7.8. For ∅ � 𝐹 ⊆ 𝐸 , denote by ℎ𝐹 the divisor 𝐷 𝐼 (U1,𝐹 ⊕U0,𝐸\𝐹 ) corresponding to 𝐼 (U1,𝐹 ⊕
U0,𝐸\𝐹 ) under Proposition 3.13. Then, the set of monomials{

ℎ𝑑1
𝐹1
· · · ℎ𝑑𝑘𝐹𝑘

��� ∅ � 𝐹1 � · · · � 𝐹𝑘 ⊆ 𝐸, 𝑑1 ≤ |𝐹1 |, 𝑑𝑖 < |𝐹𝑖 \ 𝐹𝑖−1 | ∀𝑖 = 2, . . . , 𝑘
}

form a basis for the Chow cohomology ring 𝐴•(𝑋𝐸 ).

Proof. Let G = {𝑆 ∪ 0 | 𝑆 ⊆ 𝐸} ∪ 𝐸 be the building set on 𝐸 = 𝐸 � {0} in Proposition 3.8, and let ΣG
denote the corresponding fan. Then, [FY04, Corollary 2] states that the Chow cohomology ring of ΣG
has a presentation

𝐴•(ΣG) =
Z[𝑧𝑋 | 𝑋 ∈ G]〈

𝑧𝑋1 · · · 𝑧𝑋𝑘 | {𝑋1, . . . , 𝑋𝑘 } not a face of N
〉
+

〈∑
𝑋 �𝑖 𝑧𝑋 | 𝑖 ∈ 𝐸

〉 ,

and moreover, [FY04, Corollary 1] states that the set of monomials{
𝑧𝑑1
𝐹1∪0 · · · 𝑧

𝑑𝑘
𝐹𝑘∪0

��� ∅ � 𝐹1 � · · · � 𝐹𝑘 ⊆ 𝐸, 𝑑1 ≤ |𝐹1 |, 𝑑𝑖 < |𝐹𝑖 \ 𝐹𝑖−1 | ∀𝑖 = 2, . . . , 𝑘
}

form a basis for 𝐴•(ΣG). We modify this basis by performing an upper triangular linear change of
variables as follows. For ∅ � 𝐹 ⊆ 𝐸 , let

ℎ̃𝐹 =
∑

𝐹 ⊆𝐺⊆𝐸

−𝑧𝐺∪0.

When G is given any total order that refines the partial order by inclusion, replacing 𝑧𝐹∪0 by ℎ̃𝐹 is an
upper triangular linear change of variables. Hence, we have that{

ℎ̃𝑑1
𝐹1
· · · ℎ̃𝑑𝑘𝐹𝑘

��� ∅ � 𝐹1 � · · · � 𝐹𝑘 ⊆ 𝐸, 𝑑1 ≤ |𝐹1 |, 𝑑𝑖 < |𝐹𝑖 \ 𝐹𝑖−1 | ∀𝑖 = 2, . . . , 𝑘
}

is a basis of 𝐴•(ΣG). It remains only to verify that, for any ∅ � 𝐹 ⊆ 𝐸 , the element ℎ̃𝐹 ∈ 𝐴1(ΣG)
corresponds to ℎ𝐹 ∈ 𝐴•(𝑋𝐸 ) under the isomorphism 𝑝 : ΣG → Σ𝐸 of Proposition 3.8.

In the presentation of 𝐴1(ΣG) above, for ∅ ⊆ 𝑆 � 𝐸 , the variable 𝑧𝑆∪0 represents the torus-
invariant divisor associated to the ray cone(e𝑆∪0) of ΣG , which under the isomorphism 𝑝 : ΣG → Σ𝐸 in
Proposition 3.8 maps to the ray 𝜌𝑆 of Σ𝐸 . Moreover, it follows from the linear relation

∑
𝑋 �0 𝑧𝑋 = 0 in

𝐴•(ΣG) that the expression
∑
𝐹 ⊆𝐺⊆𝐸 −𝑧𝐺∪0 for ℎ̃𝐹 can be rewritten as

ℎ̃𝐹 =
∑
∅⊆𝑆�𝐸
𝐹�𝑆

𝑧𝑆∪0.
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Hence, the isomorphism 𝑝 : ΣG → Σ𝐸 maps ℎ̃𝐹 to the element∑
∅⊆𝑆�𝐸
𝐹�𝑆

[𝐷𝑆] ∈ 𝐴1(𝑋𝐸 ),

which by Proposition 3.13 corresponds to 𝐼 (U1,𝐹 ⊕U0,𝐸\𝐹 ) because the rank function rk of the matroid
U1,𝐹 ⊕ U0,𝐸\𝐹 is given by rk(𝐸 \ 𝑆) = 1 if 𝐹 � 𝑆 and 0 otherwise. �

For matroids M and M′ on E, there is a dual notion to matroid intersection, matroid union, defined
by M ∨M′ := (M⊥ ∧M′⊥)⊥. The bases of M ∨M′ are the maximal elements among the unions of the
basis of M and M′.

Proof of Theorem 7.7. For ∅ � 𝐹 ⊆ 𝐸 , let H𝐹 be the corank 1 matroid whose unique circuit is F.
Equivalently, its dual matroid H⊥𝐹 is the matroid U1,𝐹 ⊕ U0,𝐸\𝐹 . We note from Proposition 4.6 and
Corollary 5.11 that

ℎ𝐹 = [𝐷 𝐼 (H⊥𝐹 ) ] = 𝑐1 (QH𝐹 ) = [ΣH𝐹 ] .

Now, applying Theorem 1.6 to Lemma 7.8 yields the theorem once we show the following: For an
element ℎ𝑑1

𝐹1
· · · ℎ𝑑𝑘𝐹𝑘

in the monomial basis of 𝐴•(𝑋𝐸 ) given in Lemma 7.8, the matroid intersection

H∧𝑑1
𝐹1
∧ · · · ∧ H∧𝑑𝑘𝐹𝑘

= H𝐹1 ∧ · · · ∧ H𝐹1︸��������������︷︷��������������︸
𝑑1 times

∧ · · · ∧ H𝐹𝑘 ∧ · · · ∧ H𝐹𝑘︸���������������︷︷���������������︸
𝑑𝑘 times

is a Schubert matroid of corank 𝑑1 + · · · + 𝑑𝑘 , and every Schubert matroid arises in this way. Since
the dual of a Schubert matroid is a Schubert matroid, we may instead prove the dual statement that the
matroid union

H⊥𝐹1
∨ · · · ∨ H⊥𝐹1︸��������������︷︷��������������︸
𝑑1 times

∨ · · · ∨ H⊥𝐹𝑘
∨ · · · ∨ H⊥𝐹𝑘︸���������������︷︷���������������︸
𝑑𝑘 times

is a Schubert matroid and that every Schubert matroid of rank 𝑑1 + · · · + 𝑑𝑘 arises in this way. Since
every matroid in the above matroid union is of rank 1, a basis of the matroid union is obtained by
selecting 𝑑𝑖 elements of 𝐹𝑖 for each 𝑖 = 1, . . . , 𝑘 such that the union of all the selected elements has as
large cardinality as possible. By Remark 7.6, we see that such matroid union are exactly the Schubert
matroids of rank 𝑑1 + · · · + 𝑑𝑘 . �

Combining Theorem 1.5 with Theorem 7.7 recovers the following result of Derksen and Fink [DF10,
Theorem 5.4].
Corollary 7.9. Schubert matroids on E of rank r form a basis for Val𝑟 (𝐸).

Because Schubert matroids are realizable over any infinite field, combining Corollary 5.11 and
Corollary 6.5 with Theorem 7.7 also yields the following.
Corollary 7.10. The K-classes [O𝑊𝐿 ] of augmented wonderful varieties span 𝐾 (𝑋𝐸 ) as an abelian
group.

8. Numerical properties

8.1. The Hirzebruch–Riemann–Roch-type formulas

We now prove Theorem 1.9 using Corollary 7.10. While one can prove Theorem 1.9 by mimicking the
proof of [BEST23, Theorem D], we present a proof that avoids the use of the Atiyah–Bott localization
formula. Recall the notation 𝛼 = 𝜋∗𝐸𝑐1 (OP𝐸 (1)).
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Proof of Theorem 1.9. We first verify the formula involving the 𝜁 map, that is, that

𝜒
(
[E]

)
=

∫
𝜁
(
[E]

)
· (1 + 𝛼 + · · · + 𝛼𝑛)

for any [E] ∈ 𝐾 (𝑋𝐸 ). Corollary 7.10 implies that it suffices to show this for the case [E] = [O𝑊𝐿 ] for
any linear subspace 𝐿 ⊆ k𝐸 . Now, we have 𝜒([O𝑊𝐿 ]) = 1 since 𝑊𝐿 is obtained from a projective space
by a sequence of blow-ups along smooth centers. On the other hand, using Corollary 6.5 and applying
the projection formula to 𝜋𝐸 gives that∫

𝑋𝐸

[𝑊𝐿] · (1 + 𝛼 + · · · + 𝛼𝑛) =
∫
P𝐸

𝑐1 (OP𝐸 (1))dim 𝐿 · (1 + 𝑐1 (OP𝐸 (1)) + · · · + 𝑐1 (OP𝐸 (1))𝑛) = 1.

Having established the formula involving 𝜁 , we now use Serre duality to derive the formula involving
𝜙, that is,

𝜒
(
[E]

)
=

∫
𝜙
(
[E]

)
· 𝑐

( ⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)
)
.

First, by [CLS11, Theorem 8.1.6], the anticanonical divisor of 𝑋𝐸 is the
∑
𝑆�𝐸 𝐷𝑆 +

∑
𝑖∈𝐸 𝐷𝑖 , where

𝐷𝑆 denotes the torus-invariant divisor of the ray 𝜌𝑆 , and 𝐷𝑖 that of the ray 𝜌𝑖 in Σ𝐸 . By Proposition
3.13, one checks that

∑
𝑆�𝐸 𝐷𝑆 = 𝐷 𝐼 (U1,𝐸 ) and

∑
𝑖∈𝐸 𝐷𝑖 = 𝐷 𝐼 (U𝑛,𝐸 ) . In summary, we have that the

anticanonical bundle 𝜔∨𝑋𝐸
of 𝑋𝐸 is

𝜔∨𝑋𝐸
= O𝑋𝐸 (𝐷 𝐼 (U1,𝐸 ) + 𝐷 𝐼 (U𝑛,𝐸 ) ).

Corollary 6.5, in the form of Example 6.6, thus gives 𝜙([𝜔∨𝑋𝐸
]) = (1 + 𝛼) · 𝑐

( ⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (1)

)
.

Applying Serre duality, along with the definition that 𝜁 = 𝐷𝐴 ◦ 𝜙 ◦ 𝐷𝐾 , we conclude

𝜒([E]) = (−1)𝑛𝜒([E]∨ · [𝜔𝑋𝐸 ])

= (−1)𝑛
∫
𝑋𝐸

𝜁
(
[E]∨ · [𝜔𝑋𝐸 ]

)
· (1 + 𝛼 + · · · + 𝛼𝑛)

= (−1)𝑛
∫
𝑋𝐸

𝐷𝐴
(
𝜙([E]) · 𝜙([𝜔∨𝑋𝐸

])
)
· (1 + 𝛼 + · · · + 𝛼𝑛)

= (−1)𝑛
∫
𝑋𝐸

𝐷𝐴

(
𝜙([E]) · (1 + 𝛼) · 𝑐

( ⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)
) )
· (1 + 𝛼 + · · · + 𝛼𝑛)

= (−1)𝑛
∫
𝑋𝐸

𝐷𝐴

(
𝜙([E]) · 𝑐

( ⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)
) )

=
∫
𝑋𝐸

𝜙([E]) · 𝑐
( ⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)
)
,

as desired. �

8.2. Tutte polynomial formulas

We show that two specializations of the Tutte polynomial arise as volume polynomials of augmented
tautological classes. The first is the rank-generating function of a matroid, that is, 𝑇M (𝑢 + 1, 𝑣 + 1). This
computation does not show that the rank-generating function has any log-concavity property because
it involves the Chern class of [SM], and Proposition 5.9 shows that 𝑐(SM) is rarely nef or anti-nef.
We also compute the intersection numbers of a second set of classes, which gives a more complicated
specialization of the Tutte polynomial. This computation can be used to show that the result is Lorentzian
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and therefore has log-concavity properties. Recall the notation that 𝑦𝑖 = 𝜋∗𝑖 (𝑐1 (OP1 (1))) for 𝑖 ∈ 𝐸 , and
let 𝑢𝐼 =

∏
𝑖∈𝐼 𝑢𝑖 for 𝐼 ⊆ 𝐸 .

Theorem 8.1. Let M be a matroid on E of rank r. For 𝐼 ⊆ 𝐸 , we have∫
𝑋𝐸

𝑐(SM, 𝑧) · 𝑤𝑛−𝑟 · 𝑐(QM, 𝑤−1) ·
∏
𝑖∈𝐼

𝑦𝑖 = 𝑧𝑟−rkM (𝐼 )𝑤 |𝐼 |−rkM (𝐼 ) .

In particular, summing over all 𝐼 ⊆ 𝐸 , we have that∫
𝑋𝐸

𝑐(SM, 𝑧) · 𝑤𝑛−𝑟 · 𝑐(QM, 𝑤−1) ·

𝑛∏
𝑖=1
(1 + 𝑦𝑖𝑢𝑖) =

∑
𝐼 ⊆𝐸

𝑧𝑟−rkM (𝐼 )𝑤 |𝐼 |−rkM (𝐼 )𝑢𝐼 .

Proof. By Proposition 4.8, the restriction of the Chern classes of augemented tautological classes to
𝑋𝐸\𝐼 are the Chern classes of the augmented tautological classes of the contraction M/𝐼. Now, one
notes that

∫
𝑋𝐸

𝑐(SM, 𝑧) · 𝑐(QM, 𝑤) =
∫
𝑋𝐸

𝑐𝑟 (SM) · 𝑧
𝑟 · 𝑐𝑛−𝑟 (QM) ·𝑤

𝑛−𝑟 = 𝑧𝑟𝑤𝑛−𝑟 since [SM] + [QM] =

[
⊕

𝑖∈𝐸 𝜋∗𝑖OP1 (1)]. �

Theorem 1.10 is immediate from Theorem 8.1. We now prove Theorem 1.11. The proof uses the
Hirzebruch–Riemann–Roch-type formulas for both 𝜁 and 𝜙 to obtain the equality of certain intersection
numbers. We first state a combinatorial lemma that will be used twice in the proof of Theorem 1.11.

Lemma 8.2. Let M be a matroid of rank r on E. Then

∑
𝐼 ⊆𝐸

𝑎 |𝐼 |𝑏𝑟−rkM (𝐼 )𝑐𝑛−|𝐼 |−𝑟+rkM (𝐼 )𝑇M/𝐼

(
𝑑

𝑏
,
𝑏 + 𝑐

𝑐

)
= (𝑎 + 𝑏)𝑟 𝑐𝑛−𝑟𝑇M

(
𝑎 + 𝑑

𝑎 + 𝑏
,
𝑎 + 𝑏 + 𝑐

𝑐

)
.

Proof. Using the rank generating function for the Tutte polynomial, we compute

∑
𝐼 ⊆𝐸

𝑎 |𝐼 |𝑏𝑟−rkM (𝐼 )𝑐𝑛−|𝐼 |−𝑟+rkM (𝐼 )𝑇M/𝐼

(
𝑑

𝑏
,
𝑏 + 𝑐

𝑐

)

=
∑
𝐼 ⊆𝐸

𝑎 |𝐼 |𝑏𝑟−rkM (𝐼 )𝑐𝑛−|𝐼 |−𝑟+rkM (𝐼 )
∑
𝐽 ⊇𝐼

(
𝑑 − 𝑏

𝑏

)𝑟−rkM (𝐽 ) ( 𝑏
𝑐

) |𝐽 |− |𝐼 |−rkM (𝐽 )+rkM (𝐼 )

=
∑

𝐼 ⊆𝐽 ⊆𝐸

𝑎 |𝐼 |𝑏 |𝐽 |− |𝐼 |𝑐𝑛−𝑟−|𝐽 |+rkM (𝐽 ) (𝑑 − 𝑏)𝑟−rkM (𝐽 )

=
∑
𝐽 ⊆𝐸

𝑏 |𝐽 |𝑐𝑛−𝑟−|𝐽 |+rkM (𝐽 ) (𝑑 − 𝑏)𝑟−rkM (𝐽 )
∑
𝐼 ⊆𝐽

𝑎 |𝐼 |𝑏−|𝐼 |

=
∑
𝐽 ⊆𝐸

𝑏 |𝐽 |𝑐𝑛−𝑟−|𝐽 |+rkM (𝐽 ) (𝑑 − 𝑏)𝑟−rkM (𝐽 )

(
𝑎 + 𝑏

𝑏

) |𝐽 |
= (𝑎 + 𝑏)𝑟 𝑐𝑛−𝑟

∑
𝐽 ⊆𝐸

(
𝑑 − 𝑏

𝑎 + 𝑏

)𝑟−rkM (𝐽 ) ( 𝑎 + 𝑏

𝑐

) |𝐽 |−rkM (𝐽 )

= (𝑎 + 𝑏)𝑟 𝑐𝑛−𝑟𝑇M

(
𝑎 + 𝑑

𝑎 + 𝑏
,
𝑎 + 𝑏 + 𝑐

𝑐

)
,

as desired. �

Proof of Theorem 1.11. Note that 𝑠(𝜋∗𝐸OP𝐸 (−1), 𝑥) = 1 + 𝛼𝑥 + 𝛼2𝑥2 + · · · . We prove the result in three
steps.
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Step 1: We show that ∫
𝑋𝐸

𝑠(Q∨M, 𝑧) · 𝑐(QM, 𝑤) = 𝑧𝑟𝑤𝑛−𝑟𝑇M (0, 1 + 𝑧
𝑤 ). (1)

As [SM] + [QM] = [
⊕

𝑖∈𝐸 𝜋∗𝑖OP1 (1)], we have 𝑠(Q∨M, 𝑧) = 𝑐(
⊕

𝑖∈𝐸 𝜋∗𝑖O(−1), 𝑧)−1 · 𝑐(S∨M, 𝑧) =
𝑐(

⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (1), 𝑧) · 𝑐(S∨M, 𝑧). We compute∫
𝑋𝐸

𝑠(Q∨M, 𝑧) · 𝑐(QM, 𝑤) =
∫
𝑋𝐸

𝑐(
⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1), 𝑧) · 𝑐(S∨M, 𝑧) · 𝑐(QM, 𝑤)

=
∫
𝑋𝐸

∑
𝐼 ⊆𝐸

(
∏
𝑖∈𝐼

𝑦𝑖) · 𝑧
|𝐼 | · 𝑐(SM,−𝑧) · 𝑐(QM, 𝑤)

=
∑
𝐼 ⊆𝐸

𝑧 |𝐼 |
∫
𝑋𝐸\𝐼

𝑐(SM/𝐼 ,−𝑧) · 𝑐(QM/𝐼 , 𝑤)

=
∑
𝐼 ⊆𝐸

𝑧 |𝐼 | (−𝑧)𝑟−rkM (𝐼 )𝑤𝑛−|𝐼 |−(𝑟−rkM (𝐼 ))

= 𝑧𝑟𝑤𝑛−𝑟
∑
𝐼 ⊆𝐸

(−1)𝑟−rkM (𝐼 ) (𝑧/𝑤) |𝐼 |−rkM (𝐼 ) = 𝑧𝑟𝑤𝑛−𝑟𝑇M (0, 1 + 𝑧
𝑤 ).

Step 2: We show that∫
𝑋𝐸

(1 + 𝛼𝑥 + 𝛼2𝑥2 + · · · ) · 𝑠(Q∨M, 𝑧) · 𝑐(QM, 𝑤) = 𝑧𝑟 (𝑥 + 𝑤)𝑛−𝑟𝑇M

( 𝑥
𝑧
,
𝑥 + 𝑧 + 𝑤

𝑥 + 𝑤

)
. (2)

As the result is homogeneous, it suffices to prove the claimed formula after evaluating 𝑥 = 1. We
compute 𝜒((

∑
𝑖≥0 ∧

𝑖 [QM]
∨𝑤𝑖) (

∑
𝑗≥0 Sym 𝑗 [QM]

∨𝑧 𝑗 )) in two different ways, using Proposition 6.4
and the Hirzebruch–Riemann–Roch-type formulas for both 𝜁 and 𝜙. We then get that∫

𝑋𝐸

(1 + 𝛼 + 𝛼2 + · · · ) · (𝑤 + 1)𝑛−𝑟 · 𝑐
(
Q∨M,

𝑤

𝑤 + 1

)
· (1 − 𝑧)𝑟−𝑛 · 𝑠

(
Q∨M,

𝑧

𝑧 − 1

)
=

∫
𝑋𝐸

𝑐(
⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)) · (𝑤 + 1)𝑛−𝑟 · 𝑐
(
QM,

1
𝑤 + 1

)
· (1 − 𝑧)𝑟−𝑛 · 𝑠

(
QM,

1
1 − 𝑧

)
.

Replacing w by −𝑤/(𝑤 + 1) and z by 𝑧/(𝑧 − 1) and cancelling common terms, we obtain that∫
𝑋𝐸

(1 + 𝛼 + · · · ) · 𝑐(QM, 𝑤) · 𝑠(Q∨M, 𝑧) =
∫
𝑋𝐸

𝑐(
⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)) · 𝑐(QM, 𝑤 + 1) · 𝑠(QM, 1 − 𝑧).

Now we apply equation (1], noting 𝑠(QM, 1 − 𝑧) = 𝑠(Q∨M, 𝑧 − 1), to obtain that∫
𝑋𝐸

𝑐(QM, 𝑤 + 1) · 𝑠(Q∨M, 𝑧 − 1) = (𝑧 − 1)𝑟 (𝑤 + 1)𝑛−𝑟𝑇M

(
0,

𝑧 + 𝑤

𝑤 + 1

)
.

Arguing as in Step 1 and using Proposition 4.8, the above equation implies that∫
𝑋𝐸

∏
𝑖∈𝐸

(1 + 𝑦𝑖𝑢𝑖) · 𝑐(QM, 𝑤 + 1) · 𝑠(Q∨M, 𝑧 − 1)

=
∑
𝐼 ⊆𝐸

𝑢𝐼 (𝑧 − 1)𝑟−rkM (𝐼 ) (𝑤 + 1)𝑛−|𝐼 |−𝑟+rkM (𝐼 )𝑇M/𝐼

(
0,

𝑧 + 𝑤

𝑤 + 1

)
.
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Setting each 𝑢𝑖 to 1 and using that
∏
(1 + 𝑦𝑖) = 𝑐(

⊕
𝜋∗𝑖OP1 (1)), we get that∫

𝑋𝐸

𝑐(
⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1)) · 𝑐(QM, 𝑤 + 1) · 𝑠(Q∨M, 𝑧 − 1)

=
∑
𝐼 ⊆𝐸

(𝑧 − 1)𝑟−rkM (𝐼 ) (𝑤 + 1)𝑛−|𝐼 |−𝑟+rkM (𝐼 )𝑇M/𝐼

(
0,

𝑧 + 𝑤

𝑤 + 1

)
.

Applying Lemma 8.2 with 𝑎 = 1, 𝑏 = 𝑧 − 1, 𝑐 = 𝑤 + 1, and 𝑑 = 0, we obtain (2].
Step 3: We finish the computation. We have that∫

𝑋𝐸

(1 + 𝛼𝑥 + 𝛼2𝑥2 + · · · ) · 𝑐(
⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1), 𝑦) · 𝑠(Q∨M, 𝑧) · 𝑐(QM, 𝑤)

=
∑
𝐼 ⊆𝐸

𝑦 |𝐼 |
∫
𝑋𝐸\𝐼

(1 + 𝛼𝑥 + 𝛼2𝑥2 + · · · ) · 𝑠(Q∨M/𝐼 , 𝑧) · 𝑐(QM/𝐼 , 𝑤)

=
∑
𝐼 ⊆𝐸

𝑦 |𝐼 |𝑧𝑟−rkM (𝐼 ) (𝑥 + 𝑤)𝑛−|𝐼 |−𝑟+rkM (𝐼 )𝑇M/𝐼

( 𝑥
𝑧
,
𝑥 + 𝑧 + 𝑤

𝑥 + 𝑤

)
.

Then the result follows from Lemma 8.2 with 𝑎 = 𝑦, 𝑏 = 𝑧, 𝑐 = 𝑥 + 𝑤, and 𝑑 = 𝑥. �

8.3. Positivity properties

We now use Theorem 1.11 to prove Theorem 1.12, which states that the four-variable transformation
of the Tutte polynomial in Theorem 1.11 is a denormalized Lorentzian polynomial. Let us begin by
reviewing the language of Lorentzian polynomials developed in [BH20].

For a homogeneous degree d polynomial 𝑓 =
∑
𝑢∈Z𝑚

≥0
𝑎𝑢𝑥

𝑢 ∈ R[𝑥1, . . . , 𝑥𝑚], its normalization is
𝑁 ( 𝑓 ) =

∑
𝑢∈Z𝑚

≥0
𝑎𝑢

𝑥𝑢

𝑢! where 𝑢! = 𝑢1! · · · 𝑢𝑚!. The polynomial f is said to be the denormalization
of 𝑁 ( 𝑓 ). The polynomial f is a strictly Lorentzian polynomial if every monomial of degree d has
a positive coefficient and every (𝑑 − 2)-th coordinate partial derivative of f is a quadric form with
signature (+,−,−, . . . ,−). It is a Lorentzian polynomial if f is a limit of strictly Lorentzian polynomials.
Lorentzian polynomials satisfy a strong log-concavity property [BH20, Example 2.26] and are preserved
under nonnegative linear change of variables [BH20, Theorem 2.10]. Polynomials whose normalization
is Lorentzian, called denormalized Lorentzian polynomials, share similar properties [BLP23, §4.3].

We now place the strategy used in the proof of [BEST23, Theorem 9.13] into an axiomatic framework
and use the framework to deduce the theorem. The key tool will be the theory of Lefschetz fans, a notion
introduced in [ADH23, Definition 1.5]. Lefschetz fans are certain (possibly noncomplete) simplicial
quasi-projective balanced fans whose Chow ring satisfies an analogue of the Kähler package. We
summarize their fundamental properties.

Theorem 8.3. The following hold.

(1) [ADH23, Theorem 1.6] If Σ is a Lefschetz fan, then any quasi-projective simplicial fan with the
same support as Σ is Lefschetz.

(2) [ADH23, Lemma 5.27] A product of Lefschetz fans is Lefschetz.
(3) [AHK18, Theorem 8.9] The Bergman fan of a loopless matroid is Lefschetz.
(4) [BH20, Theorem 4.6], [ADH23, Theorem 5.20], see also [BEST23, Lemma 9.12] Let Σ be an

ℓ-dimensional smooth projective fan, and let Σ′ be a d-dimensional subfan that is Lefschetz and
defines the Minkowski weight [Σ′] ∈ 𝐴ℓ−𝑑 (𝑋Σ) as a balanced fan. Then, for any base-point-free
divisors 𝐷1, . . . , 𝐷𝑚 ∈ 𝐴1(𝑋Σ), the polynomial
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∑
𝑖1+···+𝑖𝑚=𝑑

(∫
𝑋Σ

𝐷𝑖1
1 · · · · · 𝐷

𝑖𝑚
𝑚 · [Σ

′]

)
𝑥𝑖11 · · · 𝑥

𝑖𝑚
𝑚

is denormalized Lorentzian.

Let us now set up the axiomatic framework. For a finite set S, denote

Mat◦𝑆 = the set of loopless and coloopless matroids with ground set 𝑆.

We say that a map 𝜑 : Mat◦𝑆 → 𝐺 taking values in an abelian group G is valuative if it is a restriction to
Mat◦𝑆 of a valuative map on the set of all matroids on S. Let N be a nonnegative integer that depends on
n (e.g., 𝑁 = 2𝑛), and let [𝑁] = {1, . . . , 𝑁}. Our framework consists of three objects (𝐹,𝑇, 𝑋):

• a map 𝐹( ·) : Mat◦𝐸 → Mat◦
[𝑁 ] ,

• a torus T with an action on k𝑁 via a map 𝜑 : 𝑇 → G𝑁𝑚 , and
• a smooth projective T-variety X with a dense open T-orbit 𝑇 (which is a quotient torus of T) such

that 𝜑 naturally descends to 𝜑 : 𝑇 → G𝑁𝑚 /G𝑚.

We require that these objects satisfy the following properties:

(i) The assignment M ↦→ [Σ𝐹M
], sending a matroid M on E to the Bergman class of the matroid 𝐹M

on [𝑁], is valuative.
(ii) There is a map

𝐹k
( ·) :

𝑛∐
𝑟=0

𝐺𝑟 (𝑟; 𝐸) (k) →
𝑁∐
𝑅=0

𝐺𝑟 (𝑅; [𝑁]) (k)

such that for any realization 𝐿 ⊆ k𝐸 of M ∈ Mat◦𝐸 , the matroid 𝐹M equals the matroid on [𝑁]
realized by 𝐹k

𝐿 . We often abuse notation and write F for 𝐹k also.
(iii) For any 𝐿 ⊆ k𝐸 , specifying the fibers over 𝑡 ∈ 𝑇 to be 𝜑(𝑡−1)𝐹𝐿 defines a T-equivariant vector

subbundle F𝐿 of O⊕𝑁𝑋 on X.
(iv) The Segre class 𝑠(F𝐿) ∈ 𝐴•(𝑋) depends only on the matroid that L realizes.
(v) The assignment M ↦→ 𝑠(F(𝐿 realizing M) ) from the set of k-realizable matroids in Mat◦𝐸 to 𝐴•(𝑋) is

valuative.

Because every matroid in Mat◦𝐸 is valuatively equivalent to a linear combination ofk-realizable matroids
in Mat◦𝐸 [BEST23, Lemma 5.9], the conditions (iv) and (v) imply that we have a unique valuative
extension M ↦→ 𝑠(FM) ∈ 𝐴•(𝑋) such that 𝑠(FM) = 𝑠(F𝐿) whenever L realizes M. Thus, we may define
the following.

Definition 8.4. With F, T, and X satisfying the conditions above, for a matroid M ∈ Mat◦𝐸 we define
[P(FM)] ∈ 𝐴•(𝑋 × P𝑁−1) by

[P(FM)] =
𝑁−𝑅∑
𝑖=0

𝑠𝑖 (FM)𝛿
𝑁−𝑅−𝑖 ,

where R is the rank of 𝐹M and 𝛿 = 𝑐1 (O(1)) is the hyperplane class of P𝑁−1 pulled back to 𝑋 × P𝑁−1.

When M is realized by 𝐿 ⊆ k𝐸 , then [P(FM)] = [P(F𝐿)] by [EH16, Proposition 9.13].

Example 8.5. In the setting of [BEST23], we let 𝑛 = 𝑁 with 𝑇 = G𝐸𝑚 acting on 𝑋 = 𝑋𝐸 naturally via
𝑇 → P𝑇 , and acting on k𝐸 by the inverse standard action. If we set F to be the identity map, which
satisfies the conditions listed above, we then have F𝐿 = S𝐿 . If we set F to be the matroid duality map
(i.e., M ↦→ M⊥ and 𝐿 ↦→ 𝐿⊥), which also satisfies the conditions listed above, we then have F𝐿 = Q∨

𝐿
.

https://doi.org/10.1017/fmp.2023.24 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.24


Forum of Mathematics, Pi 37

Example 8.6. Let 𝑁 = 2𝑛, and let 𝑇 = G𝐸𝑚 act on k𝐸 ×k𝐸 by 𝑡 · (𝑥, 𝑦) = (𝑡−1𝑥, 𝑦), and act on 𝑋𝐸 as its
open dense torus. Let 𝑝𝑟𝑒′𝐹 be the map that adds parallel element to each element in a matroid M on E
to get a matroid 𝑝𝑟𝑒′𝐹M on 𝐸 � 𝐸 . Note that M ↦→ [Σ𝑝𝑟𝑒′𝐹M

] is valuative since [Σ𝑝𝑟𝑒′𝐹M
] is the image

of [ΣM] under the diagonal embedding 𝑥 ↦→ (𝑥, 𝑥). In fact, the map M ↦→ 𝑝𝑟𝑒′𝐹M itself is valuative. If
we set F to be 𝑝𝑟𝑒′𝐹 precomposed with matroid duality map, we then have F𝐿 = Q∨𝐿 . If we set F to
be 𝑝𝑟𝑒′𝐹 precomposed and then postcomposed with matroid duality maps (note that one duality takes
place on E and the other on 𝐸 � 𝐸), we get F𝐿 = K𝐿 , where K𝐿 is defined by the exact sequence

0→ K𝐿 → O⊕𝐸𝑋𝐸
⊕ O⊕𝐸𝑋𝐸

→ Q𝐿 → 0.

Note that the K-class [K𝐿] depends only on the matroid that L represents because [K𝐿] = [O⊕𝐸𝑋𝐸
⊕

O⊕𝐸𝑋𝐸
] − [Q𝐿]. Note also that 𝑠(K𝐿) = 𝑐(Q𝐿).

Theorem 8.7. Under the conditions above, there exists a smooth projective (𝑇 ×G𝑁𝑚 /G𝑚)-toric variety
𝑌Σ with a birational toric morphism 𝜋 : 𝑌Σ → 𝑋 × P𝑁−1 such that for every matroid M ∈ Mat◦𝐸 , there
exists a Lefschetz subfan Σ𝑋,𝐹M of Σ such that 𝜋∗ [Σ𝑋,𝐹M] = [P(FM)], where [Σ𝑋,𝐹M ] denotes the Chow
cohomology class on 𝑌Σ that is Poincaré dual to the Minkowski weight of constant weight 1 on the
Lefschetz fan Σ𝑋,𝐹M .
Proof. First, we set the birational toric morphism 𝜋 restricted to the tori to be given by (𝑡, 𝑡 ′) ↦→
(𝑡, 𝜑(𝑡)𝑡 ′). Now, we can take Σ to be any unimodular projective fan inside Cochar(𝑇)R × (R𝑁 /R) such
that it refines (the fan of 𝑋) × Σ [𝑁 ] and makes 𝑌Σ → 𝑋 × P𝑁−1 into a valid toric morphism. We take
Σ𝑋,𝐹M to be the subfan of Σ with support Cochar(𝑇)R × Σ𝐹M

. By Theorem 8.3.(3), the support of the
fan Σ𝑋,𝐹M is equal to the support of a product of two Lefschetz fans, and hence by Theorem 8.3.(1)
and (2), Σ𝑋,𝐹M is a Lefschetz fan. By the assumptions, the assignment M ↦→ [FM] and the assignment
M ↦→ [P(FM)] are valuative. On the other hand, the assumption that M ↦→ [Σ𝐹M

] is valuative implies
that M ↦→ [Σ𝑋,𝐹M ] is also valuative. Thus, for the desired equality 𝜋∗ [Σ𝑋,𝐹M ] = [P(FM)], it suffices to
show it when M has a k-realization L.

For a loopless matroid M′ on a set 𝐸 ′ realized by a linear subspace 𝐿 ′ ⊆ k𝐸′ , the Minkowski
weight with constant weight 1 on the Bergman fan ΣM′ is the tropicalization of P(𝐿 ′) ∩ G𝐸′𝑚 /G𝑚
[Stu02; AK06]. Hence, the Minkowski weight with constant weight 1 on Σ𝑋,𝐹M is the tropicalization of
𝑇×(P(𝐹𝐿)∩G

𝑁
𝑚 /G𝑚), so the Chow class [Σ𝑋,𝐹M ] equals the class of the closure of𝑇×(P(𝐹𝐿)∩G𝑁𝑚 /G𝑚)

inside 𝑌Σ. On the other hand, by construction the map 𝜋 bijectively maps 𝑇 × (P(𝐹𝐿) ∩ G
𝑁
𝑚 /G𝑚) to an

open subset of P(F𝐿), an irreducible subvariety of 𝑋 × P𝑁−1. Then the result follows. �

Remark 8.8. If there are several maps 𝐹 (1) , . . . , 𝐹 (𝑘) from Mat◦𝐸 to Mat◦
[𝑁 (𝑘) ]

, each satisfying the
conditions listed above with a common X and T fixed throughout, the theorem easily generalizes to the
multiprojectivization [P(F (1)M ) ×𝑋 · · · ×𝑋 P(F

(𝑘)
M )].

Proof of Theorem 1.12. First, we assume that M is loopless and coloopless. Note the Q∨𝐿 embeds into
O⊕𝐸�𝐸𝑋𝐸

because
⊕

𝑖∈𝐸 𝜋∗𝑖O(−1) does, and we can apply Theorem 8.7 to this embedding. Therefore,
there is a smooth projective toric variety 𝑌Σ with torus G𝐸𝑚 × G𝐸�𝐸𝑚 /G𝑚 × G

𝐸�𝐸
𝑚 /G𝑚, a map 𝜋 : 𝑌 →

𝑋𝐸 × P
2𝑛−1 × P2𝑛−1, and a Lefschetz subfan Σ𝑋𝐸 ,M of Σ such that 𝜋∗ [Σ𝑋𝐸 ,M] = [P(KM) ×𝑋𝐸 P(Q∨M)].

Let 𝛿 and 𝜖 be the first Chern classes of the pullbacks of O(1) to 𝑋𝐸 × P
2𝑛−1 × P2𝑛−1 from the two

projective spaces. Then, with the shorthand 1
1−𝑎 = 1 + 𝑎 + 𝑎2 + · · · + 𝑎𝑛, we have∫

𝑋𝐸

1
1 − 𝛼𝑥

· 𝑐(
⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1), 𝑦) · 𝑠(Q∨M, 𝑧) · 𝑐(QM, 𝑤)

=
∫
𝑋𝐸×P2𝑛−1×P2𝑛−1

1
1 − 𝛼𝑥

· 𝑐(
⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1), 𝑦) ·
𝛿𝑛+𝑟−1

1 − 𝛿𝑧
·
𝜖𝑛−𝑟−1

1 − 𝜖𝑤
· [P(KM) ×𝑋𝐸 P(Q∨M)]

=
∫
𝑌Σ

1
1 − 𝜋∗𝛼𝑥

· 𝜋∗𝑐(
⊕
𝑖∈𝐸

𝜋∗𝑖OP1 (1), 𝑦) ·
𝜋∗𝛿𝑛+𝑟−1

1 − 𝜋∗𝛿𝑧
·
𝜋∗𝜖𝑛−𝑟−1

1 − 𝜋∗𝜖𝑤
· [Σ𝑋𝐸 ,M],
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where we have used 𝛼 and 𝑐(
⊕

𝑖∈𝐸 𝜋∗𝑖OP1 (1)) to refer also to their pullbacks to 𝑋𝐸 × P
2𝑛−1 × P2𝑛−1.

Then the result follows from Theorem 8.3.(4), using that 𝑐(
⊕

𝑖∈𝐸 𝜋∗𝑖O(1)) is the Chern class of a direct
sum of nef line bundles.

Any matroid M of rank r on E can be written as the direct sum of matroids U0, 𝑗 ⊕ Uℓ,ℓ ⊕M′, where
M′ is a loopless and coloopless of rank 𝑟 − ℓ on a ground set of size 𝑛 − 𝑗 − ℓ. Because the Tutte
polynomial is multiplicative for direct sums of matroids, we have that

(𝑦 + 𝑧)𝑟 (𝑥 + 𝑤)𝑛−𝑟𝑇M

(
𝑥 + 𝑦

𝑦 + 𝑧
,
𝑥 + 𝑦 + 𝑧 + 𝑤

𝑥 + 𝑤

)
=

(𝑥 + 𝑦 + 𝑧 + 𝑤) 𝑗 (𝑥 + 𝑦)ℓ (𝑦 + 𝑧)𝑟−ℓ (𝑥 + 𝑤)𝑛− 𝑗−𝑟𝑇M′

(
𝑥 + 𝑦

𝑦 + 𝑧
,
𝑥 + 𝑦 + 𝑧 + 𝑤

𝑥 + 𝑤

)
.

By [BH20, Corollary 3.8], products of denormalized Lorentzian polynomials are denormalized
Lorentzian, which implies the result. �

Remark 8.9. One can obtain stronger log-concavity results by replacing 𝑐(
⊕

𝑖∈𝐸 𝜋∗𝑖OP1 (1), 𝑦) with∏
𝑖∈𝐸 (1 + 𝑦𝑖𝑢𝑖) to obtain a Lorentzian polynomial in 𝑛 + 3 variables 𝑥, 𝑧, 𝑤, 𝑢1, . . . , 𝑢𝑛. Using that

specializations of Lorentzian polynomials are Lorentzian [BH20, Theorem 2.10], we obtain that the
polynomial 𝑡M(𝑥, 𝑦, 𝑧, 𝑤) in Theorem 1.12 is Lorentzian after each 𝑥𝑎𝑦𝑏𝑧𝑐𝑤𝑑 term is replaced by
𝑥𝑎𝑦𝑏𝑧𝑐𝑤𝑑

𝑎!𝑐!𝑑! . By setting 𝑥 = 𝑧 = 0, this gives a new proof of [HSW22, Corollary 9].

9. Chern–Schwartz–MacPherson classes

9.1. Log tangent bundles

There is a natural log structure on 𝑋𝐸 obtained by viewing it as a simple normal crossings (snc)
compactification ofA𝐸 ; let 𝜕𝑋𝐸 denote the boundary divisor. Note that this is not the usual log structure
on a toric variety. We obtain a log structure on 𝑊𝐿 for any linear space L by declaring the inclusion
𝑊𝐿 ↩→ 𝑋𝐸 to be strict. Equivalently, we view 𝑊𝐿 as an snc compactification of L. Let 𝜕𝑊𝐿 be the
boundary divisor of 𝑊𝐿 ; note that 𝜕𝑊𝐿 = 𝜕𝑋𝐸 ∩𝑊𝐿 . For an snc pair (𝑋, 𝐷) (i.e., a smooth variety
X with an snc divisor D) over k, we use Ω1

𝑋 (log 𝐷) to denote the log cotangent bundle of (𝑋, 𝐷) over
k, and T𝑋 (− log 𝐷) := Ω1

𝑋 (log 𝐷)∨ to denote the log tangent bundle. Recall that we identified Q𝐿 |𝑊𝐿

with 𝑁𝑊𝐿/𝑋𝐸 in Corollary 5.4.

Lemma 9.1. Let 𝜄 : 𝑌 ↩→ 𝑋 be an inclusion of smooth varieties over k, and let D be an snc divisor on
X such that (𝑌, 𝐷 ∩ 𝑌 ) is an snc pair. Then there is an exact sequence

0→ T𝑌 (− log 𝐷 |𝑌 ) → 𝜄∗T𝑋 (− log 𝐷) → 𝑁𝑌 /𝑋 → 0,

where 𝑁𝑌 /𝑋 is the normal bundle of 𝑌 ↩→ 𝑋 . If a group scheme G acts on X preserving D and Y, then
this is an exact sequence of G-equivariant sheaves.

Proof. By [Ols05, 1.1(iii)], we have that 𝐿𝑌 /𝑆 , 𝐿𝑋/𝑆 are Ω1
𝑌 (− log 𝐷 |𝑌 ), Ω1

𝑋 (− log 𝐷). By [Ols05,
1.1(ii)], 𝐿𝑌 /𝑋 can be identified with 𝑁∨

𝑌 /𝑋
[1]. Then the result follows from [Ols05, 1.1(v)] and dualizing.

The last statement follows from functoriality. Alternatively, one can deduce the lemma from the map of
short exact sequences

0 Ω𝑋 |𝑌 Ω𝑋 (log 𝐷) |𝑌
⊕

𝑖 O𝐷𝑖 |𝑌 0

0 Ω𝑌 Ω𝑌 (log 𝐷 |𝑌 )
⊕

𝑖 O𝐷𝑖 |𝑌 0

by applying the snake lemma. �
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Theorem 9.2. As an L-equivariant sheaf, T𝑊𝐿 (− log 𝜕𝑊𝐿) can be identified with S𝐿 |𝑊𝐿 , in such a
way that the exact sequence 0 → S𝐿 →

⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (1) → Q𝐿 → 0 restricts to the exact sequence

0→ T𝑊𝐿 (− log 𝜕𝑊𝐿) → 𝜄∗T𝑋𝐸 (− log 𝜕𝑋𝐸 ) → 𝑁𝑊𝐿/𝑋𝐸 → 0.

Theorem 9.2 is closely related to [BEST23, Theorem 8.8]. The G𝑚-equivariant structure on 𝑆𝐿 |𝑊𝐿

is different from the G𝑚-equivariant structure on T𝑊𝐿 (− log 𝜕𝑊𝐿) in general.

Proof. First, we do the case of 𝑛 = 1, in which case the stellahedron Π1 is the interval [0, 1]. In other
words, we have P1 with the log structure given by the divisor 𝜕P1 = ∞, where∞ is the point [1 : 0] ∈ P1.
The exact sequence

0→ O(−2) → Ω1
P1 (log 𝜕P1) → O∞ → 0

implies that TP1 (− log 𝜕P1) is isomorphic to OP1 (1). By [HT99, Proposition 2.3], there is a unique G𝑎-
equivariant structure on OP1 (1), so TP1 (− log 𝜕P1) is isomorphic to OP1 (1) with the G𝑎-equivariant
structure described in §3.4. As the formation of the log tangent bundle behaves well with respect to
products, the log tangent bundle of (P1)𝐸 (viewed as a compactification of A𝐸 ) is �𝑖∈𝐸OP1 (1), with
the induced G𝐸𝑎 -equivariant structure. Now, since 𝑋𝐸 → (P

1)𝐸 is a composition of blow-ups at the
boundary, the pullback

⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (1) of �𝑖∈𝐸OP1 (1) is isomorphic to the log-tangent bundle of 𝑋𝐸

as G𝐸𝑎 -equivariant sheaves (see, for example, the proof of [Bri09, Lemma 2.1]).
Now, we do the general case. By Lemma 9.1, it suffices to see that the following square commutes,

as that will identify S𝐿 |𝑊𝐿 with the kernel of the map T𝑋𝐸 (− log 𝜕𝑋𝐸 ) |𝑊𝐿 → 𝑁𝑊𝐿/𝑋𝐸 .

⊕
𝑖∈𝐸 𝜋∗𝑖OP1 (1) |𝑊𝐿 Q𝐿 |𝑊𝐿

T𝑋𝐸 (− log 𝜕𝑋𝐸 ) |𝑊𝐿 𝑁𝑊𝐿/𝑋𝐸 .

It suffices to check that this diagram commutes after restricting to a dense open subset. As the top and
bottom maps are maps of L-equivariant sheaves, it suffices to note that this diagram commutes on the
fiber over 0 ∈ A𝐸 . At the fiber over 0, both horizontal maps can be identified with the natural projection
k𝐸 → k𝐸/𝐿, and the vertical maps with the identity. �

9.2. CSM classes of matroid Schubert varieties

First, we review the theory of CSM classes. As CSM classes are defined only for varieties over a field of
characteristic zero, we fixk = C and work with singular homology instead of Chow. Then, for any locally
closed subset Z of a proper variety X, there is a homology class 𝑐𝑆𝑀 (1𝑍 ) ∈ 𝐻•(𝑋,Z). If X is smooth
and 𝑍 = 𝑋 , then the CSM class agrees with the Poincaré dual of the total Chern class of the tangent
bundle. Together with its functorial properties, this property completely determines the CSM class of
any variety. If 𝑓 : 𝑋 → 𝑌 is a morphism between proper varieties that restricts to an isomorphism over
Z, then 𝑓∗(𝑐𝑆𝑀 (1𝑍 )) = 𝑐𝑆𝑀 (1 𝑓 (𝑍 ) ).

We now prove Theorem 1.15. Let 𝐿 ⊆ k𝐸 be a linear space of dimension r, and let 𝑌𝐿 be the
closure of L in (P1)𝐸 , the matroid Schubert variety of L. Recall from the introduction that the singular
homology 𝐻2𝑘 (𝑌𝐿 ,Z) has a basis labeled by the flats of rank k. For a flat F, set 𝐿𝐹 = 𝐿/𝐿𝐹 . The closure
of a cell labeled by F can be identified with the matroid Schubert variety of the linear space 𝐿𝐹 . For
a flat F, let 𝑦𝐹 ∈ 𝐻2𝑘 (𝑌𝐿 ,Z) denote the class of the closure of the cell corresponding to F. Because
(P1)𝐸 is the Schubert variety for the Boolean matroid, in particular we obtain a basis for the singular
homology of (P1)𝐸 , where each 𝐼 ⊆ 𝐸 defines the class 𝑦𝐼 ∈ 𝐻2 |𝐼 | ( (P

1)𝐸 ,Z). Note that the product∏
𝑖∈𝐼 𝑦𝑖 of the divisor classes in Definition 3.7 is Poincaré dual to 𝑦𝐼 in the sense that for 𝐼 ′ ⊆ 𝐸 , we

have (
∏

𝑖∈𝐼 ′ 𝑦𝑖) ∩ 𝑦𝐼 = 1 if 𝐼 = 𝐼 ′ and is 0 otherwise.

https://doi.org/10.1017/fmp.2023.24 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.24


40 C. Eur, J. Huh and M. Larson

Lemma 9.3. The pushforward 𝐻•(𝑌𝐿 ,Z) → 𝐻•((P
1)𝐸 ,Z) sends 𝑦𝐹 to

∑
𝐼 𝑦𝐼 , where the sum is over

bases of M|𝐹.

Proof. In degree r, this follows from [AB16, Theorem 1.3c]. The general case then follows from the
identification of the closure of the cell indexed by F with the matroid Schubert variety of 𝐿𝐹 . �

Proof of Theorem 1.15. Because the 𝑊𝐿 is an snc compactification of L, the CSM class of L in
𝑊𝐿 is 𝑐(T𝑊𝐿 (− log 𝜕𝑊𝐿)) ∩ [𝑊𝐿] by [Alu99, Theorem 1]. Let 𝜄 : 𝑊𝐿 → 𝑋𝐸 be the inclusion. As
T𝑊𝐿 (− log 𝜕𝑊𝐿) = 𝜄∗S𝐿 and [𝑊𝐿] = 𝑐𝑛−𝑟 (Q𝐿), the projection formula implies that

𝜄∗(𝑐(T𝑊𝐿 (− log 𝜕𝑊𝐿)) ∩ [𝑊𝐿]) = 𝑐(S𝐿) ∪ 𝑐𝑛−𝑟 (Q𝐿) ∩ [𝑋𝐸 ] .

Using Theorem 8.1 and Theorem 9.2, one can show that∫
𝑋𝐸

𝜄∗𝑐(T𝑊𝐿 (− log 𝜕𝑊𝐿)) ·
∏
𝑖∈𝐼

𝑦𝑖 =

{
1, 𝐼 independent
0, otherwise.

Therefore, the pushforward of 𝑐𝑆𝑀 (1𝐿) ∈ 𝐻•(𝑊𝐿 ,Z) to 𝐻•((P
1)𝐸 ,Z) is

∑
𝐼 independent 𝑦𝐼 . The functori-

ality of CSM classes implies that this is the pushforward of the CSM class of L in 𝑌𝐿 . From Lemma 9.3,
we note that the pushforward on homology from 𝑌𝐿 to (P1)𝐸 is injective, and

∑
𝐹 𝑦𝐹 pushes forward to

the claimed class. �

Remark 9.4. Using the stratification of 𝑌𝐿 by cells which are identified with matroid Schubert varieties
for restrictions to flats of M, Theorem 1.15 implies that

𝑐𝑆𝑀 (1𝑌𝐿 ) =
∑

𝐹 ∈ℒ (M)
|{𝐺 ∈ ℒ(M) | 𝐺 ⊇ 𝐹}| · 𝑦𝐹 .

Appendix A. Polytope algebras and K-rings of toric varieties

The notion of valuativity and the polytope algebra both have many variants, sometimes equivalent and
sometimes not. In this mostly expository appendix, we collect these together and record their relationship
to the K-ring of toric varieties.

A.1. Variants of valuativity

Valuative functions have been studied extensively as combinatorial generalizations of measures. We
point to [McM93b] and [Sch14, §6] as references and give a brief summary here.

For 𝑆 ⊆ R𝑛 (or Q𝑛), denote its indicator function by 1𝑆 : R𝑛 (or Q𝑛) → Z defined as

1𝑆 (𝑥) =
{

1 if 𝑥 ∈ 𝑆

0 otherwise.

Let 𝒮 ⊆ 2R𝑛 be a collection of nonempty3 subsets of R𝑛. We write

I(𝒮) := Z{1𝑆 | 𝑆 ∈ 𝒮}

for the Z-module generated by the indicator functions of elements of 𝒮. For a hyperplane 𝐻 ⊆ R𝑛, let
𝐻+ and 𝐻− denote the two closed half-spaces that it defines. The notion of valuative functions on 𝒮 has
many variants.

3Some authors allow ∅ ∈ 𝒮 and then impose by convention a triviality for ∅, such as 𝑓 ( ∅) = 0 for a function f on 𝒮. See for
instance [Sal68; McM89]. Here, we prefer to begin with collections of nonempty subsets.
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Definition A.1. For an abelian group A, we say a function 𝑓 : 𝒮∪{∅} → 𝐴 with 𝑓 (∅) = 0 is

(a) weakly valuative if 𝑓 (𝑆) = 𝑓 (𝑆 ∩ 𝐻+) + 𝑓 (𝑆 ∩ 𝐻−) − 𝑓 (𝑆 ∩ 𝐻) for any 𝑆 ∈ 𝒮 and hyperplane H
such that 𝑆 ∩ 𝐻+, 𝑆 ∩ 𝐻−, 𝑆 ∩ 𝐻 ∈ 𝒮,

(b) (when𝒮 consists of polyhedra) satisfies the weak inclusion-exclusion principle if for any polyhedral
subdivision 𝑆 =

⋃𝑘
𝑖=1 𝑆𝑖 such that 𝑆 ∈ 𝒮 and

⋂
𝑗∈𝐽 𝑆 𝑗 ∈ 𝒮∪{∅} for every 𝐽 ⊆ {1, . . . , 𝑘}, the

inclusion-exclusion relation 𝑓 (𝑆) =
∑

𝐽 ⊆{1,...,𝑘 } (−1) |𝐽 |−1 𝑓 (
⋂

𝑗∈𝐽 𝑆 𝑗 ) holds,
(c) is additive (a.k.a. valuative) if 𝑓 (𝑆1 ∪ 𝑆2) + 𝑓 (𝑆1 ∩ 𝑆2) = 𝑓 (𝑆1) + 𝑓 (𝑆2) for any pair 𝑆1, 𝑆2 ∈ 𝒮

such that 𝑆1 ∪ 𝑆2, 𝑆1 ∩ 𝑆2 ∈ 𝒮∪{∅},
(d) satisfies the inclusion-exclusion principle if for any union 𝑆 =

⋃𝑘
𝑖=1 𝑆𝑖 such that 𝑆 ∈ 𝒮

and
⋂

𝑗∈𝐽 𝑆 𝑗 ∈ 𝒮∪{∅} for every 𝐽 ⊆ {1, . . . , 𝑘}, the inclusion-exclusion relation 𝑓 (𝑆) =∑
𝐽 ⊆{1,...,𝑘 } (−1) |𝐽 |−1 𝑓 (

⋂
𝑗∈𝐽 𝑆 𝑗 ) holds,

(e) is strongly valuative if there exists a (unique) map of Z-modules 𝑓̂ : I(𝒮) → 𝐴 such that 𝑓 (𝑆) =
𝑓̂ (1𝑆) for all 𝑆 ∈ 𝒮.

The following implications between the various notions of valuativity are immediate.

(𝑐)

��

(𝑑)��

��

(𝑒)��

(𝑎) (𝑏)��

.

Whether some or all of the implications can be reversed in the diagram for a given collection 𝒮 is a
difficult problem in general. We collect some previous results here.

Theorem A.2. As before, let 𝒮 be a collection of nonempty subsets of R𝑛.

(1) [Gro78] If 𝒮 is intersection-closed, that is, 𝑆1, 𝑆2 ∈ 𝒮 =⇒ 𝑆1 ∩ 𝑆2 = ∅ or 𝑆1 ∩ 𝑆2 ∈ 𝒮, then we
have (𝑐) ⇐⇒ (𝑑) ⇐⇒ (𝑒). For example, the family of all convex bodies in R𝑛 is intersection
closed.

(2) [Sal68; Vol57] If 𝒮 = 𝒫, the family of all polytopes in R𝑛 (which is intersection-closed) then we
further have (𝑎) ⇐⇒ (𝑐) so all five notions are equivalent. A minor modification of the proof
also shows that the same holds for 𝒬, the family of all polyhedra in R𝑛 (see [McM09, §3.2] for an
explicit proof).

(3) [McM09] If 𝒮 = 𝒬Λ or 𝒫Λ, where 𝒬Λ is the family of all Λ-polyhedra in R𝑛 for a rank n lattice
Λ ⊆ R𝑛 (similarly 𝒫Λ is the family of all Λ-polytopes), then we have (𝑐) ⇐⇒ (𝑑) ⇐⇒ (𝑒).
Note that 𝒬Λ and 𝒫Λ are not intersection-closed.

When 𝒮 is the family of extended generalized permutohedra, that is, lattice polyhedra in R𝑛 whose
normal fans coarsen (possibly convex subfans of) the normal fan of the standard permutohedron of
dimension 𝑛 − 1 in R𝑛, Derksen and Fink showed that (𝑏) ⇐⇒ (𝑒) [DF10, Theorem 3.5]. We ask
whether the equivalence holds more generally:

Question A.3. How are the different variants of valuativity in Definition A.1 related to each other
when 𝒮 is the set of all (lattice) polytopes whose normal fans coarsen a fixed complete (smooth and/or
projective) rational fan?

We record here a useful consequence of Theorem A.2 that taking faces of polytopes is a strongly
valuative operation. For a vector 𝑣 ∈ R𝑛 and a polytope 𝑃 ⊂ R𝑛, let face(𝑃, 𝑣) be the face of P on which
the standard inner product with v is minimized.

Proposition A.4. Let 𝑃1, . . . , 𝑃𝑘 be (lattice) polytopes in R𝑛, and suppose
∑𝑘
𝑖=1 𝑎𝑖1𝑃𝑖 = 0 for some

𝑎1, . . . , 𝑎𝑘 ∈ Z. Then, for any 𝑣 ∈ R𝑛, one has
∑𝑘
𝑖=1 𝑎𝑖1face(𝑃𝑖 ,𝑣) = 0.
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Proof. In other words, we need show that the function on the set of all (lattice) polytopes sending P
to 1face(𝑃,𝑣) is strongly valuative. By Theorem A.2, it suffices to show that this function is additive in
the sense of Definition A.1(c), and this additivity is an immediate consequence of [McM09, Theorem
4.6). �

A.2. Variants of polytope algebras

Fix a positive integer n. For a family 𝒮 of nonempty subsets in R𝑛, let

𝑍 (𝒮) :=
{ ∑
𝑆∈𝒮

𝑎𝑆𝑆 | 𝑎𝑆 ∈ Z all but finitely many nonzero
}

be the free abelian group generated by the set 𝒮. Define the following subgroups of 𝑍 (𝒮):

val(𝒮) = the subgroup generated by the additive (a.k.a. valuative) relations, that is,
𝑃 +𝑄 − 𝑃 ∪𝑄 − 𝑃 ∩𝑄 whenever 𝑃,𝑄, 𝑃 ∩𝑄, 𝑃 ∪𝑄 ∈ 𝒮,

stVal(𝒮) = the kernel of the map 𝑍 ()↽→ I(𝒮) defined by 𝑆 ↦→ 1𝑆 , and
transl(𝒮) = the subgroup generated by translation invariance relations, that is,

𝑃 − (𝑃 + 𝑣) whenever 𝑃 and 𝑃 + 𝑣 ∈ 𝒮 for 𝑣 ∈ R𝑛.

We may consider the following four quotient groups

Π(𝒮) = 𝑍 (𝒮)/val(𝒮),

Π(𝒮) = 𝑍 (𝒮)/(val(𝒮) + transl(𝒮)),
I(𝒮) = 𝑍 (𝒮)/stVal(𝒮), and

I(𝒮) = 𝑍 (𝒮)/(stVal(𝒮) + transl(𝒮)).

In each these four cases, for an element 𝑃 ∈ 𝒮 we denote by [𝑃] its image in the quotient group. For a
commutative ring A, we write Π𝐴 = Π⊗ 𝐴, and similarly for Π, I, and I. We now consider the case where
𝒮 is a family of polytopes. In good cases, one may give these quotients groups a ring structure as in the
following lemma, which is a minor variation of [McM89, Lemma 6]. In this appendix, we use ! for the
Minkowski sum of polytopes when it is helpful to distinguish it notationally from the addition in 𝑍 (𝒮).
Lemma A.5. Suppose 𝒮 is a Minkowski-sum-closed family of polytopes in R𝑛. That is, if P and Q are
polytopes in 𝒮, then so is their Minkowski sum 𝑃 ! 𝑄. Then, for the quotient groups Π(𝒮) and Π(𝒮),
the multiplication given by

[𝑃] · [𝑄] = [𝑃 !𝑄] for 𝑃,𝑄 ∈ 𝒮, and extended linearly to the whole group,

is well-defined. In particular, if further 𝒮 contains the origin o of R𝑛, then the quotient groups are unital
commutative rings with [o] the unit.
Proof. [Had57, 1.2.2] shows that if 𝑄1 and 𝑄2 are polytopes such that 𝑄1 ∪𝑄2 is a polytope, then

𝑃 ! (𝑄1 ∪𝑄2) = (𝑃 !𝑄1) ∪ (𝑃 !𝑄2) and 𝑃 ! (𝑄1 ∩𝑄2) = (𝑃 !𝑄1) ∩ (𝑃 !𝑄2)

for any polytope 𝑃 ⊆ R𝑛. Hence, the multiplication via Minkowski sum is well-defined. �

For a subring R of R, let 𝒫𝑅 be the set of all nonempty R-polytopes in R𝑛, that is, the polytopes that
have vertices in 𝑅𝑛. Usually R will be either Z, Q, or R. When R is Q or R, Theorem A.2.(1) implies
that Π(𝒫𝑅) = I(𝒫𝑅), and hence Π(𝒫𝑅) = I(𝒫𝑅) also. The same conclusion holds when 𝑅 = Z by
Theorem A.2.(3). The ring ΠR(𝒫R) is what is often called McMullen’s polytope algebra as defined in
[McM89; McM93a].
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For polytopes P and Q, one says that Q is a weak Minkowski summand of P if there is a polytope 𝑄 ′

and 𝜆 > 0 such that 𝜆𝑄 !𝑄 ′ = 𝑃. It is straightforward to show that this is equivalent to stating that the
normal fan of Q coarsens that of P.
Definition A.6. Given a complete fan Σ in R𝑛, we define the subfamily 𝒫𝑅,Σ ⊆ 𝒫𝑅 to be the set of
R-polytopes whose normal fan coarsens Σ. Let us define

Π(𝑅, Σ) = the image of 𝑍 (𝒫𝑅,Σ) ⊆ 𝑍 (𝒫𝑅) in Π(𝒫𝑅),

and likewise for Π(𝑅, Σ), I(𝑅,Σ), and I(𝑅, Σ).
Note that, per Question A.3, it is unclear whether Π(𝒫𝑅,Σ) = Π(𝑅, Σ). It is clear, however, that

I(𝑅,Σ) = I(𝒫𝑅,Σ), and also that transl(𝒫𝑅,Σ) = 𝑍 (𝒫𝑅,Σ) ∩ transl(𝒫𝑅) so that I(𝑅,Σ) = I(𝒫𝑅,Σ).
Thus, when R is Z, Q, or R, the equivalence of additivity and strong valuativity, as noted in Theorem
A.2(3), yields the following.
Proposition A.7. When R is Z, Q, or R, one has

Π(𝑅, Σ) = I(𝑅,Σ) = I(𝒫𝑅,Σ) and Π(𝑅,Σ) = I(𝑅, Σ) = I(𝒫𝑅,Σ).

We conclude this section with another variant of the polytope algebra given in [Mor93]. Given a
complete rational fan Σ, Morelli defines rings 𝐿Σ (Z

𝑛) and ℒΣ (Z
𝑛) as follows. For a point 𝑝 ∈ R𝑛 and

a polytope P, if 𝑝 ∈ 𝑃 then define 𝑇𝐶𝑝 (𝑃) = R≥0{𝑃 − 𝑝} to be the tangent cone of P at p, and if 𝑝 ∉ 𝑃
define by convention 𝑇𝐶𝑝 (𝑃) = ∅. Let 𝒞 be the collection of cones (always centered at the origin) in
R𝑛, and let 𝒞Σ = {𝐶 ⊆ R𝑛 | 𝐶∨ ∈ Σ} be the collection of cones which are duals of the cones in Σ.
Linearly extending the map 𝑃 ↦→ 1𝑇𝐶𝑝 (𝑃) , we obtain a map 𝜃𝑝 : I(𝒫Z) → I(𝒞) for any point 𝑝 ∈ Z𝑛.
We then define

𝐿Σ (Z
𝑛) = the subgroup generated by 𝑓 ∈ I(𝒫Z) such that 𝜃𝑝 ( 𝑓 ) ∈ I(𝒞Σ) for all 𝑝 ∈ Z𝑛, and

ℒΣ (Z
𝑛) = the image of 𝐿Σ (Z

𝑛) in I(𝒫Z).

In the paragraph preceding [BG09, Theorem 10.46], the wording is somewhat ambiguous so as to
assume implicitly that ℒΣ (Z

𝑛) is equal to I(𝒫Z,Σ). We ask explicitly:
Question A.8. For which complete fans Σ is 𝐿Σ (Z

𝑛) = I(𝒫Z,Σ) and/or ℒΣ (Z
𝑛) = I(𝒫Z,Σ)?

In [FP05], the authors give examples of smooth proper toric varieties which admit no nontrivial
nef line bundles, so I(𝒫Z,Σ) = Z, which gives examples of smooth fans for which both equalities in
the question fail. We will later prove Theorem A.10 which, when combined with a result of Morelli
(Theorem A.11 here), implies that for smooth projective fans Σ we have that 𝐿Σ (Z

𝑛) = I(𝒫Z,Σ) and
ℒΣ (Z

𝑛) = I(𝒫Z,Σ).

A.3. Relation to (operational) Chow rings

Let 𝑅 = Z or Q from this section onwards so that we may consider toric varieties and their (Q-)divisor
classes associated to polytopes. Let Σ be a complete rational fan and 𝑋Σ be its toric variety. We point
to [Ful93] for basic facts on toric varieties. Recall that a lattice polytope 𝑄 ∈ 𝒫Z,Σ defines a nef T-
equivariant line bundle O𝑋Σ (𝐷𝑄) in 𝑋Σ, with the property that its divisor class [𝐷𝑄] ∈ Pic(𝑋Σ) does
not change when we translate Q. See [CLS11, Chapter 6] for a discussion of polytopes and line bundles.
We collect some results of Fulton and Sturmfels.
Theorem A.9. Let Σ be a complete rational fan, and let 𝐴•(𝑋Σ) be the operational Chow cohomology
ring of the toric variety 𝑋Σ. Then, we have:
(1) [FS97, Theorem 3.1] The operational Chow ring is isomorphic (as a graded ring) to the ring of

Minkowski weights on the fan Σ with product structure coming from the fan displacement rule.
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(2) [FS97, Theorem 5.1] If Σ is projective, the exponential map, sending [𝑄] ↦→ exp([𝐷𝑄]), defines
an injection of rings IQ(𝒫Q,Σ) → 𝐴•(𝑋Σ)Q whose image is the subring generated by 𝐴1(𝑋Σ)Q =
PicQ(𝑋Σ). The exponential map is an isomorphism when Σ is further simplicial.

(3) [FS97, Theorem 5.2] The exponential map defines an isomorphism between IQ(𝒫Q) and the direct
limit lim

−−→
𝐴•(𝑋Σ)Q over all complete fans.

The image exp([𝐷𝑄]) of the exponential map applied to Q can be described in terms of Minkowski
weights as follows: The cone dual to a face F of Q gets weight equal to the lattice volume of F (in the
lattice of the affine span of F). For the case when 𝑅 = R, after a suitable modification of the definitions
for the ring of Minkowski weights and the exponential map above, one has a similar injective map
[McM89, Theorem 2] that is an isomorphism when Σ is further simplicial [McM93a, Theorem 5.1].
See also [Bri97].

A.4. Relation to K-rings

Let 𝐾 (𝑋) be the Grothendieck ring of vector bundles on a smooth complete variety X. For a smooth
complete C-variety X, the Hirzebruch–Riemann–Roch theorem gives that the Chern character map
𝑐ℎ : 𝐾 (𝑋)Q → 𝐴(𝑋)Q, defined on classes of line bundles by [L] ↦→ exp(𝑐1 (L)), is a ring isomorphism.
Comparing this to the second statement in Theorem A.9, one concludes that there is an isomorphism
IQ(𝒫Q,Σ) � 𝐾 (𝑋Σ)Q determined by [𝑄] ↦→ [O𝑋Σ (𝐷𝑄)] when Σ is projective and smooth. Obtaining
this isomorphism not only over Q but over Z is the topic of this section. In particular, we prove the
following.
Theorem A.10. Let Σ be a smooth projective fan, and let 𝐾𝑇 (𝑋Σ) be the Grothendieck ring of torus-
equivariant vector bundles on 𝑋Σ. Then, there is a ring isomorphism

𝜓𝑇 : I(𝒫Z,Σ)
∼
→ 𝐾𝑇 (𝑋Σ)

determined by the property [𝑃] ↦→ [O𝑋Σ (𝐷𝑃)] for any 𝑃 ∈ 𝒫Z,Σ. This descends to an isomorphism
𝜓 : I(𝒫Z,Σ)

∼
→ 𝐾 (𝑋Σ).

Morelli proved a similar result for any smooth complete (not necessarily projective) fan; the following
theorem collects [Mor93, Theorems 5, 6, and 8]. For 𝑘 ∈ Z>0, let Ψ𝑘 be the k-th Adams operation,
which is a ring endomorphism of 𝐾 (𝑇 ) (𝑋Σ) that satisfies Ψ𝑘 [L] = [L⊗𝑘 ] for L a (T-equivariant) line
bundle. For 𝑚 ∈ Z𝑛 and [E] ∈ 𝐾𝑇 (𝑋Σ), let 𝜒(𝑋Σ, [E])𝑚 be the weight m Euler characteristic.
Theorem A.11. Let Σ be a smooth complete fan.

(1) The map I𝑇 : 𝐾𝑇 (𝑋Σ)
∼
→ 𝐿Σ (Z

𝑛) ⊆ ZQ
𝑛 given by [E] ↦→

(
𝑚/𝑘 ↦→ 𝜒(𝑋Σ;Ψ𝑘 [E])𝑚

)
is a well-

defined ring isomorphism.
(2) The map I𝑇 descends to an isomorphism I : 𝐾 (𝑋Σ)

∼
→ LΣ (Z

𝑛).
However, in light of Question A.8, it is unclear whether this proves Theorem A.10. We conclude

with our proof of Theorem A.10 in the form of two lemmas. The proof of the second lemma uses ideas
of Morelli.
Lemma A.12. There is a surjective ring homomorphism 𝜓𝑇 : I(𝒫Z,Σ) → 𝐾𝑇 (𝑋Σ) determined by the
property [𝑃] ↦→ [O𝑋Σ (𝐷𝑃)] for any 𝑃 ∈ 𝒫Z,Σ. It descends to a surjective ring homomorphism
𝜓 : I(𝒫Z,Σ) → 𝐾 (𝑋Σ).
Proof. First, we show that 𝜓𝑇 is well-defined. We use the localization theorem for the torus-equivariant
K-theory of smooth complete toric varieties [Nie74, Theorem 3.2], which embeds 𝐾𝑇 (𝑋Σ) as a subring
of

∏
pt∈𝑋𝑇

Σ
𝐾𝑇 (pt). For each fixed maximal cone 𝜎 ∈ Σ, which corresponds to a point in 𝑋𝑇

Σ , the class
of [O𝑋Σ (𝐷𝑃)] is sent to 𝑇−𝑣𝜎 , where 𝑣𝜎 is the vertex of P on which any functional in the interior of 𝜎
achieves its minimum. That this is well-defined follows from Proposition A.4. To see that 𝜓𝑇 is a ring
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homomorphism, note that if P and Q are polytopes, then the vertex of 𝑃 ! 𝑄 on which any functional
in the interior of 𝜎 achieves its minimum is the sum of the corresponding vertices of P and Q.

For the surjectivity of 𝜓𝑇 , first note that for a complete smooth toric variety 𝑋Σ, the ring 𝐾𝑇 (𝑋Σ) is
generated as a ring by the classes of T-equivariant line bundles [Kly84, Corollary 1] (see also [AP15,
Lemma 2.2]). If Σ is further projective, any T-equivariant line bundle is isomorphic to L∨ ⊗M for
some ample T-equivariant lines bundles L and M. Since 𝜓𝑇 surjects onto the classes of T-equivariant
ample line bundles, it suffices now to show that for a T-equivariant ample line bundle L, its inverse class
[L∨] is a sum of powers of [L] (possibly with different equivariant structures). Concretely, suppose we
have a lattice polytope 𝑃 ⊂ R𝑛 whose normal fan Σ𝑃 equals Σ. Let N be the number of lattice points in
P. Denoting 𝑝𝑆 =

∑
𝑝∈𝑆 𝑝 for a subset 𝑆 ⊆ 𝑃 ∩ Z𝑛, we claim that

[O𝑋Σ (−𝐷𝑃)] =
𝑁∑
𝑘=1
(−1)𝑘−1

∑
𝑆⊆𝑃∩Z𝑛

|𝑆 |=𝑘

[O𝑋Σ (𝐷 (𝑘−1)𝑃−𝑝𝑆 )] as elements in 𝐾𝑇 (𝑋Σ).

By multiplying [O𝑋Σ (𝐷𝑃)], we equivalently check that

𝑁∑
𝑘=0
(−1)𝑘

∑
𝑆⊆𝑃∩Z𝑛

|𝑆 |=𝑘

[O𝑋Σ (𝐷𝑘𝑃−𝑝𝑆 )] = 0.

Here, the 𝑘 = 0 term should be interpreted as [O𝑋Σ ] with the trivial equivariant structure. At each
T-fixed point x of 𝑋Σ corresponding to a vertex v of P, the localization value of the left-hand side is zero
since [O𝑋Σ (𝐷 ( |𝑆 |+1)𝑃−𝑝𝑆∪𝑣 )]𝑥 = [O𝑋Σ (𝐷 |𝑆 |𝑃−𝑝𝑆 )]𝑥 for any 𝑆 ⊆ (𝑃 ∩ Z𝑛) \ 𝑣. Finally, we note that for
𝑄 ∈ 𝒫Z,Σ, the divisor class [𝐷𝑄] is invariant under translation of Q, so translation invariance is clear.
Therefore, 𝜓𝑇 descends to a map 𝜓 : I(𝒫Z,Σ) → 𝐾 (𝑋Σ), which is surjective because 𝐾𝑇 (𝑋Σ) → 𝐾 (𝑋Σ)

is surjective. �

Lemma A.13. The maps 𝜓𝑇 and 𝜓 given in the previous lemma are injective.
Proof. For [E] ∈ 𝐾𝑇 (𝑋Σ), consider the function Q𝑛 → Z defined by

𝑚/𝑘 ↦→ 𝜒(𝑋Σ;Ψ𝑘 [E])𝑚 for 𝑚 ∈ Z𝑛 and 𝑘 ∈ Z>0.

In order to see that this is a well-defined function, we need to check that

𝜒(𝑋Σ;Ψ𝑘 [E])𝑚 = 𝜒(𝑋Σ;Ψ𝑛𝑘 [E])𝑛𝑚 for any 𝑛 ∈ Z>0.

By Lemma A.12 and because the classes of the polytopes 𝑃 ∈ 𝒫Z,Σ generate I(𝒫Z,Σ), it suffices to
check that

𝜒(𝑋Σ;Ψ𝑘 [O𝑋Σ (𝐷𝑃)])𝑚 = 𝜒(𝑋Σ;Ψ𝑛𝑘 [O𝑋Σ (𝐷𝑃)])𝑛𝑚 for any 𝑛 ∈ Z>0

for an arbitrary polytope 𝑃 ∈ 𝒫Z,Σ. This then follows from the fact that for any positive integer ℓ and
𝑚 ∈ Z𝑛, one has

𝜒(𝑋Σ,Ψ
ℓ [O𝑋Σ (𝐷𝑃)])𝑚 =

{
1 if 𝑚 ∈ ℓ𝑃

0 otherwise.

Indeed, Ψℓ [O𝑋Σ (𝐷𝑃)] = [O𝑋Σ (𝐷ℓ𝑃)], we can identify 𝐻0 (𝑋Σ;O𝑋Σ (𝐷ℓ𝑃)) with the vector space
spanned by lattice points in ℓ𝑃, and the higher cohomology of base-point-free line bundles on toric
varieties vanishes [Ful93, §3.4 & §3.5].

We now construct a map 𝐾𝑇 (𝑋Σ) → I(𝒫Z,Σ). By Lemma A.12, every class [E] ∈ 𝐾𝑇 (𝑋Σ) is of
the form [E] = ∑

𝑖 𝑎𝑖 [O𝑋Σ (𝐷𝑃𝑖 )] for some 𝑃𝑖 ∈ 𝒫Z,Σ. We send [E] to
∑
𝑖 𝑎𝑖 [𝑃𝑖] ∈ I(𝒫Z,Σ). The
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construction above recovers the evaluations of
∑

𝑎𝑖 [𝑃𝑖] at points in Q𝑛. Because two finite sums of
indicator functions of lattice polytopes are equal if they agree on Q𝑛, this map is well-defined. It is
clearly a left-inverse of 𝜓𝑇 which descends to a left-inverse of 𝜓. �
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