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Abstract
The survival energy model (SEM) is a recently introduced novel approach to mortality prediction, which offers a
cohort-wise distribution function of the time of death as the first hitting time of a “survival energy” diffusion process
to zero. In this study, we propose a novel SEM that can serve as a suitable candidate in the family of prediction
models. We also proposed a method to improve the prediction in an earlier work. We further examine the practical
advantages of SEM over existing mortality models.

1. Introduction
Statistics over the last few decades demonstrate an increase in life expectancy in many countries. For
example, in Japan, the life expectancy in 2020 was 85 years, whereas it was 60 years in 1950. Such a
rapid change in longevity is called the “Longevity Revolution”. This trend confers selectivity and value
to human life for individuals. However, this gives rise to several medical, economic, and social welfare
problems. For instance, the Japanese financial crisis involving the national pension system is a pressing
matter. The prediction of mortality is becoming a critical social issue worldwide.

Since the early 20th century, numerous authors have studied mortality prediction, and a method-
ology has already been established. Most mortality models treat “death” as the first event of a
time-inhomogeneous Poisson process. Let Tx be the remaining lifetime of an individual of age x. It
is assumed that

P(Tx > t + 1 | Tx > t) = exp

(
−

∫ t+1

t

μ(x, s) ds

)
,

where μ(x, t) is a (possibly stochastic) intensity function called the force of mortality in the insurance
context. Previous studies have derived models for μ(x, t). For instance, certain deterministic mortal-
ity models, such as the Gompertz, Makeham, and Heligman-Pollard laws, were introduced in earlier
years; More recently, numerous stochastic mortality models have been proposed, such as those devel-
oped by Olivieri Olovieri (2001), Biffis (2005), Cairns et al. (2006b), Hainaut and Devolder Hainaut and
Devolder (2008), Biffis et al. (2010), Blackburn and Sherris (2013). Moreover, by assuming that μ(x, ·)
is constant between (t, t + 1], say m(x, t), allows for modeling of the mortality m(x, t). This approach
corresponds to many established classical models, such as the Lee-Carter (1992), Renshaw-Gaberman
(2006), and CBD models (Cairns et al., 2008, 2009), among others. We refer to these approaches as
reduced-form approaches, because they consider death just as a stochastic event.
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Shimizu et al. (2020) proposed a structural approach under the “survival energy hypothesis”, which
assumes the existence of survival energy for human beings, and death occurs when the energy dissipates.
Shimizu et al. (2020) used inhomogeneous diffusion (ID) processes as the cohort-wise survival energy
model (SEM), such as Xc = (Xc

t )t≥0 with cohort c, called ID-SEM:

Xc
t = xc +

∫ t

0

Uc(s, ϑc) ds +
∫ t

0

Vc(s, ϑc) dWs, (1.1)

where xc is a positive constant corresponding to the initial survival energy, Uc and Vc are deterministic
functions on R+ × � with the parameter space given below, and W is the Wiener process:

Uc(t, ϑc) = αc + βc exp (γc(t − Tc)) 1{t≥Tc};

Vc(t, ϑc) =
√

2

κc

Uc(t, ϑc),

where Tc is a known parameter called change point, at which the trend of survival energy changes
drastically. � of ϑc = (αc, βc, γc, κc) is given by

� ⊂ {(α, β, γ , κ) ∈R
4 | α < 0, β < 0, γ > 0, κ < 0}.

Under this ID-SEM, they defined the time of death as the first hitting time for Xc to reach zero:
τ c := inf{t > 0 | Xc

t < 0}, and illustrated that the mortality function,

qc(t) := P(τ c ≤ t), (1.2)

or more practically, the following conditional mortality function:

qc(t|S) := P(τ c ≤ t|τ c > S) (1.3)

for a suitably chosen age S can fit their empirical version computed using data from the human mortality
database (HMD) (Human Mortality Database); see also Remark 2.5. This indicates that the SEM can
propose an excellent parametric family to predict future mortality functions; nevertheless, it is merely a
fictitious assumption.

As described in Shimizu et al. (2020), the term “structural approach” follows the structural approach
in credit risk analysis. This approach is analogous to the structural approach to “default probability”, in
which a stochastic process describes the asset price. Default time was defined as the first hitting time to
a certain level. These two approaches are mathematically identical, but there is a significant difference
from a statistical perspective: we can observe the asset process in a credit risk context unlike the “survival
energy.” However, we can observe many deaths for many individuals’ data, although defaults are not
directly observed in default risk calculations (because they are predetermined or assumed to occur before
default). We estimated the parameters in the SEM family with careful attention to this point.

The main contribution of this paper is the proposal of a novel SEM in Section 2. The mortality func-
tion for ID-SEM is sensitive to the change-point parameter Tc and is difficult to predict for a future cohort
because it has no clear trend. To address this issue, we propose a new SEM, IG-SEM, which comprises
a simple parametric family without such a threshold and is fully flexible enough to fit the training data
without a change point. This is helpful because the mortality function can be written explicitly.

Another contribution is that we propose a methodology to improve long-term future predictions in
Section 3. The prediction procedure proposed by Shimizu et al. (2020) is satisfactory for mid-term
future (approximately 10–30 years future) but not for long-term future (e.g., 40 years future cohort).
Occasionally, the predictive mortality function does not fit existing data. Therefore, we implement a
two-step procedure: the first step is the same as in Shimizu et al. (2020), and in the second step, we refit
the predicted mortality to the existing younger generation data using 95% prediction intervals for the
parameters. We illustrate that this second step can drastically improve the long-term prediction.

Section 5 discusses some advantages of SEM over classical regression-type models in the reduced-
form approach. Although this section only presents a theoretical discussion, there are some ongoing
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experimental studies. We refer to, for example, Shirai and Shimizu (2022) for discussing the prediction
of full life expectancy via SEM.

Finally, Section 6 introduces the SEM project. which explicitly provides cohort/countrywise mortal-
ity functions with parameter values on a website.

2. A new SEM: Inverse Gaussian SEM
Let us introduce some notations to provide a new SEM with an explicit mortality function.

Random variable Y follows an inverse Gaussian distribution, that is,
Y ∼ IG(a, b),

with mean a and variance a3/b if the probability density is given by

fY(y; a, b) =
√

b

2πy3
exp

(
−b(y − a)2

2a2y

)
, y > 0.

Definition 2.1 (IG-SEM; Inverse Gaussian SEM). A survival energy process Xc = (Xc
t )t≥0 follows the

IG-SEM if
Xc

t = xc − Yc
t , t ≥ 0, (2.1)

where xc > 0 is the initial energy and Yc ∼ IG(
c, σc) is an inverse Gaussian process with mean function

c and parameter σc > 0; that is, Yc

0 = 0, a.s., and Yc have independent increments. Moreover, for any
t > s > 0 and an increasing function 
c with 
c(0) = 0, it follows that

Yc
t − Yc

s ∼ IG
(

c(t) − 
c(s), σc(
c(t) − 
c(s))2

)
.

Remark 2.2. If 
(t) = t, then Y is an inverse Gaussian Lévy process that is a spectrally positive pure-
jump subordinator. Hence, IG-SEM can include a jump in the path of survival energy, although the path
of ID-SEM is continuous.

Such a process is used to model the time of system failure in engineering, where failure occurs at τ c

if the accumulated damage Yc
t exceeds a certain threshold xc: τ c = inf{t > 0 | Yc

t > xc}, which follows the
same idea as our survival energy for human death; refer to Ye and Chen (2014). The following theorem
provides the mortality function:

Theorem 2.3. The mortality function for IG-SEM is given by

qIG
c (t, ϑc) = �

(√
σc

xc

(
ϑc (t) − xc)

)
− e2σc
ϑc (t)�

(
−

√
σc

xc

(
ϑc (t) + xc)

)
,

where �(x) = ∫ x

−∞
1√
2π

e−z2/2 dz,

Subsequently, we consider the mean function 
ϑc as follows:

ϑc (t) = eact + bct − 1, ϑc = (ac, bc, σc) ∈ �,

where
� ⊂ {(a, b, σ ) ∈R

3 | a > 0, b > 0, σ > 0}.
The parameters are estimated in a manner similar to those for ID-SEM, as shown in the data analysis

in Section 4.

Remark 2.4. As described in Shimizu et al. (2020), we can interpret the parameters and coefficients
of the SDE. For example, in ID-SEM, the drift term represents the intrinsic survival power of a human
and the diffusion term is affected by the social environment. In IG-SEM, λc may correspond to the drift
term because it is the mean of the accumulating damage process Yc, and σc may be an environmental
parameter because it affects damage variance.
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Remark 2.5. We estimate the parameters by least-squares fitting of the “conditional” mortality function
qc(t|S) given in (1.3) to the corresponding empirical version, which can be computed based on the data
in the HMD (Human Mortality Database), as explained in Shimizu et al. (2023). We often recommend
choosing a conditioning age S of approximately 20 years. This is because mortality at young ages is
highly volatile and unstable, making it difficult to predict with simple models, such as ours. The value
of S must be determined empirically by examining the abundance of the data and mortality rates at
young ages, which depends on the country.

3. Modification of estimated mortality functions
Suppose we have estimated the values of ϑc for some cohorts c1 < c2 < · · · < cm, say, ϑ̂c1 , . . . , ϑ̂cm via
LSE, as in Shimizu et al. (2020). We assume that future parameter ϑc is determined as follows:

ϑc = h(c) + εc, εc ∼ Np(0, �c), (3.1)
for the deterministic (unknown) mean function h. Assuming that the estimated parameters
ϑ̂c1 , ϑ̂c2 , . . . , ϑ̂cm are the realisations of ϑci (i = 1, . . . , m), we estimate h, parameterized case-by-case,
as described in Section 4. Once h is estimated, say ĥ, we predict the parameter ϑc′ for a future cohort
c’ by

ϑ̂c
′ = ĥ(c′), c′ > cm, (3.2)

and obtain a predicted mortality function (PMF) qc
′ (·, ϑ̂c

′ ), as in Shimizu et al. (2020). However, in this
study, we propose further modifications to improve the prediction.

Based on assumption (3.1), we can construct the α-prediction interval for ϑc
′ :

Îc
′
,m

α
:= [

ϑ̂c
′ − zα/2diag(�̂1/2

c ), ϑ̂c
′ + zα/2diag(�̂1/2

c )
]

, (3.3)

where �̂c is an estimator of �c in (3.1), and zα is the (1 − α)-percentile of N(0,1); that is,

lim
m→∞

P

(
ϑc

′ ∈ Îc
′
,m

α

)
= α.

(Numerical illustrations for these (95%-) prediction intervals are shown in Figures 1 and 2 in the real
data analysis). Using prediction interval Îc

′
,m

α
, we readjust the parameters within the α-prediction interval

such that the mortality function can fit the existing (younger) data for cohort c′ as follows:

Definition 3.1 (Modified PMF). When empirical data q̂c
′ (t|S) for t = t1, . . . , td

′ exist, we reselect the
predictor such that

ϑ̃c
′ = arg min

ϑ∈̂Ic
′
,m

α

d
′∑

i=1

|qc
′ (ti, ϑ |S) − q̂c

′ (ti|S)|2, (3.4)

where Îc
′
,m

α
is given by (3.3). We used qc

′ (·, ϑ̃c
′ ) as the final predictive mortality function. We refer to it

as the modified predicted mortality function (MPMF).

Later, in certain examples, we compare the direct prediction (3.2) with the above modification (3.4).

4. Data analysis: ID-SEM versus IG-SEM
In this section, we compare ID-SEM and IG-SEM using actual data from the HMD (Human Mortality
Database) and illustrate that the MPMF with (3.4) can predict future mortality significantly better than
the PMF without modification.

Remark 4.1. Determining the change-point parameter Tc in ID-SEM is difficult. In principle, it should
be estimated from data, but this is challenging because the estimated mortality function is susceptible
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Figure 1. Estimation of parameters by nonlinear regressions in ID-SEM of Denmark, Female. The
x-axis represents x = c − 1815; The blue lines are the regression curves. The orange and green curves
are upper and lower 95%-prediction bound (̂Ic

′
,25

0.95 ), respectively.

to this parameter. In the following examples, we fix Tc = 50, for which ID-SEM can fit the training data
relatively well.

4.1 Denmark
The first example is Denmark. We use the following mortality data from the m = 25 cohorts:

c1 = 1816 birth cohort: 20 years old − 110 years old;
c2 = 1817 birth cohort: 20 years old − 110 years old;

...
...

c25 = 1840 birth cohort: 20 years old − 110 years old,

and suppose that we are in 1951 (because we already have the data of 110 years old of the 1840 birth
cohort). Based on this data, we predicted the mortality functions of 20 years old in the future cohorts
c′ = 1850, 1870, and 1890 for females and males, respectively. The predicted age groups for c′ = 1850,
c′ = 1870, and c′ = 1890 will be 101 years old, 81 years old, and 61 years old, respectively, based on the
assumption that the current year is 1951.

Data analysis was performed using the following procedure.

1. We estimate the parameters in qID
c (t, ϑc) and qIG

c (t, ϑc) for the data c =1816 – 1840 and obtain
the values of the parameters in the future cohorts c = 1850, 1870 and 1890 as in Section 3; also
refer to Shimizu et al. (2020).
The results for ID-SEM and IG-SEM with the (adjusted) coefficient of determination R2, (R

2
)

and 95. We will show the tables for R2 (R
2
) and the regression curves with the amplitude of the

95%-PI for males, but not the corresponding figures.
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Table 1. The (adjusted) coefficient of determination R2 (R
2
) for nonliner regression of each parameter

with the 95%-prediction intervals (95%-PI). For nonlinear exponential regression, we computed the
R2 (R

2
) by transforming it to the linear regression after taking the logarithm on both sides.

ID-SEM
Females αc = −7.66 exp (−5.95 × 10−3x) βc = −2.47 exp (−0.018x)
(95%-PI) ±0.663 ±0.347

R2 (R
2
) 0.477 (0.454) 0.720 (0.708)

Females γc = 7.13 × 10−4x + 0.126 κc = −1.92 × 10−3 exp (−0.011x)
(95%-PI) ±6.04 × 10−3 ±2.38 × 10−4

R2 (R
2
) 0.751 (0.740) 0.511 (0.490)

Males αc = −9.26 exp (−7.25 × 10−3x) βc = −3.90 exp (−7.41 × 10−3x)
(95%-PI) ±0.755 ±0.562

R2 (R
2
) 0.561 (0.542) 0.359 (0.331)

Males γc = 2.98 × 10−4x + 0.112 κc = −2.70 × 10−3 exp (−0.0125x)
(95%-PI) ±5.03 × 10−3 ±4.81 × 10−4

R2 (R
2
) 0.432 (0.407) 0.334 (0.305)
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0.085

0.090

0.095

0.100

0.105

0.110
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ac = 4.14× 10− 4x+ 0.0866.
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σc = 4.39× 10− 4 exp(− 0.056x) .

Figure 2. Estimation of parameters by nonlinear regressions in IG-SEM of Denmark, Female. The
x-axis represents x = c − 1815.

2. To obtain the MPMF, we split the data into training and test data. For example, in c′ = 1890, we
split the mortality data into two parts: 20–60 years (training data: red dots) and 61–110 years
(test data: black dots), and use the training data for modification (3.4).

3. In Figure 3, we will visually compare the two mortality curves with test data (black dots) for
males and females, but only for c′ = 1890. For other cohorts (c′ = 1850 and 1870), we will
only show the MSE between the predicted mortality function and the actual empirical mortality
function in Table 3.
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Table 2. The (adjusted) coefficient of determination R2 (R
2
) for nonlinear regression of each param-

eter with the 95%-prediction intervals (95%-PI). Although R2 (R
2
) for Males is extremely small (the

regression may not fit well), the MSE (Table 3) is not so bad. This is one of the advantages of our
“modification”.

IG-SEM
Females ac = 4.14 × 10−4x + 0.0866 bc = 0.697x + 18.12 σc = 4.39 × 10−4 exp (−0.056x)
(95%-PI) ±2.89 × 10−4 ±5.33 ±1.11 × 10−4

R2 (R
2
) 0.817 (0.809) 0.787 (0.778) 0.827 (0.819)

Males ac = 4.20 × 10−5x + 0.0826 bc = −0.0211x + 18.19 σc = 1.23 × 10−3 exp (−0.010x)
(95%-PI) ±2.97 × 10−3 ±4.91 ±1.19 × 10−4

R2 (R
2
) 0.086 (0.046) 0.055 (0.143) 0.156 (0.120)

Table 3. MSE between MPMF and the empirical MF (test data) from Denmark data.
Predictions for c′ = 1850, 1870 are very good, and c′ = 1890 is also admissible.

MSE for MPMF Females Females Males Males
ID-SEM IG-SEM ID-SEM IG-SEM

c′ = 1850 3.75 × 10−8 4.56 × 10−8 4.23 × 10−9 4.52 × 10−8

c′ = 1870 2.53 × 10−4 7.42 × 10−4 4.45 × 10−6 5.57 × 10−5

c′ = 1890 3.84 × 10−4 3.12 × 10−3 8.78 × 10−5 5.70 × 10−3

Remark 4.2. We employed the simplest regression functions feasible to facilitate ease of use. For
αc, βc, κc, we used a negative increasing function of the form −c1e−c2x < 0 because these values should
be negative. Although γc should be positive, it may be justifiable to model it using a linear function,
among other possible forms, given the available data. Occasionally, one can use the information crite-
ria, for example, AIC or BIC, to select a regression function; it is also possible to use a time-series model
to predict future parameters. However, any model has merits and demerits; therefore, we attempted it as
simply as possible.

In this cohort (relatively long future prediction), the difference between ID-SEM and IG-SEM is more
significant. Even a modified version in IG-SEM cannot predict well in males because of the parameter
prediction for ac and bc. This is a successful example of ID-SEM with a change point T and more
parameters than IG-SEM.

4.2 Norway
The second example is that of Norway. Similar to Denmark, we use the following mortality data from
the m = 25 cohorts:

c1 = 1826 birth cohort: 20 years old − 110 years old;
c2 = 1827 birth cohort: 20 years old − 110 years old;

...
...

c25 = 1850 birth cohort: 20 years old − 110 years old.

and assume that we are in 1961 (because we already have data for the 110-year-old in the 1840 cohort).
Based on these data, we predicted the mortality functions of the 20-year-old for future cohorts c′ = 1860,
1880, and 1900 for males and females. The prediction is after the 101 years for c′ = 1860, 81 years for
c′ = 1880, and 61 years for c′ = 1900. The results only for c′ = 1900 are given in Figure 4.
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Denmark-1890, Female: ID-SEM (left) vs. IG-SEM (right)
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Figure 3. Mortality functions by ID-SEM (left) and IG-SEM (right) for 1890 birth cohort in Denmark;
females (top) and males (bottom). The magenta curve is before modification, and the blue one is the
modified version. The prediction part is more than 60 years old.

All other procedures were identical to those used in Denmark. We estimate parameters using non-
linear regression and obtain PMFs before/after the modification. For these results, we only show the
figures of PMF before/after changes for c′ = 1900. For the others, we only show the noninear regression
curves with the values of R2 (R

2
) and their 95%-PI in Tables 4 and 5. Moreover, Table 6 lists the MSE

of MPMFs.

Remark 4.3. In Denmark, ID-SEM is superior to IG-SEM. However, IG-SEM is effective in this
example and occasionally outperforms ID-SEM. Because it is challenging to determine a suitable
change-point parameter T in ID-SEM, IG-SEM, which has fewer parameters than ID-SEM, is also a
good candidate for the prediction model of the mortality function.

In this example, IG-SEM is superior to ID-SEM in females but not males. Accordingly, it would
be challenging to determine the SEM to predict and compute some quantities of interest. We should
compute them both by ID-SEM and IG-SEM and compare the values objectively to make a decision

5. Advantages of SEM
5.1 Comparison with the classical model with cohort-effects
Shimizu et al. (2020) demonstrated that ID-SEM is superior to the classical Lee–Carter model. This sec-
tion compares our SEM with the Renshaw–Haberman model (RHM), extending the Lee–Carter model,
including cohort effects.

For comparison, we use the same data as in the previous section for Denmark and Norway. Moreover,
for RHM, we used 20–110 years old of the 1911–1950 calendar years in Denmark and the same ages
of 1921–1960 in Norway. We compared the modified mortality functions of the 1870 and 1890 birth
cohorts using ID- and IG-SEM and the mortality functions of the RHM. The results are shown in Figure 5
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Table 4. The (adjusted) coefficient of determination R2 (R
2
) for nonlinear regression of each

parameter with the 95%-prediction intervals (95%-PI). For nonlinear exponential regression, we
computed the R2 (R

2
) by transforming it to the linear regression after taking the logarithm on both

sides.

ID-SEM
Females αc = −7.25 exp (−0.011x) βc = −1.54 exp (−0.013x)
(95%-PI) ±0.680 ±0.176

R2 (R
2
) 0.682 (0.668) 0.635 (0.619)

Females γc = 5.54 × 10−4x + 0.131 κc = −2.03 × 10−3 exp (−0.020x)
(95%-PI) ±4.96 × 10−3 ±3.07 × 10−4

R2 (R
2
) 0.730 (0.718) 0.692 (0.679)

Males αc = −7.41 exp (−0.013x) βc = −2.16 exp (−0.015x)
(95%-PI) ±0.621 ±0.222

R2 (R
2
) 0.782 (0.772) 0.761 (0.751)

Males γc = 7.13 × 10−4x + 0.127 κc = −1.79 × 10−3 exp (−0.0259x)
(95%-PI) ±5.07 × 10−3 ±2.50 × 10−4

R2 (R
2
) 0.811 (0.803) 0.759 (0.749)

Table 5. The (adjusted) coefficient of determination R2 (R
2
) for nonliner regression of each

parameter with the 95%-prediction intervals (95%-PI).

IG-SEM
Females ac = 3.31 × 10−4x + 0.0862 bc = 0.510x + 18.93 σc = 4.50 × 10−4 exp (−0.073x)
(95%-PI) ±2.97 × 10−3 ±4.90 ±1.19 × 10−4

R2 (R
2
) 0.729 (0.717) 0.701 (0.688) 0.737 (0.726)

Males ac = 3.69 × 10−4x + 0.0889 bc = 0.787x + 24.04 σc = 3.42−4 exp (−0.090x)
(95%-PI) ±3.48 × 10−3 ±9.18 ±8.00 × 10−5

R2 (R
2
) 0.708 (0.695) 0.614 (0.597) 0.704 (0.691)

Table 6. MSE between MPMF and the empirical MF (test data) for Norway data. After our
modification, the predictions become very good in any case.

MSE for MPMF Females Males

ID-SEM IG-SEM ID-SEM IG-SEM
c′ = 1860 3.07 × 10−8 5.48 × 10−8 1.46 × 10−9 1.80 × 10−7

c′ = 1880 1.46 × 10−4 8.57 × 10−5 3.66 × 10−5 1.01 × 10−4

c′ = 1990 1.91 × 10−3 2.51 × 10−4 9.20 × 10−5 9.41 × 10−4

along with their MSEs. The results demonstrate that the differences in prediction errors are similar, but
ID-SEM is often superior to RHM at senior ages.

Remark 5.1. Although we used the CBD model, for example, Cairns et al. (2006a, 2008), as a candidate
cohort model, it was unsuitable for long-term prediction. Therefore, these results were excluded from
this study.
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Figure 4. Mortality functions by ID-SEM (left) and IG-SEM (right) for 1900 birth cohort in Norway;
females (top) and males (bottom). The magenta curve is before modification, and the blue one is the
modified version. The prediction part is more than 60 years old.

5.2 Reducing statistical errors
One of the advantages of the proposed SEM approach is the statistical estimation of the actuarial quan-
tities. Consider, for example, the single premium of all life insurance at age x, say Ax. It is written as
follows:

Ax :=
∞∑

k=1

vk
k−1|qx+k−1 (Actuarial notation)

=
∞∑

k=1

vk qc(x + k) − qc(x + k − 1)

1 − qc(x)
(SEM notation)

=
∞∑

k=1

vk[qc(k|x) − qc(k − 1|x)] (Conditional version),

where v ∈ (0, 1) is the discount factor. If we use the Lee–Carter model, then it is written as

Ax =
∞∑

k=1

vk
[
1 − exp

(−mx+k−1,t(αx+k, βx+k)
)]

,

where mx,t is the (crude) mortality parameterized by

mx,t(αx, βx) = exp
(
αx + βxκt + εx,t

)
,

with parameters αx, βx estimated based on the predicted values of κt, which are generated using a time
series model that includes some unknown parameters, and εx,t is a noise process. Here, we must estimate
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Figure 5. Modified mortality functions by IG-SEM (blue); ID-SEM (magenta), and RHM (red dots)
with a table of their MSEs for 1890 cohort of Denmark (top) and 1900 cohort of Norway (bottom). The
black dots are the actual data that should be predicted. The results for males suggest that ID-SEM is
superior, whereas those for females suggest that IG-SEM and RH may be better, depending on the case.
Ultimately, which model is most suitable depends heavily on the data.

numerous parameters {(αy, βy)}y=x,x+1,... and those in κt, which can increase the statistical error of Ax.
However, if we use SEM, cohort-wise computation

Ax =
∞∑

k=1

vk[qc(k, ϑc|x) − qc(k − 1, ϑc|x)],

requires only one parameter estimation for ϑc because ϑc is independent of k = 1, 2, . . . . This can make
the statistical error less than that of classical mortality models.

5.3 Sensitivity analysis
As shown in the previous section, most actuarial quantities are written in the functionals of the mortality
function qc(t, ϑc), which are often rewritten in terms of the conditional mortality function qc(t, ϑc|S), with
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a few unknown parameters ϑc. This situation is suitable for sensitivity analysis concerning parameter
changes.

Consider an actuarial quantity for age x and cohort c represented by a Stieljes-type integral form such
as

H(ϑ) :=
∫ ∞

0

qc(t, ϑ |x) dh(t), ϑ ∈ �,

where h denotes a measurable function of [0, ∞), The integral sign implies that
∫ ∞

0
:= ∫

[0,∞)
. We

suppose the exchangeability of
∫ ∞

0
and differentiation ∂ϑ as far as we need

∂ϑH(ϑ) =
∫ ∞

0

∂ϑqc(t, ϑ |x) dh(t) < ∞, ϑ ∈ �,

which is continuous in ϑ .
Most actuarial quantities are written in this form (see Shimizu et al. (2020)). For example, Ax, the

single premium of all life insurance at age x, is given by

h(t) =
∞∑

k=1

vk
(
1{t≥k} − 1{t≥k−1}

)
, t ≥ 0,

where v ∈ (0, 1), Moreover, for the immediate payment version:

Ā =
∫ ∞

0

vt ∂tqc(x + t)

1 − qc(x)
dt,

is given by H(ϑ) with

h(t) = −vt.

It follows from integration by parts that

H(ϑ) =
∫ ∞

0

qc(x + t, ϑ) − q(x, ϑ)

1 − qc(x, ϑ)
(−vt)′dt

=
[
−vt qc(x + t, ϑ) − qc(x, ϑ)

1 − qc(x, ϑ)

]∞

t=0

+
∫ ∞

0

vt ∂tqc(x + t, ϑ)

1 − qc(x, ϑ)
dt

=
∫ ∞

0

vt ∂tqc(x + t, ϑ)

1 − qc(x, ϑ)
dt = Āx.

We are interested in the difference H(ϑ) − H(ϑc) for different values of parameters ϑ and ϑc. By
Taylor’s formula,

H(ϑ) − H(ϑc) =
∫ ∞

0

∂ϑqc(t, ϑc|x) dh(t) · (ϑ − ϑc) + o(ϑ − ϑc).

Integral
∫ ∞

0
∂ϑqc(t, ϑc|x) dh(t) can be evaluated via direct computation. For instance, we have the

following inequality:

Lemma 5.2. For the mortality function of IG-SEM, qIG
c (t, ϑ) with ϑ = (a, b, σ ), we obtain the following

estimates: ∣∣∂aqIG
c (t, ϑ)

∣∣ ≤ 2teat

(
1 + σ


ϑ (t) + xc

)
φxc ,xc/σ (
ϑ (t));

∣∣∂bqIG
c (t, ϑ)

∣∣ ≤ 2t

(
1 + σ


ϑ (t) + xc

)
φxc ,xc/σ (
ϑ (t));

∣∣∂σ qIG
c (t, ϑ)

∣∣ ≤ 
ϑ (t)

(
1

σ
+ 2


ϑ (t) + xc

)
φxc ,xc/σ (
ϑ (t)),
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where xc is the initial survival energy for cohort c and φu,v(x) is the probability density function of the
normal distribution with mean u and variance v.

Proof. Note that

qIG
c (t, ϑ) = �

(√
σ

xc

(
ϑ (t) − xc)

)
− e2σ
ϑ (t)�

(
−

√
σ

xc

(
ϑ (t) + xc)

)
,

where �(x) = (2π )−1/2
∫ x

−∞ e−z2/2 dz.

∂aq
IG
c (t, ϑ) = teatφxc ,xc/σ (
ϑ (t)) − 2σ teate2σ
ϑ (t)�

(
−

√
σ

xc

(
ϑ (t) + xc)

)
+ e2σ
ϑ (t)φ−xc ,xc/σ (
ϑ (t))teat

= 2teat

[
φxc ,xc/σ (
ϑ (t)) − σe2σ
ϑ (t)�

(
−

√
σ

xc

(
ϑ (t) + xc)

)]
.

In the final equality, we used

e2σ
ϑ (t)φ−xc ,xc/σ (
ϑ (t)) = φxc ,xc/σ (
ϑ (t)). (5.1)

We use an inequality for the “error function” such that for x > 0,

�(−x) =
∫ ∞

x

1√
2π

e− z2
2 dz ≤ 1√

2πx
e− x2

2 ,

to obtain ∣∣∂aq
IG
c (t, ϑ)

∣∣ ≤ 2teat

[
φxc ,xc/σ (
ϑ (t)) + σe2σ
ϑ (t)�

(
−

√
σ

xc

(
ϑ (t) + xc)

)]
≤ 2teat

[
φxc ,xc/σ (
ϑ (t)) + σ


ϑ (t) + xc

e2σ
ϑ (t)φ−xc ,xc/σ (
ϑ (t))

]
= 2teat

(
1 + σ


ϑ (t) + xc

)
φxc ,xc/σ (
ϑ (t)).

We used equality (5.1) in the last equality. The estimate of the partial derivative ∂bqIG
c is slightly

similar and omitted.
For ∂σ qIG

c , it follows from (5.1) that:

∂σ qIG
c (t, ϑ) = 1

2
√

σxc

(
ϑ (t) − x) ·
√

xc

σ
φxc ,xc/σ (
ϑ (t)) − 2
ϑ (t)e2σ
ϑ (t)φ−xc ,xc/σ (
ϑ (t))

+ 1

2
√

σxc

(
ϑ (t) + x) ·
√

xc

σ
φ−xc ,xc/σ (
ϑ (t))

= 1

σ

ϑ (t)φxc ,xc/σ (
ϑ (t)) − 2
ϑ (t)e2σ
ϑ (t)φ−xc ,xc/σ (
ϑ (t)).

Hence, the same argument as above is available and the proof ends. �
Corollary 5.3. Under the same model as in Lemma 5.2, assume that:

sup
ϑ∈�

∣∣∣∣∫ ∞

0

teatφ0,1(
ϑ (t)) dh(t)

∣∣∣∣ < ∞.

Subsequently, it follows that

sup
ϑ∈�

∣∣∣∣∫ ∞

0

∂ϑqc(t, ϑ |x) dh(t)

∣∣∣∣ < ∞.
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For our LSE ϑ̂c of ϑc given in Theorem 3.2 in Shimizu et al. (2020) (see also the erratum Shimizu,
2022) and the sample size nc required to obtain the estimator, we have, by the delta method in statistics,
that

√
nc

(
H(ϑ̂c) − H(ϑc)

) =
∫ ∞

0

∂ϑqc(t, ϑc|x) dh(t) · √nc(ϑ̂c − ϑc) + op(1)

→d Np(0, �c,x), nc → ∞,

where the asymptotic variance �c,x can be estimated using the estimators of Rd, Qd, � in Theorem 3.2 in
Shimizu et al. (2020) (with Shimizu, 2022), and the plug-in estimator

∫ ∞
0

∂ϑqc(t, ϑ̂c|x) dh(t). This yields
the confidence interval H(ϑc):

P

(
H(ϑc) ∈

[
H(ϑ̂c) − zα/2

�̂x,c√
nc

, H(ϑ̂c) + zα/2

�̂x,c√
nc

])
≈ 1 − α,

where zα is the upper α-percentile of the standard normal distribution and �̂c,x is an estimator of the
asymptotic variance �c,x.

6. Conclusions
We proposed two types of parametric families for SEMs: ID-SEM and IG-SEM, which provide accurate
cohort-wise PMFs. Using the (prediction) confidence intervals for unknown parameters, we can modify
the MPMF to fit existing data in a manner consistent with LSE (refer to Remark 3.1).

SEM is a viable candidate for alternative modeling of mortality prediction. We illustrated that both
SEMs had high potential for long-term mortality prediction and were superior to the classical model,
possibly with cohort effects, for example, LC, RH, and CBD models. Moreover, SEM has numerous
theoretical advantages: notational understanding for nonactuarial people, reduced estimation error owing
to fewer parameters, and usefulness for sensitivity analysis.

For further information regarding SEM, such as graphs and other topics, please refer to the
supplementary article by Shimizu et al. (2023).

Acknowledgments. The author thanks the anonymous referees for their detailed suggestions and proposals, which have improved
the paper extensively. This research was partially supported by the JSPS KAKENHI Grant-in-Aid for Scientific Research (C)
#21K03358.

References
Abbring, J.H. (2012) Mixed hitting-time models. Econometrica, 80(2), 783–819.
Bauer, D., Benth, F.E. and Kiesel, R. (2012) Modeling the forward surface of mortality. SIAM J. Financ. Math., 3, 639–666.
Baukai, B. (1990) Explicit expression for the distribution of the supremum of Brownian motion with a change point. Commun.

Stat. Theory Methods, 19(1), 31–40.
Biffis, E. (2005) Affine processes for dynamic mortality and actuarial valuation. Insur. Math. Econ., 37, 443–468.
Biffis, E., Denuit, M. and Devolder, P. (2010) Stochastic mortality under measure changes. Scand. Actuar. J., (4), 284–311.
Blackburn, C. and Sherris, M. (2013) Consistent dynamic affine mortality models for longevity risk applications. Insur. Math.

Econom., 53, 64–73.
Cairns, A.J.G., Blake, D. and Dowd, K. (2006a) A two-factor model for stochastic mortality with parameter uncertainty: Theory

and calibration. J. Risk Insur., 73, 687–718.
Cairns, A.J.G., Blake, D. and Dowd, K. (2006b) Pricing death: Framework for the valuation and securitization of mortality risk.

ASTIN Bull., 36(1), 79–120.
Cairns, A.J.G., Blake, D. and Dowd, K. (2008) Modeling and management of mortality risk: A review. Scand. Actuarial J., (2–3),

79–113.
Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A. and Balevich, I. (2009) A quantitative comparison of

stochastic mortality models using data from England, Wales, and the United States. North Am. Actuarial J., 13(1), 1–35.
Chen, H. and Cox, S.H. (2009) Modeling mortality with jumps: Applications to mortality securitization. J. Risk Insurance, 76(3),

727–751.

https://doi.org/10.1017/asb.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.10


ASTIN Bulletin 391

Dahl, M. (2004) Stochastic mortality in life insurance: Market reserves and mortality-linked insurance contracts. Insurance Math.
Econ., 35, 113–136.

For SEM data processing: https://www.shimizu.sci.waseda.ac.jp/smzlab/files/To_semData.r.
Hainaut, D. and Devolder, P. (2008) Mortality modeling with Lévy processes. Insur. Math. Econ., 42, 409–418.
Hao, X., Li, X. and Shimizu, Y. (2013) Finite-time survival probability and credit default swap pricing in geometric Lévy markets.

Insur. Math. Econ., 53, 14–23.
Human Mortality Database: https://www.mortality.org/.
Ito, R. and Shimizu, Y. (2019) Cohort-wise mortality prediction under the survival energy hypothesis (in Japanese). J. Jpn. Assoc.

Risk Insur. Pensions (JARIP), 6, 17–30.
Jarrow, R.A. and Turnbull, S. (1995) Pricing derivatives on financial securities subject to credit risk. J. Finance, 50, 53–85.
Konishi, S. and Kitagawa, G. (1996) Generalized information criteria in model selection. Biometrika, 83, 875–890.
Lee, R.D. and Carter, L. (1992) Modeling and forecasting the time series of US mortality. J. Am. Stat. Assoc., 87, 659–671.
Leng, X. and Peng, L. (2016) Inference pitfalls in the Lee-Carter model for forecasting mortality. Insur. Math. Econ., 70, 58–65.
Lundberg, F. (1903) Approximerad Framställning av Sannolikehetsfunktionen, Aterförsäkering av Kollektivrisker, Almqvist &

Wiksell, Uppsala.
Merton, R.C. (1974) On the pricing of corporate debt: The risk structure of interest rates. J. Finance, 29(2), 449–470.
Merton, R. (1976) Option pricing when underlying stock returns are discontinuous. J. Financ. Econ., 3, 125–144.
Molini, A., Talkner, P. Katul, G.G. and Porporato, A. (2011) First-passage time statistics of Brownian motion with purely time-

dependent drift and diffusion. Physica A, 390, 1841–1852.
Olovieri, A. (2001) Uncertainty in mortality projections: An actuarial perspective. Insur. Math. Econ., 29, 231–245.
Pitacco, E. (2004) Survival models in a dynamic context: A survey. Insur. Math. Econ., 35, 279–298.
Renshaw, A.E. and Haberman, S. (2003) Lee-Carter mortality forecasting with age-specific enhancement. Insur. Math. Econ., 33,

255–272.
Renshaw, A. and Haberman, S. (2006) A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insur.

Math. Econ., 38, 556–570.
Schoutens, W. and Cariboni, J. (2009) Lévy Processes in Credit Risk. Oxford (United Kingdom): John Wiley & Sons.
Shimizu, Y., Minami, Y. and Ito, R. (2020) Why does a human die? A structural approach to cohort-wise mortality prediction

under the survival energy hypothesis. ASTIN Bull., 51(1), 191–219.
Shimizu, Y. (2022) Erratum to: “Why does a human die? A structural approach to cohort-wise mortality predic-

tion under Survival Energy Hypothesis.” [ASTIN Bull., 2021; 51(1) 191–219.], https://www.shimizu.sci.waseda.ac.jp/
files/Erratum-ASTIN51-1.pdf.

Shimizu, Y., Shirai, K., Kojima, Y., Mitsuda, D. and Inoue, M. (2023) A new survival energy model and SEM project.
SSRN:4127900: http://dx.doi.org/10.2139/ssrn.4127900.

Shirai, K. and Shimizu, Y. (2022) On the prediction of full life expectancy via Survival Energy Models. Master Thesis, Graduate
School of Fundamental Science and Engineering, Waseda University (in Japanese); submitted.

van der Vaart, A.W. (1998) Asymptotic Statistics. Cambridge: Cambridge University Press.
Ye, Z. and Chen, N. (2014) The inverse Gaussian process is a degradation model. Technometrics, 56(3), 302–311.

https://doi.org/10.1017/asb.2023.10 Published online by Cambridge University Press

https://www.shimizu.sci.waseda.ac.jp/smzlab/files/To_semData.r
https://www.mortality.org/
https://www.shimizu.sci.waseda.ac.jp/files/Erratum-ASTIN51-1.pdf
https://www.shimizu.sci.waseda.ac.jp/files/Erratum-ASTIN51-1.pdf
https://doi.org/http://dx.doi.org/10.2139/ssrn.4127900
https://doi.org/10.1017/asb.2023.10

	Introduction
	A new SEM: Inverse Gaussian SEM
	Modification of estimated mortality functions
	Data analysis: ID-SEM versus IG-SEM
	Denmark
	Norway

	Advantages of SEM
	Comparison with the classical model with cohort-effects
	Reducing statistical errors
	Sensitivity analysis

	Conclusions

