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Abstract. While on the one hand, chaotic dynamical systems can be predicted for all
time given exact knowledge of an initial state, they are also in many cases rapidly
mixing, meaning that smooth probabilistic information (quantified by measures) on the
system’s state has negligible value for predicting the long-term future. However, an
understanding of the long-term predictive value of intermediate kinds of probabilistic
information is necessary in various physical problems, and largely remains lacking. Of
particular interest in data assimilation and linear response theory are the conditional
measures of the Sinai–Ruelle–Bowen (SRB) measure on zero sets of general smooth
functions of the phase space. In this paper we give rigorous and numerical evidence that
such measures generically converge back under the dynamics to the full SRB measures,
exponentially quickly. We call this property conditional mixing. While conditional mixing
typically cannot be proven from standard transfer operator theory, we will prove that
conditional mixing holds in a class of generalized baker’s maps, and demonstrate it
numerically in some non-Markovian piecewise hyperbolic maps. Conditional mixing
provides a natural limit on the effectiveness of long-term forecasting of chaotic systems via
partial observations, and appears key to proving the existence of linear response outside
the setting of smooth uniform hyperbolicity.
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1. Introduction
By definition, chaotic dynamical systems’ future states are generally impossible to predict
over the long term. For this reason they must be studied probabilistically, that is, in
terms of measures that evolve under the dynamics. Many probabilistic questions about
topologically mixing chaotic systems f : M � are quantitatively related to fast mixing
(that is, decay of correlations) for smooth observables with respect to some invariant
measure μ [2]. Mathematically, mixing means the following decay of sufficiently regular
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1694 C. L. Wormell

(for example, C∞) observables A, B : M → R:∫
M

A ◦ f n B dμ−
∫
M

A dμ
∫
M

B dμ
n→∞−−−→ 0.

Alternatively, this can be reformulated as weak convergence of smoothly reweighted
versions of μ back to μ under the actions the dynamics:∫

M

A df n∗ (Bμ)
n→∞−−−→

∫
M

A dμ

for any A, B with
∫
M
B dμ = 1, where f∗ pushes measures forward under f.

A particularly important invariant measure is the Sinai–Ruelle–Bowen (SRB) mea-
sure ρ. This is typically the most physically relevant invariant measure: among other
things, assuming no periodicity in the system, measures with smooth enough Lebesgue
densities commonly converge to the physical measure over time (typically exponentially
quickly), that is, ∫

M

A df n∗ (B Leb)
n→∞−−−→

∫
M

A dρ

for all A, B ∈ C∞ with
∫
M
B d Leb = 1. It is a standard meta-result in smooth ergodic

theory that for sufficiently hyperbolic maps with du positive Lyapunov exponents, the
same result also holds for any measure μ with a regular conditional density along
du-dimensional submanifolds that are tangent to the expanding direction in phase space:∫

M

A df n∗ (B Leb)
n→∞−−−→

∫
M

A dρ (1)

However, establishing fast mixing (or the related decay of iterates of a transfer operator)
appears to be insufficient to answer various questions that depend on the long-term
behaviour of a small problematic subset of the system’s attractor, such as the response
problem in non-uniformly hyperbolic systems [21]. We might therefore ask if other
measures μ also satisfy (1).

Perhaps the simplest example of a small subset of an attractor would be its restriction
to a submanifold of phase space—which will generically be transverse to both stable and
unstable manifolds. If this submanifold comes from some foliation (for example, of level
sets of an observable), we can disintegrate the physical measure and study its conditional
measure μ on this submanifold. An example of such a measure is shown in Figure 1: note
that unlike Gibbs invariant measures, the measure is supported on a non-invariant Cantor
set without a product structure.

If (1) obtains for such a conditional measure μ, we call it conditional mixing. For
dissipative systems, conditional mixing appears to lie outside the scope of traditional
study by transfer operators, and this basic problem has hitherto seen very little study,
notwithstanding work for other classes of μ in the specific case of linear one-dimensional
maps [7, 15, 22]

Nevertheless, through a mixture of rigorous and theoretical study we will show that
conditional mixing holds for a range of maps, and, in particular, has some connection with
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FIGURE 1. Left: picture of the Lozi attractor at a = 1.7, b = 0.5 (black), the singular line {x = 0} (purple line),
their intersection (pink Cantor set). Right: histogram of ρ(y | 0), obtained from 200,000 iterates of the unstable

manifold dynamics �f , binned at width 0.0025.

the fractal-geometric theory of Fourier dimension [19, 22]. From our results it seems that
conditional mixing is likely to hold for a large set of maps and submanifolds (perhaps even
almost all those for which there is no ‘obvious’ reason why it could not hold).

We also describe some consequences of conditional mixing. One physically meaningful
consequence of conditional mixing is that the capability of Bayesian filters to make
predictions about chaotic systems in the long term is limited if they only make partial
observations (see §3); it also implies set-filling results for chaotic attractors (see §2).
Another physical application, to proving the widely believed existence of linear response
outside of smooth hyperbolic systems, is considered in [24].

We stress that, except for conservative systems, conditional mixing does not follow
from traditional Banach space approaches [2, 3]: these typically rely on some sort of
regularity of the initial measure (for example, smoothness of a density along a foliation).
The conditional measures we will study in this paper have no regularity of this sort,
and indeed are Cantor measures supported on totally disconnected sets. Banach space
approaches, furthermore, typically proceed by showing that this kind of regularity is
preserved or improved, and results usually hold while the map’s structure remains the
same: on the other hand, we present an example in §4.1 where one choice of map fails
to have conditional mixing even though all the structurally identical maps around it do.
We note that the Fourier dimension theory for nonlinear maps [7, 22] uses the Dolgopyat
method (in dynamics more commonly used to prove rapid mixing for flows) [11], where
one is interested in joint non-integrability.

The paper is structured as follows. In §2 we give a mathematical definition of
conditional mixing and give a simple, illustrative consequence of it involving set filling.
In §3 we present the application of conditional mixing to the area of forecasting. In §§4
and 5 we give evidence for conditional mixing in various systems, respectively presenting
a theorem for a class of (potentially nonlinear) baker’s maps and numerical evidence for
some piecewise hyperbolic maps. We discuss our results in §6. The novel algorithms we
use to obtain for our numerical results are given in Appendix A.
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2. Definition and an illustrative consequence
Let T : M → M be a dynamical system with SRB measure ρ, and let H : M → R

d be a
C2 function with no critical points on the level set

�H := {x ∈ M : H(x) = 0}.
Suppose that for some c : R+ → R

+ the following limit exists in the C0-weak topology:

μ = lim
δ→0

c(δ)−11(|H(·)| ≤ δ)ρ.

Suppose also that μ is a finite measure. Any two sequences c, c′ will yield μ, μ′ identical
up to scaling, as would changing the kernel k(δ−1|H(x)|) = 1(δ−1|H(x)| < 1) to another
bounded, compactly supported decreasing function. If μ is a probability measure then we
denote it by dμ(x) = dρ(x | H(x) = 0).

Definition 2.1. (T , ρ) has conditional mixing with respect to H if for all A, B ∈ C∞,∣∣∣∣
∫
M

A ◦ T n B dμ−
∫
M

A dρ
∫
M

B dμ
∣∣∣∣ n→∞−−−→ 0. (2)

This is to say that repeatedly pushing forward any weighted conditional measure Bμ
by T, we converge back to the SRB measure ρ (up to a multiplicative constant) in the weak
topology with respect to C1.

It is natural to wish to put some quantitative bounds on mixing. By analogy with the
usual sort of mixing, a natural decay rate is exponential.

Definition 2.2. (T , ρ) has exponential conditional mixing with respect to H if there exist
ξ < 1, C and r < ∞ such that for all A, B ∈ Cr ,∣∣∣∣

∫
M

A ◦ T n B dμ−
∫
M

A dρ
∫
M

B dμ
∣∣∣∣ ≤ Cξn‖A‖Cr‖B‖Cr .

Note that (exponential) conditional mixing can already be expected to hold from the
classical theory if T is conservative. For example, we have the following proposition
(proven in Appendix D).

PROPOSITION 2.1. Suppose T : M → M is a C3 conservative topologically mixing
Anosov diffeomorphism with M a compact C∞ manifold. Suppose H ∈ C2(M , Rd) has
no singular points on its zero set �H , the zero set is everywhere transverse to stable
manifolds, and d is less than or equal to the number of stable directions. Then (T , Leb)
has exponential conditional mixing with respect to H.

The measure-based conditional mixing implies an interesting set-convergence property
of the intersection of the level set �H with the support of ρ, which we denote by � and
which is often an attractor of T. We find that iterates of the intersection of the line and �,
that is, iterates of a slice of �, converge back in Hausdorff distance to the full support of
ρ. An example of this phenomenon is plotted in Figure 2.
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FIGURE 2. Exponentially fast filling of the Lozi attractor � ⊂ R
2 (black) by the set intersection � ∩ {x = 0}

(pink), pushed forward n times by the same Lozi map. The level set {x = 0} is given in purple. Lozi parameters
a = 1.8, b = 0.35 are used.

PROPOSITION 2.2. Conditional mixing with respect to H implies that

lim
n→∞ dHaus(T

n(�H ∩�), �) = 0.

Under a reasonably general assumption on the regularity of the SRB measure, exponen-
tial conditional mixing gives us a quantitative version of this result as well.

PROPOSITION 2.3. Suppose ρ is lower-Ahlfors regular: that is, there exist C, d such that
ρ(B(x, δ)) > Cδd for all x. Exponential conditional mixing with respect to H implies that
for some ξ1 < 1 and C1,

dHaus(T
n(�H ∩�), �) ≤ C1ξ

n
1 .

The proofs of these two propositions are given in Appendix D.

3. Forecasting with perfect partial observations
We now consider a fundamental practical problem to which the notion of conditional
mixing is directly applicable: that of forecasting chaotic dynamics. Many forecasting
methods have been developed that assimilate information obtained from observations.
In general, these methods achieve this assimilation by approximating the Bayesian filter,
also known as the optimal filter [12]. The stability of the Bayesian filter with small, finite
observation error has recently been studied in Anosov systems [20].

To understand this in the simplest instance, let us suppose that our system T : M �
for M ⊂ R

d has exponential mixing, and at time n = 0 we have some prior probabilistic
knowledge of the state of our system, given by some (presumably ‘nice’) measure dμ−(x).
If we start with an unobserved system at statistical equilibrium, the natural choice of prior
is μ− = ρ, the SRB measure.

We can now make a noisy and perhaps partial observation of our system, given as a
value y = H(x)+ ζ ∈ R

e, where ζ is random with probabilities given by a smooth kernel
p(ζ | x) dζ .
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FIGURE 3. Posterior distribution (pink) after one observation step of H(u, v) = u+ ζ where ζ ∼ N (0, σ 2), for
varying values of σ . Line corresponding to H(x, y) = Hobs in purple, attractor in black. Convergence to the

conditional measure as in Figure 1 can be seen as the noise σ → 0.

Assimilating the observation y, the posterior probability measure of x is given by Bayes’
theorem as

dμ(x) = Z(y)−1p(y −H(x) | x) dμ−(x), (3)

with normalizing constant Z(y) = ∫
M
p(y −H(w) | w) dμ−(w). An example is given in

Figure 3. Our best guess of the state of the system at future time n (that is, of T n(x)) is
then given by T n∗ μ; the expected value of some (nice) observable A at time n is therefore∫

M

A(T n(w)) dμ(w) =
∫
M

A(T n(w))
p(y −H(w) | w)

Z(y)
dμ−(w). (4)

Depending on how effective a measurement y = H(x) is of x, μ is likely to be
concentrated on a smaller set than μ−, and this may improve forward estimates of
the system’s state over the short to medium term. However, under our assumptions for
T , A, μ−, p, exponential mixing results give that (4) will eventually converge at a fixed
exponential rate to the SRB measure expectation

∫
M
A dρ.

But as we make our observations more and more precise, that is, reduce the noise in H
to zero, we might ask what posterior we end up with and what quality of forecast we can
make with it. This is trivial if H(x) specifies x: we will know our value of x exactly, and
therefore T n(x) exactly for all time. However, it is typical in high-dimensional systems for
H to be only a partial observation.

In a zero-noise limit the kernel p is no longer smooth, with p(ζ | w) = δ(ζ ). Our
posterior measure dμ(x) is then the simply the conditional probability measure of dμ−(x)
given that H(x) = y: ∫

M

A(f n(w)) dρ(w | H(w) = y).
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FIGURE 4. Decay of mean forecasts of A(x, y) = 2x to SRB measure averages for Bayesian filters with various
levels of observation noise. The observation function used was H(x, y) = x.

If conditional mixing (2) holds, this must converge to the expectation of A with
respect to the SRB measure ρ, that is, in the long term we end up back with the
default no-information guess. Conditional mixing thus codifies the intuition that typical
incomplete information on the system should wash out over time.

On the other hand, if conditional mixing did not hold generically, and thus partial
observations could with some positive likelihood be predictively useful for all time,
there might be significant practical consequences for chaotic systems. However, what our
exploratory mathematical results in §§4 and 5 will suggest is that conditional mixing
should in fact hold, excluding this possibility.

In practice, of course, physical observations will always have some random error
to them. This is also true of the evolution of physical systems, which are nonetheless
considered worth studying in their zero-noise limit. In any case, if the observation
uncertainty is small enough it will take some time to manifest in the prediction, and the
behaviour until then is described by zero-noise limit we have discussed here (see Figure 4).

Nevertheless, prediction over the long term with small, non-zero observation errors
does admit an interesting question for which general results can be proven using standard
dynamics techniques. If T is a C∞ Anosov diffeomorphism and A ∈ C∞(M), then over
the long term, the convergence of the forward predictions (4) is governed by how much μ
picks up the transfer operator eigenfunctions of T. Mathematically, we have for all K ∈ N

that as n → ∞ [14],

∫
A ◦ T n dμ−

∫
A dρ ∼

K∑
k=1

αk(A)βk

(
dμ
dρ

)
nrkλnk + o(nrK λnK), (5)

where rk ∈ N and 1 > |λ1| ≥ |λ2| ≥ · · · → 0. Both the αk and βk are independent of the
Bayesian posterior μ: the αk , βk are functionals, and in particularly βk is an integration
against a hyperdistribution, that is, C∞ in the unstable direction. While the problem is
technical and beyond the scope of this paper, this latter fact suggests that as the observation
error decreases to zero (and thus the density dμ/dρ converges to a conditional distribution
supported on �H ), the integral βk(dμ/dρ) could potentially converge to a finite limit
when �H is transverse to stable manifolds, at least for Anosov maps with a C∞ unstable
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foliation. If this were the case, it would suggest that reducing the observation error does
not strengthen the asymptotic long-term predictive power of the Bayesian filter—that is
after any transients, which will at least initially approximate the zero-noise limit, and may
take arbitrarily long to dissipate.

However, C∞ uniformly hyperbolic systems are probably unique in that their transfer
operators have no non-removable essential spectrum, and K can therefore be taken to
infinity in (5). We can thus contrast the C∞ Anosov case to our numerical evidence for
the Lozi map in Figure 4, where the predictive power appeared to be improved by smaller
error at times when the conditional mixing regime had washed out. Note that the Lozi
map has a rough unstable foliation [4] and can usually be expected to lack a finite Markov
partition [17], leading to essential spectrum for its transfer operator [8].

This argument would not yield a proof of conditional mixing a priori, as bounds for the
error in the asymptotic expansion (5) will blow up as the observation noise goes to zero.

4. Rigorous results for a toy model: baker’s map
As a simple model to study conditional mixing, let us consider baker’s maps b : D :=
[0, 1]2 � of the following form:

b(x, y) = (kx mod 1, v�kx�(y)), (6)

where k ≥ 2 is an integer, the vi , i = 1, . . . , k, are (possibly nonlinear) contractions with
all |v′

i | ≤ μ < 1. We will also assume that the open images vi((0, 1)) are disjoint, and
the contractions have bounded distortion (that is, the log |v′

i | are C1). An example of such
a map is plotted in Figure 5. For smooth enough transverse foliations, it is possible to
define in a natural way conditional measures for all leaves. For simplicity, we assume we
have a foliation �(t ; y) of a subset of D into graphs x = ψ(y)− t , with the parameter t
translating the graph in the x direction.

PROPOSITION 4.1. Suppose that �(t ; y) = (ψ(y)− t , y) is a foliation of some subset
D� ⊆ D for |t | ≤ t∗ ∈ [0, 1] and y ∈ [0, 1]. Let ρ be the (unique) SRB measure of b.

Then for every t ∈ [−t∗, t∗] there exists a unique probability measure ρt supported on
�(t , [0, 1]) such that the following assertions hold.
(a) For all t ∈ (−t∗, t∗) and all continuous functions A : D → R,∫

D

A dρt = lim
δ→0

1
2δ

∫
{�(s,y):|s−t |<δ,y∈[0,1]}

A dρ. (7)

(b) For all Borel sets E ⊆ D� ,

ρ(E) =
∫ t∗

−t∗
ρt (E) dt .

Let us be as general as we can about the functions against which the conditional
measures weakly converge back to the full measure. For α, β ∈ (0, 1] we define the
following norm on continuous functions φ : D → C:

‖φ‖α;β = |φ|α,x + |φ|β,y + ‖φ‖L∞ ,
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FIGURE 5. Picture of a baker’s map of the form (6) showing the attractor (black), an intersecting line x = ψ(y)−
t0, a leaf of a transverse foliation of the form in Proposition 4.1, (purple), and the action of the map on pieces of
the domain (in pale colours), and on the conditional measure of the SRB measure on the intersecting line (pink).

where the directional Hölder semi-norms are given by

|φ|α,x = sup
x,x′,y∈[0,1]

|φ(x, y)− φ(x′, y)|
|x − x′|α ,

|φ|β,y = sup
x,y,y′∈[0,1]

|φ(x, y)− φ(x, y′)|
|y − y′|β .

The Banach space Cα;β will then consist of all continuous functions φ : D → C with
‖φ‖α;β < ∞: that is, functions that are α-Hölder in the x direction and β-Hölder in the
y direction. In particular, the Banach space of C1 functions is continuously embedded in
Cα;β .

The following theorem, proved in Appendix B, says that for certain baker’s maps,
exponential conditional mixing holds for all conditional SRB measures on a smooth
foliation transversal to unstable lines:

THEOREM 4.2. Suppose that �(t ; y) = (ψ(y)− t , y) is a foliation of some subset of D
for |t | ≤ t∗ ∈ [0, 1] and y ∈ [0, 1], and ψ is C2 with ψ ′ �= 0. Suppose one of the following
conditions hold:

(I) The contractions vi are totally nonlinear† and C2 and
⋃
i vi([0, 1]) = [0, 1].

(II) The contractions vi are totally nonlinear and analytic, as is ψ .
(III) The contractions are linear with vi(x) := μx + oi for oi ∈ [0, 1 − μ], andψ ′′ �= 0.

Let ρ be the (unique) SRB measure of a modified baker’s map b and let {ρt }t∈[−t∗,t∗]

be the conditional measures of ρ on the foliation. Then (b, ρ) has exponential conditional
mixing with respect to the level set of H(x, y) = ψ(y)− t − x for all t ∈ (−t∗, t∗).

More specifically, there exists d∗ > 0 such that for all γ ∈ (1 − d∗, 1], β ∈ (0, 1],
α ∈ (γ − d∗, 1], there exist C > 0, ξ ∈ (0, 1) such that for all t ∈ (−t∗, t∗), A ∈ Cα;β ,
B ∈ Cγ , n ∈ N,

|ρt (A ◦ bn B)− ρt (B)ρ(A)| ≤ C‖A‖Cα;β‖B‖Cγ ξn.

† That is, no C2 function exists conjugating all the vi simultaneously to linear functions.
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Intuitively it seems that exponential conditional mixing holds wherever there is no
obvious reason for it not to hold: that is to say, wherever the conditional measure μ is
not compatible with the algebraic or symbolic structure of the unstable dynamics. Indeed,
the Fourier decay results we use to prove Theorem 4.2 rely on joint non-integrability
properties [22]). This incompatibility can be obtained either if ρt is generated by nonlinear
contractions (where the expanding dynamics is linear), as in I–II, or if the leaf x =
ψ(y)− t transforms the self-affine stable measure in a nonlinear way (as in III). We give
an example where the conditional measure picks up the algebraic structure of both the
stable and unstable dynamics in §4.1.

From this and Proposition 2.3, exponential convergence in Hausdorff distance of the
slice sets follows.

COROLLARY 4.3. Under the conditions of Theorem 4.2, there exist C1 and ξ1 such that
for all t ∈ (−t∗, t∗),

dHaus(b
n(�(t ; R) ∩�b), �b) ≤ C1ξ

n
1 ,

where �b is the attractor of b.

Note that the classic piecewise affine baker’s maps fall under condition III of the
theorem, although for conservative maps the application of Fourier dimension theory is
unnecessary due to the Lebesgue-absolute continuity of ρ.

It can also be seen from the proof that the constant d∗ is half the Fourier dimension
of ρt projected onto the x coordinate. (A choice of test functions with more specific
Fourier decay properties might yield d∗ to be exactly the Fourier dimension.) This Fourier
dimension is bounded from above by the Hausdorff dimension of ρt , which, given the
product structure of the measure, is easily seen also to be the stable dimension of the
systems [23]. Thus, a larger stable dimension suggests conditional mixing holds with
respect to increasingly less regular observables, with consequences for linear response
theory [21, 24].

In fact, for case III, both d∗ and the asymptotic rate of conditional mixing ξ are
independent of the conditioning foliation [19, Theorem 3.1].

It is worth mentioning that it is also possible to decompose sufficiently regular (for
example, real analytic) curves that are tangent to stable or unstable manifolds away from
the support of the attractor into a finite set of curves that uniformly avoid tangencies.
In fact, the stipulations that ψ ′ �= 0 or indeed that the foliation is a graph in y are mere
artefacts of the proof and can almost certainly be relaxed.

To prove Theorem 4.2, we essentially use two facts. The first fact, used in Lemma B.6,
is that the x component of b is a tupling map, whose action on Fourier coefficients of
measures is well known. The second fact (Proposition B.3) is that the SRB measure is a
product of uniform measure in the x direction and a Gibbs measure (in fact, a measure of
maximal entropy) of an iterated function system in the y direction. This allows us to bring
in some recent results on Fourier dimension of Gibbs measures [18, 19, 22].

The Fourier dimension of Gibbs measures is an area in progress whose results have not
yet been consolidated, hence the somewhat particular set of alternatives. We remark that if
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FIGURE 6. Picture showing the attractor [0, 1] × C1/3 of the piecewise linear baker’s map bbad (black) with the
images of its pieces (pale colours), and the linear level set x − y = 0 (purple). The conditional measure of the
SRB measure on the intersecting line is shown in pink dots, and, in pale vertical pink lines, the bbad-invariant

subset C1/3 × [0, 1] in which the support of the conditional measure is contained.

B(x, y) depends only on x then in case III the ψ ′ �= 0 restriction can be dropped: that is,
quadratic tangencies with stable manifolds (lines of constant y) are allowed here.

4.1. A case where conditional mixing fails. However, it is clear that some stipulations
on the contractions and foliation of a similar flavour to I–III must remain. In particular,
either the contractions or the foliation should avoid preserving too good a linear structure,
or conditional mixing will fail. An example where this occurs is given for the map bbad,
given by k = 3 and

v1(y) = y/9,

v2(y) = (y + 2)/9,

v3(y) = (2y + 1)/3.

The attractor and dynamical picture for this map are plotted in Figure 6.
Here, we have the following proposition.

PROPOSITION 4.4. (bbad,ρbad) has no conditional mixing with respect toH(x,y)= y − x.

This is because the x and y directions, which are both linear, both preserve the
middle-thirds Cantor set, which is copied across the directions using the linear foliation.

Proof. The contractions v1, v2, v3 together generate the middle-thirds Cantor set C1/3: if
f1(x) = x/3, f2(x) = (x + 2)/3 are the classical generators, then v1 = f 2

1 , v2 = f1 ◦ f2

and v3 = f2. The attractor �bbad of bbad is therefore [0, 1] × C1/3 (for example, using
Proposition B.3). Our level set is L = {x − y = 0} so the support of our conditional
measure is L ∩�bbad = {(x, x) : x ∈ C1/3}.

The expanding dynamics of bbad is just the tripling map κ(x) = 3x mod 1, which has
C1/3 as an invariant set. This means C1/3 × [0, 1] is a proper invariant closed subset for
the full baker’s map. Our conditional measure’s support L ∩�bbad is contained in this
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set and so for all time, (bnbad(L ∩�bbad) ⊆ C1/3 × [0, 1]. We note that p = ( 1
3 , 1

2 ) lies
in �bbad , but d(p, (bnbad(L ∩�bbad))) ≥ d(p, C1/3 × [0, 1]) = 1/6, so (bnbad(L ∩�bbad)

cannot converge in Hausdorff distance to �bbad . By the contrapositive of Proposition 2.2,
no conditional mixing holds.

Nevertheless, if any nonlinear perturbation of either the level set or any of the vj is
made, Theorem 4.2 will apply and conditional mixing will manifest. Conditional mixing
relies on the lack of joint algebraic structure, rather than simply on regularizing properties.

5. Numerical example: Lozi map
While baker’s maps’ special structure (for example, as skew products) allows us to find
rigorous results for them by borrowing existing theory, it is not immediately clear how
to mathematically generalize our results. To study maps with less structure we now
therefore turn to rigorously justified numerics, and consider the commonly studied and
numerically amenable class of Lozi maps. These are piecewise hyperbolic affine maps
f : R2 → R

2 with

f (x, y) = (1 + y − a|x|, bx), b �= 0. (8)

For a ∈ (1, 2) and b ∈ (0, min{a − 1, 4 − 2a}) the Lozi map f has chaotic dynamics on
a compact region in phase space: when additionally b ∈ (0,

√
2(a − √

2)) this has a single
mixing SRB measure [16, Theorem 5]. All unstable manifolds have positive length when
b ∈ (0, a − √

2) [25, Theorem]. A Lozi attractor is shown in Figure 1.
Lozi maps are continuous, with a jump in the Jacobian across the singularity set

S = {x = 0}.
In a similar fashion to those we defined for the baker’s map (Proposition 4.1),

conditional measures of the SRB measure dρ(x, y) on sets �x0 := {x = x0} are well
defined for all x0 ∈ R intersecting the support of the Lozi attractor [24, Theorem 2.1]. Let
us denote these conditional measures by dρ(y | x0). These conditional measures can be
expected to have Hausdorff dimension strictly between 0 and 1: in particular, they lack any
manifold structure. A histogram of dρ(y | 0) = dρ(y | (x, y) ∈ S) is plotted in Figure 1:
the linear response for the Lozi map is determined from the mixing properties of the
conditional measure on S [24], so we will be most interested in this particular conditional
measure.

We specifically conjecture that measures ρ(· | x0), when pushed forward under the Lozi
map f, converge back to the full SRB measure ρ, and that this convergence happens at an
exponential rate.

Conjecture 5.1. For generic Lozi parameters (a, b) and Lebesgue-almost all x0 ∈ R, the
Lozi map has conditional mixing with respect to level curves x = x0 (that is, the measures
ρ(· | x0).

We have strong and direct numerical evidence in favour of this conjecture: Figure 7
shows exponential decay of the correlation
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FIGURE 7. In orange and blue, for the parameters of the Lozi map a = 1.8 and b = 0.35, |ρS (A ◦ f n)−
ρS (1)ρ(A)| is plotted for varying n and two different observables A, where ρS = ρ(· | 0). The measure was
sampled using 100 time series of 107 iterates of the segment dynamics �f , implemented in high-precision (196-bit)
validated interval arithmetic. Details of the algorithm are given in Appendix A. Two forms of error are plotted:
with error bars, 99% confidence intervals for the sampling error, and with block error (not visible), the error
arising from the interval arithmetic. In grey, decay of autocorrelations for a smooth observableA(x) = 2x against

the SRB measure, using 100 time series of 108 iterates of the full dynamics f.

∫
A ◦ T n dρ(· | 0)−

∫
A dρ

∫
dρ(· | 0) (9)

by four orders of magnitude, with reliable error quantification. In fact, it seems that A
need only be piecewise C1. The consequence of Conjecture 5.1 holding on the singular
line x = 0 (up to a technical generalization to second-order mixing), as we will show in
[24, Theorem 2.3], is that the Lozi map is a formal linear response to bounded dynamical
perturbations [24].

It should be noted that obtaining valid samples of the quantities in (9) is tricky. To begin
with, we are sampling from the conditional measure ρ(· | x0), which is a codimension-one
object on the attractor. We then must iterate forward under the Lozi map, which is chaotic
and thus unstable. To validly perform this sampling rigorously, and quantify the associated
numerical error, we have developed novel algorithms, presented in Appendix A. These
algorithms could, we imagine, with care be extended to general hyperbolic dynamics.

6. Conclusion
While in a numerical example, one can only consider a particular case, our results
on baker’s maps suggest that conditional mixing is a very robust property. Indeed,
Theorem 4.2 shows that for an open dense set of such baker’s maps (perhaps all baker’s
maps), conditional mixing holds on an open dense set of analytic curves. While these
skew product maps are rather special, it seems from the Fourier dimension results that
conditional mixing occurs when structure is broken, and so the situation might yet be
better for conditional mixing in more general maps. To this end, we make the following
conjecture.

Conjecture 6.1. For all analytic Anosov diffeomorphisms on compact surfaces, condi-
tional mixing holds on an open dense set of functions H with no critical points on their
zero level set.
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On the other hand, it is interesting that the exponential rates of decay for the conditional
measures are substantially slower than for smooth observables against the full SRB
measure: for example, in Figure 7 the rate of exponential convergence for a smooth
observable A(x, y) = x is much slower when the initial measure μ is a conditional
measure than for the full SRB measure μ ∼ ρ. Furthermore, it appears, at least for
the baker’s map in some cases, that this decay rate is independent of the conditioning
submanifold (see discussion in Appendix B). In a related fashion, mixing rates against
the SRB measure, which depend on the essential spectrum of the transfer operator in
relevant function spaces, tend to be slower for smaller Hölder regularities of observables
[1]: thinking of the conditional measure ρ(x | H(x) = 0) as equivalent to the SRB
measure multiplied by a distribution δ(H(x)) provides some connection between these
two phenomena. Therefore, while the main connection we have seen appears to be to
Fourier dimension, perhaps an appropriate functional analytic approach could yield fruit
in studying this basic property of a chaotic system.

One might also ask what happens when the codimension of the conditioning sub-
manifold is increased (in our study it has always been one). This is natural for the
Bayesian filter problem since one typically makes repeated observations when observing
a system [12, 20]: we expect to end up with, say, a vector of one-dimensional observations
y = (H(x), H(f (x)), H(f 2(x)), . . . , H(fm(x))). If this dimension m is no greater than
the unstable dimension (that is, the number of positive Lyapunov exponents), then the
construction of the conditional measure as in Proposition 4.1 and [24, Theorem 2.1] will
go through, and we might feel empowered to say that we expect conditional mixing to
hold generically. On the other hand, if m is more than twice the box-counting dimension
of the attractor, then the probabilistic Takens embedding theorem would tell us that y
specifies x exactly ρ-almost surely [5]. In the intermediate case where M lies between
the unstable dimension and the attractor dimension, it could be that some kind of generic
intersection property à la blenders [6] holds to give a conditional set of positive fractal
dimension, which could also allow for some kind of conditional mixing. Numerical study
in higher-dimensional systems may shed light on the situation.
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A. Appendix. Simulation of Lozi map dynamics
Rather than attempt to compute deterministic estimates of these systems we will proceed
by Birkhoff Monte Carlo sampling of the quantities we are interested in. Because we
need to sample from measures ρ(· | x0) conditioned on a codimension-one manifold,
it will be necessary to simulate not point dynamics but dynamics on sets of higher
dimensions, the natural choice being local unstable manifolds. Helpfully, because the
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Lozi map is piecewise affine, local unstable manifolds are straight-line segments. A
‘segment dynamics’ is proposed in Appendix A.1 and a numerical implementation given
in Appendix A.2.

However, we would like to be sure we are not merely perceiving artefacts of sampling
error or numerical imprecision: to achieve this, we will also need to quantify the statistical
and deterministic errors associated with our numerical simulations. Section A.3 gives,
surprisingly, a stable algorithm to simulate the chaotic Lozi dynamics that is compatible
with validated interval arithmetic, and Appendix A.4 explains the quantification of random
sampling errors.

A.1. Segment dynamics. Let� be the attractor of the Lozi map f, and for points p whose
orbits do not intersect the singular line S := {x = 0}, define the local unstable manifold of
a point p ∈ � to be

Wu
loc(p) :=

{
q ∈ � : lim

n→∞ |f−n(q)− f−n(p)| = 0, for all n ∈ N
+ σf−n(p) = σf−n(q)}

}
,

where σ(x,y) := sign x. These are segments of the full unstable manifolds which have
always remained on the same side of the singular line S.

Let �G be the set of directed open line segments in R
2, that is, open intervals where

starting points and endpoints are distinguished. Then we can define a set of directed local
unstable manifolds

�L = {�I ∈ �G : there exists p ∈ � I = Wu
loc(p)},

which captures ρ-almost all local unstable manifolds, since Lozi maps are piecewise affine,
and almost all unstable manifolds are of positive length.

Let us also define the following product space

�� = �L × (0, 1),

which we will use to parametrize each �I ∈ �L. �� is almost everywhere a two-to-one cover
of � by the map π( �Ip,q , t) = (1 − t)p + tq, where we denote the directed segment from
point p to point q by �Ip,q .

As a result, up to a set of ρ-measure zero, we can lift the f -dynamics to ��, by a map of
the form

�f ( �I , t) = (f ( �I ∩ M
π( �I ,t)), λ �I (t)), (A.1)

where λ �I : [0, 1] � is a full-branch expanding interval map. Let us define this a little more
explicitly.

When �Ip,q ∩ S is non-empty, we know it has exactly one element which we denote
by s ∈ S with s = π( �Ip,q , t∗) for some t∗ ∈ (0, 1). The segment dynamics �f can then be
written explicitly as

�f ( �Ip,q , t) =

⎧⎪⎪⎨
⎪⎪⎩
( �If (p),f (q), t), �Ip,q ∩ S = ∅,

( �If (p),f (s), t/t∗), �Ip,q ∩ S �= ∅ and t < t∗,

( �If (s),f (q), (t − t∗)/(1 − t∗)), �Ip,q ∩ S �= ∅ and t > t∗.

(A.2)
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It turns out that the SRB measure ρ can also be lifted to an invariant measure of �f by∫
��
� d �ρ =

∫
�

∑
( �I ,t)∈π−1(x) �(

�I , t)

2
dρ(x).

Because π−1 is two-to-one ρ-almost everywhere we have that ( ��, �f , �ρ) has most two
ergodic components (which are identical up to reversing the direction of the segments),
and we will be able to sample �ρ by iterating �f .

In defining a stable numerical method it will be useful to us that almost every point’s
local unstable manifold has endpoints originating from the singular line.

PROPOSITION A.1. The set{
( �Ip,q , t) ∈ �� : p, q ∈

∞⋃
n=1

f n(S)
}

has full �ρ measure.

This proposition is proved in Appendix E.

A.2. Simulation of segment dynamics. Given our interval dynamics, we can sample the
conditional measures using ρ via the function κx0(

�I ) := �I ∩ {x = x0} and �( �I ) = | �I | the
length of the segment. Because the SRB measure is uniformly distributed along unstable
manifolds, we have that∫

��
A(x0, y) dρ(y | x0) =

∫
�� A ◦ κx0/� d �ρ∫

�� 1/� d �ρ , (A.3)

assuming that no contribution to the sum is made when κx0(
�I ) = ∅ (that is, �I does

not intersect with the line we want to sample a conditional measure from). Then for
�ρ-almost-all starting values ( �I0, t0) we can estimate these expectations via a Birkhoff sum

∫
��
� d �ρ = lim

N→∞
1
N

N−1∑
n=0

�( �f n( �I0, t0)), (A.4)

with the segment dynamics that can be simulated using (A.2). The convergence (A.4) for
the � we are interested in uses the Birkhoff ergodic theorem and the fact that κx0 , � do not
depend on the direction of the interval (so the ergodic component of �� we sample from is
immaterial).

Because from (A.2) the t dynamics is generated by full-branch interval maps that pre-
serve Lebesgue measure, the branch dynamics is Markovian, with transition probabilities
that are explicitly given. Because of this, the random dynamics

�f ( �Ipn+1,qn+1 , Tn+1) =

⎧⎪⎪⎨
⎪⎪⎩
( �If (pn),f (qn), Tn), �Ipn,qn ∩ S = ∅,

( �If (pn),f (sn), Tn) with probability t∗, �Ipn,qn ∩ S �= ∅,

( �If (sn),f (qn), Tn) with probability 1 − t∗, �Ipn,qn ∩ S �= ∅,

(A.5)

https://doi.org/10.1017/etds.2023.55 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.55


Conditional mixing in deterministic chaos 1709

generates the �f dynamics at equilibrium, where the Tn are uniformly distributed, depen-
dent hidden variables which are given by

Tn+1 = λ �Ipn ,qn
(Tn).

To sample that �I we do not actually need to know the Tn, but they can be reconstructed
from a time series of the segments by sampling the final value Tnfinal ∼ Uniform(0, 1) and
iterating backwards according to (A.2): inverting the λ �I yields a contraction. This means
we do not have to directly simulate an expanding map (which would have been problematic
for rigorously validated simulation of the dynamics). In practice this is a very effective way
to simulate the segment dynamics.

A.3. Validated numerical implementation of segment dynamics. However, computers
can only encode real numbers to finite precision. Thus, at every computation step the
results must be rounded to a given tolerance, introducing small errors, which may invali-
date fine numerical results such as we wish to obtain. Validated interval arithmetic provides
a vehicle to quantify the errors, but to use it we must first produce a deterministically stable
algorithm to simulate a generic long chaotic time series. In this subsection will we present
such an algorithm, introducing first the notion of interval arithmetic.

Let the set of closed intervals in R be I. The idea of validated interval arithmetic is
to represent real numbers α by an interval a ∈ I such that we know α ∈ a ⊂ R. Such an
interval a is given by its upper and lower bounds, and we can restrict the set of allowed
intervals so these upper and lower bounds are representable in the finite-precision computer
encoding. A function g : Rd → R

e can be implemented in validated arithmetic through a
function g : Id → Ie such that g(a) will always contain g(a). One can thus be absolutely
certain that α is contained in a set g(a) and so on.

The unstable manifolds �Ip,q are defined by their endpoints, which update under the
chaotic dynamics f. By definition, f is exponentially stretching, making it very difficult in
general to obtain a rigorously validated time series. However, the fact that we are constantly
resetting the segment endpoints to the critical line (A.2) makes efficiently obtaining such
a time series quite possible.

We will store our segments �Ip,q as Q �Ip′,q ′ , where Q is an orthogonal transformation
of R2 (that is, a rotation matrix), and p′, q ′ ∈ R

2 have identical second coordinate. (Of
course, a segment can be stored as a 2 × 2 matrix of its endpoints’ coordinates.) Thus,
Q rotates the phase space so that the unstable direction on the segment is along the first
coordinate. If our segment at the next step is �Ip1,q1 = Q1 �Ip′

1,q ′
1
, we do not compute the

quantities on the right-hand side from f explicitly, but rather, since we have on f−1( �Ip1,q1)

that the Lozi map is affine, having for some J that

f (x) = Jx + e1,

we make the QR decomposition

Q1R1 = JQ, (A.6)
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where Q1 is a rotation matrix and R1 is upper triangular, and set

�Ip′
1,q ′

1
= R1 �Ip′,q ′ +Q�

1 e1.

This means the dynamics in the endpoints’ shared second coordinate is contracting (and
thus numerically stable), as in fact is the dynamics of Q, and that except for the (discrete)
choice of branch M±, these are both independent of the points’ first coordinates. This
means the second coordinate as well as the rotation matrix Q can be stably approximated
in interval arithmetic. (It is, however, necessary to explicitly code the QR decomposition
(A.6) in a way optimized for interval arithmetic, as many standard qr routines give sub-par
interval bounds that will lead to numerical blow-up of the algorithm.)

The first coordinates of p′ and q ′, on the other hand, have expanding dynamics.
However, when the segment �Ip,q is cut by the singular line at a point r, we can define
r ′ = Q′r without reference to these first coordinates. In particular, the singular line in the
transformed coordinates is Q�S which solves some equation x′ = βy′, with β bounded
because unstable manifolds are uniformly transversal to the singular line [25]. Then, if the
shared second coordinate of p′, q ′ is y′, we can write

s′ = (βy′, y′).

Notably, this point s′ is generated using only quantities whose numerical error remains
stable. It thus replaces either one of p, q which contain dynamics where the error grows.
By Proposition A.1, almost every p, q will eventually be replaced by such an s, resetting
the size of its error and therefore ensuring it does not grow too big.

Implementation of the algorithm described above in validated interval arithmetic is
straightforward, because it is stable, but here we must be careful: when our local unstable
manifold is split and the choice of child manifold is to be made, the t∗ used to determine
the choice is interval-valued (that is, in this set I and likely of positive width). The
natural way to choose the branch to continue with is made by sampling a uniform random
variable U and comparing it with t∗: the choice of segment is then clear except where
there is an overlap between U and t∗. A simple way to deal with this problem is to choose
the floating-point precision small enough to make an overlap unlikely enough to invite
references to the age of the universe (twice the bits of the standard double-precision is
enough). More comprehensive handling of this eschatological edge case may be done
in various ways, including using importance sampling on multiple time series. (One
compares U with some real number t∗∗ ∈ t∗ and reweights the time series by t∗/t∗∗ or
(1 − t∗)/(1 − t∗∗) as appropriate; note that the weights are also interval-valued.)

We will therefore be able to find an interval hypercube containing an exact time series
{ �f n( �I , t0)}n=0,...,N from (A.5), where t0 is implicitly defined by the random selection when
the segment is cut.

A.4. Quantification of statistical error. As the �f dynamics we sample is just a
two-to-one lift from the f dynamics, which have a spectral gap [4], we expect that for
large N the error between Birkhoff means and true expectations (A.4) obey a central limit
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theorem [9]. If we have several long time series

�(r) = 1
N

N−1∑
n=0

�( �f n( �I (r))))

for R independent samples from I (r) ∼ �ρ, then for sufficiently large N, the sample mean
�̄ of the �(r) will have expectation �ρ(�) (from the initialization of the time series at
equilibrium), and will differ from this by a factor of O(1/√RN). Helpfully, we can
quantify this deviation a posteriori: using the Gaussian behaviour of the �(r) we have
that if s2

� is the sample variance, then for large N we have

�̄ − �ρ(�)√
Rs�

∼ tR−1,

where tR−1 is Student’s t distribution with R − 1 degrees of freedom. This allows us to put
confidence intervals on our estimates, as in Figure 7. Such a principle has been used to test
for linear response in previous work [13].

To obtain an accurate sample from �ρ in initializing our time series we begin by initializ-
ing ( �Ip0,f (p0), t

(r)) ∈ ��, where p0 = (2/(2 + a − a2 + 4b), 0) and t (r) ∼ Uniform(0, 1)
(in fact, implicitly using the above random choice methods). This initial measure lies in
the Banach space that converges exponentially quickly to the physical measure [10] and
so, by making the spin-up time ninit sufficiently long, we can ensure that our sampling
initializations �I (r) = �f ninit( �Ip0,p1 , t (r)) come from a distribution exponentially close to �ρ.

B. Appendix. Proof of baker’s map result
In this appendix we will prove Theorem 4.2 on exponential conditional mixing for baker’s
maps of the form (6).

For conciseness when quantitatively referring to Fourier dimension, let us say that a
measure–function pair (ν, ψ) has (η, C) Fourier decay if for all j ∈ Z\{0},∣∣∣∣

∫ 1

0
e2πijψ(x) dν(x)

∣∣∣∣ ≤ C|j |−η, (B.1)

and
∫ 1

0 |dν| ≤ C. This implies that the Fourier dimension of ψ∗ν is at least equal to 2η.
Fourier decay is invariant under translations of ψ .

PROPOSITION B.1. Suppose that (ν, ψ) has (C, η) Fourier decay. Then for all t ∈ R, so
does (ν, ψ + t).

Proof. We have∣∣∣∣
∫ 1

0
e2πij (ψ(x)+t) dν(x)

∣∣∣∣ =
∣∣∣∣
∫ 1

0
e2πijψ(x) dν(x)

∣∣∣∣ ≤ C|j |−η,

and the integral of |ν| remains no greater than C, as required.

To prove Theorem 4.2 we will employ a separate Fourier dimension theorem [19, 22] for
each of the conditions in the theorem’s statement. The common component is the following
lemma (into which any new Fourier dimension results may also be substituted).
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LEMMA B.2. Suppose one has a modified baker’s map b with contracting maps vi . Let ν0

be the probability measure such that v∗
i ν0 = k−1ν0 for all i = 1, . . . , k, and let ψ ∈ C2

be such that ψ ′ �= 0 and (ν0, ψ) has (C, η) Fourier decay.
Let γ ∈ (1 − η, 1), β ∈ (0, 1] and α ∈ (2 − η − γ , 1).
Then there exist ξ ∈ (0, 1) and C′ depending only on C, η, α, βγ , ψ ′ such that for all

A ∈ Cα;β and B ∈ Cγ ,

|ρ0(A ◦ bn B)− ρ0(B)ρ(A)| ≤ C′‖A‖Cα;β‖B‖Cγ ξn,

where ρ0 is defined as in Theorem 4.2.

Proof of Theorem 4.2. The measures ν0 from Lemma B.2 are the measures of maximal
entropy of these expanding iterated function schemes: in particular, they are Gibbs (with
constant weights) and atomless. If we have that (ν0, ψ) has Fourier decay then so do
(ν0, ψ) uniformly from Proposition B.1, and Lemma B.2 then secures us the theorem.
Since ν0 is a probability measure, it is only necessary to check that (B.1) holds, which we
do procedurally from existing results.

That (B.1) holds for option III is a simple application of [19, Theorem 3.1] (and in fact
here, η is independent of ψ).

To see this for options I and II requires a little more cunning. We have that ψ is a
diffeomorphism onto its image. Let ω(x) = ω0 + ω1x map ψ([0, 1]) linearly onto [0, 1],
so that ψ̃ = ω ◦ ψ : [0, 1] � is a diffeomorphism. If {vi}i∈{1,...,k}n are n-fold compositions
of the contractions vi then for some large enough n, the n-fold compositions {ψ̃ ◦ vi ◦
ψ̃−1}i∈{1,...,k}n are uniformly contracting. They are also totally nonlinear and C2 with
bounded distortion. If option I holds then their ranges fill [0, 1], and if II holds then they are
analytic. Furthermore, under either option they remain totally nonlinear. By [22, Theorem
1.1] their measure of maximal entropy ν̃0 (which is Gibbs and atomless) therefore has
polynomial decay of its Fourier transform, that is, for all l ∈ R\{0},∣∣∣∣

∫ 1

0
e−2πily dν̃0(y)

∣∣∣∣ ≤ C|l|−η

for some η > 0 and C < ∞.
Now, this measure ν̃0 is also the measure of maximal entropy of the conjugated single

iterates {ψ̃ ◦ vi ◦ ψ̃−1}i=1,...,k; from the conjugacy we therefore know that ν̃0 = ψ̃∗ν0.
Hence, ∫ 1

0
e−2πily dν̃0(y) =

∫ 1

0
e−2πilω(ψ(y)) dν0(y)

= e−2πilω0

∫ 1

0
e−2πilω1ψ(y) dν0(y),

so, setting l = j/ω1, we obtain that∣∣∣∣
∫ 1

0
e−2πijω1ψ(y) dν0(y)

∣∣∣∣ ≤ C|ω1|η|j |−η,

as required.
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The relevance of ν0 is that it is the cross-section of the SRB measure along lines of
constant x (that is, local stable manifolds).

PROPOSITION B.3. Let ν0 be as in Lemma B.2. Then ρ = Leb ×ν0 is the SRB measure
of b.

Henceforth we will find it useful to write the unstable dynamics as κ(x) = kx mod 1.

Proof of Proposition B.3. ρ is conditionally absolutely continuous along unstable mani-
folds (which are lines of fixed y), and solves

∫
D

A ◦ b dρ =
∫ 1

0

∫ 1

0
A(κ(x), v�kx�(y)) dν0(y) dx

=
k∑
i=1

∫ i/k

(i−1)/k

∫ 1

0
A(κ(x), vi(y)) dν0(y) dx

=
k∑
i=1

∫ 1

0
k−1

∫ 1

0
A(x, vi(y)) dν0(y) dx

=
k∑
i=1

∫ 1

0
k−1

∫ 1

0
A(x, y) d(v∗

i ν0)(y) dx

=
∫ 1

0

∫ 1

0
A(x, y)k−1

k∑
i=1

d(v∗
i ν0)(y) dx

=
∫ 1

0

∫ 1

0
A(x, y) dν0(y) dx =

∫
D

A dρ.

Hence, it is an SRB measure.

This allows us to prove the existence of our conditional measures ρt .

Proof of Proposition 4.1. To prove (7), noticing that ρ is just a product measure of the
uniform measure in x (therefore t) and ν0 in y, we have that

1
2δ

∫
{�(s,y)||s−t |<δ,y∈[0,1]}

A(x, y) dρ =
∫

[0,1]

1
2δ

∫
[s−δ,s+δ]

A(ψ(y)− t , y) dt dν0(y),

where ν0 is defined in Lemma B.2. This integral is absolutely bounded by sup |A|, and so
by the dominated convergence theorem,

lim
δ→0

1
2δ

∫
{�(s,y)||s−t |<δ,y∈[0,1]}

A(x, y) dρ =
∫

[0,1]
lim
δ→0

1
2δ

∫
[t−δ,t+δ]

A(ψ(y)− s, y) ds dν0(y)

=
∫

[0,1]
A(ψ(y)− t , y) dν0(y)

=
∫
D

A d(�(t ; ·)∗ν0).
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1714 C. L. Wormell

This means we must define

ρt := �(t ; ·)∗ν0, (B.2)

and so get (7).
To prove the second part, we have that for any E ⊆ D� ,

ρt (E) =
∫

[0,1]
1E(�(t ; y)) dν0(y),

so ∫ t∗

−t∗
ρt (E) dt =

∫ t∗

−t∗

∫
[0,1]

1E(�(t ; y)) dν0(y) dt .

By a change of coordinates (x, y) = �(t , y) = (ψ(y)− t , y), and using Proposition B.3,
we have ∫ t∗

−t∗
ρt (E) dt =

∫
D�

1E(x, y) dρ(x, y) = ρ(E).

The following technical lemmas will be of use in following proofs. We will prove them
in Appendix C.

LEMMA B.4. Suppose that for some α ∈ (0, 1], φ : [0, 1] → R is a piecewise α-Hölder
function with a finite number of jumps, and ν is an integrable atomless measure. Let φ̂j , ν̂j
be the respective Fourier coefficients of φ and ν. Then∫

φ dν =
∑
j∈Z

φ̂−j ν̂j , (B.3)

provided the sum is absolutely convergent.

For α ∈ (0, 1] let the Hölder semi-norm on a set E ⊆ [0, 1] be defined as follows:

|φ|Cα(E) := sup
[x,y]⊆E

|φ(x)− φ(y)|
|x − y|α . (B.4)

LEMMA B.5. Suppose φ : [0, 1] → R is piecewise α-Hölder with jumps on a set
S ⊂ (0, 1] (including at 1 if it is not periodic). Then for j ∈ Z\{0},∣∣∣∣

∫ 1

0
φ(x)e−2πijx dx

∣∣∣∣ ≤ |φ|Cα(Sc)|j |−α + |S|‖φ‖L∞|j |−1.

With these lemmas in hand, we will try and prove exponential conditional mixing in the
projection of the baker’s map onto the x coordinate. This next lemma is the heart of the
proof.

LEMMA B.6. Suppose φ : R/Z is as in Lemma B.5, and ν is an integrable atomless
measure with Fourier coefficients ν̂j , (id, ν) has (Cν , η) Fourier decay, and α > 1 − η.
Then∣∣∣∣

∫ 1

0
φ ◦ κn dν −

∫ 1

0
φ dx

∫ 1

0
dν

∣∣∣∣ ≤ 4Cν
α + η − 1

k−nη(|φ|Cα(Sc) + |S|‖φ‖L∞).
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Proof. Recall that κn(x) = knx mod 1. The Fourier coefficients of φ ◦ κn are zero except
for those whose indices are multiples of kn:∫ 1

0
φ(κn(x))e

−2πijknx dx = φ̂knj .

These decay as O(|j |−α), whereas the Fourier coefficients of ν are O(|j |−η), so we know
their convolution is summable. By Lemma B.4 we therefore have∫ 1

0
φ ◦ κn dν =

∑
j∈Z

φ̂−j v̂knj .

This means∣∣∣∣
∫ 1

0
φ ◦ κn dν − φ̂0ν̂0

∣∣∣∣ ≤
∞∑
j=1

|φ̂−j ||v̂knj | + |φ̂j ||v̂−knj |

≤
∞∑
j=1

2
(

|φ|Cα(Sc)|j |−α + |S|‖φ‖L∞|j |−1
)
Cν |knj |−η

≤ 2Cνk−nη
(

α + η

α + η − 1
|φ|Cα(Sc) + 1 + η

η
|S|‖φ‖L∞

)
.

Elementary inequalities on the fractions, and the zeroth Fourier coefficient’s definition as
the total integral give the required result.

We now attempt to connect this one-dimensional picture in κ to the two-dimensional
picture of the baker’s map. In this proposition we define a one-dimensional observable
Am,y0(x) that in the following proposition we find will closely approximate A(bm(x, y))
for any y, when m is large enough.

LEMMA B.7. Suppose that ν, α are as in Lemma B.6. Suppose that A : D → R has
|A|α,x < ∞ and let

Am,y0(x) := A(bm(x, y0)).

Then∣∣∣∣
∫ 1

0
Am,y0 ◦ κn dν −

∫ 1

0
Am,y0 dx

∫ 1

0
dν

∣∣∣∣ ≤ 4Cν
α + η − 1

km−nη(|A|α,x + ‖A‖L∞).

Proof. It is clear that Am,y0 is piecewise α-Hölder with jumps at Sm := {i/km : i =
1, . . . , km}.

We can also bound its Hölder constant. Suppose [x, z] ⊂ (0, 1]\Sm. This means that
bl(x, y0) and bl(x, z0) lie on the same piece of b for all 0 ≤ l < m, and therefore that
bm(x, y0) and bm(z, y0) have the same z component. As a result,

|Am,y0(x)− Am,y0(z)| ≤ |A(bm(x, y0))− A(κm(z), y0)|
≤ |A|α,x |κm(x)− κm(z)|α
≤ |A|α,xk

mα|x − z|α .

From (B.4), this means that |Am,y0 |Cα(Scm) ≤ |A|α,xk
mα .
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1716 C. L. Wormell

Applying Lemma B.6, we get that∣∣∣∣
∫ 1

0
Am,y0 ◦ κn dν −

∫ 1

0
Am,y0 dx

∫ 1

0
dν

∣∣∣∣ ≤ 4Cν
α + η − 1

|k|−nη(|Am,y0 |Cα(Scm) + |Sm|‖Am,y0‖L∞)

≤ 4Cν
α + η − 1

k−nη(|A|α,xk
mα + km‖A‖L∞ )

≤ 4Cν
α + η − 1

km−nη(|A|α,x + ‖A‖L∞),

as required.

PROPOSITION B.8. For all β > 0,m ∈ N, A with finite | · |β,y norm, and x, y, y0 ∈ [0, 1],

|Am,y0(x)− (A ◦ bm)(x, y)| ≤ μβm|A|β,y |y − y0|β .

Proof. We prove this by induction on m. We have that

A0,y0(x)− A(x, y) = A(x, y0)− A(x, y),

which is bounded for all y, y0 ∈ [0, 1] by |A|β,y |y − y0|β . Suppose then that our
proposition holds for some m. Then for any y ∈ [0, 1],

bm+1(x, y) = bm(κ(x), νi(y)),

where the map branch i = �kx�. As a consequence, Am+1,y0(x) = Am,νi (y0)(κ(x)), and so

|Am+1,y0(x)− (A ◦ bm+1)(x, y)| = Am,νi (y0)(κ(x))− (A ◦ bm)(κ(x), νi(y))
≤ μβm|A|β,y |νi(y)− νi(y0)|β
≤ μβ(m+1)|A|β,y |y − y0|β

as required for the inductive step, where we used that the νi contract points by a factor
of μ.

We can then put Lemma B.7 and Proposition B.8 together to prove a primitive version
of Lemma B.2.

PROPOSITION B.9. Suppose α + η > 1. Then there exists ξ < 1 depending only on
η, k, μ and β and there also exists C such that if ψ is C1 with ψ ′ = 0 on a finite set,
and ν is an atomless measure such that (ν, ψ) has (η, Cν,ψ) Fourier decay, then∣∣∣∣

∫
D

(A ◦ bn)(ψ(y), y) dν(y)−
∫
A dρ

∫
dν

∣∣∣∣ ≤ CCν,ψξ
n‖A‖α;β . (B.5)

Proof. We will divide n = m+ l and the difference in (B.5) up into several pieces that we
will bound largely using previous results.

To begin with, we have as an application of Proposition B.8 that for any y0,∣∣∣∣
∫
D

((A ◦ bm+l)(ψ(y), y)− (Am,y0 ◦ bl)(κn(ψ(y)))) dν(y)
∣∣∣∣ ≤ μβm|A|β,y

∫
|dν|.

(B.6)
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Now, ψ∗ν is atomless with (id, ψ∗ν) having (η, Cν,ψ) Fourier decay, so we can apply
Lemma B.7 to obtain∣∣∣∣

∫ 1

0
(Am,y0 ◦ bl)(κn(ψ(y))) dν(y)−

∫ 1

0
Am,y0 dx

∫
dψ∗ν

∣∣∣∣
≤ 4Cν,ψ

α + η − 1
km−lη(|A|α,x + ‖A‖L∞). (B.7)

Next, ∫ 1

0
Am,y0 dx =

∫ 1

0
A(bm(x, y0)) dx

=
∫
D

A(bm(x, y0)) dρ(x, y)

because from Proposition B.3, the SRB measure ρ projects to Lebesgue measure in the x
coordinate. With this, we have that∣∣∣∣

∫ 1

0
Am,y0 dx −

∫
D

A ◦ bm dρ
∣∣∣∣ =

∣∣∣∣
∫
D

(Am,y0 − A ◦ bm) dρ
∣∣∣∣

≤ μβm|A|β,y

using Proposition B.8. Recalling also that ρ is b-invariant, and pushing ν forward preserves
its total integral, we can say that∣∣∣∣

∫ 1

0
Am,y0 dx

∫
dψ∗ν −

∫
D

A dρ
∫
D

dν
∣∣∣∣ ≤ μβm|A|β,y

∫
|dν|. (B.8)

Putting (B.6), (B.7) and (B.8) together, we have that∣∣∣∣
∫
D

(A ◦ bm+l)(ψ(y), y) dν −
∫
D

A dρ
∫
D

dν
∣∣∣∣

≤ 2
∫

|dν| μβm|A|β,y + 4Cν,ψ

α + η − 1
km−lη(|A|α,x + ‖A‖L∞).

By setting l = �(1 − η log k/(log μ−1β + (1 + η) log k))n�, we obtain that there exists a
constant C depending on α, β, η, μ, k such that (B.5) holds with

ξ = k−η/(β+(1+η) log k/ log μ−1).

At this point, if we set B ≡ 1, we could prove Lemma B.2 already. However, to
incorporate it we need to show that we can multiply ν0 by sufficiently smooth Hölder
functions and still retain adequate Fourier decay.

LEMMA B.10. Suppose that ψ : [0, 1] � is a C1 diffeomorphism onto its image, and ν0

is an atomless measure such that (ψ , ν) has (η, Cν0,ψ) Fourier decay. Then for all γ ∈
(1 − η, 1] there exists C such that for all B ∈ Cγ (D),∣∣∣∣

∫ 1

0
e2πijψ(y)B(y, ψ(y)) dν(y)

∣∣∣∣ ≤ Cν0,ψC‖B‖Cγ |j |−(η+γ−1),
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that is, if the measure dσ(y) := B(y, ψ−1(y))dν(y), then (σ , ψ) has (η + γ − 1, Cν,ψC)

decay; furthermore, σ is atomless.

Proof. We have that σ is atomless because it is defined as an atomless measure multiplied
by a bounded function.

Define function Bψ ∈ Cγ ([0, 1]) such that Bψ(x) = B(ψ−1(x), x) on ψ([0, 1]). It is
possible to do this so that

|Bψ |Cγ ([0,1]) = |Bψ |Cγ (ψ([0,1])) ≤ C′
ψ ′ |B|Cγ ,

where C′
ψ ′ = 1 + ‖1/ψ ′‖L∞ ≥ 1, and ‖Bψ‖L∞ ≤ ‖B‖L∞ .

By Lemma B.5 we have that b̂l , the Fourier coefficients of Bψ , have a certain bound,

|b̂l | ≤
{

‖B‖L∞ , l = 0

|l|−γ C′
ψ ′ |B|Cγ , otherwise

≤ min{1, |l|}−γ C′
ψ ′ ‖B‖Cγ ,

and so in particular for any j, the Fourier coefficients of e2πij ·Bψ , which are just shifts of
those of Bψ , decay as O(l−γ ).

Therefore, we can apply Lemma B.4 to get that∫ 1

0
e2πijψ(y)B(y, ψ(y)) dν(y) =

∑
l∈Z

b̂−j−l v̂l

and so∣∣∣∣
∫ 1

0
e2πijψ(y)B(y, ψ(y)) dν(y)

∣∣∣∣ ≤ Cν,ψC
′
ψ ′ ‖B‖Cγ

∞∑
l=−∞

min{|j + l|−γ , 1} min{|l|−η, 1}

≤ Cν,ψC
′
ψ ′ ‖B‖Cγ C′′ min{|j |−(η+γ−1), 1}

for some C′′ depending on γ , η, giving what is required.

This is all we need to prove Lemma B.2.

Proof of Lemma B.2. By the definition of ρt in (B.2),∫
D

A(x, y) dρt (x, y) =
∫ 1

0
A(ψ(y)− t , y) dν0(y),

and so

ρ0(A ◦ bn B)− ρ(B)ρ(A) =
∫ 1

0
(A ◦ bn)(ψ(y), y) dσ(y)−

∫
D

A dρ
∫ 1

0
dσ(y)

where σ := B(·, ψ−1(·))ν0.
Since by assumption, (ν0, ψ) has (η, Cν0,ψ) Fourier decay, σ has (η + γ − 1, Cν0,ψC)

decay for some C depending on η, γ , ψ as a result of Lemma B.10. From this, σ is also
atomless. An application of Proposition B.9 gives us our result.

Finally, the construction of ρ also allows us to prove the corollary.
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Proof of Corollary 4.3. Using Proposition 2.3, it is enough to prove that the SRB measure
ρ is lower-Ahlfors regular. Since ρ is a Cartesian product of Lebesgue measure with the
Gibbs measure ν0, ρ is lower-Ahlfors regular if ν0 is.

Fix δ > 0, and let M = �log δ/log μ�. For any y in the support of ν0 we have that
there exists a composition of M contractions in {vj }, which we denote by vj, such that
y = vj(yM) for some yM ∈ [0, 1]. Set inclusion tells us that we must therefore have
y ∈ vj([0, 1]).

The uniform contraction of the vj by a factor of ν means that the diameter of this
set vj([0, 1]) must be bounded by μM , which by construction is smaller than δ. Hence,
vj([0, 1]) must be contained in the ball B(y, δ).

On the other hand, the ν0-measure of this set vj([0, 1]) can be given using the
constitutive relation of ν0 as k−Mν0([0, 1]) = k−M .

We can therefore say that

ν0(B(y, δ)) ≥ ν0(vj([0, 1]))

= k−M ≥ k−1δ− log k/ log μ,

as required for lower-Ahlfors regularity.
Since the constants here are independent of t, we obtain the uniform-in-t convergence

required.

C. Appendix. Proofs of some integration lemmas
Here we collect some proofs of lemmas used in Appendix C involving integration.

Proof of Lemma B.4. For l ∈ N
+ the 1-periodic Fejér kernel is given by

Fl(x) = 1 − cos 2πlx
l(1 − cos 2πx)

=
l∑

j=−l

(
1 − |j |

l

)
e2πijx .

It is non-negative with total integral equal to 1, and for all u ∈ [0, 1/2],

lim
l→∞

∫ u

−u
Fl dx = 1.

As a result, φ ∗ Fl converges pointwise to φ as l → ∞ at all points of continuity of φ:
which is to say, ν-almost everywhere, since φ has a finite number of jumps and ν has no
atoms. Furthermore, the functions φ ∗ Fl are uniformly bounded by the constant function
‖φ‖∞ (which is ν-integrable). As a result, we can apply the dominated convergence
theorem to say that ∫

φ dν = lim
l→∞

∫ 1

0
φ ∗ Fl dν. (C.1)

Now, ∫ 1

0
φ ∗ Fl dν =

∫ 1

0

l∑
j=−l

(
1 − |j |

l

)
φ̂−j e−2πijx dν(x)

=
l∑

j=−l

(
1 − |j |

l

)
φ̂−j ν̂j , (C.2)
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where in the last line we could interchange integration and (finite) summation. Now, (C.2)
is none other than the lth Cesàro sum of ψ̂−j ν̂j , whose limit is therefore the full sum, the
full sum being absolutely convergent. Substituting this limit into (C.1), we obtain (B.3) as
required.

Proof of Lemma B.5. We can divide up the interval of integration into j even pieces as
follows: ∫ 1

0
φ(x)e−2πijx dx =

|j |−1∑
l=0

∫ (l+1)/|j |

l/|j |
φ(x)e−2πijx dx.

We always have on any of these segments that∣∣∣∣
∫ (l+1)/j

l/j

φ(x)e−2πijx dx
∣∣∣∣ ≤ 1

|j | ‖φ‖∞. (C.3)

Let the index set of segments with jumps be

Jj =
{
l :

(
l

|j | ,
l + 1
|j |

)
∩X �= ∅

}
.

Clearly we have that the cardinality of Jj is smaller than that of X for all j. For l /∈ Jj , we
can do the usual Hölder continuity bound on the integral, using to begin with that e2πijx

is mean zero:∫ (l+1)/|j |

l/|j |
φ(x)e−2πijx dx =

∫ (l+1)/|j |

l/|j |
(φ(x)− φ(l/|j |))e−2πijx dx

and then that

|φ(x)− φ(l/|j |)| ≤ |φ|Cα(Xc)(x − l/|j |)α ≤ |φ|α,Xc |j |−α ,

to get that ∣∣∣∣
∫ (l+1)/|j |

l/|j |
φ(x)e−2πijx dx

∣∣∣∣ ≤ |φ|Cα(Xc)|j |−α−1. (C.4)

Combining (C.3) for the segments with jumps and (C.4) otherwise, we get that∣∣∣∣
∫ 1

0
φ(x)e−2πijx dx

∣∣∣∣ ≤ |Jj | 1
|j | ‖φ‖∞ + (|j | − |Jj |)|φ|Cα(Xc)|j |−α−1

≤ |X|‖φ‖∞|j |−1 + |φ|Cα(Xc)|j |−α .

as required.

D. Appendix. Proof of results in §2
Proof of Proposition 2.1. Since T is conservative and topologically mixing it must have
one physical measure ρ which is Lebesgue measure.

Because H has no critical points on �H , the conditional measure ρ(x | H(x) = 0) can
be well defined as a C0-weak limit of

μδ(x) = 1
c(δ)

ψ(|H(x)|/δ), (D.1)

https://doi.org/10.1017/etds.2023.55 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.55


Conditional mixing in deterministic chaos 1721

for some bump function ψ ∈ C∞
c , with c(δ) = O(δd). This is constant along manifolds

{x : H(x) = c}, |c| ≤ δ, which are C1 manifolds for small enough δ.
We know that the stable vector bundle of T is continuous and �H is compact. Hence, the

manifolds {x : H(x) = c}, |c| ≤ δ, must decompose locally into submanifolds of the same
dimensionality as the unstable dimension, which are uniformly transverse to stable vector
fields, and therefore some set of admissible stable leaves in the sense of [14]. Furthermore,
c(δ) ∼ Cδd for some C > 0.

It can then be shown by a computation that the family (D.1) is convergent in the B1,1

norm of [14], including when multiplied byC1 functions B, and so the conditional measure
lies in B1,1, on which the Perron–Frobenius operator of T has a spectral gap [14, Theorem
2.3]. Hence, exponential conditional mixing obtains with r = 1.

Proof of Proposition 2.2. We will consider convergence of dHaus(�, T n(�H ∩�)), as it is
the same thing as without the set closure.

From its definition, the conditional measure’s support supp μ must be contained in
�H ∩�, and so supp T n∗ μ is contained in T n(�H ∩�).

Now, T n(�H ∩�) ⊂ T n(�) ⊆ � = �, so it is enough to show that

lim
n→∞ inf

x∈� d(x, supp T n∗ μ) = 0. (D.2)

Fix ε > 0, and let {B(ξ , ε)}ξ∈� be a finite open cover of �. Then, if for each ξ ∈ � we
can show that B(ξ , ε) has positive T n∗ μ-measure for every n large enough, we have that
dHaus(T

n(�H ∩�), �) < 2ε for these n, and so we are done.
Conditional mixing implies that ifψξ ,ε is any C∞ non-negative bump function bounded

by 1 whose support is B(ξ , ε), then

lim
n→∞

∫
ψξ ,ε ◦ T n dμ =

∫
ψξ ,εdρ

∫
dμ > 0,

because ψξ ,ε > 0 on an open set overlapping with� = supp ρ. This means that for n large
enough,

0 =
∫
ψξ ,ε ◦ T n dμ =

∫
ψξ ,ε dT n∗ μ ≤ T n∗ μ(B(ξ , ε)),

as required.

Proof of Proposition 2.3. By translation and dilation we can constructC∞ bump functions
ψξ ,ε such that ψξ ,ε = 1 on B(ξ , ε/2), and their Cr norms are bounded ‖ψξ ,ε‖C1 ≤ Kε−r
for constant K.

Lower-Ahlfors regularity of ρ gives us that∫
ψξ ,ε dρ ≥ ρ(B(ξ , ε/2)) ≥ C(ε/2)d ,

and the exponential conditional mixing assumption then gives us that for all ξ , ε,∫
ψξ ,ε ◦ T n dμ > C(ε/2)d − CξnKε−r .
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This will all be positive when ε ≥ K1(ξ
1/(d+r))n for some constant K1, giving us uniform

exponential decay in n of the bound 2ε on the Hausdorff distance.

E. Appendix. Proof of Proposition A.1
To prove Proposition A.1 we will first require the following result.

PROPOSITION E.1. There exist C > 0, λ > 1 such that for all I ∈ L̂ and n ≥ 0 such that
f mI ∩ S = ∅ for m < n,

|f nI | > Cλn|I |.

Proof. The segments I are unstable manifolds: because f is piecewise uniformly hyper-
bolic [25], these segments are eventually expanded by the action of f.

Proof of Proposition A.1. Define the observable on ��,

P( �Ip,q , t) = 1(Mp �= M
π(( �Ip,q ,t))). (E.1)

This measures whether �I is cut by S on the left-hand side. Clearly, if P( �f−n( �I , t)) = 1,
then p �I = f n(s) for some s ∈ S. This holds a fortiori if

lim
N→∞

1
N

N∑
n=1

P( �f−n( �I , t)) > 0. (E.2)

In the following we will show that this limit is almost always positive.
Fix ε > 0, and let ��erg be an ergodic component of ��. Because almost all unstable

manifolds have positive measure, by the definition of ��erg, there exists a set E ⊂ ��
of positive measure such that | �I | > ε for all ( �I , t) ∈ E. It is clear that we can choose
E = EI × (0, 1), EI being a collection of directed segments.

We know that for any segment �J , if �J does not cross S then �f ( �J , t) = (f ( �J ), t). By
Proposition E.1, this means that for �I ∈ AI , f n( �I , t) = (f n( �I )t) with |f n( �I )| ≥ Cελn,
unless �I is cut by S for somem < n. However, there is somem∗ sufficiently large such that
Cελm∗ is greater than the diameter of the attractor �, which brings about a contradiction,
as f n(I ) = Wu

loc(f
n(π( �I , 0.5))) is a segment subset of �. Thus, f m( �I ) is cut by S for

some m > n.
Now, recalling that our segments are open segments, S will cut f m �I at some point

t ′ ∈ (0, 1). As a result, P( �f m+1(I , t)) = 1 for t ∈ (0, t ′). This holds for any �I ∈ EI .
The consequence is that, for at least one m′ between 0 and m∗, there exists BP ⊂

f m
′+1(A) ⊂ ��erg of positive measure such that P = 1 on BP . By applying the Birkhoff

ergodic theorem to ( �f−1, ��erg, �ρ| ��erg
), the limit (E.2) must hold for �ρ-almost all points

on ��erg.
By taking a union over all ergodic components of �� we therefore have that for almost

all �Ip,q ∈ ��, p �I = f n(s) for some s ∈ S. This is to say that p �I lies in the forward orbit of
the singular line. Using that reversing the direction of segments is a measure isometry, this
result equally holds true for q.
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