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Abstract. A continuous Z 0 T G action on a subshift of finite type consists of a
subshift of finite type with its shift transformation, together with a group, G, of
homeomorphisms of the subshift and a group automorphism T, so that the commuta-
tion relation a ° g = Tg ° o- is satisfied, where a is the shift and g is any element of
G.

Here, we investigate these actions when G is finite. We show that if 1A is any
positive entropy subshift of finite type, G is any finite group and T is any automor-
phism of G then there is a non-trivial Z®rG action on 1A. We then classify all
such actions up to 'almost topological' conjugacy.

0. Introduction
A continuous Z07-G action on a subshift of finite type (ssft), 1A, consists of a
group,. G, of homeomorphisms of 1A and an automorphism T of G satisfying
a°g=Tg°o- where a is the shift. The problem we consider is that of classifying
these actions up to almost topological conjugacy. When G is a finite group we give
necessary and sufficient conditions for this classification. This type of group action
arises naturally and is crucial in classifying equal entropy factors and extensions
of ssft. We will treat this topic in a subsequent paper. The parallel measure-theoretic
problems have been investigated by D. Rudolph in [6] and [7]. We obtain the same
conditions as Rudolph but in our context the proofs are quite different.

The overall approach to proving the main theorem is to follow the line of reasoning
in [1] as closely as possible. There it is shown that if two irreducible ssft have the
same entropy and ergodic period they are almost topologically conjugate. Knowledge
of this argument is not taken for granted, it is contained in this discussion in a
slightly altered form. However, a certain familiarity with ideas and constructions
common to symbolic dynamics is assumed. All proofs (except in the last section)
are complete and self-contained but the reader unfamiliar with this type of argument
may find them somewhat sketchy.

We begin in § 1 with a little background material. The necessary notation and
definitions are set up. § 2 examines groups acting on ssft. There are a number of
observations made about these actions when the group is of the form Z®TG, with
G finite. We also observe that if G is any finite group, T is any automorphism and
£.4 is any ssft then there is a Z®rG action on 1A. Next we examine the case where
G is a compact topological group and there is a Z®TG action on an ssft. This
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implies that G must be zero-dimensional and we show that if Tp = identity for some
p^Owe may regard it as a finite group. After this we prove that if G is finite and
there is a Z®TG action on an ssft, we can find an extension of this action where
the new Z®TG action has a simple form that allows us to simplify many of the
constructions that follow.

§ 3 proceeds along the lines of the argument in [1]. The steps are the same and
it is shown that each of the constructions made there can be repeated here if we
are sufficiently careful. We prove that if 1A and SB are aperiodic ssft with the same
entropy, and both have Z®TG actions then they are almost topologically conjugate.

§ 4 deals with irreducible but periodic ssft. When two ssft have Z®TG actions,
the same entropy and ergodic period greater than one, we see that another obstruction
to almost topological conjugacy may exist. The subgroup that fixes each cyclic
subset, as well as certain properties of its cosets must be taken into account. We
show that once this extra condition is met the two Z®TG actions will be almost
topologically conjugate.

Finally, in the last section we observe that all these results carry over to sofic
systems.

The authors would like to thank Dan Rudolph for his discussions on these topics.

R. L. Adler was partially supported by NSF Grant MCS-81-07092. B. H. Marcus
was partially supported by NSF Grant MCS-83-01246.

1. Background
In the discussion that follows we will assume the reader is familiar with the basic
ideas concerning subshifts of finite type (ssft). These include irreducibility, aperiodic-
ity, Perron-Frobenius theory, topological entropy, ergodic period, block maps,
cylinder sets, Markov partitions, and the basic operations of going to higher blocks,
splitting states, and amalgamating states. All of these ideas are discussed in [1], and
the basic operations are also examined in § 2.

For a zero-one transition matrix, A, which we will always assume to be irreducible
with spectral radius greater than one, 1A will denote the ssft defined by A, LA will
denote the alphabet of 1A and \A (or A) will denote A's maximal eigenvalue. For
a symbol / e LA let

fA(I) = {JeLA: Au = \}
(or/(/)) and

pA(I) = {KeLA:AKl = l}.
These are the successor and predecessor sets of a symbol. Specifically, they will be
denoted by

/ ( / ) = { / , , . . . , - W and p(/) = {/f,...,/,*p(/),}.
For a subset E c LA let

RE) = U /(/) and p(E)= U p(D-
isE leE

If </>:2A-»SB is a one-block map then we will use 4> interchangeably to stand for
the map from ~LA to 1B or the map from LA to LB. If <j>: 1A -* 2B is a continuous,
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onto, shift-commuting map then we will say that 1A is an extension of 1B and 2 B

is a factor of 1A or that <f> is a factor map. Right or left-resolving is a property of
some factor maps that we will use repeatedly. Say a map <j>: 1A -* 1B is right resolving
if it is a one-block map and <f> :fA(I) -*/B($( J)) defines a set isomorphism for each
I e LA. Similarly, say $ : 2 A - » £ B is /e/if resolving if it is a one-block map and
4>'-PA(I)^PB(<I>{I)) defines a set isomorphism for each I e LA. A right (or left)
resolving map is always onto and boundedly finite-to-one (see [1] for a discussion).

A factor map <f>:1.A-*'LB is said to be one-to-one a.e. if it is one-to-one when
restricted to the doubly transitive points of 1A and 2B. In this case SA is said to be
an almost conjugate extension of 2 B and £ B is an almost conjugate factor of 2A.
This is not the definition in [1] but the two definitions are equivalent when dealing
with subshifts of finite type. A discussion of some of this can be found in [2]. A
map <t>: SA -» £ B is one-to-one a.e. if and only if a resolving block (or magic-word)
exists for <f>. A resolving block (or magic-word) for </>, when it is recoded to a one
block map, is a cylinder set [Ju ..., Jn] in 2 B whose pre-image

is composed of blocks that all agree in some entry, lk
m = I for some m and all k.

Two ssft 1A and 1B are said to be almost topologically conjugate when there exists
a common almost conjugate extension.

2. Group actions and skew group actions
Let 1A be an ssft, G be a topological group, T:G^G an automorphism. We say
G acts (continuously) on 1.A if

(i) each g e G defines a homeomorphism g:J.A-*1.A, so that the map
(g, x)-»g(x) is also continuous;

(ii) g(h(x)) = gh(x), i.e. group multiplication is the same as map composition;
(iii) for each geG, g^ id there is an x (in each cyclic subset, if 1A is periodic)

so that g(x) # x.
If cr°g = g°cr for each geG we say we have a Z x G action on 1.A. If cr°g= Tg°a
we say we have a Z®TG action or G skew action on 2A.

Example 1. Let S(2) = {(1,2), (2, 1)} be the permutation group on two elements.
Define a Z x S(2) action on the full two-shift, {1,2}z, by letting S(2) act on LA = {1,2}
in the natural way.

Example 2. Define SA by

* " M3.2.1]
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Let S(3) = {(1, 2,3), (1,3,2), (2, 1,3), (2, 3, 1), (3,1,2), (3, 2,1)} be the permutation
group on three elements. Let G = {(1,2,3), (2, 3,1), (3,1,2)} be a subgroup of S(3).
Let T: G-» G be defined by

Define a Z®TG action on 1A by letting G act on L* by permuting the subscripts
in the natural way, g(Ih) = Igh-

A factor map from a Z®TG action on 2A to a Z®TG action on 1B is a factor map
between 1A and 2B that also commutes with each element of G. In this case we
say that the Z®TG action on 2B is a factor of the one on ZA, and that the action
on 1A is an extension of the one on 1B. If the map is a homeomorphism we say
the actions are topologically conjugate. Two Z®TG actions are almost topologically
conjugate if they have a common one-to-one a.e. extension. When G is a finite
group we make the following observations.

Observation 1. Every Z®TG action is topologically conjugate to a one-block action,
i.e. there is a G action on LA so that the G part of the Z®TG action acts on 1A by

g(x) = (..., r-'g(x_,), g(x0), Tg (x,),...).

Observation 2. If we have a one-block Z®TG action on 1A and Pg is the permutation
matrix indexed by LA that represents g, then PgA = APTg for all geG. This means
p(g(I))=T-lg(p(I)) and /(g(/)) = Tg(f(I)) for all /eL^ and geG.

Observation 3. If we have a Z®TG action on 1A then g(x) 5* x for all gs G and
all doubly transitive x e S^.

Proofs. (1) Let 0* be the partition on 1A of one-block time zero cylinder sets. Define
a new partition, ^ ' = V g e c g ( ^ ) - This new partition is finite, invariant under G,
and Markov with respect to <r. Let A' be the transition matrix for this new partition.
Then 2.A> is a new ssft, topologically conjugate to 1A, with a one-block Z®TG action.

(2) These three equations follow directly from the fact that Z®TG is a one-block
action, using cr°g= Tg°a.

(3) Since T is an automorphism of a finite group there is a p such that Tp = id.
Then the Z®TG action on ~LA gives a Z x G action on each irreducible component
of 1.Ap. Consider each one of these separately. Observe that if x is doubly transitive
for cr on ~LA, then x is doubly transitive on its component for <rp. So we are reduced
to the case of a one-block Z x G action on an irreducible ssft. For each g £ G there
is an / e LA such that g ( / ) ^ 7 ; since every doubly transitive point, x, contains /,
g{x) *x. •

At this point we will digress to examine how a skew group action affects the standard
higher block, state splitting, and amalgamation operations.

Higher blocks. Consider a Z®TG action on an ssft ~LA. Define a natural conjugate
action on the two-block system of 2.A by:

VgeG.
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This gives a one-block Z®TG action on the two block system because if

) , T2g(K)]=Tg[J,K].

The construction extends to the fc-block system in the natural way.

State splitting. Fix an I e LA and let / ( / ) = Ex u E2 be a partition of the follower
set of / into two sets. When / £ / ( / ) split / into two symbols I1, I2 with

/>(/') = p(/2) =/>(/), / ( / ' ) = £, and f(I2) = E2.

When / £ / ( / ) suppose I e Eu split / into two symbols / ' , I2 with

p(/1) = p(/2) = (p(/)-{/})u{/1}, / ( / 1 ) = (£1-{/})u{/1 , / 2} and f(I2) = E2.

This defines a new ssft conjugate to the original. If we also want to get a conjugate
Z0 T G action, then we must split more states. For each geG, split each state g(I)
according to the partition/(g(J))= Tg(£,)u Tg(£2). This splits each g(I) into
(g(/))' and (g(/))2 as before. For heG define h((g(I))') = (hg(I))1 and
h((g(I))2) = (hg{I))2. This defines a new one-block Z®TG action. The construction
may be carried out using the predecessors instead of the followers.

Amalgamations. Let I,JeLA with I * J, p(I) = p(J) and / ( / ) nf(J) = 0 . Then the
amalgamation I ~J, defines an ssft conjugate to 1A; namely, throw out the states
/ and J, and add the state {/, /} with transitions

/, J})=p{I) =p{J),

if / or J is not in / ( / ) u / ( 7 ) . If / or J is in / ( / ) u / ( / ) we may without loss of
generality assume {/, / } n (/(/) u / ( / ) ) = {/}. This means I ep(I)= p(J). Now the
amalgamation I ~ J defines an ssft conjugate to 2.A with

In order to get an amalgamation that respects the Z®TG action, we assume
J £ G(/) = {g(7): geG} and then amalgamate the other pairs g ( / ) ~ g(J), geG.
This all fits together since

p(g(I)) = T-'g(p(/)) = T-lg(p(J)) = p(g(J)),

and

/(g(/)) ^f(g(J)) = Tg(f{I)) n Tg(/(J)) =0.

A G-action is defined by

) , hg(J)}.

This gives a Z®TG action on the new ssft that is naturally conjugate to the original.
This procedure may also be carried out if the roles of predecessors and successors
are exchanged.

Next, we observe that Z®TG actions, for finite G, are plentiful.

THEOREM 1. If G is any finite group, T: G-> G is any automorphism, 1,A is any
irreducible ssft then there is a Z®TG action on 1.A.
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Proof. This is essentially the proof of the corresponding statement in [3]. Let G, T,
and 1A be as in the hypothesis. First we will produce a Z x G action on 1A. Since
every finite group is isomorphic to a subgroup of the permutation group S{n) for
sufficiently large n, it suffices to produce aZxS(n) action. Choose a simple cycle,
[/,, I2,...,Ip, / , ] , in the graph of A. By using the elementary conjugacies (of course
without the group action) just discussed, if necessary, we can assume there is a
J€/(/,), J •£ I2 and a K ep(I,), K ^ Ip. Choose an integer N large enough so that
(AN~l)JK > n. Choose n of these iV-blocks and number them. S(n) can act on these
blocks by permutation. Define maps on 1A by letting ge S(n) act on x by leaving

k\\\\\\\J -K\\\\\V|
1\\\\\\V4 I\\\\\\N1

all blocks in x alone except when one of the numbered blocks occurs between two
blocks of [/,,..., Ip, /,] repeated cyclically of length at least 2N. When such a
configuration occurs, the numbered block is permuted by g. The cyclic blocks of
length at least 2N are markers needed to insure that the numbered blocks being
permuted don't interfere with one another. This gives a Z x G action for any finite
G. Now we easily produce the Z®TG action. Permute the blocks by g if the
numbered block begins at time zero, x0 = /. If the numbered block begins at time
n, xn = J, permute it by T"g. •

Next we examine the case where the group acting is a compact topological group.
We conclude that in many cases, because of the topology of 1A, there are really no
new actions.

Observation 4. If G is a compact topological group and we have a Z®rG action
on 1.A, then G is zero-dimensional.

Proof. First notice that if x e SA is doubly transitive then g(x) ̂  x for all g # identity.
Fix a doubly transitive x 61 A , so G{x) c J.A is a closed subset of SA- Define a map
from G(x) to G by sending ye G(x) to the unique element geG where g(x) = y.
This is a homeomorphism which also defines a group operation on G(x) by

y°z = g(x)°h(x) = gh(x) = w.

This makes the map a group isomorphism, G(x) = G. •

Example 3. Let 1A be the full four-shift with alphabet LA = {(0, 0), (0, 1),
(1,0), (1, 1)}. Let G = {0, 1}Z with coordinate wise addition modulo two the group
operation. Let T be the shift. Define a 1®TG action on HA by

g(x) = - • •(xl_1,x
2_, + g_,)(xi,x^ + g0)(x!,x? + g1) • • •

where

x = • • • (xi,, x*,)(*6, xl)(x\, x?) • • •

S= " - " g-iSog\ • - •

and the additions are modulo two.

We would like to thank D. Lind for his help with the preceding observation and
example.
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THEOREM 2. Assume G is a compact topological group with an automorphism T,
Tp = identity for some p, and we have a Z®TG action on 1.A. Then there is a finite
group G' with an automorphism T', and a group homomorphism p:G-* G' giving rise
to a Z®T" G' action, such thatp° T= T'°pandg = p(g) as a map of 1.A, for each ge G.

Proof. Assume G has a one-block action on J.A. Define an equivalence relation on
G by saying g~oh if and only if g(/) = h{I) for all / e LA. The partition 90 of G
defined by this equivalence relation is finite and open-closed whenever G acts
continuously on 1A. Define a second equivalence relation on G by saying g ~ h if
and only if g(x) = h{x) for all x e 1A. Both equivalence relations are preserved by
the group operation. This means the quotient topological group defined by second
relation G/~ = G' acts continuously on 1A. The quotient map p:G^G' makes
g = p(g) as homeomorphisms of 2A and also induces an automorphism T of G'.
The partition of G defined by the second equivalence relation is 5? = VT=-oo T'(&0).
Any time this is finite G' is finite. We have assumed Tp is the identity for some p,
so in this case it is finite. D

This raises the question of what are necessary and sufficient conditions on G and
T to have a Z®TG action on a given 1A.

Suppose we have a Z®TG action on 1A, for G finite. If each g e G is a one-block
map, and for g ̂  identity, g(I) * I all / 6 LA, say we have a special Z®TG action
on 2A. The following theorem allows us to deal only with special actions in the rest
of this paper. This will greatly simplify the main constructions.

«
THEOREM 3. If we have a Z®TG action on 2A, for finite G and irreducible 1.A, then
there is a SA with a special Z®TG action that is an almost conjugate extension of the
Z®TG action on 1A. The factor map can be made to be either left or right resolving.

Proof. We will first examine the case where we have a Z x G action (see example
4). The construction we make is simpler when there is no skewing function. Assume
that we have recoded so that we are dealing with a one-block G action, and notice
that if g(x) T* x for all g ^ identity and x e 1A then we need only go to a higher
block presentation to arrive at the desired result. Suppose this is not the case. We
shall show that by going to a sufficiently high block system we can choose a K in
the alphabet so that:

(i) g(K)* K for each geG, g* identity;
(ii) the ssft 2 F obtained by deleting the set G(K) from the alphabet of 1A is

irreducible and has the same ergodic period as 1.A.
To see that this is possible, first notice that it is possible to choose a block B in SA

so that g(B)^ B for each geG, g ̂  identity. Fix this block and let / be the first
symbol of B and J the last. Make sure B is long enough so that there is a block B'
in 1A that has the same length as B, begins with /, ends with J, and is not in G(B).
Next find two blocks M and N so that the block MBN is in 1.A and so that MBN
cannot overlap itself in such a way that the B's overlap. This is choosing markers
just as in the proof that all Z®TG actions exist for G finite. The construction there
will produce such an M and N.
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M N

M N

Do this for all blocks in G(B) so that no block g(MBN) can overlap MBN so
much that g(B) and B overlap. Let 2 F be the ssft obtained by deleting G(MBN)
from the blocks of 2A. 2 F is irreducible. To prove this we will produce a doubly
transitive point for 2F. Take any doubly transitive point x e 1A. Let y be the point
in 2 F obtained by replacing each occurrence of g(MBN) in x by the block
g(M)g(B')g(N) for each geG. This is a doubly transitive point for 2F. To see that
2 F can be made to have the same period we need only to choose x and y periodic
in 1A with gcd {period x, period y} = period of 2A and then choose B so that x,
y e 2F. Now go to a sufficiently high block presentation so that K = MBN is in the
alphabet.

Once K is chosen and 2 F is produced the rest is easy. The idea is to make an
extension of SA so that 2 F has exactly \G\ pre-images and the symbol K has one.
Assume now we have LF<=, LA, G(K) = LA-LF, and G acts as one-block maps on
LA. Define 1.A by

LA = (LA-LF)u(LFxG)

and say

I-*J i f / ^ / in^ ,

(/ ,gW if J = g(K) and I^JmZA.

This is irreducible because 1.A and S F are. Define a Z x G action on J.A by:

h(I) is defined as on LA, h(I, g) = (h(I), hg).

Notice that this is a special action since (/, g) ̂  (h(I), hg) unless h = identity. The
obvious map 1A^1A is left resolving, one-to-one a.e., \G\-to-one at most, and
commutes with the Z x G actions. Notice that every element of G(K) is a magic
word and that the map is exactly |G|-to-one on 2F. The map could have been made
right resolving instead of left by reversing the roles of the successors and predecessors
in the construction of 1A.

The construction for a Z®rG action uses the same idea but is slightly more
involved. The idea is instead of covering 2 F by \G\ copies of itself we cover it with
\G\ copies of a peliodic ssft. The standard p periodic cover (or extension) of an
ssft type is defined as follows. Let L= LF x{0,.. . ,p — 1}. Let q be the period of 2 F

and L°F,..., LF~' be the decomposition of LF into its cyclic subsets. Then say
(/, k) ̂  (/, /) if and only if / -»• J in 2 F and either (i) / = k + 1 < q - 1, or (ii) k = q - 1
and / = 0. This new ssft is irreducible and has period p times the period of 1F. The
obvious map from it onto 2 F is exactly p-Xo-ont. The covers of 2 F in the new
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construction won't be copies of 2 F now, but will be standard p periodic covers of
SF, where p is the period of T.

To begin the construction assume we have a Z®TG action on an irreducible ssft
1A. Choose S F as before and let p be the period of T. Define 2.A by

LA = (LA-LF)v(LFxGx{O,...,p-\}),
and say

I -*J if I ~* J in 1,A,

I-*(J,g,n) if I^J in SA,

(/, g, n)^(J, g, n+ l)mod/>, if I->J inI.A,

This is irreducible because 1A and XF are. Define a Z®TG action on this by:

is defined as on LA, h(I, g, n) = (h(I),(T"~"+lh)g, n).

Notice that for a fixed g the symbols {(/, g ,n)}, /eLF,f l<n<p and all transitions
among them define an irreducible ssft X F c ~ZA. It is a standard /> periodic cover of
2F. Let S1/"' be the cyclic subset of 2 F consisting of all points with (/, g, n) for
/€ LF in the time zero coordinate, then o-(2F

!-n)) = 2(/>n+1)
 m o d p and 2 F = 2 ( / 0 )u

• • -uS iP"" . Let L(
F
g-n) = {(/,g, B): / e L F } , and observe that only L(/'0) has suc-

cessors outside of LF. We have a well-defined Z®TG action on 1A because of this
and because if (/, g, «)->(/, g, n + 1) in S F then h(I,g,n)-*Th{J,g,n+\) in 2 F

where k = (Tp~n+lh)g. The obvious map S^-»SA is left resolving, one-to-one a.e.,
p|G|-to-one at most and commutes with the Z®TG actions. Again, every element
of G(K) is a magic word, but now the inverse image of S F is \G\ copies of the
standard p periodic cover of 2F. •

From this point on we will assume that all actions are special.

Example 4. Define ZA by the first of the two graphs that follow, and 1A by the
second. Then the symbol K in the previous proof can be taken to be 1(12) in LA,
and 2 F c 2A will be the single fixed point of all 2's. Using these, the construction
in the proof will produce 1.A.

3. Classification of TL®TG action; the aperiodic case
In this section we will prove the following:

THEOREM 4. If 2A and SB are aperiodic ssft, G is a finite group, T is an automorphism
of G, and SA and SB both have Z®TG actions, then these actions are almost
topologically conjugate if and only if the two ssft have the same topological entropy.
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The proof is a slight generalization of the proof of the corresponding thorem in [1].
There are five parts: (i) getting a suitable positive integer matrix F satisfying
AF = FB, (ii) defining the tableau, (iii) filling in the tableau to get magic words
when 2.A and £ B have fixed points, (iv) showing that every aperiodic ssft is almost
topologically conjugate to an ssft with a fixed point, (v) building a 'tower' to see
that (iii) and (iv) together imply the theorem. In each section we will first explain
what is needed for the Z action alone and then show what changes are needed to
deal with the Z®TG action. The difference is that any symbolic manipulation must
be pushed around by the group action.
Part (i).

LEMMA (Furstenberg). Let A and B be irreducible transition matrices. \A = AB if and
only if there exists a positive integral matrix F such that AF = FB.

Proof. (Note: this is not the proof in [1], it is the original one given by Furstenberg
and can be found in [5] - the reason we use this proof here is that it allows us to
construct an F with some additional properties.) Suppose \A = AB. Choose a strictly
positive right eigenvector, *, for A, and a strictly positive left eigenvector, f, for B.
Let JV = t€ (matrix multiplication). It is a positive real matrix satisfying AN = NB.
For e > 0 choose a t e U+ such that tN - F+ U where F is a strictly positive integer
matrix and U has all entries less than e in absolute value. Then AF-FB is an
integer matrix. But

\AF - FB\<\A{F - tN)\ + \(tN - F)B\<(\A\ + \B\)\U\.

By choosing e sufficiently small we get that AF-FB = 0. •

In [1] any choice of F will do; in this case we must be more careful. The extra
requirement is spelled out in the following lemma.

LEMMA. Let ~LA, 2 B be irreducible ssft. Suppose KA = KB and they have Z®TG actions.
Then there is a positive integral F such that AF = FB and Fu = FgIhJfor all g,heG.

Proof. Recall the construction of F in the previous lemma. F ~ ti€ where t e R+,
At = \i, and €B = \€. The extra condition is satisfied because a Z®TG action means
PgA = APTg and QgB = BQTg for the appropriate families of permutation matrices
{Ph),{Qh} as defined in observation 2. This means PT-gA" = A"Pg; since T" = id
for some p > 0, PgA" = A"Pg and \"Pgt = PgA"t = A"Pgt, so Pgt = t, for all g e G. The
same is true for B, €Qg=€ and since F== ti€ we have the desired result. •

Part (ii). Here we define the tableau and then show that it can be filled in so that
we have a common finite-to-one extension for the special Z®TG actions. The tableau
is defined just as it was in [1]. Take A and B to be irreducible transition matrices
with a common maximal eigenvalue. Suppose they have alphabets LA = {\,..., \LA\)
and LB = { 1 , . . . , \LB\} and that we have chosen a positive integral matrix F satisfying
AF = FB. Define a new symbol set

Lc = {(I, J,K):IeLA,JeLB,\<K^ Fu}.

We call the following list of partially assigned transitions the tableau associated with
A, B and F.
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Finite group actions 11

For each I e LAwe get a page in the tableau, and for each J e LB we get a paragraph
on each page. Pick 7 e LA, its page is:

U,1,D •* ( • , ! „ • ) ••• ( • ,

( J » l . F / i ) -* ( " , l i , " ) "• • (", 1|/(DI» ")

' ) • • • ("> I ^ B I | / ( | L B | ) | » ")

(I,\LB\, F,,LB|) -* {-,\LB\U-) ••• (-, li

The paragraph corresponding to a J e LB is composed of the rows where J appears
as the middle symbol of the left most entry.

If we see in the tableau (/, J, K ) -»(• , / ' , • ) we have by definition that J -» / ' is a
B-transition. We want to fill in the first component on the right with an / ' for which
I-* V is an A-transition and the third component with a K', 1 < K '< Frr such that
the resulting (/ ' , / ' , K') is used only once in the page for /. We also require that
each (/', / ' , K') that can appear in the page for / does appear. That this can be
done is a consequence of the matrix equation AF = FB.

Generally, there are many choices for filling in the tableau. Once the page is filled
in for each I e LA we have defined a tansition matrix C for the symbols Lc. We
define one-block mappings, TT and TT from 1C to "LA and SB by TT{I,J,K) = I and
TT(7, J, K) = J. Because of the construction of the tableau IT is left resolving and if
is right resolving. S c may not be irreducible, but if there are resolving blocks for
both TT and if it will be. This follows from the fact that one of the maps is left
resolving and the other right.

Now suppose ~LA and SB have I_®TG actions. We want to show that a tableau
can be produced and filled in so that the resulting 1C has a Z®TG action that is
a continuous extension of the Z®TG actions on 1A and Xfl. First choose F as
described in the second lemma of part one. Here we will use the condition that
Fu = Fgi HJ all g,heG. Write down the tableau as before. Notice that if we examine
the page for I, it looks just like the ones for gl, each geG. That is, for each row
in J's page

( I , J, K ) ^ (•, J u - ) ( - , J 2 , • ) • • • { • , J { f U ) l , - )

there is a corresponding one in g(/)'s page

The method for filling in the tableau to produce the desired G action on S c is
obvious. LA is partitioned into disjoint G orbits. Choose one representative from
each. Fill in the page for each of these representatives. Then use G to push these
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12 R. L. Adler, B. Kitchens and B. H. Marcus

to the rest of the tableau. So if we have (I,J,K)^(I',J',K') we fill in
(g(I), g(J), K) -» (Tg(I), Tg(J), K'). Since F,, = FgIhJ everything fits. This produces
a 1C with the desired Z®TG action. The maps v and if take this action to the
ones on 1A and 1B.

Part (iii). This is the crucial step. Here we assume that 1A and 2f l have fixed points
and show that the tableau can be filled in so that the resulting maps are one-to-one
a.e. This is done by carefully filling in the tableau so that resolving blocks are
produced for both maps. This ensures that 2 C is irreducible and that the maps are
one-to-one a.e. As before, we will present the argument worrying only about the
shift, then show how it can be modified to take into account the entire Z ® T C actions.

Suppose A and B are irreducible transition matrices with fixed states. The symbol
sets are of the form LA = { 1 , . . . , \LA\), LB = { 1 , . . . , \LB\). In both cases assume 1 is
the fixed state. In the directed graph denned by A we 'grow' a tree rooted on 1 of
simple A-paths which can only join but not cross each other, leading from any
7 e LA, 7 5* 1, forward to 1. For each 7 denote the tree transition by 7 ^ 7 , and the
non-tree ones by 7-» 7 2 , . . . , I\f(i)\- Let 7, = 1 when 7 = 1 . Likewise in the directed
graph determined by B grow a tree rooted on 1 of simple non-crossing B-paths
from each J e LB backwards to 1. These tree transitions are denoted by Jf^J, with
Jf = j f o r / = 1, and the non-tree ones by Jf,..., J*p(J){-> J. Next we will sequentially
fill in the tableau in five steps. When making an assignment in this procedure, say,
(I, J, K)-* {I', J', K') two conditions must prevail in order to fill in the tableau
legally:

(i) no ( • , / ' , • ) has previously been assigned as a successor to (7,7, K);
(ii) (7', J', K') has not been previously assigned as a successor to any (7, •, • )•

As the following steps are presented we leave it to the reader to check that these
conditions are met. 7 and J will be used as generic symbols of LA and LB, respectively.
Step 1. 1*1, J= I, set

(7,1,1) -» (7,, 1,1)

(7.1.F,,,) -> (/„ 1,F>,,)

(7, 1,F,,, + 1) -» (72, 1,1)

(7, l ,F7 l I + F/2l) -> (72, l ,F l 2 l )

(7,1,F71) -» ( 7 * 1 , AT)

where 1 < R < | / (7) | and N is whatever positive integer is needed.

Step 2. For 7 = 1, / = 1 , (assume F n > l ) set
(1.1.1) - (1 ,1 ,D
(1.1.2) -* (12, 1,1)
(1.1.3) -> (1,1,2)

(1 ,1 ,F n ) •* ( 1 , 1 , F , , - 1 )
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Finite group actions 13

The idea of step 1 is to proceed from (/, 1, K) by forward transitions in C in which,
if possible, the first coordinate moves along tree transitions while the third stays
constant as 1 is being repeated successively in the second. If this is not possible,
the first coordinate takes a non-tree transition and the third is reduced. Eventually
either the third coordinate is reduced to 1 or we arrive at (1, 1, K). In step 2, if
KK<Fn, we spiral down from (1, \,K) to (1, 1,2) and then out to (12, 1, 1).
Then every (/, 1, 1) leads to (1, 1,1) along tree transitions as 1 is repeated in the
second coordinate. Then no matter how the rest of the tableau is filled in the block
B = [ l , l , . . . , l ] with 1 repeated \LC\ times, maybe even less, is resolving for # - i.e.
all C-admissible |Lc|-blocks in TT~XB are of the form [(/, 1, X), . . . , ( 1 , 1 , 1)].
Step 3. For 7=1, J* 1, set

l,J?,Fu1) -> (l,J,Fu*)
( 1 , / * , 1) -> (l,J,Fu*+\)

(l,J*R,N) - (\,J,FU)

where 1 s R < |p(J)| and N is whatever positive integer is needed.

Step 4. Assuming F,, > 1 set

(1,1*, 1)-»(1, l ,F n ) .

Step 5. Fill in the rest of the tableau arbitrarily but according to the rules of part 2.

Now moving from (1,7, K) by backward transitions in C the second coordinate
according to step 3 moves back along tree transitions when possible while keeping
the third coordinate fixed as 1 is repeated in the first. On the other hand if this is
not possible the second coordinate takes a non-tree transition and the third is
reduced. Eventually either the third coordinate is reduced to 1 or we arrive at
(1,1, K). If \<K<FU, by steps 2 and 4 we spiral back up from (1,1, K) to
(1,1, Fn) and then back to (1, 1*, 1). Then (1 , / , 1) leads back to (1,1, 1) along tree
transitions as 1 is repeated in the first coordinate. Then no matter how the rest of
the tableau is filled in by step 5, the block B = [ 1 , . . . , 1] of \LC\ consecutive l's is
resolving for IT - i.e. all C-admissible |Lc|-blocks in TT'\B) are of the form
[(1,1,1),... , (1, J, K)]. In the case F,, = 1 replace F by 2F.

At this point we have shown that if A and B are irreducible transition matrices
with positive trace and the same largest eigenvalues then 1.A and 1.B are almost
conjugate factors of 1C-
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14 R. L. Adler, B. Kitchens and B. H. Marcus

Let / = g( 1); it need not be a fixed symbol. If Tg # g then g( 1) ^ Tg( 1) since we
are dealing with a special action. For each / e G(l) denote by /-»/„ (or /*->/)
the special transition where I = g(l) and /„ = Tg(l) (or /*= T~'g(l)). For a ge G
let s be the least integer so that Tsg = g. Taking /„» = Tsg(l) we have the loop
/ -» /„ -» /a

2 -» • • • -» /„»-< -» /. To complete this part of the argument we must choose
our trees carefully, taking into account these symbols / e G(l). The extra condition
on our trees is spelled out in the following lemma.

LEMMA. Suppose A is an aperiodic transition matrix with non-zero trace, G is a finite
group, and Z®TG acts on 1A. Then there is a J.A, with a conjugate Z®rG action,
where we can choose a tree in the graph of A, based on a fixed symbol, 1, so that for
JeG(l),J*\; J * J, for any I e LA.

Proof. Begin with the graph of A where 1 is the fixed symbol, by using the elementary
conjugacies we can easily make sure that 1 has exactly one predecessor and one
successor other than itself, and that neither is in the G-orbit of 1.

This means that if we look at any a loop in G(l), it looks like:

where J, and K, are not in G( 1) for all t.
First we will show that we can make sure there are no tree transitions into the a

loop from the outside. Assume Jo -»/ is a tree transition, and that / -> /„,
Ia ~* Ia

2> • • •, /«"-' -* Ia", L" -* Kn are also tree transitions for some n, l < n < j - l .
We will show by induction that we can get rid of this. Split each element in G( 1)
by predecessors, so in particular /„• gets split into [/„•-', Ia'] which we will again
call /„ and [J,, /„<] which we will now call j)+l. This results in a new conjugate
aperiodic ssft, that inherits a tree and a Z®TG action. The a loop now looks like:
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Finite group actions 15

Notice what we have accomplished. Before splitting we had a tree transition enter
the loop proceed along the loop for n steps and then exit. Now the transition enters,
proceeds for n - 1 steps and exits. By repeating this construction a sufficient number
of times we may assume no tree transition enters an a loop from the outside.

It may still be that there are tree transitions that agree with a transitions. Notice
that because of the previous construction we can throw out all of G(l), except 1,
and the remaining graph will still contain a tree leading from each vertex, forward
to 1. This means that in the whole graph if / -> Ia is a tree transition, we can change
/'s tree transition to /-»./ where J is /'s successor outside of G(l), and we will
still have a tree. Do this for all JeG( l ) , / ^ 1 and we have the desired result. •

We are now in a position to complete this part of the proof. Repeat the procedure
of step 1, but this time only for those /'s not in the orbit of 1. Call these original
transitions. Next fill in the transitions forced by G. If (/,/, K)-»(/ ' , / ' , K') is an
original transition then (gl, gJ, K)^-(Tg(I'), Tg(J'), K') is a forced transition for
each ge G. We must see that no contradictions have arisen. First, notice that the
pages for Ie G(l)<= LA, are still blank. Next examine the page of an l£G{\).
Notice that only those paragraphs corresponding to a J e G(l) c LB have any rows
with any transitions filled in. In fact, each row in such a paragraph has exactly one
transition filled in because there is a unique he G such that hJ = 1. At this point
there are no contradictions.

Step 2. This is now for IeG(l)^ LA;J =1, (note that Fn = Fu) set

U, 1 , 0 - U i , 1,D

a, i,3)

(Ia,\,Fn-\).
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16 R. L. Adler, B. Kitchens and B. H. Marcus

These are original transitions and the ones forced by G are filled in as in step 1.
We must again check for contradictions. First notice that the pages affected in step
1 and those affected here are disjoint. No contradictions can arise from conflict
between the two steps. Step 2 is internally consistent by the same reasoning as
applied in step 1.

At this point we have constructed a resolving block for TT. The reasoning is
identical to that after step 2 in the original argument except that (/, 1, K) for
J e G ( l ) , X > 2 proceeds by forward transitions down to (Ia«-*, 1,2) as 1 is repeated
in the second coordinate. Then if /?M, and another 1 is repeated in the second
coordinate, (/ a

K i , 1, 1) results. If / = 1, another transition results in (12, 1,1). In
either case we are led to (1, 1, 1) as 1 is repeated in the second coordinate.

Step 3. For I = \,JiG{\)^ LB the transitions are filled in just as in the original
argument. Recall that the only lines where any transitions are filled in are in the
paragraphs with Je G(l) on pages with li G(\) from step 1 and in the paragraphs
with / £ G{ 1) on pages with / e G( 1) from step 2. In step 3 we have filled in
transitions in rows in paragraphs for arbitrary /, on pages with / e G(l). We must
see that no contradictions arise from step 2. Recall that in the transitions from step
2, (/,/, K)-*(I',J', K'), all have J'e G(l). The transitions from step 3 never have
J' i. G(X). There are no contradictions in step 3 arising from either step 1 or step 2.
Step 3 is internally consistent by the same reasoning as applied in steps 1 and 2.

Step 4. For Je G(l), (Fu = F,,), set

Since the transitions arising here all have / G G ( 1 ) the only possible external
contradictions are with either step 2 or step 3. When JVI, J*£ G(l), so here the
only possible contradiction is with step 3. It may be that there is a J'& G(l) with
(/')* = j * so that in step 3 we have (1, (/')*, 1) = (1, /f, l)-» (1, / ' , K) and in step
4 we have (1,/f, 1)-»(1,/, Fu) but since J'£G(1) and / e G ( l ) there won't be a
contradiction. When J = 1 we have

(1,12*,1)-»(1, l ,F n ) .

Since 1*£ G{\) the same reasoning applies here. Finally, we check to see that there
are no internal contradictions in step 4. This is the same as steps 1-3.

Now we have constructed a resolving block for IT. It works just as it did in the
original argument with one exception. If we are at (1, /, K) for Je G(l) and move
backward as 1 is repeated in the first coordinate, / takes successive J* transitions,
K is increased until it reaches Fu. Then we go to a ( 1 , / ' , 1) and then by tree
transitions to£l, 1,1), never seeing another J e G(l) as a centre coordinate.

Step 5. Fill in the rest of the tableau arbitrarily but according to the rules of part
2 to get a Z®TG action on 2 C that commutes with the maps TT and #.

Part (iv). Here we will show that any aperiodic ssft with a Z®TG action is
almost-topologically conjugate to a Z®TG action on an ssft with a fixed point under
<T. This does not follow the proof of the corresponding statement in [1]. Instead it
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follows proofs of that statement done independently by W. Krieger [4] and M.
Keane. The idea is fairly straightforward, we begin with A and find a conjugate
representation whose graph contains a simple cycle all of whose vertices have a
common predecessor and disjoint successors. This is done by splitting states and
making amalgamations. This ssft can then be covered, with an almost-conjugate
extension, by making two copies of this cycle, each with the same successors but
dividing the predecessors. Each vertex in one copy will have only the single common
predecessor outside of the cycle. The corresponding vertex in the other copy will
have all the other predecessors. The map obtained by identifying the two cycles is
one-to-one a.e. and right resolving. Finally, this extension has an almost conjugate
factor obtained by collapsing the copy of the cycle, where each vertex has the
common predecessor, to a single fixed vertex. This is a one-to-one a.e. left resolving
map whose image is the desired ssft with a fixed point. Our proof here follows this
outline. The problem is to make sure that all these operations can be made consistent
with the Z®TG action. We begin with the following lemma.

LEMMA. Given a Z®TG action there is a conjugate Z®TG action for which the graph
of the ssft contains a simple p-cycle

and there exists an integer N, a state Jo and allowable paths yR = [Jo, JR,..., J%],
0 </?</? such that

(1) each JR = J0,J% = JR, and
(2) {JR}, 0 s R < p, 0 s i < N are all in distinct G-orbits.

Note. After proving this, we will then show that in fact N can be chosen to be one.

Proof. First, we show that there is a cr-periodic point, x, such that g(x) £ o--orb (x)
for all g 5* id. In fact, any periodic point with least period p, for p prime and greater
than the order of G has this property. Let k be the period of T; then o-k°g = g°a-k

for all geG. For a point, x, with prime period p, p> k, cr-orb (x) = crk-orb (x).
Suppose for some g ^ identity, g(x) € cr-orb (x). Then g(x) e o^-orb (x) so g(x) =
amk(x) for some 0< m <p. Let j be the order of g. We have x = g'(x) = a'mk{x),
so p divides jmk, since jV 0 and is less than p, p divides mk, but this means g(x) = x.
This contradicts the fact that the Z®rG action is special. For x of prime period
greater than the order of G, and g ̂  identity, g(x)£ cr-orb (x). Choose such an x,
then by going to a sufficiently high block system we can assume that the cr-orbit of
x is represented by a simple p-cycle,

in the graph of A Also that for g * identity g({IR}o^R<P)<^{IR}OsR<p = 0. Since
A is aperiodic, we can find an n > 0, an Ioef(I°), and paths yR = [I*, if,..., IR],
0< J?<p, where:

/oR = Jo,/? = / R f o r a l l R ;
{If }osR<p,isjSn are distinct;
{I?}OSR<p.oSJ<n all miss the G-orbit of {/R}OsR<P.
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18 R. L. Adler, B. Kitchens and B. 77. Marcus

It may be necessary to go to an even higher block presentation to do this. Let
[Ko,..., XB_,] = [Ip-"+l,.... / ' - ' , 7°] (where I"" ^ /p-'<mod"> if p - Ms negative).
For 0<7?<p, and 0<r<2« let

Jf =

(where /* = /*<m°d'> for *>/>)• This defines symbols, Jf, in the (« + l)-block pres-
entation. The periodic point x is represented by the cycle

where JR = [7R, 7 R + I , . . . , 7R+"]. Now let N = 2M and yR = [/*,..., J%] and we
will see that the yR satisfy conditions (1) and (2) of the lemma. Condition (1) is
clearly satisfied. To see that (2) is satisfied, observe that since each /R ,0<r<M,
begins with an Ik; these have disjoint G-orbits by the conditions imposed on
{7°,... , Ip~'}. By the same reasoning each Jf, n<(<2« , ends with an Ik; so these
have disjoint G-orbits. Since each Jf,0<t<n ends with an lf,s<n, and each
jf, n < t < 2M ends with an Ik the condition that {7R}o=sR<pOs j sn all miss the G-orbit
of {7°,... , 7"~'} means that the G-orbits of the Jf with t > n and the Jf with t < n
are disjoint. This means condition (2) is satisfied. •

Next, by induction, we show that N can be chosen to be one. The rough idea is
that we would like to amalgamate the {Jf}, OsR<p-l. But as it stands these
states don't satisfy the hypotheses for amalgamation. We need some preliminary
splitting. Let

This is a partition of /(/?) and this describes a state splitting as described earlier.
Recall in the discussion of state splitting the way this is pushed around by the G
action. Condition (2) of the previous lemma makes sure that this doesn't affect any
of the other Jf. This replaces /" by a new (split state) /? and keeps all other
conclusions of the lemma in effect. Do this for each 7?. The result is that each new
jf has exactly one successor, namely / R , and the conclusions of the lemma still
hold. Now split by predecessors so that each new Jf has exactly one predecessor
Jo and one successor /f. We can now amalgamate the {/f}. The new conjugate
ssft still has a special Z®TG action, and the lemma is still satisfied but the length
of the paths has been reduced to N — 1. This means that up to topological conjugacy
we may assume that we have special Z®TG action and that somewhere in the graph
we see the picture:

(1)

(2) and the {/<,, J°, • • •, Jp '} are in disjoint G-orbits.
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By splitting states we can easily guarantee that
the {/R}, 0< R <p have disjoint follower sets.

Next we build an almost conjugate extension, £B, in which somewhere in the graph
of 2 B we have the above picture and also

(4)

To produce £B let

LB = LAu{K«}, 0<R<p,geG.

Eliminate the transitions

from those allowed by A and add new transitions
(i) each T- 'g(yo)^KR;
(ii) for L G / ( 7 R ) , L*JR+X, let KR^Tg(L);
(iii) K«^K%\

Now observe that the cycle

K°e^K]
e^- • •^•Kp

e~'^-K° (e is the group identity element),

satisfies conditions (1), (2), (3), and (4) with Jo unchanged but each JR is replaced
by KR. The G action is extended to 1B by denning

g(KR) = K*h forO< R<p;g,heG.

This gives a special Z®TG action on 2B. Define a right resolving, one-to-one a.e.
factor map, IT, from 1B^>1A by

ir(I) = I, for/eL*,

TT(KR) = g(JR) for all R and g.

This takes the Z®TG action on SB to the one on 1.A.
Finally, we create, 1.A, an almost conjugate factor of SB. To do this let:

LA = LAu{Kg} geG

T-lg(J0)^Kg all geG

Kg -*• KTg

Kg^L when KR-» L any R

This is the image of£B under the left resolving map ir(I) = I for /e LA, TT(KR) = Kg.
A G action is defined on 1A by g(Kh) = Kgh. The map, #, takes the special 1®TG
action on SB to the one on 1A. Notice that Ke-+ Ke so J.A has a fixed point. We
have the picture
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where TT and if are one-to-one a.e. factor maps that conjugate the appropriate
special Z®TG actions. I.A has a fixed point, and if is left resolving while v is right
resolving. We could have made if right resolving and n left resolving by switching
the roles of predecessors and successors. This proves the statement at the beginning
of this part.

Part (v). Here we observe that the standard tower construction works for Z® r G
actions. Suppose we are given:

A A

where 1A, SB, and 1D have special G actions, <f> and i/» are factor maps that also
commute with these actions. When we do the standard constructions:

Lc ={(I, J)'- 1£ LA,Je LB and 0( / ) = 4>(J)},

(I, / )->(/ ' , / ' ) if and only if I-* I' in A and J-*J' in 2B, we get 2 C a cover for 2*
and 2B.

A
Recall that <£' retains all the characteristics of if/ and i/»' all those of 0. S c has a
Z®TG action defined on it by (g(I), g(J)). This is well-defined and commutes with
the maps because

This is all we need. We now put all five parts of this section together for a proof
of the theorem stated at the beginning. Given 1A and 2 B aperiodic with Z®TG
actions and \A = \B, begin (using part (iv)) by finding 2.A-, I D , ^B; 2 £ such that

A
SA and 5B- have fixed points, while all four maps are one-to-one a.e. Next use parts
(i), (ii), (iii) to get 2 F such that

with both maps one-to-one a.e. Finally, use part (v) three times to get:
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S D SF X£

A/\/\
The resulting map 2 C -»SA is left resolving, one-to-one a.e. and the one S c - *2 B is
right resolving one-to-one a.e. This completes the proof of the theorem. •

4. The periodic case
Here we deal with the case where A and B are irreducible but periodic. First, we
will give the proof when there is no G acting [1]:

THEOREM 5. Let 2 A and 2 B be irreducible ssft. They are almost topologically conjugate
if and only if they have the same entropy and ergodic period.

Proof. We have the proof when A and B are aperiodic. Suppose 1A and 2 B are
irreducible with the same entropy and period. Let H,°A,..., 1LA~[ and 2 g , . . . , 2B~'
be the cyclic subsets of 1A and 2B, under a. This means (1A, ap) and (XB, o-p),
0< n <p, are aperiodic ssft with p times the entropy of 1A or £B. By the previous
section there is an aperiodic 2 D and one-to-one a.e. factor maps 6 and 6 such that

(2°, or") (2°.,"').

Define 1C an irreducible ssft of period p by:

and

or / -» J in S D and / = 0, fc = p - 1.

Notice (2c , o-p) = ( S f t <x) so 6 and 0 can be considered as maps from 2 C to
and 2 B . Now define maps from 2 C to XA and S B by:

C

r: 2°.-
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IT: 2 C - » 2 , 4 is denned on each cyclic subset irn: 1"C^>1"A by -rrn = or"°d°o- " and w
similarly. •

Now suppose 2A is an irreducible ssft of period p> 1 and it has a Z®TG action.
Let Z°A,1A,...,I.pA

l be the cyclic decomposition of 1A {<r(VA) =2^ l m o d p ) . For
each n and f , 0 < n , ( < p - l define

Hn,={ge G: ^ with g(x)el'A
+nmodl'}.

Then we have:

LEMMA. If the H", 0< t, n <p are defined as above,
(i) g(VA) = VA

+nmoAp,forgeH?,0*n<p;
(ii) H°, is a subgroup, 0<t<p;
(iii) H),..., / /?" ' are the left cosets for H°,,0<t<p;
(iv) H:=Tl(H"0);
(v) ifheH",, T-"geH? then gheH",+m.

Example 5. Define 1A by

?• 1(1,2,3)"*"

It has period 2 with L°A = {0(12>3), 0(2,3,i), 0(3,i,2), l(i,3,2), 10,2,1), l(2,i,3)} and LA = {0(1)32),
0(3,2,i), 0(2,i>3), l(i,2,3), 1(2,3,1), 1 (3,i,2)}- Obtain a Z xS(3) action by letting S(3) permute
the subscripts of the symbols in the natural manner. Then Ho=H° =
{(1, 2,3), (2, 3, 1), (3, 1,2)} and Hl

0= H\ = {(1,3, 2), (3,2, 1), (2, 1, 3)}.

Proof, (i) Showing this is true for t = 0 is sufficient. Take g € Ho, so there is an
IeL°A such that g(I)eL"A. U J e L°A, and TN = identity, then there is an x with
xo = J and x,Np = I for some /. Then

since (cr-"v''(x))0=/; but then g(x)e2^ and g(./)e L% So g ( ^ ) c 2 ; , using the
ergodicity of a-" on Z"A we have g(1°A) = 2^.

(ii) We have g(X^) = 2^ for any ge //?, so clearly H°, is a subgroup.
(iii) Let geH? then g~' e //?+„" and g(H°,)cH". If ZieH^ then g~lheH° so

that heg(H°t) and H" = g{H0,).
(iv) Let T'geH", if x e 2 ^ then T'g(x)= T'g°o-'oo-"'(x) = o-'og°o-^'(x)£2^n.

This means g°tr" ' (x)eS; but o-"'(x)e2^ so g e / C
(v) This follows from the above observation. •
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COROLLARY. Suppose we have a Z x G action on 1.A, then we have the following
strengthening of the above lemma:

(ii') H° is a normal subgroup;
(in') H\,..., Hp,~x are left and right cosets for H°;
(iv') Ho = H" for all n and t; so we can ignore the subscripts;
(V) ifg e H" and heHm then gh e Hn+m;

(v ' ) ' / |g| = order ofg, and ge H" then n\g\ = 0 mod p.

Proof, (ii') This follows from (iv').
(iii') This is because H° is normal.
(iv') This follows from (iv) of the lemma.
(v') This follows from (v) of the lemma.

(vi') If \g\ = order of g, and geH" then by (iv') g | g l eHn | g i , but glgl = id so
n\g\=0modp. •

These H" are essential in classifying Z®TG actions of irreducible but periodic ssft.
The corollary tells us that when we have a Z x G action we can ignore the subscript.
If we have a Z®TG action, (iv) of the lemma says that the subscripts can be almost,
but not entirely ignored. Using these we are led to the main theorem.

THEOREM 6. If there are Z®TG actions, with G finite, on irreducible ssft 1.A and S B

then the two actions are almost topologically conjugate if and only if they have the
same topological entropy, thelame ergodic period and H°(A) = H°(B),..., HP~\A) =
HP~\B), {this means for some numbering of the cyclic subsets H£(A) = HQ(B),

Proof. The necessity of these conditions is clear. We turn to proving the sufficiency.
Assume we have fixed I.A and 1,°B so that H"(A) = H"(B), for 0 < n <p. Also assume
that we have recoded, and if necessary found almost topological extensions so that
the Z®TG actions are special. The proof breaks down into two cases. The first case
is when / / ' # 0 , and the second is when H1 = 0 . We will deal with them in order.

The first case has / / ' # 0 (see example 6). Choose an element g e H1. If we let
gn = (T"~lg) • • • (Tg)g, we have that HQ = gnHg, 0 < n <p. Now rename the symbols
in LA to get L°Ax{0,... ,p- 1} by setting / = (/, 0) and gn(/) = (7, n). This means
for any keG, fe = gnh for some n and he H® and it acts on LA by k(1,0) = {h(I), n)
on L°A, and on L'A by k(I, t) = (h'(I), m) where kgn = gmh'. We are just using g to
push the symbols in L°A around through all the symbols in LA, and keeping track
of the action of G. Now we have

A =

with zeros everywhere else, assuming we have put the symbols in the same order,
by the first coordinate, in each cyclic set. A' is aperiodic; as it stands it defines

0

A

A'

0 A

•
•

•
A
0
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transitions from (/, n)^>(J, n+ 1) mod p. Define a new ssft 1A by LA=L°A and
(I,0)->(J,0) when (/,«)-»(/, n + 1). Define a special Z®rH° action on 2A- by
letting heH° act on (/, 0) as it did in 2^. Define T: H°^> H° by saying

T'h=g~1°Th°g.

Repeat this process on 2B, using the same element g, to get an aperiodic 2fl- with
a Z®TH° action on it. Apply the results of the previous section to get 2 D with a
Z®TH° action that is an almost conjugate extension of 2,4- and 2B-. Now define
2 C by

and

Define a Z®TG action on this by saying, for ke G, k = gnh, k(1,0) = (//(/), n) on
L°c, and k(I, t) = (h'(I), m) where kg,-gmh' in general. We define •n-:2c-*2/1 by
7r(J, n) = (6(1), n) and observe that this takes the Z®TG action on 2 C to the one
on 2A. Then define n in the same way.

The final case is when H' = 0 . To treat this we let p' = gcd {r: Hr ^ 0}. Observe
that

{np'(mod p): n = 1,2,.. .} = {r: H V 0 } ,

and so /»= /p' for some /. Consider crp on 2A; it will not be irreducible. There will
be p' irreducible components, each of period /. Consider the subshift of finite type,
2£, that is made up of the orbit of 2^ under crp, with a-p acting on it. This has a
natural Z®SG action on it where S=TP and G is the original group acting in the
original manner. Define 2 F in the same manner beginning with 2B. This also has
a natural Z®SG action on it.

Consider 2 E and 2 F with their Z®SG actions. This is the case we just dealt with;
H\E) = HP'(A)¥^<Z). Build 2 D with a Z®SG action that is an almost conjugate
extension of the Z®SG actions on 2 E and 2F.

•2-D

A
Now define a new ssft 2 C of period p by

and

( / , / - l ) -> ( / ,0 ) where 7^ / in2D.

This has a Z®TG action defined on it by g(I, n) = (g(/), n). Finally define maps
IT : 2 C -* 2A and if: 2 C -» 2 B as at the. beginning of this section. They are defined on
each cyclic subset irn:?.nc^>1A by nn = am°d°a-~m where m is n after reduction
mod//. These maps take the Z®TG action on 2 C to the ones on 2A and 2B. D
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The condition that H°(A) = H°(B),..., HP~\A) = HP~\B) is just a different state-
ment of the same condition obtained by D. Rudolph [7] in the measure-theoretic case.

Example 6. Let 1A with its Z x S(3) action be as in example 5. Choose g = (1,3,2) e
/ / ' . Then the 2M. with its Z®TH° action that results from the construction in the
previous proof is the one described in example 2.

5. Sofic systems
The following theorems can be proved using the ideas contained in the previous
sections and a few facts about sofic systems. We include them for completeness,
but leave out the proofs.

THEOREM 7. If S is any positive entropy sofic system, G is any finite group, and T is
any automorphism of G then there is a Z®TG action on S.

THEOREM 8. If S is an irreducible sofic system with a Z®TG action then there is a
ssft equipped with a Z®TG action that is an almost conjugate extension of the one
onS.

COROLLARY. If S and S' are two irreducible sofic systems that have Z®TG actions,
then these actions are almost topologically conjugate if and only if they have the same
topological entropy, the same ergodic period, and H°(S) = H°(S'),..., HP~\S) =
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