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Abstract

For a finite abelian p-group A and a subgroup I" < Aut(A), we say that the pair (I, A) is fusion realizable
if there is a saturated fusion system ¥ over a finite p-group S > A such that Cs(A) = A, Autg(A) = I as
subgroups of Aut(A), and A £ ¥ In this paper, we develop tools to show that certain representations are
not fusion realizable in this sense. For example, we show, for p = 2 or 3 and I" one of the Mathieu groups,
that the only F,/™-modules that are fusion realizable (up to extensions by trivial modules) are the Todd
modules and in some cases their duals.
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Introduction

Fix a prime p. A saturated fusion system over a finite p-group S is a category whose
objects are the subgroups of S, and whose morphisms are injective homomorphisms
between those subgroups that satisfy certain axioms formulated by Puig [Pu], moti-
vated in part by the Sylow theorems for finite groups. See Definition 1.1 for more
details.

Consider a pair (I",A), where A is a finite abelian p-group and I" < Aut(A) is a
group of automorphisms. We say that (1", A) is fusion realizable if there is a saturated
fusion system ¥ over some finite p-group S > A such that Cs(A) = A, A £ F, and
Autg(A) = I as groups of automorphisms of A. We also say that (I", A) is realized by
¥ in this situation.

B. Oliver is partially supported by UMR 7539 of the CNRS. Part of this work was carried out at the Isaac
Newton Institute for Mathematical Sciences during the GRA2 programme, supported by EPSRC Grant
No. EP/K032208/1.

© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

257

L))

Check fc
https://doi.org/10.1017/51446788723000022 Published online by Cambridge University Press Updates.


http://dx.doi.org/10.1017/S1446788723000022
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788723000022&domain=pdf
https://doi.org/10.1017/S1446788723000022

258 B. Oliver 2]

In an earlier paper [02], we considered the special case where p =3, O°'(I') =
2M1y, My, or Ag, and A is an elementary abelian 3-group of rank 6, 5, or 4,
respectively, and classified the saturated fusion systems that realize some pair (1", A) of
this form. In this paper, we take the opposite approach, and develop tools that we use
to show that ‘most’ F,/"-modules are not fusion realizable, that is, cannot be realized
by any saturated fusion system.

For example, in Definition 2.3 and Proposition 2.4, we define certain sets %Zr(A),
for A an abelian p-group and T < Aut(A) a p-subgroup, with the property that
Zr(A) # 0 if there is a fusion realizable pair (I',A) where T € SylL,(I'). As one of
the consequences of this proposition, we show (Corollary 2.9) that if A is elementary
abelian and (1", A) is fusion realizable, then there are m > 1 and an elementary abelian
p-subgroup B < I of rank m such that for each g € B¥, the action of g on A has at most
m nontrivial Jordan blocks.

Theorems A and B as stated below are our main applications so far of these tools.
For example, as one special case of Theorem A, we show that the Golay modules for
M>, and M»; are not fusion realizable. In contrast, the Todd modules for M,, and M3
(dual to the Golay modules) are realized by the fusion systems of the Fischer groups
Fiy; and Fiy3, and the Golay module for Aut(M»;) (a case not covered by the statement
of Theorem A) is realized by the fusion system of the Conway group Cos.

THEOREM A (Theorem 3.3). Fix a prime p, and let I" be a finite group such that I’y =
0P (I') is quasisimple and I'y/Z(I'y) is one of Mathieu’s five sporadic groups. Let A be
an F,I'-module such that (I',A) is fusion realizable, and set Ay = [I'y, Al/Ciry.a1( o).
Then either

o p =2 and Ay is the Todd module for I' = M,,, Ma3, or Myy or the Golay module
forF = Moy, or

o p=3T=My, My XCy, or 2My,, and Ay is the Todd module or Golay module
for I'y; or

e p= 11, I'y = 2M12 or 2M22, F/Z(r()) = Aut(Mn) X Cs or All'[(Mzz) X Cs, and Ap
is a 10-dimensional simple i I'-module.

When p = 2 or 3, the nonrealizability of (I",A) in Theorem A is shown in all cases
by proving that the set Zr(A) mentioned above is empty for T € SyL,(I"). For p > 3, it
follows from results in [COS].

Theorem B is a restatement of a theorem of O’Nan [O’N, Lemma 1.10] in the
context of fusion systems, included here to illustrate how these methods apply when
A is not elementary abelian. Its proof is similar to O’Nan'’s, but is shortened by using
results from Section 2.

THEOREM B (Theorem 4.3). Assume, for some n > 3, that A = (vi,v,v3) = Con X
Con X Con, and that S = A{s, t) is an extension of A by Dg with action as described
in Table 4. Then A is normal in every saturated fusion system over S. Thus there is no
I' < Aut(A) with Autg(A) € Syl,(I') such that (I', A) is fusion realizable.
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The paper is organized as follows. After summarizing in Section 1 the basic
definitions and properties of fusion systems that are needed, we state and prove our
main criteria for fusion realizability in Section 2. We then look at representations
of Mathieu groups in Section 2 and prove Theorem A (Theorem 3.3), and study
Alperin’s 2-groups in Section 4 and prove Theorem B (Theorem 4.3). We finish
with three appendices: Appendix A with some general results on representations, and
Appendices B and C where we set up notation to work with the Golay modules for M,
and M33, and the six-dimensional F43M;;-module, respectively.

Notation and terminology. Most of our notation for working with groups is fairly
standard. When P < G and x € Ng(P), we let ¢ € Aut(P) denote conjugation by x on
the left: ¢f(g) = *g = xgx~!. Also, Syl,(G) is the set of Sylow p-subgroups of a finite
group G, and G* = G\ {1}. Other notation used here is as follows.

E,n is always an elementary abelian p-group of rank m.

e A= BandA.B, respectively, denote a semidirect product and an arbitrary extension
of Aby B.

o 2M,, nMy,, and 2A4 denote (nonsplit) central extensions of C, or C,, by the groups
M1y, My, or Ay, respectively.

Also, composition of functions and homomorphisms is always written from right to
left.

1. Background definitions and results

We recall here some of the basic definitions and properties of saturated fusion
systems. Our main reference is [AKO], although most of the results are also shown
in [Cr].

A fusion system ¥ over a finite p-group S is a category whose objects are the
subgroups of S, such that for each P, Q < S,

e Homg(P, Q) € Hom#(P, Q) C Inj(P, Q); and
e every morphism in ¥ is the composite of an F -isomorphism followed by an
inclusion.

Here, Homg(P, Q) = {c, € Hom(P, Q)| g € S, P < Q}. We also write Iso#(P, Q) for
the set of ¥ -isomorphisms from P to Q, and Autg(P) = Isox(P, P).

In order for fusion systems to be very useful, we need to assume they satisfy the
following saturation properties, motivated by the Sylow theorems and first formulated
by Puig [Pu].

DEFINITION 1.1. Let ¥ be a fusion system over a finite p-group S.

(a) Two subgroups P,Q < S are ¥ -conjugate if Isox(P, Q) # 0, and two elements
x,y € § are ¥ -conjugate if there is ¢ € Homg((x), (y)) such that ¢(x) = y. The
F -conjugacy classes of P < S and x € S are denoted P” and x”, respectively.
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(b) A subgroup P < S is fully normalized in F (fully centralized in F) if [Ns(P)| >
INg(Q)| for each Q € P” (|Cs(P)| > |Cs(Q)| for each Q € PT).
(c) The fusion system ¥ is saturated if it satisfies the following two conditions.

e (Sylow axiom) For each subgroup P < § fully normalized in 7, P is fully
centralized and Autg(P) € Syl p(AutgF(P)).

e (Extension axiom) For each isomorphism ¢ € Iso#(P, Q) in  such that Q is
fully centralized in ¥, ¢ extends to a morphism ¢ € Homg(N,, S) where

N, = {g € Ns(P) | pc,p™" € Auts(Q)).

Definition 1.1 is the definition first given in [BLO], and is used here since it seems
to be the easiest to apply for our purposes. It is slightly different from that given in
[AKO, Definition 1.2.2], but the two are equivalent by [AKO, Proposition 1.2.5]. Its
equivalence with Puig’s original definition is shown in [AKO, Proposition 1.9.3].

As one example, the fusion system of a finite group G with respect to a Sylow
p-subgroup S < G is the category Fs(G) whose objects are the subgroups of S, and
whose morphisms are those homomorphisms between subgroups that are induced by
conjugation in G. It is clearly a fusion system and was shown by Puig to be saturated.
(See [BLO, Proposition 1.3] for a proof of saturation in terms of Definition 1.1.)

We also need to work with certain classes of subgroups in a fusion system. Recall,
for a pair of finite groups H < G, that H is strongly p-embedded in G if p | |H|, and
pt|HNSH|forge G\ H.

DEFINITION 1.2. Let F be a fusion system over a finite p-group S. For P < S,

P is F-centric if Cs(Q) < Q for each Q € P ;
P is ¥ -essential if P is ¥ -centric and fully normalized in ¥ and the group
Outs(P) = Autg(P)/ Inn(P) contains a strongly p-embedded subgroup;
P is weakly closed in F if P = {P};
P is strongly closed in F if for each x € P, x” C P;
P is central in ¥ if each ¢ € Homy#(Q,R), for Q,R < S, extends to some
@ € Hom#(QP, RP) such that g|p = Idp; and

o Pisnormalin ¥ (P 2 ¥) if each morphism in ¥ extends to a morphism that sends
P to itself.

We also let ¥¢ and E#, respectively, be the sets of subgroups of S that are 7 -centric
and ¥ -essential.

The following is one version of the Alperin—Goldschmidt fusion theorem for fusion
systems.

THEOREM 1.3 [AKO, Theorem 1.3.6]. Let F be a saturated fusion system over a finite
p-group S. Then each morphism in ¥ is a composite of restrictions of automorphisms
a € Autg(R) for R € E¢ U {S}.
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The next proposition is more technical.

PROPOSITION 1.4 [AKO, Lemma 1.2.6(c)]. Let F be a saturated fusion system over a
finite p-group S. Then for each P < S, and each Q € P fully normalized in F, there is
¥ € Homg(Ns(P), S) such that y(P) = Q.

Normal p-subgroups in a fusion system are strongly closed, but the converse does
not always hold. The following is one situation where it does hold. For a much more
detailed list of conditions under which strongly closed subgroups in a fusion system
are normal, see [K1, Theorem B].

LEMMA 1.5 [AKO, Corollary 1.4.7(a)]. Let F be a saturated fusion system over a finite
p-group S. If A < S is an abelian subgroup that is strongly closed in F, then A < F.

We next look at centralizers of p-subgroups in fusion systems. Normalizer subsys-
tems are defined in a similar way (see [AKO, Section 1.5]), but are not needed here.

DEFINITION 1.6. Let # be a fusion system over a finite p-group S. For each Q < §, the
centralizer fusion subsystem Cy#(Q) < ¥ 1is the fusion subsystem over Cs(Q) defined
by setting

Home, o)(P.R) = {¢lp | ¢ € Hom#(PQ,RQ), ¢(P) < R, ¢lp = Idg}.
Note that a subgroup Q < S is central in ¥ if and only if C#(Q) = .

THEOREM 1.7 [AKO, Theorem 1.5.5]. Let F be a saturated fusion system over a finite
p-group S, and fix Q < S. Then C#(Q) is saturated if Q is fully centralized in F.

Weakly closed abelian subgroups play a central role in this paper, and the following
lemma is of crucial importance when working with them.

LEMMA 1.8. Let F be a saturated fusion system over a finite p-group S, and assume
A < S is an abelian subgroup that is weakly closed in F .

(@) IfR < S is fully normalized and F -conjugate to some Q < A, then R < A.
(b) Foreach P,Q < A, each ¢ € Hom#(P, Q) extends to some ¢ € Autg(A).

PROOF. (a) Assume Q < A and R < § are ¥ -conjugate, and R is fully normalized in .
By the extension axiom, each ¥ € Iso#(Q, R) extends to some ¥ € Hom#(Cs(Q), S).
Then Cs(Q) > A since A is abelian, ¥(A) = A since A is weakly closed in 7, and so
R=9Q) <A.

(b) Assume P,Q <A and ¢ € Hom#(P,Q), and choose R € Q7 that is fully
centralized in . Thus R < A by (a), and there is ¢ € Isox(Q, R). By the extension
axiom again, ¥ extends to ’1//\ € Homg#(A, S) and y¢ extends to ¢ € Homg(4, S), and
W(A) = A = §(A) since A is weakly closed. Then ¥ '@ € Autr(A), and (Y~ 'P)|p =

v (e) = . O
The proof of the next lemma gives another example of how the extension axiom can
be used.
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LEMMA 1.9. Let ¥ be a saturated fusion system over a finite p-group S, and let
Ag < Ay £ 8 be a pair of abelian subgroups. If Aq is fully centralized in ¥ and A,
is fully centralized in C#(Ay), then Ay is fully centralized in F.

PROOEF. Choose B € A]? that is fully centralized in 7, fix y € Isoz(A;, B;), and set
By = x(Ap). By the extension axiom and since Ag and B; are both fully central-
ized in ¥, there are ¢ € Homg#(Cs(A1), Cs(B1)) and ¢ € Hom#(Cs(By), Cs(Ap)) such
that ¢|s, = x and Ylp, = (,\(IAO)‘I. Since Cs(B)) < Cs(By), the composite Y lies in
Homc, (4,)(Cs(A1), Cs(Ao)).

Since A is fully centralized in C#(Ag),

Ye(Cs(Ar)) = CeyanW(B1)) = Cs(W(B1)) = ¢(Cs(By)),
and hence ¢(Cs(A1)) = Cs(B1). So Ay is fully centralized in ¥ since B is. O

We need to work with quotient fusion systems in Section 4, but only quotients by
subgroups normal in the fusion system.

DEFINITION 1.10. Let ¥ be a fusion system, and assume Q < S is normal in 7. Let
¥ /O be the fusion system over S/Q where for each P, R < § containing Q, we set

Homg,o(P/Q,R/Q)
={¢/Q € Hom(P/Q,R/Q) | ¢ € Homz(P, Q), (¢/0)(gQ) = ¢(g)Q for all g € P}.

We refer to [Cr, Proposition I1.5.11] for the proof that ¥ /Q is saturated whenever ¥
is. In fact, this definition and the saturation of ¥ /Q hold whenever Q is weakly closed
in . This is not surprising, since we are looking only at morphisms in F between
subgroups containing Q, so that ¥ /0 = N#(Q)/Q.

2. Some criteria for realizing representations

In this section we state and prove our main technical results: the tools we later use to
show that certain representations cannot be realized by any saturated fusion systems.
Before doing that, we start by defining more formally what we mean by ‘realizability’.

DEFINITION 2.1. Fix a prime p, a finite abelian p-group A, and a subgroup I” < Aut(A).
The pair (I",A) is realized by a saturated fusion system ¥ over a finite p-group S if
there is an abelian subgroup B < S such that Cg(B) = B and B 4 ¥, and such that
(Autg(B),B) = (I',A). The pair (I',A) is fusion realizable if it is realized by some
saturated fusion system over a finite p-group.

If we drop the condition that Cs(B) = B, then it is easy to see that every pair (I, A)
can be realized by a saturated fusion system. For example, if m > 1 is prime to p,
then the fusion system ¥ of (A < I") ¢ C,, contains a subgroup isomorphic to A with
automizer isomorphic to I" and which is not normal in ¥ . Hence, the importance of
that condition in Definition 2.1, although it seems possible that we would get similar
results if it were replaced by the condition that B be weakly closed.
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It is not yet clear to us whether the condition B # F is the optimal one to
use in Definition 2.1. It could be replaced by the slightly stronger condition that
Q1(B) # ¥, or by the even stronger condition that O,(F) = 1. In the cases dealt with
in Theorems A and B, the result is the same independently of which definition we
choose, but that probably does not hold in other situations.

When applying Definition 2.1, rather than assuming (I",A) and (Auts(B), B) are
abstractly isomorphic, it will in practice be more convenient to say that (I",A) is
realized by a fusion system ¥ over S if S contains A as a subgroup and Auts(A) = I

We are now ready to start developing tools for showing that certain pairs (I, A) are
not (weakly) fusion realizable. The starting point for all results in this section is the
following proposition. It was inspired in part by [Gd, Corollary 4] and its proof, and
also in part by arguments in [O’N, Section 1].

PROPOSITION 2.2. Let F be a saturated fusion system over a finite p-group S, and let
A < S be an abelian subgroup. Assume A 4 F, and consider the sets

U = Up(A) = {1 2 U < Ng(A) | U £ A, Homg(U, A) # 0},
T = Tr(A) = (t e Ns(A)\A |7 NA#0) = {1 € Ng(A\A | (£) € U),
W = WrA)
={t,UA)|te T, UecWU, Cat) > A, € (UNA) ,|UA/A| = [Caa, @I}
Then % + 0, T # 0, and W # 0, and the following assertions hold.

(@) If A is not weakly closed in F, there is U € A” \{A} such that [U,A] < U N A,
and such that (t, U,UNA) € ¥ foreacht € U\ A.

(b) If A is weakly closed in F, then for each t € 7, there are U € % and A, < A
such that (t,U,A,) e ..

(c) If A is weakly closed in F, then there is a subgroup Z < A, fully centralized in
¥, such that A 4 C¢#(Z), and such that UNA < Z for each U € Uc,z)(A). In
particular, A, = U N A for each (t,U,A.) € W, z)(A) € ##(A).

Thus in all cases, there are t € 7 and U € % such that (t, U, UNA)e W .

PROOF. By Lemma 1.5 and since A g ¥, A is not strongly closed. So % # 0 and
T #0if A 95, and we show when proving (a) that this also holds if A # S. The last
statement, and the claim that % # 0, follow from (a) when A is not weakly closed
in ¥, and from (b) and (c) otherwise.

(a) If A is not weakly closed in 7, then there is ¢ € Homg#(A, S) such that ¢(A) # A.
So by Theorem 1.3 (Alperin’s fusion theorem), there are R < § and @ € Autg(R) such
that A < R and @(A) # A. In the special case where A ¢ S, we take R = Ng(A), and set
a = cf for some x € Ng(R) \ R. So in all cases, we can arrange that A < R and hence
a(A) < Ns(A).

Set U=a(A) € % and A, = UNA. Then [A,U] < A, since A and U are both
normal in R. So for each t € U\A C .7, we have A, < C4(U) < Ca(¢) and |UA/A| =
|U/A.| = |A/A.| = |Ca/a. (), proving that (1, U,A,) € #'.
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(b) Assume A is weakly closed in F (in particular, A < S). Fix t € .7, and let %,
be the set of all U € % such that t € U. Choose V € %; such that |V N A| is maximal
among all |U N A| for U € %,. Set A, = VN A and U; = Na(A(1)). Then A () NA <
VNA=A,, and so

U;/A* = {X €A | [)C, t] EAx}/A* = CA/A*(t) * 19 (2_1)

where Cya,(t) # 1 since A/A, and ¢ both have p-power order.

Choose W € (A.(t))* such that W is fully normalized in #. Then W <A by
Lemma 1.8(a) and since A is weakly closed. Let ¢ € Homg#(Ns(A.(t)), S) be such that
@(A.(t)) = W (see Proposition 1.4).

Set U = ¢(U;) and U} = ¢~'(U N A). Then

eA) <pU)NA=UNA = o)),

so A, <U; <U; <A. Also, Uity € % since o(Ui(t)) = (UNAXp(1) <A, and
hence

U7 < Uty NA] < [V NA| = A,

by the maximality assumption on V. Thus U} = A. < U; where the strict inclusion
holds by (2-1), and A, = U; € (UNA)".

Now UNA =¢Uy) <e(U;) =U, so U£A. Since U = ¢(U;), where U; <A,
this shows that U € % . Also, UNA = ¢(A.), and so UAJ/A = U/(UNA) = U; /A, =
Caja,(1). Thus (1, U,A) e W' .

(c) Again assume A is weakly closed in #, and let Z be maximal among all
subgroups of A fully centralized in ¥ such that A & C#(Z). Set Fo = C#(Z) and
So = Cs(Z) for short. Recall that 7y is saturated since Z is fully centralized in 7
(Theorem 1.7).

Fix U € %5,(A), choose a morphism ¢ € Homg (U, A), and set A, = UNA. We
must show that A, < Z. Since UZ € %,(A), we can assume U > Z.

Choose B, € (A,)7° that is fully normalized in %y. Then B, < A by Lemma 1.8(a)
and since A is weakly closed. By Proposition 1.4, there is y € Homg, (Ns,(A.), So)
such that y(A.,) = B.. Then y(A) = A since A is weakly closed, so ye(x|y)™' €
Homg, (x(U),A) where Z < y(U) £ Aand B, = y(U NA) = x(U) N A, and where B, <
Z if and only if A, < Z. Upon replacing U by y(U) and ¢ by y¢(x|y)~', we are now
reduced to showing that A, < Z when A, = U N A is fully centralized in ¥, and hence
in ¥ by Lemma 1.9.

By Lemma 1.8(b), there is an automorphism a € Autg,(A) such that als, = ¢la,,
hence such that "' € Homc, 4,)(U,A). Since U £ A, this implies that A & C#(A.,),
and so A, = Z by the maximality assumption on Z.

In particular, for each (¢, U,A.) € ##,(A),since UNA <Zand A, € (UN A0, we
have UNA =A, < Z. O

We now reformulate the criteria in Proposition 2.2 in terms of A and Aut#(A) only,
that is, in terms that do not involve the fusion system 7 or its Sylow group S.
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DEFINITION 2.3. Fix a finite abelian p-group A and a p-subgroup T < Aut(A). Set

@;(A) ={(r,B,A,) |teT", B<T, (tryand B isomorphic to subgroups of A,
A, < Co((B, 1)), 1Bl = [Caya, (DI},

Rr(A) = {(t.B,A,) € Z#FA) | 1B| = [Caja. (D]}

Let Z7(A) be the largest subset R C @T(A) that satisfies the condition
for each (1, B,A,) € R and each 7, € B, there is (11, B1,A,1) € R. (%)

Similarly, let Z;(A) be the largest subset R C 9?} (A) that satisfies (x).

If #; and %, are two subsets of @T(A) or of @; (A) that satisfy (), then their union
also satisfies (*). So there are unique largest subsets %r(A) C %7 (A) that satisfy the
condition.

PROPOSITION 2.4. Let ¥ be a saturated fusion system over a finite p-group S,
and assume A < S is an abelian subgroup such that Cs(A) =A and A 4 F. Then
R ausa)(A) # 0, and hence ,@;uts( A)(A) # 0. More precisely, the following assertions
hold, where T = Autg(A).

(@) Inall cases, if (t,U,A,) € #g(A) is such that UNA = A,, then (¢}, Auty(A),A,) €
Zr(A).

(b) If A is not weakly closed in F, then there is a subgroup U € AT \{A} such that
(e}, Auty(A),AN U) € Z#r(A) for eacht € U\ A.

(c) IfA is weakly closed in F, then there is a subgroup Z < A fully centralized in ¥
such that A 4 C#(Z), and such that for each t € J¢, z)(A), there is U € Uc,z)(A)
such that

UNA<Z and (c},Auty(A),UNA) € Zeyiz)(A) C Zr(A).

PROOF. Let ¥ be a saturated fusion system over a finite p-group S as above. Thus
A < Sis such that Cg(A) = A and A ¢ . Once we have proven (a), (b), and (c), it will
then follow immediately that Z7(A) # 0.

(a) Fix (t,U,A,) € ##(A) such that A, = UNA, and set 7= cf €T and B =
Auty(A) < T. Then A, = UNA < Cy(B). Also, by definition of ##(A), we have
A, < Cy(t) = Cp(7) and |UA/A| = |Cpya, (D] = |Casa, ()]

By definition of 77(A) and %#(A), the subgroups (7) and B are both isomorphic
to subgroups of A. So to prove that (7, B,A.) € %Zr(A), it remains only to show that
|UA/A| = |B|. But Cs(A) = A by assumption, so |B| = | Auty(A)| = |[UA/A].

(b) If A is not weakly closed in 7, then by Proposition 2.2(a), there is U € A \ {A}
such that [U,A] < U N A/,\and such that (r, U, U N A) € ##(A) foreach r € U \ A. Thus
(c?, Auty(A), U N A) € Z#(A) foreach t € U \ A by (a).

Now set Z = {(t, Auty(A), U N A) |t € B¥} C Z#(A). Then Z satisfies condition
(*) in Definition 2.3, so Z7(A) 2 % + 0.

https://doi.org/10.1017/51446788723000022 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788723000022

266 B. Oliver [10]

(c) Assume A is weakly closed in F, and let Z < A be as in Proposition 2.2(c). Thus
Z is fully centralized in ¥, A 4 C#(Z), and U N A < Z for each U € %, z)(A).

Let 7 = %T(Z)(A) +0, U = %CT(Z)(A) +0, and ¥ = WC;:(Z)(A) # (@ be as in
Proposition 2.2, and set

R ={(c}, Auty(A), UNAte T, Ue¥, (t,UA) e W),

where A, € (UNA)"@ and hence A, =UNA since UNA<Z. By (a),

H C Hc,z)(A). By Proposition 2.2(b),(c), for each ¢ € .7, there is U € % such that
t, U, UNA) e W .SoZ + 0, and condition () in Definition 2.3 holds for the pair Z.
Thus % C %CT(Z)(A) C Zr(A). m|

The next proposition is our main reason for defining %7 (A).

PROPOSITION 2.5. Fix a finite abelian p-group A and a p-subgroup T < Aut(A).
Let Ay < Ay <A be T-invariant subgroups such that T acts faithfully on Ay/Ay. If
R7(A) # 0, then Z;(Ay/Ay) # 0. More precisely,

Rr(Ar/A1) 2 (1. B, (ALA NA2)/A)) | (1,B,A,) € Z7(A)}.
PROOF. Assume A; < A, < A are as above. If (1, B,A,) € @;(A), then

|Cassca,4104,) (D L 1Ca, pa. ) (T = 1Caza,ja, (D £ [Caya, (7] £ 1B,

the first inequality by Lemma A.4 and the second by inclusion. So we have
(7, B, (A AL N A2) /A1) € Z7(Ar]AY).

In particular, if Z satisfies condition (*) in Definition 2.3 for the pair (T, A), then
X' satisfies (x) for (T,A,/A1), where

X' ={(1,B,(A.A| NAY)/A) | (1,B,A,) € Z}. ]

It remains to find some strong necessary conditions on A and T for the set Zr(A) or
Z#7(A) to be nonempty.
PROPOSITION 2.6. Fix a finite abelian p-group A and a subgroup T < Aut(A). Then
for each (1,B,A.) € Z(A),
Al B _ G, All

Bl= —— d = , 2-2
BI= Al " GonmAl - AmAl 2-2)
while for each (7, B, A,) € @;(A),
Al 1B| ICA(D[. A]l

Bl > —— d > > 1. 2-3
B2 Gmal " GonmAl S A Al (2-3)

In particular, for each (t,B,A.) € @;(A),
IB| > |Co(0) N [T, All, (2-4)

and |B| > |[7,A]l if p = 2 and A is elementary abelian.
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PROOF. For each 7 € T#, let ¢, € End(A) be the map ¢-(a) = [1,a]. For each A, <
Ca(1), we have C4(1) = Ker(¢p;) and Ca/4.(1) = ¢7(A,)/A., and hence

Copn () = GO AN LAY (G@L- Al A
AJA, AL IA.[7, All |A. [T, All
_ 1G@L ANl 1G@ N [T, ANl (2-5)
AL [T, All

Since |B| > [Cyya, (1) for each (1, B,A,) € @;(A) with equality if (1,B,A.) € @T(A),
points (2-2) and (2-3) follow immediately from (2-5) (and since A, < C4(7)). Inequal-
ity (2-4) follows from (2-3), and the last statement holds since [1,A] < Ca(7) if p =2
and A is elementary abelian. ]

The following corollary describes one easy consequence of the above results.

COROLLARY 2.7. Fix a finite abelian p-group A and a p-subgroup T < Aut(A) such
that Z7.(A) # 0. Then there is By < T, isomorphic to a subgroup of A, such that |Bo| >
|Ca(7) N [1,All for each T € B},

PROOF. Assume %7 (A) # 0. Choose (79, By, A.o) € %7 (A) such that |Cx (7o) N [10, All
is the largest possible. By condition (*) in Definition 2.3, for each 7 € B, there is
(1,B,A.) € %#7(A), and hence

|Ca(r) N [T, A]] < |Ca(T0) N [70, All < |Bol,
where the second inequality holds by (2-4). |

We can think of the inequality |By| > [Cs(7) N [1,A]| in Corollary 2.7 as a gener-
alization of the condition |Z(S) N [S, S]] = p in [O1, Lemma 2.3(b)]. More precisely,
when A has index p in § and § is nonabelian, the corollary says that |C4(7) N [A, T]| = p
for 7 € S\ A, and hence that |Z(S) N [S, S]] = p.

We next look at the case where A is elementary abelian. For 7 € End(A), we
regard A as an F,[X]-module, and let the ‘Jordan blocks’ for 7 be the factors under
some decomposition of A as a product of indecomposable submodules. As usual, by
‘nontrivial Jordan blocks’ we really mean ‘Jordan blocks with nontrivial action’.

The following notation will be used when reformulating Corollary 2.7 in terms of
Jordan blocks.

NOTATION 2.8. Let A be an elementary abelian p-group, and let 7 € Aut(A) be
an automorphism of p-power order. Set _#4(t) = rk(Ca(7) N [, A]), the number of
nontrivial Jordan blocks for the action of 7 on A.

In these terms, Corollary 2.7 takes the following form when A is elementary abelian.

COROLLARY 2.9. Assume I is a finite group such that I' = O (I'), and let A be a finite
Saithful B,I"-module. Assume there is a saturated fusion system ¥ over a finite p-group
S that realizes (I',A) as in Definition 2.1. Then there are m > 1 and an elementary
abelian p-subgroup B < I of rank m such that _Z,(t) < m for each T € B
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PROOF. Since ¥ realizes (I, A), we can arrange that A < S, A 4 ¥, and Autg(A) =T
Set T = Autg(A) € Sylp(F). Then %;S(A) # () by Proposition 2.4. So by Corollary 2.7,
there is an elementary abelian p-subgroup B < I" such that |B| > |Ca(7) N [7, A]] for all
7 € B*. Thus tk(B) > tk(Cs(t) N [A, 7]) = _Za(7) for each T € B*. O

The special case of fusion realizability when |T| = p has already been handled in
the earlier papers [COS, O1]. We state the main conditions found in those papers.

LEMMA 2.10. Fix a finite abelian p-group A and subgroups I' < Aut(A) and
T e Sylp(F), and assume that \T| = p and |[T,A]| > p. If (I',A) is fusion realizable,
then

ICA(D)NIT,All=p and |Np(D)/Cr(T)|=p—1

PROOF. The first equality is just a special case of Corollary 1.7.

To see the second equality, assume that (I",A) is realized by the fusion system 7
over S > A. In particular, we can assume that Autg(A) = T, and so |[Ns(A)/A| = |T| = p.
Also, |A/Ca(T)| = |[T,A]| > p by assumption, so A is the only abelian subgroup of
index p in Ng(A). Hence, A < S, since otherwise A # *A < Ng(A) for x € Ng(Ng(A)) \
Ng(A).

By Theorem 1.3 and since A & ¥ (recall that ¥ realizes (I,A)), there must
be some F -essential subgroup P < S other than A, and by [COS, Lemma 2.2(a)],
P € H U B where the classes H and B of subgroups of S are defined in [COS,
Notation 2.1]. By [COS, Lemma 2.6(a)] (and in terms of Notation 2.4 in [COS]), we
have ,Ll(Aut(]:(P )(S)) = A, for t = 0 or —1, and from the definition of u it then follows
that Aut,(T) = Aut(T) and hence has order p — 1. O

3. Representations of Mathieu groups

We next look at representations of the Mathieu groups M, and their central
extensions. The main theorem is stated for an arbitrary prime p, but we focus attention
mostly on the cases p = 2, 3, since the others follow from Lemma 2.10 and results in
[COS].

We apply Corollary 2.9 in most cases, using Lemma A.1 and the character tables
in [JLPW] to find lower bounds for _#,(x) when |x| = 2 or 3. The notation 2X and
3X refers to the classes as named in the Atlas [Atl] and in [JLPW]. In the following
lemma, we restrict attention to M|, and M4 since they are the only Mathieu groups
with more than one conjugacy class of elements of order 2 or 3.

LEMMA 3.1. Assume I' = My, or M4. Then

(a) each element of order 2 in I is contained in some H| < I" with H; = Dyy; and
(b) each element of order 3 in I is contained in some Hy < I with Hy = A4, and with
elements of order 2 in class 2A (if ' = Myy) or 2B (if I’ = My,).
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TABLE 1. The number of orbits in the action on X by each element of order 2 or 3 in I". For example, a
2B-element in M), acts with four orbits of length 2 and four fixed points.

r 2A 2B 3A 3B
M, 26 2414 3.3 3
qu4 28 . 18 212 36 . 16 38

PROOF. Let n = 12,24 be such that I = M,,, and let X be a 5-fold transitive I"-set of
order n. In each case, I' has two classes of elements of order 2 and two classes of
elements of order 3, and they are distinguished by whether they act on X freely or with
fixed points as described in Table 1. The outer automorphism of M, sends each of
these classes to itself, and so the inclusion of Aut(M,) into M»4 sends distinct classes
to distinct classes. It thus suffices to prove the lemma when I" = M.

(a) Fix an element g € 2A. By [GL, page 41], Cr(g) = C, X 25, and the second
factor must faithfully permute the six orbits under the action of g. Fix N < Cr(g) of
order 5, and let & € Cr(g) \ (g) be such that N(h) = Dyy. Then N{gh) = Dy, and we
are done upon showing that # and gh lie in different classes.

Set Xo = Cx(N), a subset of order 2 whose elements are exchanged by g, and set
X1 = X\ Xp. Of the two elements /& and gh, one fixes the two points in X, and the other
exchanges them, and we can assume that / fixes them. Hence, Cx(h) # 0, so h € 2B.
Also, Cx(gh) € X;, and since gh freely permutes four of the five (g)-orbits in X;, we
have |Cx(gh)| < 2. Since no involution in M}, acts with exactly two fixed points, this
shows that gh € 2A, finishing the proof of (a).

(b) Now fix an element g € 3A. Then Cr(g) = C3 X A4 by [GL, page 41]. Set
N = 0,(Cr(g)) = E4. The group Cr(g)/{g) = A4 acts faithfully on the set of four orbits
of g, so the elements of order 2 in N all act freely on X and hence lie in class 2A.

Fix h € Cr(g) such that N(h) = A4. Then N{gh) and N(g?h) are also isomorphic
to A4. Also h freely permutes three of the four (g)-orbits in X, and the fourth orbit is
fixed by exactly one of the elements 4, gh, or g*h. So one of these three elements lies
in class 3A, and the other two in class 3B. |

There are two special cases that we need to consider separately. The statement and
proof of the following proposition are based on notation set up in Appendices B and C.

PROPOSITION 3.2. Assume p = 2.

(@) If I' = My or Mys and A is the Golay module (dual Todd module) for I, then
R3(A) = 0 for T € Syl,(I').

(b) If I’ = 3My, and A is the six-dimensional simple F4I"-module, then %’;S(A) =0
Jor T € Syl,(I).

PROOF. In the first part of the proof, we consider cases (a) and (b) together. Assume
that the proposition is not true, and fix a triple (7, B,A.) € %’;(A). Thus 7 € T has
order 2, B < T is an elementary abelian 2-subgroup, and A, < C4({B, 7)) is such that
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|B| > |Ca/a, (7). By Proposition 2.6 and since [1,A] < Ca(7), we have
1Bl > |[7,A]l - |Ca(m) /A [T, All = |[7, Al (3-1)

Since I" = M»,, M3, or 3M>, has only one conjugacy class of involution, we have
I[r,A]l = 2% by Lemma B.3 in case (a), and by Lemma C.5(b) in case (b). Thus
|B| > 2%, with equality since rko(I") = 4 in all cases. So the inequalities in (3-1) are
equalities, Ca(1) = A,[1,A], and hence

tk(Ca(B)) > 1k(A.) > tk(Ca(7)/[1,A]) = 1k(A) - 2 - 1k([7,A]) = 1k(A) - 8. (3-2)

(a) Assume T < I" and A are as in Notations B.1 and B.2. Since H; and H, are the
only subgroups of T € Syl,(Iy) isomorphic to Ejs by Lemma B.3, B must be equal to
one of them. Since C4(H;) has rank 1 by Lemma B.3 again, and rk(Cs(B)) > rk(A) —
8 > 2 by (3-2), we have B = H;.

By condition (*) in Definition 2.3, each element of B* can appear as the first
component in an element of %;S (A). So we can assume that (7, B, A,) was chosen such
that T = tr;, (and still B = H,). Hence, by Tables 6 and 7,

gy, + Csg € Caltry,) = Aultry,, A] < Ca(Ho)[try,, Al = (Cr2, Ci3, Ci4, Ci5, G1p, ),

a contradiction. We conclude that ,@; (A) =0.

(b) Now assume 7 < I" and A are as in Notations C.2 and C.3. By Lemma C.5(a),
Py and P, are the only subgroups of T isomorphic to Ejg. Since rk(Ca(P3)) =2 -
dimg,(C4(P3)) = 2 by Lemma C.5(b), while rk(C4(B)) > 4 by (3-2), we have B = P;.
By condition () in Definition 2.3, we can assume that the triple (7, P1, A.) was chosen
so that T = p;. But then

(e1,er,e3,e4) = Calprio) = Aslpi0, Al £ Ca(P)lp10, Al = {ey, ez, €3)
by Lemma C.5(b), a contradiction. O

We now apply Corollary 2.9 and Lemma A.l, together with Proposition 3.2, to
determine the realizability of [F,/-modules when O” (I') is a central extension of a
Mathieu group. The following is a restatement of Theorem A.

THEOREM 3.3. Fix a prime p and a finite group T', and set I'y = O (I'). Assume
that Iy is quasisimple, and that I'(/Z(I"y) is one of the Mathieu groups. Let A be
an F,I'-module such that (I',A) is fusion realizable, and set Ay = [y, Al/Ciry.a1(L o).
Then either

(@) p=2,T =My orM,s, and Ay is the Todd module for I'; or

(b) p =2, =My, and Ay is the Todd module or Golay module for I'; or

() p=3,T=My, My X Cy, or 2M 5, and Ay is the Todd module or Golay module
for I'y; or

(d) p= 11, I'y = 2M5 or 2M>», F/Z(FQ) = Au'[(Mlz) x Cs or Aut(Mzz) X Cs, Cll’ldA()
is a 10-dimensional simple Fi I'-module.
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TABLE 2. In all cases, Ay is an Fo/-module such that C4,(I") = 0 and [I", Ag] = Ao, and the characters are
taken with respect to F,. The bounds for _#, () all follow from Lemmas 3.1(a) and A.1(a).

I ko (1) dim(Ag) TE Fa, (1)

My, 2 >1 28 _742A) = 20ay(D) —xa,(5A)) > 4
My, 3 >1 2A,2B /AO(ZX) > (xa,(1) — x4,(5A)) > 4
My, 4 >10 2A /AO(ZA) > 2(xa,(1) — x4,(5A)) > 8
3M», 4 >12 2A /AO(ZA) > =(xa,(1) — x4,(5A)) > 6
M3 4 >11 2A /AO(ZA) > (xa,(1) — x4,(5A)) > 8
My, 6 >11 2A,2B /AO(ZX) > E(XAU(I) - X4,(5A)) > 8

TABLE 3. In all cases, A is an F3/-module such that C4,(I") = 0 and [I",Ag] = Ao, and the characters
are taken with respect to F3. Thus when I" = 2M>;, the character values for the simple 10-dimensional
F3I-module are doubled here since it can only be realized over Fg. When I" = M, the bounds for on (1)
apply only when Ay is not the 10-dimensional permutation module. The bounds for _#,,(7) all follow from
Lemmas 3.1 and A.1(c), except when I" = M, or 2M,, where Lemma A.1(d) is used.

r ks (1) dim(Ag) TE I, ()

My 2 > 10 () 3A F1,(3A) 2 100ao(1) — xa,(44)) = 3
My, 2 > 1 3A,3B I1,(3X) = $(va, (1) = xa,(24)) > 3
2M, 2 > 6 3A.3B F1,3X) = $(xa (1) — xa,(2A)) > 3
M») 2 >1 3A FayBA) > 30xa, (1) — xa,(24)) > 4
2M5, 2 > 1 3A FayBA) > L1xa, (1) — xa,(2A)) > 4
Mo 2 > 1 3A I1BA) > 1 (xa, (1) — xa,(2A)) > 4
Moy 2 >1 3A,3B F4,3X) > 30xa,(1) = x4,(2B)) > 6

PROOF. Let n € {11, 12,22,23,24} be such that I'(/Z(Iy) = M,. Fix T € Sylp(F) =
Syl,(I'0). We frequently refer to Tables 2 and 3 for our lower bounds on Fa(t) for
|7| = p, and they in turn are based on Lemmas 3.1 and A.1 and the character tables in
the Atlas of Brauer characters [JLPW].

Case 1. If p > 3, then |T| = pin all cases. So by Lemma 2.10, we have [N (T)/Cr(T)| =
p—1and |Cs(T) N [T,A]] = p. In the terminology of [COS], this translates to saying
that I' € gPA and A is minimally active, and so the result follows from [COS,
Proposition 7.1].

Case 2. Assume p = 2. By Table 2, for 7 € I' of order 2, we have _Z4 (1) > rko(I')
(and hence %’;E (Ag) = 0) for each nontrivial simple F,/j-module Ay, except when
Iy = My, M3, or My, and A is the Todd module or Golay module.

Thus if Z(Iy) has odd order, then either n > 22 and Ay is the Todd module or Golay
module for I, or I'j = 3M>, and A is the six-dimensional F4/j-module. In these cases,
#7.(Ap) = 0 by Proposition 3.2, and so they are impossible by Propositions 2.4 and 2.5.

It remains to consider the cases where Z(I") has even order. Assume first that
Ty =2M,,. Then tky(I") = 4, and _Z4,(7) > 4 for each F»[I'/Z(I')]-module A, with
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nontrivial action by Table 2. By the last statement in Lemma A.2 (applied with A in the
role of V), for each elementary abelian 2-subgroup B < G of rank 4, since Z(I") < B,
there is 7 € B of order 2 such that _Z4(7) > 5. So Corollary 2.9 again applies to show
that (I", A) is not fusion realizable.

Now assume that I'y/Z(l"y) = M, and let Z < Z(I") be the Sylow 2-subgroup.
Thus |Z| = 2 or 4, and rk,(I9) < 5. By Table 2 and since _Z4,(7) < 1ky(I'y), either
I'y/Z = My, and Ay is its Todd module or its dual, or I'y/Z = 3M>», and Ag is the
six-dimensional F4/"/Z-module. By Lemma A.2(b) and since I" acts faithfully on
A, there must be indecomposable extensions of Ay by F, and of F, by Aj. Thus
H'(I'/Z;Ao) # 0 and H'(I'/Z; A})) # 0 (where A} is the dual module), contradicting
[MS, Lemma 6.1]. We conclude that no such faithful F,/-modules exist.

Case 3. Assume p = 3. We claim that _#Z, (1) > rk3(I'¢) (and hence (I, A) is not fusion
realizable) in all cases except when 'y = M|, or 2Mj, and Ap is the Todd module
for I'y or its dual. This follows from Table 3 except when 'y = My, dim(Ag) = 10
and A @ F is the 11-dimensional permutation module. But in that case, _Z, (1) =
whenever |7| = 3 since 7 acts on an 11-set with three free orbits.

Finally, if I'o = M}, or 2M|; and A is the Todd module or its dual, then A is
absolutely irreducible by [O2, Lemmas 4.2 and 5.2], and hence I" = My, M X C,,
or 2M,. O

4. Alperin’s 2-groups of normal rank 3

As an example of how the results in Section 2 can be applied when the abelian
p-subgroup A < S is not elementary abelian, we next look at some 2-groups first
studied by Alperin [Alp] and O’Nan [O’N]. These are groups A < S where A = Co» X
Cy X Cyn and S/A = Dg, with presentation given in Table 4. They are characterized by
Alperin [Alp, Theorem 1] as the Sylow 2-subgroups of groups G with normal subgroup
E = Eg, such that O(G) = 1, Autg(E) = Aut(E), and all involutions in Cg(E) lie in E.
Our goal is to show how results from Section 2 can be applied to prove in the context
of fusion systems a theorem of O’Nan’s, by showing that A is normal in all saturated
fusion systems over S [O’N, Lemma 1.10].

Before considering the groups A < § directly, we must first handle the following,
simpler case (compare with [O’N, Lemma 1.7]).

LEMMA 4.1. Fix n > 2, and let'S = v, w, 0') be a group of order 22’”2, where A =
(v,w) = Cyn X Cpn, and S =Ax (o) where a‘A— 1, vv =w, and w” . Then A is
normal in every saturated fusion system over S.

PROOF. Assume otherwise: assume ¥ is a saturated fusion system over S 'S for which
A 4 F. Thus some element 7 € S\ A is F- -conjugate to an element of A, and upon
replacing ¢ by #* if necessary, we can arrange that ¢ € 0?A. Since |C;(0)| =2 and

|CA(0'2)| 4, each abelian subgroup of S not contained in A has order at most 8, and
hence A is weakly closed in .
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TABLE 4. Let S = A(s,1), where A = (v{,v2,v3) = Con X Con X Cyn, the elements s and ¢ act on A as
described in the table, and also > = 1 and s* € (v;v3). Set T = Autg(A) = {cy, ¢, = Ds.

v v v v Pt
Vi V3_1 %) V3 Vgl
% V;l V3 V]VEIV_?, VII
V3 v[l vlvglw Vi v;lvzv;'

By Proposition 2.2(b),(c) and since A is weakly closed in ¥, there is U <'S that
is # -conjugate to a subgroup of A and such that (z, U, U N A) € ##(A). In particular,
UAJA] = 1G5, i (0

Since conjugation by ¢ sends each element of A to its inverse, UNA < G =

Q1(A), and hence C3,;,5,(1) = Q1(A/(U NA)) has order 4. Thus [UA/A| = 4, and so

there is u € U such that u € cA. L -

We c}gim Athat for each l[i e U7, either U’Z& =S8 or U* < A. Assume otherwise;
then U*A = A(c?). So U* NA < CK(O'Z) = 0(A), and U" is elementary abelian since
each element of 024 has order 2. Since U = U* is not elementary abelian (recall that
|u| = 4), this is impossible. _

By Theorem 1.3 (Alperin’s fusion theorem), there is a subgroup R < S, together
with an automorph§m @€ AutT(B) and subgroups A; and U; = a(A)), Asucll\ that
AU € UT, A <A, and U, £A. We just saw that this implies U;A =S. So
ANR contains a cyclic subgroup of order 4 and is normalized by o. Hence,
R> 02, (vw)? ), and so [R,R] > Q,(A). Since a sends some element of Q;(A)
to an element in the coset 0°A ¢ [R, R], this is impossible. O

Lemma 4.1 can also be proved using the transfer for # (see, for example, [AKO,
Section 1.8]) to show that no element x?, for x € oA, can be in the focal subgroup
of . Such an argument would be closer to that used by O’Nan in the proof of [O’N,
Lemma 1.7], but we wanted to apply the tools used elsewhere in this paper.

We now return to the groups A < S defined by the presentation in Table 4. We first
check that when n > 2, A is weakly closed in every saturated fusion system over S.

LEMMA 4.2 [O’N, Lemma 1.5]. Let S = A(s,t) be an extension of the form described
in Table 4, where n > 2. Then A is the only abelian subgroup of index 8 in S, and hence
is weakly closed in every saturated fusion system over S.

PROOF. This follows immediately from the centralizers listed in Table 5, since if A} <
S were abelian of index 8 and A; # A, then for x € A; \ A the subgroup C4(x) > ANA;
would have index at most 4 in A. ]

The arguments used in the proof of the following theorem are essentially the same
as O’Nan’s (when proving Lemma 1.10 in [O’N]), but repackaged with the help of
Proposition 2.4 and the properties of the sets Zr(A).
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TABLE 5. Centralizers and commutators involving some of the abelian subgroups H < (s,). Here,
e=2"1and§ =22

H ({t) (s?) (st) (s) (%, 1) (s2, st)
Ca(H) (vivy',v5) vivs,v5vg) vy vivs) (vivs) VeV (Vg vevg)

[H,A] (vivz,v3) v ovivy®) (riva,vavs®) (rpvstvavsh)

THEOREM 4.3 [O’N, Lemma 1.10]. Let S = A(s,t) be an extension of the form
described in Table 4, where n > 3. Then A is normal in every saturated fusion system
F over S.

PROOF. Assume otherwise: assume # is such that A & ¥. By Proposition 2.4(c)
and since A is weakly closed in ¥ by Lemma 4.2, there is a subgroup Z < A fully
centralized in ¥ such that A ¢ C#(Z), and such that for each u € I, (z)(A) there is
U € Ucyz)(A) such that U N A < Z and (2, Auty(A), U N A) € Zr(A). Set T = ci}; we
can assume that |7| = 2. Set B = Auty(A) and A, = U N A.

By Table 5, we have |Ca(t)N[7,A]ll=4. So |B| >4 by inequality (2-4) in
Proposition 2.6, with equality since 7 = Dg has no abelian subgroups of order 8.
Hence,

CaB)[1,A] 2 A,[1,A] = Cy ()7, Al (4-1)

where the equality follows from (2-2) in Proposition 2.6.
Since |B| = 4, we have ¢, € B. So we can choose u € s*A with u € Ty z)(A) (thus
Cy(Z)-conjugate to an element of A), and hence 7 = ¢! = cp. By Table 5,

[7,A] = wiv;'vivy?)  and  Ca([r,A] = (viv3, V7, v3).
So by Table 5, inequality (4-1) fails when B = (s°,1) or (s, st), and holds only
when B = (syand A, = Cx(s) = (viv3). Since A, < Z < C4(B) by assumption, we have
= (v1v3)-
Set F =Cr(2)]Z, A= A/Z, and S = Cs(Z)/Z (see Definition 1.10). Then A £
C#(Z) by assumption, hence is not strongly closed by Lemma 1.5, and so A/Z is not
strongly closed in C«;L‘(Z)/Z Thus A b 7—' Let v,w,o € K be the classes (modulo Z)

of vi,v2,s€S. Then A <'S are as in Lemma 4.1, so A < F by that lemma, giving a
contradiction. O

A. Some lemmas in representation theory

Recall Notation 2.8: when V is an elementary abelian p-group and 7 € Aut(V) has
order p, we set

Hv(t) = 1k(Cy(r) N [, V]),

the number of nontrivial Jordan blocks under the action of 7 on V. We derive here some
formulas that give lower bounds for these functions in terms of Brauer characters.

https://doi.org/10.1017/51446788723000022 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788723000022

[19] Nonrealizability of certain representations in fusion systems 275

The first lemma gives, in certain cases, lower bounds for _Zy(x) in terms of the
modular character of V. When ¢ is a prime and g { n, we let ord,(n) denote the order
of n in the group F.

LEMMA A.l. Fix a prime p, an elementary abelian p-group V, and an element x €
Aut(V) of order p. Let y = xv be the modular character of V as an F, Aut(V)-module.

(a) Assume p =2, and let q be an odd prime such that ord,(2) =g —1. Let
a € Aut(V) be such that \a| = q and {a,x) = Dy,. Then

-1
T > qzq (v(1) = yv(a)).

(b) Let q be a prime such that p | (q — 1), and let a € Aut(V) be such that |a| = q and
{a,x) is nonabelian of order pq. Then

1 5 A
Iv) = — 3" (pv(D) = xv(@)).
P4
(c) Assume p =3, and let a € Aut(V) be such that {a,x) = A4 and |a| = 2. Then

v = 10cv(D) = xv(@).
(d) Assume p =3, and let a € Aut(V) be such that {a,x) = 2A4 and |a| = 4. Then

Sv(x) = j0ev(1) = xv(a).

PROOF. (b) Since {a, x) is nonabelian of order pg, where p | (¢ — 1) and |a| = g, we
have

191G .
dim(V/Cy(@) = xv(1) = = D xvl@) = = 3 J0cv(h) = xvl@))
i=0 i=1

The action of x on Fp ®r, (V/Cy(a)) freely permutes the eigenspaces for a, corre-

sponding to the primitive g th roots of unity in Fp. So all Jordan blocks for this action
have length p, and the same holds for Jordan blocks for the action of x on V/Cy(a). So
Iv(x) = Lyicpw@) = %dim(V/CV(a)).

(a) Since |a| = g and ord,(2) = g — 1, we have xyv(a) = yy(a) for all i prime to g.
So this is a special case of (b).

(c) Let b € {(a,x) = A4 be such that {(a, b) = E4. Since a, b, and ab are permuted
cyclically by x, they all have the same character. Hence, each of the three nontrivial
irreducible characters for {a, b) = E4 appears with multiplicity

n = 3dim(V/Cy({a, b)) = 30¢v(1) = 30ev(1) + 3xv(@) = 30ev(1) = xv(@)).

Since x permutes those three characters cyclically, we have _Zy(x) > n.
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(d) Set H = (a,x) = 2A4 where |a| =4, and set z=a’ € Z(H). Then V=V, ® V_
as F3H-modules, where V. are the eigenspaces for the action of z, and it suffices to
prove the claim when V = V. or V = V_. The case V = V. was shown in (c).

Now assume V =V_, and set m = dim(V) = yy(1) and Hy = O,(H) = Qg. Let
W be the (unique) irreducible two-dimensional F3Ho-module. Then V|g, = W™/2,
and Homg,y,(W,V) = Fg"/ 2 since Endg,p,(W) = F5. So there are %(3’"/ 2_1) sub-
modules of V|y, isomorphic to W, they are permuted by (x) = Cs, and hence
there is at least one two-dimensional FzH-submodule W; < V. By applying the
same argument to V/W, and then iterating, we get a sequence of F3;H-submodules
0=Wy<W; <--- < W=7V such that dim(W;/W;_;) = 2 for each 1 <i < k. Then
dim(Cw,w, ,(x)) = 1 for each i, so dim(Cy(x)) < m/2, and dim([x, V]) > m/2. Each
nontrivial Jordan block in V has dimension 2 or 3, and intersects with [x, V] with
dimension 1 or 2, respectively. Thus

Iy z 5dim([x, V]) = 3m = pxv(D) = 300v(D) = xv(@)),
the last equality since yy(a) = 0 (recall that a®> = z acts on V via —Id). O
The next lemma is needed to handle IF,/"-modules in certain cases where O,(I") # 1.

LEMMA A.2. Fix a prime p, a finite group G such that O’(G) = G, and a subgroup
1 +# Z < Z(G) of p-power order. Set G = G/Z. Let V be a faithful indecomposable
F,G-module. Then either

(a) among the composition factors of V, there are at least two simple F,G-modules
with nontrivial action of G; or

(b) there are submodules 0 # Vy < V| <V such that G acts trivially on Vy and on
V/Vy, the Fpa-module Vi /Vy is simple, and Vi and V |V, have trivial Z-action

and are indecomposable F,G-modules.

Furthermore, in the situation of (b), for each g € G\ Z, we have tk([h, V,/Vy]) =
tk([h, V]) for at most one element h € gZ. Thus if p = 2 and |g| = 2, there is h € gZ of
order 2 such that _Zv(h) > _Zv, v, (h).

PROOF. Assume (a) does not hold. Thus all but one of the composition factors in V
have trivial G-action, and there are F,G-submodules Vy < Vi < V such that V/Vj is
simple (hence Z acts trivially) and all composition factors of Vy and of V/V are trivial.
Since G = OP(G) is generated by p’-elements, it acts trivially on V and on V/ V.

Let W < V; be the submodule generated by the [g, V] for all p’-elements g € G.
For each such g, [g,Vi] NV, <[g,Vi]NCy,(g) =0 since g acts trivially on Vj, so
projection onto V;/V; sends [g, V] injectively, and Z acts trivially on [g, V] since it
acts trivially on V;/V,. Thus [Z, W] = 0, and V| = W + V, since V;/V, is simple and
W £ Vo. So Z acts trivially on V.

By a similar argument, Z acts trivially on the dual (V/Vp)*, and hence acts trivially
on V/Vj. Since Z acts nontrivially on V, we have V| < V and V}, # 0.
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Assume V| is not indecomposable. Thus V|, = Wy @ W, where Wy and W, are
nontrivial ]Fpa—submodules of Vi and W, < V,. The action of G on V/W, is trivial (an
extension of Wy by V/V)), so [G, V] < W), and W, splits off as a direct summand of V,
contradicting the assumption that V be indecomposable. Thus V; is indecomposable
as an Fpa—module, and a similar argument involving the dual module V* shows that
V[V, is also indecomposable, finishing the proof of (b).

Now fix g € G\Z, and assume that &y, h, € gZ are distinct elements such that
tk([h;, V1) = tk([h;, V1 / Vo)) for i = 1,2. Set z = h{'hy € Z*. Since G acts faithfully on
V by assumption, there is some ay € V such that [z, ap] # 0. By (b), we have ay ¢ V,
and [z, ag] € V).

Set h = hy for short, so that i, = zh. Then [h, V,/Vy] = [hz, V1/ V], so tk([h, V]) =
rk([h, V1/Vy]) = tk([hz, V]), and hence [h, V] = [h, V] = [hz, V] and [k, V1] NV, = 0.
In particular, [h, ag] and [hz, ap] are both in [A4, V|]. Also,

[hz, ao] = z(h(ao) — ap) + (z(ap) — ao) = z([h, aol) + [z, ap],

so 0 # [z, a0] € [h, V1] NV, a contradiction.
The last statement now follows since if p = 2 and |/ = 2, then _#y(h) = rk([h, V])
and %y, v,(h) = tk([h, Vi/ Vo). |

The following example shows one way to construct examples of modules of the type
described in Lemma A.2(b).

EXAMPLE A.3. Fix a prime p, a finite group G such that O”(G) = G, and a subgroup
1 # Z < Z(G) of p-power order. Choose k > 1 such that Z has exponent at most p*.
Let H < G be such that no nontrivial normal subgroup of G is contained in H. Set
V = Z/p*(G/H): the free Z/ p*-module with basis the set G/H of left cosets. Regard V
as a left Z/ p*G-module, set V, = C(V), and let V < V be such that V/V, = CV/VZ(G)'
Set Vp = Cy(G) = Cy,(G) and V; =[G, V»]Vy. Then V is a Z/ p*G-module on which
G acts faithfully. Also, G acts trivially on Vy and on V/V/, and Z acts trivially on V;
and on V/V,.

If, furthermore, V| <V, (equivalently, if p | |G/HZ|), then there is a Z/p*G-
submodule V' < V such that V' > V|, G acts faithfully on V’, and V' /V| = V/V,.

PROOF. Set

oG = Z gHeCy(G) =V, and oy = ZzH € Co(2) = V.
gHeG/H €2

Note that Z N H = 1 since it is normal in G and contained in H.

Since no nontrivial normal subgroup of G is contained in H, the group G acts
faithfully on V and G/Z acts faithfully on V,. So G acts faithfully on V if Z does.

Fix an element 1 # z € Z; we show that [z, V] #0. Let Zy < Z and x € Z\ Z, be
such that Z = Zy x (x) and z ¢ Zy, and set p’ = |x| (thus £ < k). Choose A € Z/p* of
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order p’, let g1, ..., g, € G be representatives for the left cosets of HZ in G, and set

v=i Z pz_ls/l-(txygiH)ev

i=1 teZy s=0

Let zo € Zp and 0 < r < p’ be such that z = zox". Then

m ‘-1
v = Z Z l’Z: sA - (tzox’ giH) =v—rd-og,

i=1 teZy s=0

and [z, v] # 0 since rd # 0.
For each g€ G, let z1,...,2, €Zp and ry,...,r, € Z be such that for each i,
g8iH = zjx"'g;H for some j. Then

m

" ‘4 m ‘—1
=2, pZ s (o'ggiH) = ) )" pZ S (1 gH) = v = ) rid g0z,

i=1 t€Zy 5=0 J=1 1€Zy s=0 =1

and so [g,v] € G3(Z) = V5. Thus v € V, finishing the proof that Z acts faithfully on V.

Since [Z, [G, V]] = 1 by definition and [Z, G] = 1, we have [G,[Z,V]] = 1 by the
three-subgroup lemma (see [Go, Theorem 2.2.3]). Hence, [Z,V] < V), so Z acts
trivially on V/Vj.

If V| < V,, then G acts trivially on V,/V; and on V/V,, and hence acts trivially
on V/V; (recall that G is generated by p’-elements). So V/V| = (V,/V}) X (V'/V})
for some Z/ ka—submodule V' <V containing V| with V'/V; = V/V,. Also, Z acts
faithfully on V’ since it acts faithfully on V = V' + V, and trivially on V,, so G acts
faithfully on V’ since G/Z acts faithfully on [G, V,] < V| = V' N V,. O

For example, when p =2, G=2M, Z=272(G) = C,, and H = My, then by
Example A.3, there is a 12-dimensional faithful F,G-module V with submodules
Vo < Vi <V, where dim(Vy) = 1, dim(V;) = 11, Z acts trivially on V| and on V/V,,
and V| has index 2 in the 12-dimensional permutation module for G/Z = M.

There are much more general ways to construct faithful Z/p*G-modules V with
Vo < Vi <V asin Lemma A.2, starting with a given Z/ pka—module Vi (G = G/2).
But the ones we have found all seem to require certain conditions on H3(G:; V) to
hold.

We end this appendix with the following, more technical lemma needed in
Section 2.

LEMMA A.4. Let A be a finite abelian group, and fix @ € Aut(A). Let Ay < A be such
that a(Ag) = Ag. Then |Caya,(@)| < |Cal@)l.

PROOF. Set G =(a) < Aut(A). The short exact sequence 0 — Ay — A —
A/Ayp — 0induces an exact sequence in cohomology

0 — Ca,(G) — Ca(G) — Caja,(G) — H'(G;Ag) — ...,
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and hence
ICA(G)| = |Ca/ao(G)] - |Cao (G)I/IH'(G; Ap).

Since G = (@) and A is finite, we have |[H'(G; Ao)| = |H*(G; Ap)| where H*(G; Ay) is a
quotient group of Cy4,(G) (see [W, Theorem 6.2.2]). So [C4(G)| = [Ca/a,(G)I. O

B. The Golay modules for M,; and M3

We now apply results in Section 2 to prove that the Golay modules (that is, dual
Todd modules) for M,, and M,z are not fusion realizable in the sense of Definition 2.1.
We do this by showing that % (A) = 0 (see Definition 2.3) whenever T € Syl,(M,)
(n =22 or 23) and A is the Golay module of M,,.

We first set up our notation for handling these groups and modules. The notation
used here for doing this is based mostly on that used by Griess [Gr, Chs. 4-5].

For a finite set I and a field K, let K/ be the vector space of maps I — K, with
canonical basis {e; |i € I}. Let

Perm;(K) < Mon;(K) < Aut*(K")

be the groups of permutation automorphisms, semilinear monomial automorphisms,
and all semilinear automorphisms, respectively (that is, linear with respect to some
field automorphism of K). Thus if |I| = n, then Perm;(K) = %, and Mon; (K) = (K*)" >
(2, X Aut(K)). Let

n =nrx: Mon;(K) — Perm;(K)

be the canonical projection that sends a monomial automorphism to the corresponding
permutation automorphism; thus Ker(n; g) is the group of semilinear automorphisms
that send each Ke; to itself.

More concretely, set

1=1{1,2,3,4,5,6) and Q=F;x]I.

Thus IF? and Ff‘ are the vector spaces of functions Q — F, and I — Fy, respectively.

We also identify ]Ff1 with the space of 6-tuples in Fy. Fix w € F4 \ F,, and let (x — X) be

the field automorphism of F, of order 2. Thus Fy = {0, 1, w, w}, and x = X2 for x € Fy.
Let 7 C IFi be the hexacode subgroup:

% = <(w7 a’ w’ a? w’ a)? (D’ w? a’ w’ w? a)’ (57 w’ w? a’ E’ w), (w’ E’ m’ w? a’ w)>F4 .

Thus .77 is a three-dimensional F4-linear subspace of Fi. When making computations,
we frequently refer to the following elements in .77:

hy=(1,1,1,1,0,0), h=(1,10,0,1,1), h3=(w,w]10,10). (B.2)
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NOTATION B.1. Let the group I = Fi = Mon; (F4) act on Q = F4 X I in the usual way:
Fﬂ acts via translation, (FZ)’ acts via multiplication in each coordinate, Perm;(F,)
permutes the coordinates, and ¢ € Aut(F,) sends (c,i) to (c,i). This in turn induces
an action on FY, where g € I sends an element e to ey(;). Equivalently, for ¢ € FY

and (c, i) € @, define g(&) by (g(&))(c. ) = &g (¢, D).
As special cases, tr, € Aut(]Ff) will denote translation by n € F,, and 7(a) €
Aut(ﬂ-?'“zQ ) will be the automorphism induced by & € Mon;(F4). Thus

tr,(@)(c, i) = &c —n(i),i) and  T(@)E)(c, i) = &' (¢, D).
Now set
Aut* () € {a € Mon (Fyla(SF) = H).

By [Gr, Proposition 4.5.ii], Aut*(#) = 32¢. In other words, each permutation of [ is
the image of some automorphism of .77, unique up to multiplication by u - Id for some
u € F. More explicitly, Aut"(7¢) is generated by the subgroup

Auty () = ((12)(34),(12)(56),(135)(246),(13)(24),(12)34)(56)p) = X4 x C3,

where ¢ is the field automorphism ¢(xi,...,x¢) = (X1,...,Xs), together with the
elements

w-Id and a=(123)-diag(1,1,1, 1, w0, w).

We refer to [Gr, Definition 5.15] for a definition of the Golay code ¢ < ]Ff . Here,
rather than repeat that definition, we give a set of generators. Define ®1: ]Fi — ]Ff by
setting

Gr(€) = Ziel €&l
(the ‘graph’ of £). Define elements in ]Ff :
C = Z ec; (foriel) and gr, = Gr(h)+ Or(0) (forhe Fi),
celFy

and also C; = C; + C; for distinct i,j € I and Ci234 = Cyp + C34. Then C; + G1(0) and
ar, are in ¢4 for all i € I and all h € 7. From the ‘standard basis’ for & given in [Gr,
5.35], we see that

G =(Ci+Orh)|iel, he H)={(C;+6rx0),qv,|i€l, he H).

This is a 12-dimensional subspace of F4, with basis consisting of the six elements
C; + Gx(0) for i € I, together with six elements g, for / in any given [F,-basis of J7.
By [Gr, Theorem 5.8], the weight of each element in ¢ is 0, 8, 12, 16, or 24.

Define Ma4 to be the group of permutations of € that preserve ¢, and set Golyg =
4 [{eq), its Golay module. Also, define

Ap ={0,6)} and Az ={(0,6),(1,6)},
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TABLE 6. Commutators [g,x] = g(x) —x for g € T and x € Goly3. The first six elements in the top row
form a basis for Cgor,, (try, ), and together with the seventh they form a basis for Cgop,, (trp, ).

X Ciaz4 Cp Ci3 Cis ary, ary, + Cse O rwh, + Cse
[tvy,, x] 0 0 0 0 0 0 0
[tron, » x] 0 0 0 0 Ci2z4 C Co3

[flfh3 R X] 0 0 0 0 Clz C12 C25
[tlfwh3 N x] 0 0 0 0 C13 C15 C35
[T12734, X] 0 0 Cins  Cp2 0 0 9Ty,
[T13724, X] 0 Cio34 0 Ci3 0 vy, arp,
[T126, x] 0 0 Ci Ci 0 0 avy, + Cse

and fori = 1,2 set
M = Cy,,(A)) and  Golpy; = {€ € G | supp(é) N A; = 0}.

Thus dim(Goly4) = dim(Goly3) = 11, while dim(Gol,) = 10.
Define permutations 7, tr, € 2o fori # jin I and h € ]Ff1 by letting 7; exchange the
i th and j th columns and letting tr;, be translation by 4. More precisely,

7;i(c, k) = (c,0(k)) where o = (ij) € 2 and ty;(c,i) = (¢ + h(i), ).

Then tr), € My4 for all h € 2. By the above description of Autj(J7) < Aut™(J7), the
elements 71,734, T12T56, and 713724 all lie in Moy,

NOTATION B.2. Fix n = 22 or 23. Set I" = M,,, and define subgroups

T = (tep,, ton,, toh,, Ton,, T12T34, T13T24, T129) € Syl (1),
Hy = (t, tron,, T10T34, T13724),
Hy = (tvg,, trgn,, ton,, tren,).

In the next lemma, we list the basic properties of these subgroups that are needed.

LEMMA B.3. Assume Notation B.2, with n = 22 or 23. Then H| and H, are the only
subgroups of T isomorphic to Ei. If we set A = Gol,,, then

[tey,, Al = (C12, C13, Cia, 81y, ) = El,
Ca(Hy) = Co(T) = (Ci234),
Ca(H,) ={(C12,C13,Ca, Ci5) = Ejs.

PROOF. The first statement is well known and easily checked. Note, for example, that
T/H, = Dg, and that Cy,(x) hasrank 2 forx e T\ H,. Soif Ej\¢ = H < T and H # H,,
then HH| = H(ttp,, tr,p,) or H (tr,,, T12¢), and from this one easily reduces to the
case H = H,. (Note that all elements of order 2 in H,H> lie in H; U H,.)

The statements about commutators and centralizers follow from Tables 6 and 7. O
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TABLE 7. The classes of these four elements x form a basis for Gol,,/ Cgor, (v, ).

X grw/ﬁ grh3 grwh3 (Sr(th) + Cl
[trp,,x]  Ciza Crz Cp3 ary, + Cp2

C. The six-dimensional module for 3M»,

We again fix an element w € F4 \ F,, and let (@ — a) denote the field automorphism
of F4. Thus F4 = {0, 1, w, w}. We also use the bar over matrices to denote the field
automorphism applied to the entries, that is, (a_ij) = (aj). Let Tr: F4, — [, be the
trace: Tr(a) = a + a.

Set V= IF‘3 and A = IF6 where elements of V are written as column matrices (z)
for a, b, ¢ € F4, and elements of A are written as column matrices () for u,v € V. Let
(—, —) be the hermitian form on A defined by

() -mo

The description here of the action of I" = 3M», on A is based on that in [Ben, Ch. 2]

and in [Atl, page 39], originally due to Benson and others. An element denoted | | § !

in [Ben] or (rx sy tz) in [Atl] is written here () where u = (E) andv = (Sg)
Fori,k=1,2,3 andj = 1,2, define

S bii
o ifi=k v

bijk = 1 l and b,’j = b,‘jz eV,
1 ifitk b
ij3

and set Z = {(b;)|i = 1,2,3, j = 1,2}. The following lemma is easily checked.

LEMMA C.1. Consider the hermitian formb: V x V —s Fy defined by h(v, w) = V'w.
Define elements uy, ... ,us € V by setting

up =10, wup=(1) wuz=(0) w=\{1), wus=|w) wus=\|a)
! 0 2 0 3 1 4 1 > 7] 6 w

and set % = {{u;)| 1 < i < 6). Then the members of % are the only one-dimensional
subspaces of 'V not orthogonal to any member of 9B, and the members of % are the
only one-dimensional subspaces of V not orthogonal to any member of % . Hence, for
D € GL3(4), the action of D on V permutes the members of 7 if and only if the action

of DonV permutes the members of .

Define matrices

000 1
M =(010), M =(o
10 000 20 9

ooo

0 011 0w
O), M01=(l()1), MOQZ(DO
1 110 ww
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and set My = 0, Moz = My, + My, M3y = Mo + My, and Mij =M + M()j for l,] =
1,2, 3. In other words, if we set 3 = {0, 1,2, 3} and regard it as an elementary abelian
2-group via bitwise sum, then ((i, /) = M) is a homomorphism from 3x3 to M3(F,).
Finally, set
Nif =1+ Ml] ((l,]) € §X§)
Note that
foralli=1,2,3. (C.1)

— ot i 4
Nl‘() = Uji; and N()i = Uir3U; s

NOTATION C.2. Define maximal isotropic subspaces X;; < A (for i,j = 0, 1,2,3) and
Yj<A(fori=1,2,3andj = 1,2) as follows:

X; = {(Nva) ve V} and Y; = {( b,»,bi,»,’u)

Set Z" ={X;;|i,j=0,1,2,3}and % ={Y;;|i=1,2,3, j = 1,2}. LetI' < Aut(A) be the
group of unitary automorphisms of A that permute the members of 2" U &%/,

ueV}.

The members of 2" U ¢/ are all totally isotropic since the matrices N; and bijb_ijt
are hermitian for all 7, j. Following [Atl, Ben], we arrange them diagrammatically as
follows:

Xoo Xor | Xoo Xo3
Yio Yu | X Xu | X2 Xi
Yo Yo | X0 Xoi | X22 Xo3
Y Y31 | X300 X3z | X3 X33

(C2)

NOTATION C.3. For M € M3(F,4) and D € GL3(F4), define ¢y, ¥p € Aut(A) by setting

(=[5 ) e ol (-0 50

where (—)™" means transpose inverse. Set
100 100 011 100
D0=(001), D1=(101), D2=(101), D3=(0w0);
010 110 001 00w

Mij = ()DM[/' and 61' = l//Di for l,] = O, 1,2, 3.

and set

Also, define the following subgroups of Autg,(A) (in fact, of I'):

H=Nr(¥)=Npr(Z), Py ={u;li,j=0,1,2,3},
Hy=Cp(¥%), Py = (10, o1, 60, 01),
To=Cr(Z V%), T = P Py{(62) = P1{60,01,02).
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Note that ¢y, is unitary whenever M=M , and Yp is unitary for all D € GL3(4). In
particular, the y; and the 6; are all unitary.

Most of the information about /" and its action on A in the following lemma is well
known and implicit in Ch. 2 of [Ben], but we try here to make more explicit some of
the details in the proofs.

LEMMA C.4. Set Ay ={(y)|we V) Set A={(Dy,D1,D,,D3) < GL3(4), and set
Ua = (00,01,02,03) = {Yp|D € A} < Aut(A). Then

(@) I'=3MyandT € Syl,(I');

(b) A=y =346

(¢) Hy=PyxIywhere Py ={p €I'lpla, =1d} = E\s and I'y = {w - 1d4); and
(d) H={pel'lp(Ao) = Ao} = P1ya.

PROOF. Foreachi=1,2,3andj = 1,2,
—t
YiNAg={(g)lueV, bju=0}={(g)|uec by} (C.3)

in the notation of Lemma C.I. Thus dimg, (Y NAp) =2 for ¥ € %, and distinct
members of % have distinct intersections with Ag. So for each pair Y # Y’ in %/,
we have Y NY’ <Ay where dim(Y NY’) = 1, and the set of all such intersections
generates Ayp.

Thus each ¢ € H sends A( to itself. If ¢ € Hy, then ¢ sends each of the
one-dimensional subspaces Y NY’ to itself (for ¥ # Y’ in %), and hence ¢4, €
(w-1dy,).

By definition, X N Ag = 0 for each X € 2. So if ¢ € I'is such that ¢(A() = Ao, then
¢ permutes the members of 2~ and those of %, and hence lies in H. If ¢4, € (w - Ida,),
then since the intersections ¥ N A for Y € ¢ are all distinct, ¢ sends each member of
2% to itself and hence lies in Hy. To summarize, we have now shown that

H={pel|pAy) =Ao} and Hy={p el |¢pls, € {w-Idy)}. (C4)

(b) Each of the matrices D; for i =0, 1,2,3 permutes the members of the set
% ={u;|1 <i< 6}, and does so via the permutations

Dy: (23)(56), D;: (14)23), Dy: (12)(34), Ds: (456). (C.5)

These generate the group of all even permutations of the set %/. In particular, there is
a matrix D4 € A that induces the permutation (12 3), and by considering its action on

. 00
the u; for 1 <i <4, we see that D4 = (60 é) for some r € ]FZ.
r
We claim that

A=1{D e GL;(4)|D(U) =U}. (C.6)
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To see this, assume D € GL3(4) permutes the (u;). Since all even permutations of %/
are realized by elements in A, there is D’ = D (mod A) that sends each of the subspaces
(ur), {uz), {uz), {uy) to itself. But then D’ must have the form s - [ for s € IFZ‘. Since

(“68 8) - [(528),(986)] € [A Al
00 w 00w/ \0ro
this proves (C.6), and also shows that A = 3Ag.
The isomorphism ¢, = A follows directly from the definitions.
(c) We first check, foreachi,j = 0,1,2,3,k = 1,2,3,and £ = 1,2, that u;;(Yi,) = Yie.
This means showing, for u € V, that

—t —t —t
biebre w = brebre (u + Miibiebye u),

that is, that b_kgtM,'jbk[ = 0. It suffices to do this when jj = 0 and (i,j) # (0,0). In all
such cases, by (C.1), there is {c;;) € % such that c,-jc_ijt = I+ M. So it suffices to show
that

J— — —
(bre i) - (bie cij) = bye bre = 1,

or equivalently that by, L c;;, which follows from Lemma C.1.

For the same automorphism g; with matrix ((I) A';‘f ), an element (Vi) € Xj, is sent
to (MewtMit) “Since Nis + Mjj = Nisic+; Where sums of indices are taken bitwise, this
shows that 1;(Xxr) = Xi4ie4j. SO pj; permutes the members of 2, finishing the proof
thatu,-j eHy<T.

Conversely, for each ¢ € I" such that ¢|4, = Id, ¢ induces the identity on A/A since
it is unitary and Ay is a maximal isotropic subgroup, so ¢ has matrix (§ ) for some
M € M3(F4). Thus ¢ = ¢y (see Notation C.3). Let (7, /) be such that ¢(Xoo) = Xj;; then
Noo+M =1+ M = Nj,soM = Mj;, and ¢ = p;; € P;. We now conclude that

Py ={p el |¢ls, =1d}.

By (C.4), ¢ € Hy implies that ¢|s, € {(w - 1d4,), and hence that ¢ € P; X (w - 1d,).
Thus Hy < Py X {w -1ds), and we have already proved the opposite inclusion. Also,
(w-1dyy < Ty < Hy,and I’y N Py = 1 since Py acts faithfully on 2. So I'y = {w - Id,).

(d) Fix D € A; we show that yp € H. Let pp: M3(F4) — M5(F,) be the homomor-
phism pp(M) = DMD'. Since D permutes the members of % by (C.5), pp permutes
the set

{utt | {uy € %'} = {N1o, Nao, N30, Not, Noz, Nos}

(see (C.1)). This, together with the relations Nj + Nis + Ny = Niskimjresn (Where
indices are added bitwise), shows that pp permutes the set of all N; fori,j = 0, 1,2, 3.
(Note, for example, that Nog = Nig + Nag + N3g.) If i, ], k, € are such that pp(N;) = Ny,
then

https://doi.org/10.1017/51446788723000022 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788723000022

286 B. Oliver [30]

o ({7

and thus p permutes the members of 2.

S V} = X,

By Lemma C.1 and since D permutes the members of %/, the matrix D permutes
the members of 4. So for each i, there are k, £ such that Btbk[ € (b;j), and hence

Up(Yy) = {( ue V} = {(B_Ibijbl,-thlv) ve V}

VEV}=Y/([.

Du
B_tbijb_ijtlxt

_ { v
- bkfb_kftv

Thus yp also permutes the members of %, and it follows that y/p € H.

Conversely, for each n € H, n(Ag) = Ay by (C.4), and 5,4, permutes the subspaces
YNAy for Y €% . So n has matrix of the form (gg’ ), where D permutes the
subspaces b+ < V for all (b) € & by (C.3), and hence permutes the members of %
by Lemma C.1. So by (C.6), there is & € ¢4 such that 54, = dla,. Then 67157 € P; by
(c), and 17 € P1y5. This finishes the proof that H = P y/x.

(a) Set I'* = I'/T, regarded as a group of permutations of the set 2" U % . By
[Ben, Theorem 2.3], I'* acts 3-transitively on the set 2~ U %, It is well known (see,
for example, [Po, page 235]) that the only finite groups that act 2-transitively on a set
of order 22 are My, Ay, and their automorphism groups. So once we have shown
that 7 € Syl,(I") and |T| = 27, it will then follow that I™* = M>,, and that I” is a central
extension of Iy = C5 by ™.

Recall that T = P1{5o, 61, 2), where by (C.5) the action of the §; on % generates a
subgroup of X isomorphic to Dg. Hence, T/P; = Dg, and |T| = 27. Alternatively, one
can describe T by looking at the subgroup of Aut(A() generated by restrictions of its
elements.

Under the action of I™*, the stabilizer of a subspace X € 2" U % acts Fy-linearly
on X. If ¢ € I' is such that ¢|y = Idy, then ¢ sends each member of 2" U % to itself
since their intersections with X are distinct, and hence ¢ € I'y. The point stabilizer for
the action of " on 2" U & is thus isomorphic to a subgroup of PGL3(4), and hence
the order of I'* divides 22 - |PGL3(4)| =27 -3%.5-7-11 =3 - [My]|. So T € Syl,(I")
and I = M»,. Finally, I" is the nonsplit central extension of I’y = C3 by I'™* since it
contains ¥p = 3A¢ by (b,d). O

Thus P; = O,(H), where H = E |5 = 3A¢ is a hexad subgroup of I" = 3M;;. One
can also show that P, = O(K) where K = Np({Y11, Y12}) is a duad subgroup of I
Equivalently, K = C5 X (E6 = 25) is the group of elements of I” that permute the five
2 x 2 blocks in diagram (C.2), that is, send the four members of each such block to
those in another block.

The next lemma collects some technical properties of the action of /" on A.
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LEMMA C.5. Let {ey,ez,...,e¢} be the canonical basis for A = FZ. Then for
Py, P, T < I and uyy € Py N Py as defined in Notation C.3,

(a) Py and P, are the only subgroups of T isomorphic to Eg; and
(b)  Caluio) =e1,e2,e3,e4), [p10,A]l = (e2,€3), Ca(P1) =(e1,e2,e3), Ca(P2) =
(€2 + e3).

PROOF. For point (a), see Lemma B.3. Point (b) follows easily from the above
descriptions of the actions. ]
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